xref: /freebsd/contrib/llvm-project/lld/ELF/Relocations.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67 
68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (BaseCommand *base : script->sectionCommands)
70     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71       if (cmd->sym == &sym)
72         return cmd->location;
73   return None;
74 }
75 
76 static std::string getDefinedLocation(const Symbol &sym) {
77   std::string msg = "\n>>> defined in ";
78   if (sym.file)
79     msg += toString(sym.file);
80   else if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81     msg += *loc;
82   return msg;
83 }
84 
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>>               /home/alice/src/bar.o:(.text+0x1)
90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91                                uint64_t off) {
92   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93   std::string src = s.getSrcMsg(sym, off);
94   if (!src.empty())
95     msg += src + "\n>>>               ";
96   return msg + s.getObjMsg(off);
97 }
98 
99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100                            int64_t min, uint64_t max) {
101   ErrorPlace errPlace = getErrorPlace(loc);
102   std::string hint;
103   if (rel.sym && !rel.sym->isLocal())
104     hint = "; references " + lld::toString(*rel.sym) +
105            getDefinedLocation(*rel.sym);
106 
107   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
108     hint += "; consider recompiling with -fdebug-types-section to reduce size "
109             "of debug sections";
110 
111   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
112               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
113               ", " + Twine(max).str() + "]" + hint);
114 }
115 
116 namespace {
117 // Build a bitmask with one bit set for each RelExpr.
118 //
119 // Constexpr function arguments can't be used in static asserts, so we
120 // use template arguments to build the mask.
121 // But function template partial specializations don't exist (needed
122 // for base case of the recursion), so we need a dummy struct.
123 template <RelExpr... Exprs> struct RelExprMaskBuilder {
124   static inline uint64_t build() { return 0; }
125 };
126 
127 // Specialization for recursive case.
128 template <RelExpr Head, RelExpr... Tail>
129 struct RelExprMaskBuilder<Head, Tail...> {
130   static inline uint64_t build() {
131     static_assert(0 <= Head && Head < 64,
132                   "RelExpr is too large for 64-bit mask!");
133     return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
134   }
135 };
136 } // namespace
137 
138 // Return true if `Expr` is one of `Exprs`.
139 // There are fewer than 64 RelExpr's, so we can represent any set of
140 // RelExpr's as a constant bit mask and test for membership with a
141 // couple cheap bitwise operations.
142 template <RelExpr... Exprs> bool oneof(RelExpr expr) {
143   assert(0 <= expr && (int)expr < 64 &&
144          "RelExpr is too large for 64-bit mask!");
145   return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
146 }
147 
148 // This function is similar to the `handleTlsRelocation`. MIPS does not
149 // support any relaxations for TLS relocations so by factoring out MIPS
150 // handling in to the separate function we can simplify the code and do not
151 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
152 // Mips has a custom MipsGotSection that handles the writing of GOT entries
153 // without dynamic relocations.
154 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
155                                         InputSectionBase &c, uint64_t offset,
156                                         int64_t addend, RelExpr expr) {
157   if (expr == R_MIPS_TLSLD) {
158     in.mipsGot->addTlsIndex(*c.file);
159     c.relocations.push_back({expr, type, offset, addend, &sym});
160     return 1;
161   }
162   if (expr == R_MIPS_TLSGD) {
163     in.mipsGot->addDynTlsEntry(*c.file, sym);
164     c.relocations.push_back({expr, type, offset, addend, &sym});
165     return 1;
166   }
167   return 0;
168 }
169 
170 // Notes about General Dynamic and Local Dynamic TLS models below. They may
171 // require the generation of a pair of GOT entries that have associated dynamic
172 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
173 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
174 // symbol in TLS block.
175 //
176 // Returns the number of relocations processed.
177 template <class ELFT>
178 static unsigned
179 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
180                     typename ELFT::uint offset, int64_t addend, RelExpr expr) {
181   if (!sym.isTls())
182     return 0;
183 
184   if (config->emachine == EM_MIPS)
185     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
186 
187   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
188           expr) &&
189       config->shared) {
190     if (in.got->addDynTlsEntry(sym)) {
191       uint64_t off = in.got->getGlobalDynOffset(sym);
192       mainPart->relaDyn->addReloc(
193           {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
194     }
195     if (expr != R_TLSDESC_CALL)
196       c.relocations.push_back({expr, type, offset, addend, &sym});
197     return 1;
198   }
199 
200   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
201                      config->emachine != EM_HEXAGON &&
202                      config->emachine != EM_RISCV;
203 
204   // If we are producing an executable and the symbol is non-preemptable, it
205   // must be defined and the code sequence can be relaxed to use Local-Exec.
206   //
207   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
208   // we can omit the DTPMOD dynamic relocations and resolve them at link time
209   // because them are always 1. This may be necessary for static linking as
210   // DTPMOD may not be expected at load time.
211   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
212 
213   // Local Dynamic is for access to module local TLS variables, while still
214   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
215   // module index, with a special value of 0 for the current module. GOT[e1] is
216   // unused. There only needs to be one module index entry.
217   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
218           expr)) {
219     // Local-Dynamic relocs can be relaxed to Local-Exec.
220     if (toExecRelax) {
221       c.relocations.push_back(
222           {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
223            offset, addend, &sym});
224       return target->getTlsGdRelaxSkip(type);
225     }
226     if (expr == R_TLSLD_HINT)
227       return 1;
228     if (in.got->addTlsIndex()) {
229       if (isLocalInExecutable)
230         in.got->relocations.push_back(
231             {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
232       else
233         mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
234                                 in.got->getTlsIndexOff(), nullptr);
235     }
236     c.relocations.push_back({expr, type, offset, addend, &sym});
237     return 1;
238   }
239 
240   // Local-Dynamic relocs can be relaxed to Local-Exec.
241   if (expr == R_DTPREL && toExecRelax) {
242     c.relocations.push_back(
243         {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
244          offset, addend, &sym});
245     return 1;
246   }
247 
248   // Local-Dynamic sequence where offset of tls variable relative to dynamic
249   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
250   if (expr == R_TLSLD_GOT_OFF) {
251     if (!sym.isInGot()) {
252       in.got->addEntry(sym);
253       uint64_t off = sym.getGotOffset();
254       in.got->relocations.push_back(
255           {R_ABS, target->tlsOffsetRel, off, 0, &sym});
256     }
257     c.relocations.push_back({expr, type, offset, addend, &sym});
258     return 1;
259   }
260 
261   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
262             R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
263     if (!toExecRelax) {
264       if (in.got->addDynTlsEntry(sym)) {
265         uint64_t off = in.got->getGlobalDynOffset(sym);
266 
267         if (isLocalInExecutable)
268           // Write one to the GOT slot.
269           in.got->relocations.push_back(
270               {R_ADDEND, target->symbolicRel, off, 1, &sym});
271         else
272           mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);
273 
274         // If the symbol is preemptible we need the dynamic linker to write
275         // the offset too.
276         uint64_t offsetOff = off + config->wordsize;
277         if (sym.isPreemptible)
278           mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
279                                   &sym);
280         else
281           in.got->relocations.push_back(
282               {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
283       }
284       c.relocations.push_back({expr, type, offset, addend, &sym});
285       return 1;
286     }
287 
288     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
289     // depending on the symbol being locally defined or not.
290     if (sym.isPreemptible) {
291       c.relocations.push_back(
292           {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type,
293            offset, addend, &sym});
294       if (!sym.isInGot()) {
295         in.got->addEntry(sym);
296         mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
297                                 &sym);
298       }
299     } else {
300       c.relocations.push_back(
301           {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type,
302            offset, addend, &sym});
303     }
304     return target->getTlsGdRelaxSkip(type);
305   }
306 
307   // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
308   // defined.
309   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
310             R_TLSIE_HINT>(expr) &&
311       toExecRelax && isLocalInExecutable) {
312     c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
313     return 1;
314   }
315 
316   if (expr == R_TLSIE_HINT)
317     return 1;
318   return 0;
319 }
320 
321 static RelType getMipsPairType(RelType type, bool isLocal) {
322   switch (type) {
323   case R_MIPS_HI16:
324     return R_MIPS_LO16;
325   case R_MIPS_GOT16:
326     // In case of global symbol, the R_MIPS_GOT16 relocation does not
327     // have a pair. Each global symbol has a unique entry in the GOT
328     // and a corresponding instruction with help of the R_MIPS_GOT16
329     // relocation loads an address of the symbol. In case of local
330     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
331     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
332     // relocations handle low 16 bits of the address. That allows
333     // to allocate only one GOT entry for every 64 KBytes of local data.
