xref: /freebsd/contrib/llvm-project/lld/ELF/Relocations.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67 
68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (BaseCommand *base : script->sectionCommands)
70     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71       if (cmd->sym == &sym)
72         return cmd->location;
73   return None;
74 }
75 
76 static std::string getDefinedLocation(const Symbol &sym) {
77   const char msg[] = "\n>>> defined in ";
78   if (sym.file)
79     return msg + toString(sym.file);
80   if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81     return msg + *loc;
82   return "";
83 }
84 
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>>               /home/alice/src/bar.o:(.text+0x1)
90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91                                uint64_t off) {
92   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93   std::string src = s.getSrcMsg(sym, off);
94   if (!src.empty())
95     msg += src + "\n>>>               ";
96   return msg + s.getObjMsg(off);
97 }
98 
99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100                            int64_t min, uint64_t max) {
101   ErrorPlace errPlace = getErrorPlace(loc);
102   std::string hint;
103   if (rel.sym && !rel.sym->isLocal())
104     hint = "; references " + lld::toString(*rel.sym) +
105            getDefinedLocation(*rel.sym);
106 
107   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
108     hint += "; consider recompiling with -fdebug-types-section to reduce size "
109             "of debug sections";
110 
111   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
112               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
113               ", " + Twine(max).str() + "]" + hint);
114 }
115 
116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
117                            const Twine &msg) {
118   ErrorPlace errPlace = getErrorPlace(loc);
119   std::string hint;
120   if (!sym.getName().empty())
121     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
122   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
123               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
124               Twine(llvm::maxIntN(n)) + "]" + hint);
125 }
126 
127 namespace {
128 // Build a bitmask with one bit set for each RelExpr.
129 //
130 // Constexpr function arguments can't be used in static asserts, so we
131 // use template arguments to build the mask.
132 // But function template partial specializations don't exist (needed
133 // for base case of the recursion), so we need a dummy struct.
134 template <RelExpr... Exprs> struct RelExprMaskBuilder {
135   static inline uint64_t build() { return 0; }
136 };
137 
138 // Specialization for recursive case.
139 template <RelExpr Head, RelExpr... Tail>
140 struct RelExprMaskBuilder<Head, Tail...> {
141   static inline uint64_t build() {
142     static_assert(0 <= Head && Head < 64,
143                   "RelExpr is too large for 64-bit mask!");
144     return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
145   }
146 };
147 } // namespace
148 
149 // Return true if `Expr` is one of `Exprs`.
150 // There are fewer than 64 RelExpr's, so we can represent any set of
151 // RelExpr's as a constant bit mask and test for membership with a
152 // couple cheap bitwise operations.
153 template <RelExpr... Exprs> bool oneof(RelExpr expr) {
154   assert(0 <= expr && (int)expr < 64 &&
155          "RelExpr is too large for 64-bit mask!");
156   return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
157 }
158 
159 // This function is similar to the `handleTlsRelocation`. MIPS does not
160 // support any relaxations for TLS relocations so by factoring out MIPS
161 // handling in to the separate function we can simplify the code and do not
162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
163 // Mips has a custom MipsGotSection that handles the writing of GOT entries
164 // without dynamic relocations.
165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
166                                         InputSectionBase &c, uint64_t offset,
167                                         int64_t addend, RelExpr expr) {
168   if (expr == R_MIPS_TLSLD) {
169     in.mipsGot->addTlsIndex(*c.file);
170     c.relocations.push_back({expr, type, offset, addend, &sym});
171     return 1;
172   }
173   if (expr == R_MIPS_TLSGD) {
174     in.mipsGot->addDynTlsEntry(*c.file, sym);
175     c.relocations.push_back({expr, type, offset, addend, &sym});
176     return 1;
177   }
178   return 0;
179 }
180 
181 // Notes about General Dynamic and Local Dynamic TLS models below. They may
182 // require the generation of a pair of GOT entries that have associated dynamic
183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
185 // symbol in TLS block.
186 //
187 // Returns the number of relocations processed.
188 template <class ELFT>
189 static unsigned
190 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
191                     typename ELFT::uint offset, int64_t addend, RelExpr expr) {
192   if (!sym.isTls())
193     return 0;
194 
195   if (config->emachine == EM_MIPS)
196     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
197 
198   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
199           expr) &&
200       config->shared) {
201     if (in.got->addDynTlsEntry(sym)) {
202       uint64_t off = in.got->getGlobalDynOffset(sym);
203       mainPart->relaDyn->addReloc(
204           {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
205     }
206     if (expr != R_TLSDESC_CALL)
207       c.relocations.push_back({expr, type, offset, addend, &sym});
208     return 1;
209   }
210 
211   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
212   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
213   // relaxation as well.