334     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
335   case R_MICROMIPS_GOT16:
336     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
337   case R_MIPS_PCHI16:
338     return R_MIPS_PCLO16;
339   case R_MICROMIPS_HI16:
340     return R_MICROMIPS_LO16;
341   default:
342     return R_MIPS_NONE;
343   }
344 }
345 
346 // True if non-preemptable symbol always has the same value regardless of where
347 // the DSO is loaded.
348 static bool isAbsolute(const Symbol &sym) {
349   if (sym.isUndefWeak())
350     return true;
351   if (const auto *dr = dyn_cast<Defined>(&sym))
352     return dr->section == nullptr; // Absolute symbol.
353   return false;
354 }
355 
356 static bool isAbsoluteValue(const Symbol &sym) {
357   return isAbsolute(sym) || sym.isTls();
358 }
359 
360 // Returns true if Expr refers a PLT entry.
361 static bool needsPlt(RelExpr expr) {
362   return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
363 }
364 
365 // Returns true if Expr refers a GOT entry. Note that this function
366 // returns false for TLS variables even though they need GOT, because
367 // TLS variables uses GOT differently than the regular variables.
368 static bool needsGot(RelExpr expr) {
369   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
370                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>(
371       expr);
372 }
373 
374 // True if this expression is of the form Sym - X, where X is a position in the
375 // file (PC, or GOT for example).
376 static bool isRelExpr(RelExpr expr) {
377   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
378                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
379                R_RISCV_PC_INDIRECT>(expr);
380 }
381 
382 // Returns true if a given relocation can be computed at link-time.
383 //
384 // For instance, we know the offset from a relocation to its target at
385 // link-time if the relocation is PC-relative and refers a
386 // non-interposable function in the same executable. This function
387 // will return true for such relocation.
388 //
389 // If this function returns false, that means we need to emit a
390 // dynamic relocation so that the relocation will be fixed at load-time.
391 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
392                                      InputSectionBase &s, uint64_t relOff) {
393   // These expressions always compute a constant
394   if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
395             R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
396             R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
397             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
398             R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
399             R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
400             R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>(
401           e))
402     return true;
403 
404   // These never do, except if the entire file is position dependent or if
405   // only the low bits are used.
406   if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
407     return target->usesOnlyLowPageBits(type) || !config->isPic;
408 
409   if (sym.isPreemptible)
410     return false;
411   if (!config->isPic)
412     return true;
413 
414   // The size of a non preemptible symbol is a constant.
415   if (e == R_SIZE)
416     return true;
417 
418   // For the target and the relocation, we want to know if they are
419   // absolute or relative.
420   bool absVal = isAbsoluteValue(sym);
421   bool relE = isRelExpr(e);
422   if (absVal && !relE)
423     return true;
424   if (!absVal && relE)
425     return true;
426   if (!absVal && !relE)
427     return target->usesOnlyLowPageBits(type);
428 
429   assert(absVal && relE);
430 
431   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
432   // in PIC mode. This is a little strange, but it allows us to link function
433   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
434   // Normally such a call will be guarded with a comparison, which will load a
435   // zero from the GOT.
436   if (sym.isUndefWeak())
437     return true;
438 
439   // We set the final symbols values for linker script defined symbols later.
440   // They always can be computed as a link time constant.
441   if (sym.scriptDefined)
442       return true;
443 
444   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
445         toString(sym) + getLocation(s, sym, relOff));
446   return true;
447 }
448 
449 static RelExpr toPlt(RelExpr expr) {
450   switch (expr) {
451   case R_PPC64_CALL:
452     return R_PPC64_CALL_PLT;
453   case R_PC:
454     return R_PLT_PC;
455   case R_ABS:
456     return R_PLT;
457   default:
458     return expr;
459   }
460 }
461 
462 static RelExpr fromPlt(RelExpr expr) {
463   // We decided not to use a plt. Optimize a reference to the plt to a
464   // reference to the symbol itself.
465   switch (expr) {
466   case R_PLT_PC:
467   case R_PPC32_PLTREL:
468     return R_PC;
469   case R_PPC64_CALL_PLT:
470     return R_PPC64_CALL;
471   case R_PLT:
472     return R_ABS;
473   default:
474     return expr;
475   }
476 }
477 
478 // Returns true if a given shared symbol is in a read-only segment in a DSO.
479 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
480   using Elf_Phdr = typename ELFT::Phdr;
481 
482   // Determine if the symbol is read-only by scanning the DSO's program headers.
483   const SharedFile &file = ss.getFile();
484   for (const Elf_Phdr &phdr :
485        check(file.template getObj<ELFT>().program_headers()))
486     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
487         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
488         ss.value < phdr.p_vaddr + phdr.p_memsz)
489       return true;
490   return false;
491 }
492 
493 // Returns symbols at the same offset as a given symbol, including SS itself.
494 //
495 // If two or more symbols are at the same offset, and at least one of
496 // them are copied by a copy relocation, all of them need to be copied.
497 // Otherwise, they would refer to different places at runtime.
498 template <class ELFT>
499 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
500   using Elf_Sym = typename ELFT::Sym;
501 
502   SharedFile &file = ss.getFile();
503 
504   SmallSet<SharedSymbol *, 4> ret;
505   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
506     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
507         s.getType() == STT_TLS || s.st_value != ss.value)
508       continue;
509     StringRef name = check(s.getName(file.getStringTable()));
510     Symbol *sym = symtab->find(name);
511     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
512       ret.insert(alias);
513   }
514   return ret;
515 }
516 
517 // When a symbol is copy relocated or we create a canonical plt entry, it is
518 // effectively a defined symbol. In the case of copy relocation the symbol is
519 // in .bss and in the case of a canonical plt entry it is in .plt. This function
520 // replaces the existing symbol with a Defined pointing to the appropriate
521 // location.
522 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
523                                uint64_t size) {
524   Symbol old = sym;
525 
526   sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
527                       sym.type, value, size, sec});
528 
529   sym.pltIndex = old.pltIndex;
530   sym.gotIndex = old.gotIndex;
531   sym.verdefIndex = old.verdefIndex;
532   sym.exportDynamic = true;
533   sym.isUsedInRegularObj = true;
534 }
535 
536 // Reserve space in .bss or .bss.rel.ro for copy relocation.
537 //
538 // The copy relocation is pretty much a hack. If you use a copy relocation
539 // in your program, not only the symbol name but the symbol's size, RW/RO
540 // bit and alignment become part of the ABI. In addition to that, if the
541 // symbol has aliases, the aliases become part of the ABI. That's subtle,
542 // but if you violate that implicit ABI, that can cause very counter-
543 // intuitive consequences.
544 //
545 // So, what is the copy relocation? It's for linking non-position
546 // independent code to DSOs. In an ideal world, all references to data
547 // exported by DSOs should go indirectly through GOT. But if object files
548 // are compiled as non-PIC, all data references are direct. There is no
549 // way for the linker to transform the code to use GOT, as machine
550 // instructions are already set in stone in object files. This is where
551 // the copy relocation takes a role.
552 //
553 // A copy relocation instructs the dynamic linker to copy data from a DSO
554 // to a specified address (which is usually in .bss) at load-time. If the
555 // static linker (that's us) finds a direct data reference to a DSO
556 // symbol, it creates a copy relocation, so that the symbol can be
557 // resolved as if it were in .bss rather than in a DSO.
558 //
559 // As you can see in this function, we create a copy relocation for the
560 // dynamic linker, and the relocation contains not only symbol name but
561 // various other information about the symbol. So, such attributes become a
562 // part of the ABI.
563 //
564 // Note for application developers: I can give you a piece of advice if
565 // you are writing a shared library. You probably should export only
566 // functions from your library. You shouldn't export variables.
567 //
568 // As an example what can happen when you export variables without knowing
569 // the semantics of copy relocations, assume that you have an exported
570 // variable of type T. It is an ABI-breaking change to add new members at
571 // end of T even though doing that doesn't change the layout of the
572 // existing members. That's because the space for the new members are not
573 // reserved in .bss unless you recompile the main program. That means they
574 // are likely to overlap with other data that happens to be laid out next
575 // to the variable in .bss. This kind of issue is sometimes very hard to
576 // debug. What's a solution? Instead of exporting a variable V from a DSO,
577 // define an accessor getV().
578 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
579   // Copy relocation against zero-sized symbol doesn't make sense.
580   uint64_t symSize = ss.getSize();
581   if (symSize == 0 || ss.alignment == 0)
582     fatal("cannot create a copy relocation for symbol " + toString(ss));
583 
584   // See if this symbol is in a read-only segment. If so, preserve the symbol's
585   // memory protection by reserving space in the .bss.rel.ro section.
586   bool isRO = isReadOnly<ELFT>(ss);
587   BssSection *sec =
588       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
589   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
590 
591   // At this point, sectionBases has been migrated to sections. Append sec to
592   // sections.
593   if (osec->sectionCommands.empty() ||
594       !isa<InputSectionDescription>(osec->sectionCommands.back()))
595     osec->sectionCommands.push_back(make<InputSectionDescription>(""));
596   auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
597   isd->sections.push_back(sec);
598   osec->commitSection(sec);
599 
600   // Look through the DSO's dynamic symbol table for aliases and create a
601   // dynamic symbol for each one. This causes the copy relocation to correctly
602   // interpose any aliases.
603   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
604     replaceWithDefined(*sym, sec, 0, sym->size);
605 
606   mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
607 }
608 
609 // MIPS has an odd notion of "paired" relocations to calculate addends.
610 // For example, if a relocation is of R_MIPS_HI16, there must be a
611 // R_MIPS_LO16 relocation after that, and an addend is calculated using
612 // the two relocations.
613 template <class ELFT, class RelTy>
614 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
615                                  InputSectionBase &sec, RelExpr expr,
616                                  bool isLocal) {
617   if (expr == R_MIPS_GOTREL && isLocal)
618     return sec.getFile<ELFT>()->mipsGp0;
619 
620   // The ABI says that the paired relocation is used only for REL.
621   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
622   if (RelTy::IsRela)
623     return 0;
624 
625   RelType type = rel.getType(config->isMips64EL);
626   uint32_t pairTy = getMipsPairType(type, isLocal);
627   if (pairTy == R_MIPS_NONE)
628     return 0;
629 
630   const uint8_t *buf = sec.data().data();
631   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
632 
633   // To make things worse, paired relocations might not be contiguous in
634   // the relocation table, so we need to do linear search. *sigh*
635   for (const RelTy *ri = &rel; ri != end; ++ri)
636     if (ri->getType(config->isMips64EL) == pairTy &&
637         ri->getSymbol(config->isMips64EL) == symIndex)
638       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
639 
640   warn("can't find matching " + toString(pairTy) + " relocation for " +
641        toString(type));
642   return 0;
643 }
644 
645 // Returns an addend of a given relocation. If it is RELA, an addend
646 // is in a relocation itself. If it is REL, we need to read it from an
647 // input section.
648 template <class ELFT, class RelTy>
649 static int64_t computeAddend(const RelTy &rel, const RelTy *end,
650                              InputSectionBase &sec, RelExpr expr,
651                              bool isLocal) {
652   int64_t addend;
653   RelType type = rel.getType(config->isMips64EL);
654 
655   if (RelTy::IsRela) {
656     addend = getAddend<ELFT>(rel);
657   } else {
658     const uint8_t *buf = sec.data().data();
659     addend = target->getImplicitAddend(buf + rel.r_offset, type);
660   }
661 
662   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
663     addend += getPPC64TocBase();
664   if (config->emachine == EM_MIPS)
665     addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
666 
667   return addend;
668 }
669 
670 // Custom error message if Sym is defined in a discarded section.
671 template <class ELFT>
672 static std::string maybeReportDiscarded(Undefined &sym) {
673   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
674   if (!file || !sym.discardedSecIdx ||
675       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
676     return "";
677   ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
678       CHECK(file->getObj().sections(), file);
679 
680   std::string msg;
681   if (sym.type == ELF::STT_SECTION) {
682     msg = "relocation refers to a discarded section: ";
683     msg += CHECK(
684         file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file);
685   } else {
686     msg = "relocation refers to a symbol in a discarded section: " +
687           toString(sym);
688   }
689   msg += "\n>>> defined in " + toString(file);
690 
691   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
692   if (elfSec.sh_type != SHT_GROUP)
693     return msg;
694 
695   // If the discarded section is a COMDAT.
696   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
697   if (const InputFile *prevailing =
698           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
699     msg += "\n>>> section group signature: " + signature.str() +
700            "\n>>> prevailing definition is in " + toString(prevailing);
701   return msg;
702 }
703 
704 // Undefined diagnostics are collected in a vector and emitted once all of
705 // them are known, so that some postprocessing on the list of undefined symbols
706 // can happen before lld emits diagnostics.
707 struct UndefinedDiag {
708   Symbol *sym;
709   struct Loc {
710     InputSectionBase *sec;
711     uint64_t offset;
712   };
713   std::vector<Loc> locs;
714   bool isWarning;
715 };
716 
717 static std::vector<UndefinedDiag> undefs;
718 
719 // Check whether the definition name def is a mangled function name that matches
720 // the reference name ref.
721 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
722   llvm::ItaniumPartialDemangler d;
723   std::string name = def.str();
724   if (d.partialDemangle(name.c_str()))
725     return false;
726   char *buf = d.getFunctionName(nullptr, nullptr);
727   if (!buf)
728     return false;
729   bool ret = ref == buf;
730   free(buf);
731   return ret;
732 }
733 
734 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
735 // the suggested symbol, which is either in the symbol table, or in the same
736 // file of sym.
737 template <class ELFT>
738 static const Symbol *getAlternativeSpelling(const Undefined &sym,
739                                             std::string &pre_hint,
740                                             std::string &post_hint) {
741   DenseMap<StringRef, const Symbol *> map;
742   if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
743     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
744     // will give an error. Don't suggest an alternative spelling.
745     if (file && sym.discardedSecIdx != 0 &&
746         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
747       return nullptr;
748 
749     // Build a map of local defined symbols.
750     for (const Symbol *s : sym.file->getSymbols())
751       if (s->isLocal() && s->isDefined())
752         map.try_emplace(s->getName(), s);
753   }
754 
755   auto suggest = [&](StringRef newName) -> const Symbol * {
756     // If defined locally.
757     if (const Symbol *s = map.lookup(newName))
758       return s;
759 
760     // If in the symbol table and not undefined.
761     if (const Symbol *s = symtab->find(newName))
762       if (!s->isUndefined())
763         return s;
764 
765     return nullptr;
766   };
767 
768   // This loop enumerates all strings of Levenshtein distance 1 as typo
769   // correction candidates and suggests the one that exists as a non-undefined
770   // symbol.
771   StringRef name = sym.getName();
772   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
773     // Insert a character before name[i].
774     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
775     for (char c = '0'; c <= 'z'; ++c) {
776       newName[i] = c;
777       if (const Symbol *s = suggest(newName))
778         return s;
779     }
780     if (i == e)
781       break;
782 
783     // Substitute name[i].
784     newName = std::string(name);
785     for (char c = '0'; c <= 'z'; ++c) {
786       newName[i] = c;
787       if (const Symbol *s = suggest(newName))
788         return s;
789     }
790 
791     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
792     // common.
793     if (i + 1 < e) {
794       newName[i] = name[i + 1];
795       newName[i + 1] = name[i];
796       if (const Symbol *s = suggest(newName))
797         return s;
798     }
799 
800     // Delete name[i].
801     newName = (name.substr(0, i) + name.substr(i + 1)).str();
802     if (const Symbol *s = suggest(newName))
803       return s;
804   }
805 
806   // Case mismatch, e.g. Foo vs FOO.
807   for (auto &it : map)
808     if (name.equals_lower(it.first))
809       return it.second;
810   for (Symbol *sym : symtab->symbols())
811     if (!sym->isUndefined() && name.equals_lower(sym->getName()))
812       return sym;
813 
814   // The reference may be a mangled name while the definition is not. Suggest a
815   // missing extern "C".
816   if (name.startswith("_Z")) {
817     std::string buf = name.str();
818     llvm::ItaniumPartialDemangler d;
819     if (!d.partialDemangle(buf.c_str()))
820       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
821         const Symbol *s = suggest(buf);
822         free(buf);
823         if (s) {
824           pre_hint = ": extern \"C\" ";
825           return s;
826         }
827       }
828   } else {
829     const Symbol *s = nullptr;
830     for (auto &it : map)
831       if (canSuggestExternCForCXX(name, it.first)) {
832         s = it.second;
833         break;
834       }
835     if (!s)
836       for (Symbol *sym : symtab->symbols())
837         if (canSuggestExternCForCXX(name, sym->getName())) {
838           s = sym;
839           break;
840         }
841     if (s) {
842       pre_hint = " to declare ";
843       post_hint = " as extern \"C\"?";
844       return s;
845     }
846   }
847 
848   return nullptr;
849 }
850 
851 template <class ELFT>
852 static void reportUndefinedSymbol(const UndefinedDiag &undef,
853                                   bool correctSpelling) {
854   Symbol &sym = *undef.sym;
855 
856   auto visibility = [&]() -> std::string {
857     switch (sym.visibility) {
858     case STV_INTERNAL:
859       return "internal ";
860     case STV_HIDDEN:
861       return "hidden ";
862     case STV_PROTECTED:
863       return "protected ";
864     default:
865       return "";
866     }
867   };
868 
869   std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
870   if (msg.empty())
871     msg = "undefined " + visibility() + "symbol: " + toString(sym);
872 
873   const size_t maxUndefReferences = 3;
874   size_t i = 0;
875   for (UndefinedDiag::Loc l : undef.locs) {
876     if (i >= maxUndefReferences)
877       break;
878     InputSectionBase &sec = *l.sec;
879     uint64_t offset = l.offset;
880 
881     msg += "\n>>> referenced by ";
882     std::string src = sec.getSrcMsg(sym, offset);
883     if (!src.empty())
884       msg += src + "\n>>>               ";
885     msg += sec.getObjMsg(offset);
886     i++;
887   }
888 
889   if (i < undef.locs.size())
890     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
891                .str();
892 
893   if (correctSpelling) {
894     std::string pre_hint = ": ", post_hint;
895     if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
896             cast<Undefined>(sym), pre_hint, post_hint)) {
897       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
898       if (corrected->file)
899         msg += "\n>>> defined in: " + toString(corrected->file);
900     }
901   }
902 
903   if (sym.getName().startswith("_ZTV"))
904     msg +=
905         "\n>>> the vtable symbol may be undefined because the class is missing "
906         "its key function (see https://lld.llvm.org/missingkeyfunction)";
907 
908   if (undef.isWarning)
909     warn(msg);
910   else
911     error(msg);
912 }
913 
914 template <class ELFT> void elf::reportUndefinedSymbols() {
915   // Find the first "undefined symbol" diagnostic for each diagnostic, and
916   // collect all "referenced from" lines at the first diagnostic.