214   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
215                      config->emachine != EM_HEXAGON &&
216                      config->emachine != EM_RISCV &&
217                      !c.file->ppc64DisableTLSRelax;
218 
219   // If we are producing an executable and the symbol is non-preemptable, it
220   // must be defined and the code sequence can be relaxed to use Local-Exec.
221   //
222   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
223   // we can omit the DTPMOD dynamic relocations and resolve them at link time
224   // because them are always 1. This may be necessary for static linking as
225   // DTPMOD may not be expected at load time.
226   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
227 
228   // Local Dynamic is for access to module local TLS variables, while still
229   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
230   // module index, with a special value of 0 for the current module. GOT[e1] is
231   // unused. There only needs to be one module index entry.
232   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
233           expr)) {
234     // Local-Dynamic relocs can be relaxed to Local-Exec.
235     if (toExecRelax) {
236       c.relocations.push_back(
237           {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
238            addend, &sym});
239       return target->getTlsGdRelaxSkip(type);
240     }
241     if (expr == R_TLSLD_HINT)
242       return 1;
243     if (in.got->addTlsIndex()) {
244       if (isLocalInExecutable)
245         in.got->relocations.push_back(
246             {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
247       else
248         mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
249                                 in.got->getTlsIndexOff(), nullptr);
250     }
251     c.relocations.push_back({expr, type, offset, addend, &sym});
252     return 1;
253   }
254 
255   // Local-Dynamic relocs can be relaxed to Local-Exec.
256   if (expr == R_DTPREL && toExecRelax) {
257     c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE),
258                              type, offset, addend, &sym});
259     return 1;
260   }
261 
262   // Local-Dynamic sequence where offset of tls variable relative to dynamic
263   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
264   if (expr == R_TLSLD_GOT_OFF) {
265     if (!sym.isInGot()) {
266       in.got->addEntry(sym);
267       uint64_t off = sym.getGotOffset();
268       in.got->relocations.push_back(
269           {R_ABS, target->tlsOffsetRel, off, 0, &sym});
270     }
271     c.relocations.push_back({expr, type, offset, addend, &sym});
272     return 1;
273   }
274 
275   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
276             R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
277     if (!toExecRelax) {
278       if (in.got->addDynTlsEntry(sym)) {
279         uint64_t off = in.got->getGlobalDynOffset(sym);
280 
281         if (isLocalInExecutable)
282           // Write one to the GOT slot.
283           in.got->relocations.push_back(
284               {R_ADDEND, target->symbolicRel, off, 1, &sym});
285         else
286           mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);
287 
288         // If the symbol is preemptible we need the dynamic linker to write
289         // the offset too.
290         uint64_t offsetOff = off + config->wordsize;
291         if (sym.isPreemptible)
292           mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
293                                   &sym);
294         else
295           in.got->relocations.push_back(
296               {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
297       }
298       c.relocations.push_back({expr, type, offset, addend, &sym});
299       return 1;
300     }
301 
302     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
303     // depending on the symbol being locally defined or not.
304     if (sym.isPreemptible) {
305       c.relocations.push_back(
306           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
307            addend, &sym});
308       if (!sym.isInGot()) {
309         in.got->addEntry(sym);
310         mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
311                                 &sym);
312       }
313     } else {
314       c.relocations.push_back(
315           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
316            addend, &sym});
317     }
318     return target->getTlsGdRelaxSkip(type);
319   }
320 
321   // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
322   // defined.
323   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
324             R_TLSIE_HINT>(expr) &&
325       toExecRelax && isLocalInExecutable) {
326     c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
327     return 1;
328   }
329 
330   if (expr == R_TLSIE_HINT)
331     return 1;
332   return 0;
333 }
334 
335 static RelType getMipsPairType(RelType type, bool isLocal) {
336   switch (type) {
337   case R_MIPS_HI16:
338     return R_MIPS_LO16;
339   case R_MIPS_GOT16:
340     // In case of global symbol, the R_MIPS_GOT16 relocation does not
341     // have a pair. Each global symbol has a unique entry in the GOT
342     // and a corresponding instruction with help of the R_MIPS_GOT16
343     // relocation loads an address of the symbol. In case of local
344     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
345     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
346     // relocations handle low 16 bits of the address. That allows
347     // to allocate only one GOT entry for every 64 KBytes of local data.