917   DenseMap<Symbol *, UndefinedDiag *> firstRef;
918   for (UndefinedDiag &undef : undefs) {
919     assert(undef.locs.size() == 1);
920     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
921       canon->locs.push_back(undef.locs[0]);
922       undef.locs.clear();
923     } else
924       firstRef[undef.sym] = &undef;
925   }
926 
927   // Enable spell corrector for the first 2 diagnostics.
928   for (auto it : enumerate(undefs))
929     if (!it.value().locs.empty())
930       reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
931   undefs.clear();
932 }
933 
934 // Report an undefined symbol if necessary.
935 // Returns true if the undefined symbol will produce an error message.
936 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
937                                  uint64_t offset) {
938   if (!sym.isUndefined() || sym.isWeak())
939     return false;
940 
941   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
942   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
943     return false;
944 
945   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
946   // which references a switch table in a discarded .rodata/.text section. The
947   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
948   // spec says references from outside the group to a STB_LOCAL symbol are not
949   // allowed. Work around the bug.
950   //
951   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
952   // because .LC0-.LTOC is not representable if the two labels are in different
953   // .got2
954   if (cast<Undefined>(sym).discardedSecIdx != 0 &&
955       (sec.name == ".got2" || sec.name == ".toc"))
956     return false;
957 
958   bool isWarning =
959       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
960       config->noinhibitExec;
961   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
962   return !isWarning;
963 }
964 
965 // MIPS N32 ABI treats series of successive relocations with the same offset
966 // as a single relocation. The similar approach used by N64 ABI, but this ABI
967 // packs all relocations into the single relocation record. Here we emulate
968 // this for the N32 ABI. Iterate over relocation with the same offset and put
969 // theirs types into the single bit-set.
970 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
971   RelType type = 0;
972   uint64_t offset = rel->r_offset;
973 
974   int n = 0;
975   while (rel != end && rel->r_offset == offset)
976     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
977   return type;
978 }
979 
980 // .eh_frame sections are mergeable input sections, so their input
981 // offsets are not linearly mapped to output section. For each input
982 // offset, we need to find a section piece containing the offset and
983 // add the piece's base address to the input offset to compute the
984 // output offset. That isn't cheap.
985 //
986 // This class is to speed up the offset computation. When we process
987 // relocations, we access offsets in the monotonically increasing
988 // order. So we can optimize for that access pattern.
989 //
990 // For sections other than .eh_frame, this class doesn't do anything.
991 namespace {
992 class OffsetGetter {
993 public:
994   explicit OffsetGetter(InputSectionBase &sec) {
995     if (auto *eh = dyn_cast<EhInputSection>(&sec))
996       pieces = eh->pieces;
997   }
998 
999   // Translates offsets in input sections to offsets in output sections.
1000   // Given offset must increase monotonically. We assume that Piece is
1001   // sorted by inputOff.
1002   uint64_t get(uint64_t off) {
1003     if (pieces.empty())
1004       return off;
1005 
1006     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
1007       ++i;
1008     if (i == pieces.size())
1009       fatal(".eh_frame: relocation is not in any piece");
1010 
1011     // Pieces must be contiguous, so there must be no holes in between.
1012     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
1013 
1014     // Offset -1 means that the piece is dead (i.e. garbage collected).
1015     if (pieces[i].outputOff == -1)
1016       return -1;
1017     return pieces[i].outputOff + off - pieces[i].inputOff;
1018   }
1019 
1020 private:
1021   ArrayRef<EhSectionPiece> pieces;
1022   size_t i = 0;
1023 };
1024 } // namespace
1025 
1026 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1027                              Symbol *sym, int64_t addend, RelExpr expr,
1028                              RelType type) {
1029   Partition &part = isec->getPartition();
1030 
1031   // Add a relative relocation. If relrDyn section is enabled, and the
1032   // relocation offset is guaranteed to be even, add the relocation to
1033   // the relrDyn section, otherwise add it to the relaDyn section.
1034   // relrDyn sections don't support odd offsets. Also, relrDyn sections
1035   // don't store the addend values, so we must write it to the relocated
1036   // address.
1037   if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1038     isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1039     part.relrDyn->relocs.push_back({isec, offsetInSec});
1040     return;
1041   }
1042   part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
1043                          expr, type);
1044 }
1045 
1046 template <class PltSection, class GotPltSection>
1047 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1048                         RelocationBaseSection *rel, RelType type, Symbol &sym) {
1049   plt->addEntry(sym);
1050   gotPlt->addEntry(sym);
1051   rel->addReloc(
1052       {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
1053 }
1054 
1055 static void addGotEntry(Symbol &sym) {
1056   in.got->addEntry(sym);
1057 
1058   RelExpr expr = sym.isTls() ? R_TLS : R_ABS;
1059   uint64_t off = sym.getGotOffset();
1060 
1061   // If a GOT slot value can be calculated at link-time, which is now,
1062   // we can just fill that out.
1063   //
1064   // (We don't actually write a value to a GOT slot right now, but we
1065   // add a static relocation to a Relocations vector so that
1066   // InputSection::relocate will do the work for us. We may be able
1067   // to just write a value now, but it is a TODO.)
1068   bool isLinkTimeConstant =
1069       !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1070   if (isLinkTimeConstant) {
1071     in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1072     return;
1073   }
1074 
1075   // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1076   // the GOT slot will be fixed at load-time.
1077   if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
1078     addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
1079     return;
1080   }
1081   mainPart->relaDyn->addReloc(
1082       sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
1083       sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
1084 }
1085 
1086 // Return true if we can define a symbol in the executable that
1087 // contains the value/function of a symbol defined in a shared
1088 // library.
1089 static bool canDefineSymbolInExecutable(Symbol &sym) {
1090   // If the symbol has default visibility the symbol defined in the
1091   // executable will preempt it.
1092   // Note that we want the visibility of the shared symbol itself, not
1093   // the visibility of the symbol in the output file we are producing. That is
1094   // why we use Sym.stOther.
1095   if ((sym.stOther & 0x3) == STV_DEFAULT)
1096     return true;
1097 
1098   // If we are allowed to break address equality of functions, defining
1099   // a plt entry will allow the program to call the function in the
1100   // .so, but the .so and the executable will no agree on the address
1101   // of the function. Similar logic for objects.
1102   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1103           (sym.isObject() && config->ignoreDataAddressEquality));
1104 }
1105 
1106 // The reason we have to do this early scan is as follows
1107 // * To mmap the output file, we need to know the size
1108 // * For that, we need to know how many dynamic relocs we will have.
1109 // It might be possible to avoid this by outputting the file with write:
1110 // * Write the allocated output sections, computing addresses.
1111 // * Apply relocations, recording which ones require a dynamic reloc.
1112 // * Write the dynamic relocations.
1113 // * Write the rest of the file.
1114 // This would have some drawbacks. For example, we would only know if .rela.dyn
1115 // is needed after applying relocations. If it is, it will go after rw and rx
1116 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1117 // complicates things for the dynamic linker and means we would have to reserve
1118 // space for the extra PT_LOAD even if we end up not using it.
1119 template <class ELFT, class RelTy>
1120 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1121                             uint64_t offset, Symbol &sym, const RelTy &rel,
1122                             int64_t addend) {
1123   // If the relocation is known to be a link-time constant, we know no dynamic
1124   // relocation will be created, pass the control to relocateAlloc() or
1125   // relocateNonAlloc() to resolve it.