348     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
349   case R_MICROMIPS_GOT16:
350     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
351   case R_MIPS_PCHI16:
352     return R_MIPS_PCLO16;
353   case R_MICROMIPS_HI16:
354     return R_MICROMIPS_LO16;
355   default:
356     return R_MIPS_NONE;
357   }
358 }
359 
360 // True if non-preemptable symbol always has the same value regardless of where
361 // the DSO is loaded.
362 static bool isAbsolute(const Symbol &sym) {
363   if (sym.isUndefWeak())
364     return true;
365   if (const auto *dr = dyn_cast<Defined>(&sym))
366     return dr->section == nullptr; // Absolute symbol.
367   return false;
368 }
369 
370 static bool isAbsoluteValue(const Symbol &sym) {
371   return isAbsolute(sym) || sym.isTls();
372 }
373 
374 // Returns true if Expr refers a PLT entry.
375 static bool needsPlt(RelExpr expr) {
376   return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
377 }
378 
379 // Returns true if Expr refers a GOT entry. Note that this function
380 // returns false for TLS variables even though they need GOT, because
381 // TLS variables uses GOT differently than the regular variables.
382 static bool needsGot(RelExpr expr) {
383   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
384                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
385                R_AARCH64_GOT_PAGE>(expr);
386 }
387 
388 // True if this expression is of the form Sym - X, where X is a position in the
389 // file (PC, or GOT for example).
390 static bool isRelExpr(RelExpr expr) {
391   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
392                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
393                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
394 }
395 
396 // Returns true if a given relocation can be computed at link-time.
397 //
398 // For instance, we know the offset from a relocation to its target at
399 // link-time if the relocation is PC-relative and refers a
400 // non-interposable function in the same executable. This function
401 // will return true for such relocation.
402 //
403 // If this function returns false, that means we need to emit a
404 // dynamic relocation so that the relocation will be fixed at load-time.
405 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
406                                      InputSectionBase &s, uint64_t relOff) {
407   // These expressions always compute a constant
408   if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
409             R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
410             R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
411             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
412             R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
413             R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
414             R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT,
415             R_AARCH64_GOT_PAGE>(
416           e))
417     return true;
418 
419   // These never do, except if the entire file is position dependent or if
420   // only the low bits are used.
421   if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
422     return target->usesOnlyLowPageBits(type) || !config->isPic;
423 
424   if (sym.isPreemptible)
425     return false;
426   if (!config->isPic)
427     return true;
428 
429   // The size of a non preemptible symbol is a constant.
430   if (e == R_SIZE)
431     return true;
432 
433   // For the target and the relocation, we want to know if they are
434   // absolute or relative.
435   bool absVal = isAbsoluteValue(sym);
436   bool relE = isRelExpr(e);
437   if (absVal && !relE)
438     return true;
439   if (!absVal && relE)
440     return true;
441   if (!absVal && !relE)
442     return target->usesOnlyLowPageBits(type);
443 
444   assert(absVal && relE);
445 
446   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
447   // in PIC mode. This is a little strange, but it allows us to link function
448   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
449   // Normally such a call will be guarded with a comparison, which will load a
450   // zero from the GOT.
451   if (sym.isUndefWeak())
452     return true;
453 
454   // We set the final symbols values for linker script defined symbols later.
455   // They always can be computed as a link time constant.
456   if (sym.scriptDefined)
457       return true;
458 
459   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
460         toString(sym) + getLocation(s, sym, relOff));
461   return true;
462 }
463 
464 static RelExpr toPlt(RelExpr expr) {
465   switch (expr) {
466   case R_PPC64_CALL:
467     return R_PPC64_CALL_PLT;
468   case R_PC:
469     return R_PLT_PC;
470   case R_ABS:
471     return R_PLT;
472   default:
473     return expr;
474   }
475 }
476 
477 static RelExpr fromPlt(RelExpr expr) {
478   // We decided not to use a plt. Optimize a reference to the plt to a
479   // reference to the symbol itself.
480   switch (expr) {
481   case R_PLT_PC:
482   case R_PPC32_PLTREL:
483     return R_PC;
484   case R_PPC64_CALL_PLT:
485     return R_PPC64_CALL;
486   case R_PLT:
487     return R_ABS;
488   default:
489     return expr;
490   }
491 }
492 
493 // Returns true if a given shared symbol is in a read-only segment in a DSO.
494 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
495   using Elf_Phdr = typename ELFT::Phdr;
496 
497   // Determine if the symbol is read-only by scanning the DSO's program headers.
498   const SharedFile &file = ss.getFile();
499   for (const Elf_Phdr &phdr :
500        check(file.template getObj<ELFT>().program_headers()))
501     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
502         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
503         ss.value < phdr.p_vaddr + phdr.p_memsz)
504       return true;
505   return false;
506 }
507 
508 // Returns symbols at the same offset as a given symbol, including SS itself.
509 //
510 // If two or more symbols are at the same offset, and at least one of
511 // them are copied by a copy relocation, all of them need to be copied.
512 // Otherwise, they would refer to different places at runtime.
513 template <class ELFT>
514 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
515   using Elf_Sym = typename ELFT::Sym;
516 
517   SharedFile &file = ss.getFile();
518 
519   SmallSet<SharedSymbol *, 4> ret;
520   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
521     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
522         s.getType() == STT_TLS || s.st_value != ss.value)
523       continue;
524     StringRef name = check(s.getName(file.getStringTable()));
525     Symbol *sym = symtab->find(name);
526     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
527       ret.insert(alias);
528   }
529   return ret;
530 }
531 
532 // When a symbol is copy relocated or we create a canonical plt entry, it is
533 // effectively a defined symbol. In the case of copy relocation the symbol is
534 // in .bss and in the case of a canonical plt entry it is in .plt. This function
535 // replaces the existing symbol with a Defined pointing to the appropriate
536 // location.
537 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
538                                uint64_t size) {
539   Symbol old = sym;
540 
541   sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
542                       sym.type, value, size, sec});
543 
544   sym.pltIndex = old.pltIndex;
545   sym.gotIndex = old.gotIndex;
546   sym.verdefIndex = old.verdefIndex;
547   sym.exportDynamic = true;
548   sym.isUsedInRegularObj = true;
549 }
550 
551 // Reserve space in .bss or .bss.rel.ro for copy relocation.
552 //
553 // The copy relocation is pretty much a hack. If you use a copy relocation
554 // in your program, not only the symbol name but the symbol's size, RW/RO
555 // bit and alignment become part of the ABI. In addition to that, if the
556 // symbol has aliases, the aliases become part of the ABI. That's subtle,
557 // but if you violate that implicit ABI, that can cause very counter-
558 // intuitive consequences.
559 //
560 // So, what is the copy relocation? It's for linking non-position
561 // independent code to DSOs. In an ideal world, all references to data
562 // exported by DSOs should go indirectly through GOT. But if object files
563 // are compiled as non-PIC, all data references are direct. There is no
564 // way for the linker to transform the code to use GOT, as machine
565 // instructions are already set in stone in object files. This is where
566 // the copy relocation takes a role.
567 //
568 // A copy relocation instructs the dynamic linker to copy data from a DSO
569 // to a specified address (which is usually in .bss) at load-time. If the
570 // static linker (that's us) finds a direct data reference to a DSO
571 // symbol, it creates a copy relocation, so that the symbol can be
572 // resolved as if it were in .bss rather than in a DSO.
573 //
574 // As you can see in this function, we create a copy relocation for the
575 // dynamic linker, and the relocation contains not only symbol name but
576 // various other information about the symbol. So, such attributes become a
577 // part of the ABI.
578 //
579 // Note for application developers: I can give you a piece of advice if
580 // you are writing a shared library. You probably should export only
581 // functions from your library. You shouldn't export variables.
582 //
583 // As an example what can happen when you export variables without knowing
584 // the semantics of copy relocations, assume that you have an exported
585 // variable of type T. It is an ABI-breaking change to add new members at
586 // end of T even though doing that doesn't change the layout of the
587 // existing members. That's because the space for the new members are not
588 // reserved in .bss unless you recompile the main program. That means they
589 // are likely to overlap with other data that happens to be laid out next
590 // to the variable in .bss. This kind of issue is sometimes very hard to
591 // debug. What's a solution? Instead of exporting a variable V from a DSO,
592 // define an accessor getV().
593 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
594   // Copy relocation against zero-sized symbol doesn't make sense.