1126   //
1127   // The behavior of an undefined weak reference is implementation defined. If
1128   // the relocation is to a weak undef, and we are producing an executable, let
1129   // relocate{,Non}Alloc() resolve it.
1130   if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1131       (!config->shared && sym.isUndefWeak())) {
1132     sec.relocations.push_back({expr, type, offset, addend, &sym});
1133     return;
1134   }
1135 
1136   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1137   if (canWrite) {
1138     RelType rel = target->getDynRel(type);
1139     if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1140       addRelativeReloc(&sec, offset, &sym, addend, expr, type);
1141       return;
1142     } else if (rel != 0) {
1143       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1144         rel = target->relativeRel;
1145       sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
1146                                            R_ADDEND, type);
1147 
1148       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1149       // While regular ABI uses dynamic relocations to fill up GOT entries
1150       // MIPS ABI requires dynamic linker to fills up GOT entries using
1151       // specially sorted dynamic symbol table. This affects even dynamic
1152       // relocations against symbols which do not require GOT entries
1153       // creation explicitly, i.e. do not have any GOT-relocations. So if
1154       // a preemptible symbol has a dynamic relocation we anyway have
1155       // to create a GOT entry for it.
1156       // If a non-preemptible symbol has a dynamic relocation against it,
1157       // dynamic linker takes it st_value, adds offset and writes down
1158       // result of the dynamic relocation. In case of preemptible symbol
1159       // dynamic linker performs symbol resolution, writes the symbol value
1160       // to the GOT entry and reads the GOT entry when it needs to perform
1161       // a dynamic relocation.
1162       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1163       if (config->emachine == EM_MIPS)
1164         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1165       return;
1166     }
1167   }
1168 
1169   // When producing an executable, we can perform copy relocations (for
1170   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1171   if (!config->shared) {
1172     if (!canDefineSymbolInExecutable(sym)) {
1173       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1174                   getLocation(sec, sym, offset));
1175       return;
1176     }
1177 
1178     if (sym.isObject()) {
1179       // Produce a copy relocation.
1180       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1181         if (!config->zCopyreloc)
1182           error("unresolvable relocation " + toString(type) +
1183                 " against symbol '" + toString(*ss) +
1184                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1185                 getLocation(sec, sym, offset));
1186         addCopyRelSymbol<ELFT>(*ss);
1187       }
1188       sec.relocations.push_back({expr, type, offset, addend, &sym});
1189       return;
1190     }
1191 
1192     // This handles a non PIC program call to function in a shared library. In
1193     // an ideal world, we could just report an error saying the relocation can
1194     // overflow at runtime. In the real world with glibc, crt1.o has a
1195     // R_X86_64_PC32 pointing to libc.so.
1196     //
1197     // The general idea on how to handle such cases is to create a PLT entry and
1198     // use that as the function value.
1199     //
1200     // For the static linking part, we just return a plt expr and everything
1201     // else will use the PLT entry as the address.
1202     //
1203     // The remaining problem is making sure pointer equality still works. We
1204     // need the help of the dynamic linker for that. We let it know that we have
1205     // a direct reference to a so symbol by creating an undefined symbol with a
1206     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1207     // the value of the symbol we created. This is true even for got entries, so
1208     // pointer equality is maintained. To avoid an infinite loop, the only entry
1209     // that points to the real function is a dedicated got entry used by the
1210     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1211     // R_386_JMP_SLOT, etc).
1212 
1213     // For position independent executable on i386, the plt entry requires ebx
1214     // to be set. This causes two problems:
1215     // * If some code has a direct reference to a function, it was probably
1216     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1217     // * If a library definition gets preempted to the executable, it will have
1218     //   the wrong ebx value.
1219     if (sym.isFunc()) {
1220       if (config->pie && config->emachine == EM_386)
1221         errorOrWarn("symbol '" + toString(sym) +
1222                     "' cannot be preempted; recompile with -fPIE" +
1223                     getLocation(sec, sym, offset));
1224       if (!sym.isInPlt())
1225         addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1226       if (!sym.isDefined()) {
1227         replaceWithDefined(
1228             sym, in.plt,
1229             target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1230         if (config->emachine == EM_PPC) {
1231           // PPC32 canonical PLT entries are at the beginning of .glink
1232           cast<Defined>(sym).value = in.plt->headerSize;
1233           in.plt->headerSize += 16;
1234           cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1235         }
1236       }
1237       sym.needsPltAddr = true;
1238       sec.relocations.push_back({expr, type, offset, addend, &sym});
1239       return;
1240     }
1241   }
1242 
1243   if (config->isPic) {
1244     if (!canWrite && !isRelExpr(expr))
1245       errorOrWarn(
1246           "can't create dynamic relocation " + toString(type) + " against " +
1247           (sym.getName().empty() ? "local symbol"
1248                                  : "symbol: " + toString(sym)) +
1249           " in readonly segment; recompile object files with -fPIC "
1250           "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1251           getLocation(sec, sym, offset));
1252     else
1253       errorOrWarn(
1254           "relocation " + toString(type) + " cannot be used against " +
1255           (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1256           "; recompile with -fPIC" + getLocation(sec, sym, offset));
1257     return;
1258   }
1259 
1260   errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1261               getLocation(sec, sym, offset));
1262 }
1263 
1264 template <class ELFT, class RelTy>
1265 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1266                       RelTy *end) {
1267   const RelTy &rel = *i;
1268   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1269   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1270   RelType type;
1271 
1272   // Deal with MIPS oddity.
1273   if (config->mipsN32Abi) {
1274     type = getMipsN32RelType(i, end);
1275   } else {
1276     type = rel.getType(config->isMips64EL);
1277     ++i;
1278   }
1279 
1280   // Get an offset in an output section this relocation is applied to.
1281   uint64_t offset = getOffset.get(rel.r_offset);
1282   if (offset == uint64_t(-1))
1283     return;
1284 
1285   // Error if the target symbol is undefined. Symbol index 0 may be used by
1286   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1287   if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1288     return;
1289 
1290   const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1291   RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1292 
1293   // Ignore R_*_NONE and other marker relocations.
1294   if (expr == R_NONE)
1295     return;
1296 
1297   if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
1298     warn("using ifunc symbols when text relocations are allowed may produce "
1299          "a binary that will segfault, if the object file is linked with "
1300          "old version of glibc (glibc 2.28 and earlier). If this applies to "
1301          "you, consider recompiling the object files without -fPIC and "
1302          "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
1303          "turn off this warning." +
1304          getLocation(sec, sym, offset));
1305   }
1306 
1307   // Read an addend.
1308   int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1309 
1310   if (config->emachine == EM_PPC64) {
1311     // We can separate the small code model relocations into 2 categories:
1312     // 1) Those that access the compiler generated .toc sections.
1313     // 2) Those that access the linker allocated got entries.
1314     // lld allocates got entries to symbols on demand. Since we don't try to
1315     // sort the got entries in any way, we don't have to track which objects
1316     // have got-based small code model relocs. The .toc sections get placed
1317     // after the end of the linker allocated .got section and we do sort those
1318     // so sections addressed with small code model relocations come first.
1319     if (isPPC64SmallCodeModelTocReloc(type))
1320       sec.file->ppc64SmallCodeModelTocRelocs = true;
1321 
1322     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1323     // InputSectionBase::relocateAlloc().
1324     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1325         cast<Defined>(sym).section->name == ".toc")
1326       ppc64noTocRelax.insert({&sym, addend});
1327   }
1328 
1329   // Relax relocations.
1330   //
1331   // If we know that a PLT entry will be resolved within the same ELF module, we
1332   // can skip PLT access and directly jump to the destination function. For
1333   // example, if we are linking a main executable, all dynamic symbols that can
1334   // be resolved within the executable will actually be resolved that way at
1335   // runtime, because the main executable is always at the beginning of a search
1336   // list. We can leverage that fact.
1337   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1338     if (expr == R_GOT_PC && !isAbsoluteValue(sym)) {
1339       expr = target->adjustRelaxExpr(type, relocatedAddr, expr);
1340     } else {
1341       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1342       // stub type. It should be ignored if optimized to R_PC.
1343       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1344         addend &= ~0x8000;
1345       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1346       // call __tls_get_addr even if the symbol is non-preemptible.
1347       if (!(config->emachine == EM_HEXAGON &&
1348            (type == R_HEX_GD_PLT_B22_PCREL ||
1349             type == R_HEX_GD_PLT_B22_PCREL_X ||
1350             type == R_HEX_GD_PLT_B32_PCREL_X)))
1351       expr = fromPlt(expr);
1352     }
1353   }
1354 
1355   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1356   // uses their addresses, we need GOT or GOTPLT to be created.
1357   //
1358   // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1359   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1360     in.gotPlt->hasGotPltOffRel = true;
1361   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1362                  expr)) {
1363     in.got->hasGotOffRel = true;
1364   }
1365 
1366   // Process some TLS relocations, including relaxing TLS relocations.
1367   // Note that this function does not handle all TLS relocations.
1368   if (unsigned processed =
1369           handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) {
1370     i += (processed - 1);
1371     return;
1372   }
1373 
1374   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1375   // direct relocation on through.
1376   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1377     sym.exportDynamic = true;
1378     mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
1379     return;
1380   }
1381 
1382   // Non-preemptible ifuncs require special handling. First, handle the usual
1383   // case where the symbol isn't one of these.
1384   if (!sym.isGnuIFunc() || sym.isPreemptible) {
1385     // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1386     if (needsPlt(expr) && !sym.isInPlt())
1387       addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1388 
1389     // Create a GOT slot if a relocation needs GOT.
1390     if (needsGot(expr)) {
1391       if (config->emachine == EM_MIPS) {
1392         // MIPS ABI has special rules to process GOT entries and doesn't
1393         // require relocation entries for them. A special case is TLS
1394         // relocations. In that case dynamic loader applies dynamic
1395         // relocations to initialize TLS GOT entries.
1396         // See "Global Offset Table" in Chapter 5 in the following document
1397         // for detailed description:
1398         // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1399         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1400       } else if (!sym.isInGot()) {
1401         addGotEntry(sym);
1402       }
1403     }
1404   } else {
1405     // Handle a reference to a non-preemptible ifunc. These are special in a
1406     // few ways:
1407     //
1408     // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1409     //   a fixed value. But assuming that all references to the ifunc are
1410     //   GOT-generating or PLT-generating, the handling of an ifunc is
1411     //   relatively straightforward. We create a PLT entry in Iplt, which is
1412     //   usually at the end of .plt, which makes an indirect call using a
1413     //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1414     //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1415     //   which is usually at the end of .rela.plt. Unlike most relocations in
1416     //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1417     //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1418     //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1419     //   .got.plt without requiring a separate GOT entry.
1420     //
1421     // - Despite the fact that an ifunc does not have a fixed value, compilers
1422     //   that are not passed -fPIC will assume that they do, and will emit
1423     //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1424     //   symbol. This means that if a direct relocation to the symbol is
1425     //   seen, the linker must set a value for the symbol, and this value must
1426     //   be consistent no matter what type of reference is made to the symbol.
1427     //   This can be done by creating a PLT entry for the symbol in the way
1428     //   described above and making it canonical, that is, making all references
1429     //   point to the PLT entry instead of the resolver. In lld we also store
1430     //   the address of the PLT entry in the dynamic symbol table, which means
1431     //   that the symbol will also have the same value in other modules.
1432     //   Because the value loaded from the GOT needs to be consistent with
1433     //   the value computed using a direct relocation, a non-preemptible ifunc
1434     //   may end up with two GOT entries, one in .got.plt that points to the
1435     //   address returned by the resolver and is used only by the PLT entry,
1436     //   and another in .got that points to the PLT entry and is used by
1437     //   GOT-generating relocations.
1438     //
1439     // - The fact that these symbols do not have a fixed value makes them an
1440     //   exception to the general rule that a statically linked executable does
1441     //   not require any form of dynamic relocation. To handle these relocations
1442     //   correctly, the IRELATIVE relocations are stored in an array which a
1443     //   statically linked executable's startup code must enumerate using the
1444     //   linker-defined symbols __rela?_iplt_{start,end}.
1445     if (!sym.isInPlt()) {
1446       // Create PLT and GOTPLT slots for the symbol.
1447       sym.isInIplt = true;
1448 
1449       // Create a copy of the symbol to use as the target of the IRELATIVE
1450       // relocation in the igotPlt. This is in case we make the PLT canonical
1451       // later, which would overwrite the original symbol.
1452       //
1453       // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1454       // that's really needed to create the IRELATIVE is the section and value,
1455       // so ideally we should just need to copy those.
1456       auto *directSym = make<Defined>(cast<Defined>(sym));
1457       addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1458                   *directSym);
1459       sym.pltIndex = directSym->pltIndex;
1460     }
1461     if (needsGot(expr)) {
1462       // Redirect GOT accesses to point to the Igot.
1463       //
1464       // This field is also used to keep track of whether we ever needed a GOT
1465       // entry. If we did and we make the PLT canonical later, we'll need to
1466       // create a GOT entry pointing to the PLT entry for Sym.
1467       sym.gotInIgot = true;
1468     } else if (!needsPlt(expr)) {
1469       // Make the ifunc's PLT entry canonical by changing the value of its
1470       // symbol to redirect all references to point to it.
1471       auto &d = cast<Defined>(sym);
1472       d.section = in.iplt;
1473       d.value = sym.pltIndex * target->ipltEntrySize;
1474       d.size = 0;
1475       // It's important to set the symbol type here so that dynamic loaders
1476       // don't try to call the PLT as if it were an ifunc resolver.
1477       d.type = STT_FUNC;
1478 
1479       if (sym.gotInIgot) {
1480         // We previously encountered a GOT generating reference that we
1481         // redirected to the Igot. Now that the PLT entry is canonical we must
1482         // clear the redirection to the Igot and add a GOT entry. As we've
1483         // changed the symbol type to STT_FUNC future GOT generating references
1484         // will naturally use this GOT entry.
1485         //
1486         // We don't need to worry about creating a MIPS GOT here because ifuncs
1487         // aren't a thing on MIPS.
1488         sym.gotInIgot = false;
1489         addGotEntry(sym);
1490       }
1491     }
1492   }
1493 
1494   processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1495 }
1496 
1497 template <class ELFT, class RelTy>
1498 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1499   OffsetGetter getOffset(sec);
1500 
1501   // Not all relocations end up in Sec.Relocations, but a lot do.
1502   sec.relocations.reserve(rels.size());
1503 
1504   for (auto i = rels.begin(), end = rels.end(); i != end;)
1505     scanReloc<ELFT>(sec, getOffset, i, end);
1506 
1507   // Sort relocations by offset for more efficient searching for
1508   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1509   if (config->emachine == EM_RISCV ||
1510       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1511     llvm::stable_sort(sec.relocations,
1512                       [](const Relocation &lhs, const Relocation &rhs) {
1513                         return lhs.offset < rhs.offset;
1514                       });
1515 }
1516 
1517 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1518   if (s.areRelocsRela)
1519     scanRelocs<ELFT>(s, s.relas<ELFT>());
1520   else
1521     scanRelocs<ELFT>(s, s.rels<ELFT>());
1522 }
1523 
1524 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1525   // std::merge requires a strict weak ordering.
1526   if (a->outSecOff < b->outSecOff)
1527     return true;
1528 
1529   if (a->outSecOff == b->outSecOff) {
1530     auto *ta = dyn_cast<ThunkSection>(a);
1531     auto *tb = dyn_cast<ThunkSection>(b);
1532 
1533     // Check if Thunk is immediately before any specific Target
1534     // InputSection for example Mips LA25 Thunks.
1535     if (ta && ta->getTargetInputSection() == b)
1536       return true;
1537 
1538     // Place Thunk Sections without specific targets before
1539     // non-Thunk Sections.
1540     if (ta && !tb && !ta->getTargetInputSection())
1541       return true;
1542   }
1543 
1544   return false;
1545 }
1546 
1547 // Call Fn on every executable InputSection accessed via the linker script
1548 // InputSectionDescription::Sections.
1549 static void forEachInputSectionDescription(
1550     ArrayRef<OutputSection *> outputSections,
1551     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1552   for (OutputSection *os : outputSections) {
1553     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1554       continue;
1555     for (BaseCommand *bc : os->sectionCommands)
1556       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1557         fn(os, isd);
1558   }
1559 }
1560 
1561 // Thunk Implementation
1562 //
1563 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1564 // of code that the linker inserts inbetween a caller and a callee. The thunks
1565 // are added at link time rather than compile time as the decision on whether
1566 // a thunk is needed, such as the caller and callee being out of range, can only
1567 // be made at link time.
1568 //
1569 // It is straightforward to tell given the current state of the program when a
1570 // thunk is needed for a particular call. The more difficult part is that
1571 // the thunk needs to be placed in the program such that the caller can reach
1572 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1573 // the program alters addresses, which can mean more thunks etc.
1574 //
1575 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1576 // The decision to have a ThunkSection act as a container means that we can
1577 // more easily handle the most common case of a single block of contiguous
1578 // Thunks by inserting just a single ThunkSection.