595   uint64_t symSize = ss.getSize();
596   if (symSize == 0 || ss.alignment == 0)
597     fatal("cannot create a copy relocation for symbol " + toString(ss));
598 
599   // See if this symbol is in a read-only segment. If so, preserve the symbol's
600   // memory protection by reserving space in the .bss.rel.ro section.
601   bool isRO = isReadOnly<ELFT>(ss);
602   BssSection *sec =
603       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
604   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
605 
606   // At this point, sectionBases has been migrated to sections. Append sec to
607   // sections.
608   if (osec->sectionCommands.empty() ||
609       !isa<InputSectionDescription>(osec->sectionCommands.back()))
610     osec->sectionCommands.push_back(make<InputSectionDescription>(""));
611   auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
612   isd->sections.push_back(sec);
613   osec->commitSection(sec);
614 
615   // Look through the DSO's dynamic symbol table for aliases and create a
616   // dynamic symbol for each one. This causes the copy relocation to correctly
617   // interpose any aliases.
618   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
619     replaceWithDefined(*sym, sec, 0, sym->size);
620 
621   mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
622 }
623 
624 // MIPS has an odd notion of "paired" relocations to calculate addends.
625 // For example, if a relocation is of R_MIPS_HI16, there must be a
626 // R_MIPS_LO16 relocation after that, and an addend is calculated using
627 // the two relocations.
628 template <class ELFT, class RelTy>
629 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
630                                  InputSectionBase &sec, RelExpr expr,
631                                  bool isLocal) {
632   if (expr == R_MIPS_GOTREL && isLocal)
633     return sec.getFile<ELFT>()->mipsGp0;
634 
635   // The ABI says that the paired relocation is used only for REL.
636   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
637   if (RelTy::IsRela)
638     return 0;
639 
640   RelType type = rel.getType(config->isMips64EL);
641   uint32_t pairTy = getMipsPairType(type, isLocal);
642   if (pairTy == R_MIPS_NONE)
643     return 0;
644 
645   const uint8_t *buf = sec.data().data();
646   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
647 
648   // To make things worse, paired relocations might not be contiguous in
649   // the relocation table, so we need to do linear search. *sigh*
650   for (const RelTy *ri = &rel; ri != end; ++ri)
651     if (ri->getType(config->isMips64EL) == pairTy &&
652         ri->getSymbol(config->isMips64EL) == symIndex)
653       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
654 
655   warn("can't find matching " + toString(pairTy) + " relocation for " +
656        toString(type));
657   return 0;
658 }
659 
660 // Returns an addend of a given relocation. If it is RELA, an addend
661 // is in a relocation itself. If it is REL, we need to read it from an
662 // input section.
663 template <class ELFT, class RelTy>
664 static int64_t computeAddend(const RelTy &rel, const RelTy *end,
665                              InputSectionBase &sec, RelExpr expr,
666                              bool isLocal) {
667   int64_t addend;
668   RelType type = rel.getType(config->isMips64EL);
669 
670   if (RelTy::IsRela) {
671     addend = getAddend<ELFT>(rel);
672   } else {
673     const uint8_t *buf = sec.data().data();
674     addend = target->getImplicitAddend(buf + rel.r_offset, type);
675   }
676 
677   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
678     addend += getPPC64TocBase();
679   if (config->emachine == EM_MIPS)
680     addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
681 
682   return addend;
683 }
684 
685 // Custom error message if Sym is defined in a discarded section.
686 template <class ELFT>
687 static std::string maybeReportDiscarded(Undefined &sym) {
688   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
689   if (!file || !sym.discardedSecIdx ||
690       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
691     return "";
692   ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
693       CHECK(file->getObj().sections(), file);
694 
695   std::string msg;
696   if (sym.type == ELF::STT_SECTION) {
697     msg = "relocation refers to a discarded section: ";
698     msg += CHECK(
699         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
700   } else {
701     msg = "relocation refers to a symbol in a discarded section: " +
702           toString(sym);
703   }
704   msg += "\n>>> defined in " + toString(file);
705 
706   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
707   if (elfSec.sh_type != SHT_GROUP)
708     return msg;
709 
710   // If the discarded section is a COMDAT.
711   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
712   if (const InputFile *prevailing =
713           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
714     msg += "\n>>> section group signature: " + signature.str() +
715            "\n>>> prevailing definition is in " + toString(prevailing);
716   return msg;
717 }
718 
719 // Undefined diagnostics are collected in a vector and emitted once all of
720 // them are known, so that some postprocessing on the list of undefined symbols
721 // can happen before lld emits diagnostics.