1579 //
1580 // The implementation of Thunks in lld is split across these areas
1581 // Relocations.cpp : Framework for creating and placing thunks
1582 // Thunks.cpp : The code generated for each supported thunk
1583 // Target.cpp : Target specific hooks that the framework uses to decide when
1584 //              a thunk is used
1585 // Synthetic.cpp : Implementation of ThunkSection
1586 // Writer.cpp : Iteratively call framework until no more Thunks added
1587 //
1588 // Thunk placement requirements:
1589 // Mips LA25 thunks. These must be placed immediately before the callee section
1590 // We can assume that the caller is in range of the Thunk. These are modelled
1591 // by Thunks that return the section they must precede with
1592 // getTargetInputSection().
1593 //
1594 // ARM interworking and range extension thunks. These thunks must be placed
1595 // within range of the caller. All implemented ARM thunks can always reach the
1596 // callee as they use an indirect jump via a register that has no range
1597 // restrictions.
1598 //
1599 // Thunk placement algorithm:
1600 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1601 // getTargetInputSection().
1602 //
1603 // For thunks that must be placed within range of the caller there are many
1604 // possible choices given that the maximum range from the caller is usually
1605 // much larger than the average InputSection size. Desirable properties include:
1606 // - Maximize reuse of thunks by multiple callers
1607 // - Minimize number of ThunkSections to simplify insertion
1608 // - Handle impact of already added Thunks on addresses
1609 // - Simple to understand and implement
1610 //
1611 // In lld for the first pass, we pre-create one or more ThunkSections per
1612 // InputSectionDescription at Target specific intervals. A ThunkSection is
1613 // placed so that the estimated end of the ThunkSection is within range of the
1614 // start of the InputSectionDescription or the previous ThunkSection. For
1615 // example:
1616 // InputSectionDescription
1617 // Section 0
1618 // ...
1619 // Section N
1620 // ThunkSection 0
1621 // Section N + 1
1622 // ...
1623 // Section N + K
1624 // Thunk Section 1
1625 //
1626 // The intention is that we can add a Thunk to a ThunkSection that is well
1627 // spaced enough to service a number of callers without having to do a lot
1628 // of work. An important principle is that it is not an error if a Thunk cannot
1629 // be placed in a pre-created ThunkSection; when this happens we create a new
1630 // ThunkSection placed next to the caller. This allows us to handle the vast
1631 // majority of thunks simply, but also handle rare cases where the branch range
1632 // is smaller than the target specific spacing.
1633 //
1634 // The algorithm is expected to create all the thunks that are needed in a
1635 // single pass, with a small number of programs needing a second pass due to
1636 // the insertion of thunks in the first pass increasing the offset between
1637 // callers and callees that were only just in range.
1638 //
1639 // A consequence of allowing new ThunkSections to be created outside of the
1640 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1641 // range in pass K, are out of range in some pass > K due to the insertion of
1642 // more Thunks in between the caller and callee. When this happens we retarget
1643 // the relocation back to the original target and create another Thunk.
1644 
1645 // Remove ThunkSections that are empty, this should only be the initial set
1646 // precreated on pass 0.
1647 
1648 // Insert the Thunks for OutputSection OS into their designated place
1649 // in the Sections vector, and recalculate the InputSection output section
1650 // offsets.
1651 // This may invalidate any output section offsets stored outside of InputSection
1652 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1653   forEachInputSectionDescription(
1654       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1655         if (isd->thunkSections.empty())
1656           return;
1657 
1658         // Remove any zero sized precreated Thunks.
1659         llvm::erase_if(isd->thunkSections,
1660                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1661                          return ts.first->getSize() == 0;
1662                        });
1663 
1664         // ISD->ThunkSections contains all created ThunkSections, including
1665         // those inserted in previous passes. Extract the Thunks created this
1666         // pass and order them in ascending outSecOff.
1667         std::vector<ThunkSection *> newThunks;
1668         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1669           if (ts.second == pass)
1670             newThunks.push_back(ts.first);
1671         llvm::stable_sort(newThunks,
1672                           [](const ThunkSection *a, const ThunkSection *b) {
1673                             return a->outSecOff < b->outSecOff;
1674                           });
1675 
1676         // Merge sorted vectors of Thunks and InputSections by outSecOff
1677         std::vector<InputSection *> tmp;
1678         tmp.reserve(isd->sections.size() + newThunks.size());
1679 
1680         std::merge(isd->sections.begin(), isd->sections.end(),
1681                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1682                    mergeCmp);
1683 
1684         isd->sections = std::move(tmp);
1685       });
1686 }
1687 
1688 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1689 // is in range of Src. An ISD maps to a range of InputSections described by a
1690 // linker script section pattern such as { .text .text.* }.
1691 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
1692                                            InputSectionDescription *isd,
1693                                            uint32_t type, uint64_t src) {
1694   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1695     ThunkSection *ts = tp.first;
1696     uint64_t tsBase = os->addr + ts->outSecOff;
1697     uint64_t tsLimit = tsBase + ts->getSize();
1698     if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
1699       return ts;
1700   }
1701 
1702   // No suitable ThunkSection exists. This can happen when there is a branch
1703   // with lower range than the ThunkSection spacing or when there are too
1704   // many Thunks. Create a new ThunkSection as close to the InputSection as
1705   // possible. Error if InputSection is so large we cannot place ThunkSection
1706   // anywhere in Range.
1707   uint64_t thunkSecOff = isec->outSecOff;
1708   if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
1709     thunkSecOff = isec->outSecOff + isec->getSize();
1710     if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
1711       fatal("InputSection too large for range extension thunk " +
1712             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1713   }
1714   return addThunkSection(os, isd, thunkSecOff);
1715 }
1716 
1717 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1718 // precedes its Target.
1719 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1720   ThunkSection *ts = thunkedSections.lookup(isec);
1721   if (ts)
1722     return ts;
1723 
1724   // Find InputSectionRange within Target Output Section (TOS) that the
1725   // InputSection (IS) that we need to precede is in.
1726   OutputSection *tos = isec->getParent();
1727   for (BaseCommand *bc : tos->sectionCommands) {
1728     auto *isd = dyn_cast<InputSectionDescription>(bc);
1729     if (!isd || isd->sections.empty())
1730       continue;
1731 
1732     InputSection *first = isd->sections.front();
1733     InputSection *last = isd->sections.back();
1734 
1735     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1736       continue;
1737 
1738     ts = addThunkSection(tos, isd, isec->outSecOff);
1739     thunkedSections[isec] = ts;
1740     return ts;
1741   }
1742 
1743   return nullptr;
1744 }
1745 
1746 // Create one or more ThunkSections per OS that can be used to place Thunks.
1747 // We attempt to place the ThunkSections using the following desirable
1748 // properties:
1749 // - Within range of the maximum number of callers
1750 // - Minimise the number of ThunkSections
1751 //
1752 // We follow a simple but conservative heuristic to place ThunkSections at
1753 // offsets that are multiples of a Target specific branch range.
1754 // For an InputSectionDescription that is smaller than the range, a single
1755 // ThunkSection at the end of the range will do.
1756 //
1757 // For an InputSectionDescription that is more than twice the size of the range,
1758 // we place the last ThunkSection at range bytes from the end of the
1759 // InputSectionDescription in order to increase the likelihood that the
1760 // distance from a thunk to its target will be sufficiently small to
1761 // allow for the creation of a short thunk.
1762 void ThunkCreator::createInitialThunkSections(
1763     ArrayRef<OutputSection *> outputSections) {
1764   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1765 
1766   forEachInputSectionDescription(
1767       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1768         if (isd->sections.empty())
1769           return;
1770 
1771         uint32_t isdBegin = isd->sections.front()->outSecOff;
1772         uint32_t isdEnd =
1773             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1774         uint32_t lastThunkLowerBound = -1;
1775         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1776           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1777 
1778         uint32_t isecLimit;
1779         uint32_t prevIsecLimit = isdBegin;
1780         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1781 
1782         for (const InputSection *isec : isd->sections) {
1783           isecLimit = isec->outSecOff + isec->getSize();
1784           if (isecLimit > thunkUpperBound) {
1785             addThunkSection(os, isd, prevIsecLimit);
1786             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1787           }
1788           if (isecLimit > lastThunkLowerBound)
1789             break;
1790           prevIsecLimit = isecLimit;
1791         }
1792         addThunkSection(os, isd, isecLimit);
1793       });
1794 }
1795 
1796 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1797                                             InputSectionDescription *isd,
1798                                             uint64_t off) {
1799   auto *ts = make<ThunkSection>(os, off);
1800   ts->partition = os->partition;
1801   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1802       !isd->sections.empty()) {
1803     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1804     // thunks we disturb the base addresses of sections placed after the thunks
1805     // this makes patches we have generated redundant, and may cause us to
1806     // generate more patches as different instructions are now in sensitive
1807     // locations. When we generate more patches we may force more branches to
1808     // go out of range, causing more thunks to be generated. In pathological
1809     // cases this can cause the address dependent content pass not to converge.
1810     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1811     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1812     // which means that adding Thunks to the section does not invalidate
1813     // errata patches for following code.
1814     // Rounding up the size to 4KiB has consequences for code-size and can
1815     // trip up linker script defined assertions. For example the linux kernel
1816     // has an assertion that what LLD represents as an InputSectionDescription
1817     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1818     // We use the heuristic of rounding up the size when both of the following
1819     // conditions are true:
1820     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1821     //     accounts for the case where no single InputSectionDescription is
1822     //     larger than the OutputSection size. This is conservative but simple.
1823     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1824     //     any assertion failures that an InputSectionDescription is < 4 KiB
1825     //     in size.
1826     uint64_t isdSize = isd->sections.back()->outSecOff +
1827                        isd->sections.back()->getSize() -
1828                        isd->sections.front()->outSecOff;
1829     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1830       ts->roundUpSizeForErrata = true;
1831   }
1832   isd->thunkSections.push_back({ts, pass});
1833   return ts;
1834 }
1835 
1836 static bool isThunkSectionCompatible(InputSection *source,
1837                                      SectionBase *target) {
1838   // We can't reuse thunks in different loadable partitions because they might
1839   // not be loaded. But partition 1 (the main partition) will always be loaded.
1840   if (source->partition != target->partition)
1841     return target->partition == 1;
1842   return true;
1843 }
1844 
1845 static int64_t getPCBias(RelType type) {
1846   if (config->emachine != EM_ARM)
1847     return 0;
1848   switch (type) {
1849   case R_ARM_THM_JUMP19:
1850   case R_ARM_THM_JUMP24:
1851   case R_ARM_THM_CALL:
1852     return 4;
1853   default:
1854     return 8;
1855   }
1856 }
1857 
1858 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1859                                                 Relocation &rel, uint64_t src) {
1860   std::vector<Thunk *> *thunkVec = nullptr;
1861   int64_t addend = rel.addend + getPCBias(rel.type);
1862 
1863   // We use a ((section, offset), addend) pair to find the thunk position if
1864   // possible so that we create only one thunk for aliased symbols or ICFed
1865   // sections. There may be multiple relocations sharing the same (section,
1866   // offset + addend) pair. We may revert the relocation back to its original
1867   // non-Thunk target, so we cannot fold offset + addend.
1868   if (auto *d = dyn_cast<Defined>(rel.sym))
1869     if (!d->isInPlt() && d->section)
1870       thunkVec = &thunkedSymbolsBySectionAndAddend[{
1871           {d->section->repl, d->value}, addend}];
1872   if (!thunkVec)
1873     thunkVec = &thunkedSymbols[{rel.sym, addend}];
1874 
1875   // Check existing Thunks for Sym to see if they can be reused
1876   for (Thunk *t : *thunkVec)
1877     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1878         t->isCompatibleWith(*isec, rel) &&
1879         target->inBranchRange(rel.type, src,
1880                               t->getThunkTargetSym()->getVA(rel.addend) +
1881                                   getPCBias(rel.type)))
1882       return std::make_pair(t, false);
1883 
1884   // No existing compatible Thunk in range, create a new one
1885   Thunk *t = addThunk(*isec, rel);
1886   thunkVec->push_back(t);
1887   return std::make_pair(t, true);
1888 }
1889 
1890 // Return true if the relocation target is an in range Thunk.
1891 // Return false if the relocation is not to a Thunk. If the relocation target
1892 // was originally to a Thunk, but is no longer in range we revert the
1893 // relocation back to its original non-Thunk target.
1894 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
1895   if (Thunk *t = thunks.lookup(rel.sym)) {
1896     if (target->inBranchRange(rel.type, src,
1897                               rel.sym->getVA(rel.addend) + getPCBias(rel.type)))
1898       return true;
1899     rel.sym = &t->destination;
1900     rel.addend = t->addend;
1901     if (rel.sym->isInPlt())
1902       rel.expr = toPlt(rel.expr);
1903   }
1904   return false;
1905 }
1906 
1907 // Process all relocations from the InputSections that have been assigned
1908 // to InputSectionDescriptions and redirect through Thunks if needed. The
1909 // function should be called iteratively until it returns false.
1910 //
1911 // PreConditions:
1912 // All InputSections that may need a Thunk are reachable from
1913 // OutputSectionCommands.
1914 //
1915 // All OutputSections have an address and all InputSections have an offset
1916 // within the OutputSection.
1917 //
1918 // The offsets between caller (relocation place) and callee
1919 // (relocation target) will not be modified outside of createThunks().
1920 //
1921 // PostConditions:
1922 // If return value is true then ThunkSections have been inserted into
1923 // OutputSections. All relocations that needed a Thunk based on the information
1924 // available to createThunks() on entry have been redirected to a Thunk. Note
1925 // that adding Thunks changes offsets between caller and callee so more Thunks
1926 // may be required.
1927 //
1928 // If return value is false then no more Thunks are needed, and createThunks has
1929 // made no changes. If the target requires range extension thunks, currently
1930 // ARM, then any future change in offset between caller and callee risks a
1931 // relocation out of range error.
1932 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
1933   bool addressesChanged = false;
1934 
1935   if (pass == 0 && target->getThunkSectionSpacing())
1936     createInitialThunkSections(outputSections);
1937 
1938   // Create all the Thunks and insert them into synthetic ThunkSections. The
1939   // ThunkSections are later inserted back into InputSectionDescriptions.
1940   // We separate the creation of ThunkSections from the insertion of the
1941   // ThunkSections as ThunkSections are not always inserted into the same
1942   // InputSectionDescription as the caller.
1943   forEachInputSectionDescription(
1944       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1945         for (InputSection *isec : isd->sections)
1946           for (Relocation &rel : isec->relocations) {
1947             uint64_t src = isec->getVA(rel.offset);
1948 
1949             // If we are a relocation to an existing Thunk, check if it is
1950             // still in range. If not then Rel will be altered to point to its
1951             // original target so another Thunk can be generated.
1952             if (pass > 0 && normalizeExistingThunk(rel, src))
1953               continue;
1954 
1955             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
1956                                     *rel.sym, rel.addend))
1957               continue;
1958 
1959             Thunk *t;
1960             bool isNew;
1961             std::tie(t, isNew) = getThunk(isec, rel, src);
1962 
1963             if (isNew) {
1964               // Find or create a ThunkSection for the new Thunk
1965               ThunkSection *ts;
1966               if (auto *tis = t->getTargetInputSection())
1967                 ts = getISThunkSec(tis);
1968               else
1969                 ts = getISDThunkSec(os, isec, isd, rel.type, src);
1970               ts->addThunk(t);
1971               thunks[t->getThunkTargetSym()] = t;
1972             }
1973 
1974             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1975             rel.sym = t->getThunkTargetSym();
1976             rel.expr = fromPlt(rel.expr);
1977 
1978             // On AArch64 and PPC, a jump/call relocation may be encoded as
1979             // STT_SECTION + non-zero addend, clear the addend after
1980             // redirection.
1981             if (config->emachine != EM_MIPS)
1982               rel.addend = -getPCBias(rel.type);
1983           }
1984 
1985         for (auto &p : isd->thunkSections)
1986           addressesChanged |= p.first->assignOffsets();
1987       });
1988 
1989   for (auto &p : thunkedSections)
1990     addressesChanged |= p.second->assignOffsets();
1991 
1992   // Merge all created synthetic ThunkSections back into OutputSection
1993   mergeThunks(outputSections);
1994   ++pass;
1995   return addressesChanged;
1996 }
1997 
1998 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
1999 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2000 // __tls_get_addr.
2001 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2002 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2003   bool needTlsSymbol = false;
2004   forEachInputSectionDescription(
2005       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2006         for (InputSection *isec : isd->sections)
2007           for (Relocation &rel : isec->relocations)
2008             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2009               needTlsSymbol = true;
2010               return;
2011             }
2012       });
2013   return needTlsSymbol;
2014 }
2015 
2016 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2017   Symbol *sym = symtab->find("__tls_get_addr");
2018   if (!sym)
2019     return;
2020   bool needEntry = true;
2021   forEachInputSectionDescription(
2022       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2023         for (InputSection *isec : isd->sections)
2024           for (Relocation &rel : isec->relocations)
2025             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2026               if (needEntry) {
2027                 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
2028                             *sym);
2029                 needEntry = false;
2030               }
2031               rel.sym = sym;
2032             }
2033       });
2034 }
2035 
2036 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2037 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2038 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2039 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2040 template void elf::reportUndefinedSymbols<ELF32LE>();
2041 template void elf::reportUndefinedSymbols<ELF32BE>();
2042 template void elf::reportUndefinedSymbols<ELF64LE>();
2043 template void elf::reportUndefinedSymbols<ELF64BE>();
2044