722 struct UndefinedDiag {
723   Symbol *sym;
724   struct Loc {
725     InputSectionBase *sec;
726     uint64_t offset;
727   };
728   std::vector<Loc> locs;
729   bool isWarning;
730 };
731 
732 static std::vector<UndefinedDiag> undefs;
733 
734 // Check whether the definition name def is a mangled function name that matches
735 // the reference name ref.
736 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
737   llvm::ItaniumPartialDemangler d;
738   std::string name = def.str();
739   if (d.partialDemangle(name.c_str()))
740     return false;
741   char *buf = d.getFunctionName(nullptr, nullptr);
742   if (!buf)
743     return false;
744   bool ret = ref == buf;
745   free(buf);
746   return ret;
747 }
748 
749 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
750 // the suggested symbol, which is either in the symbol table, or in the same
751 // file of sym.
752 template <class ELFT>
753 static const Symbol *getAlternativeSpelling(const Undefined &sym,
754                                             std::string &pre_hint,
755                                             std::string &post_hint) {
756   DenseMap<StringRef, const Symbol *> map;
757   if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
758     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
759     // will give an error. Don't suggest an alternative spelling.
760     if (file && sym.discardedSecIdx != 0 &&
761         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
762       return nullptr;
763 
764     // Build a map of local defined symbols.
765     for (const Symbol *s : sym.file->getSymbols())
766       if (s->isLocal() && s->isDefined())
767         map.try_emplace(s->getName(), s);
768   }
769 
770   auto suggest = [&](StringRef newName) -> const Symbol * {
771     // If defined locally.
772     if (const Symbol *s = map.lookup(newName))
773       return s;
774 
775     // If in the symbol table and not undefined.
776     if (const Symbol *s = symtab->find(newName))
777       if (!s->isUndefined())
778         return s;
779 
780     return nullptr;
781   };
782 
783   // This loop enumerates all strings of Levenshtein distance 1 as typo
784   // correction candidates and suggests the one that exists as a non-undefined
785   // symbol.
786   StringRef name = sym.getName();
787   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
788     // Insert a character before name[i].
789     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
790     for (char c = '0'; c <= 'z'; ++c) {
791       newName[i] = c;
792       if (const Symbol *s = suggest(newName))
793         return s;
794     }
795     if (i == e)
796       break;
797 
798     // Substitute name[i].
799     newName = std::string(name);
800     for (char c = '0'; c <= 'z'; ++c) {
801       newName[i] = c;
802       if (const Symbol *s = suggest(newName))
803         return s;
804     }
805 
806     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
807     // common.
808     if (i + 1 < e) {
809       newName[i] = name[i + 1];
810       newName[i + 1] = name[i];
811       if (const Symbol *s = suggest(newName))
812         return s;
813     }
814 
815     // Delete name[i].
816     newName = (name.substr(0, i) + name.substr(i + 1)).str();
817     if (const Symbol *s = suggest(newName))
818       return s;
819   }
820 
821   // Case mismatch, e.g. Foo vs FOO.
822   for (auto &it : map)
823     if (name.equals_lower(it.first))
824       return it.second;
825   for (Symbol *sym : symtab->symbols())
826     if (!sym->isUndefined() && name.equals_lower(sym->getName()))
827       return sym;
828 
829   // The reference may be a mangled name while the definition is not. Suggest a
830   // missing extern "C".
831   if (name.startswith("_Z")) {
832     std::string buf = name.str();
833     llvm::ItaniumPartialDemangler d;
834     if (!d.partialDemangle(buf.c_str()))
835       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
836         const Symbol *s = suggest(buf);
837         free(buf);
838         if (s) {
839           pre_hint = ": extern \"C\" ";
840           return s;
841         }
842       }
843   } else {
844     const Symbol *s = nullptr;
845     for (auto &it : map)
846       if (canSuggestExternCForCXX(name, it.first)) {
847         s = it.second;
848         break;
849       }
850     if (!s)
851       for (Symbol *sym : symtab->symbols())
852         if (canSuggestExternCForCXX(name, sym->getName())) {
853           s = sym;
854           break;
855         }
856     if (s) {
857       pre_hint = " to declare ";
858       post_hint = " as extern \"C\"?";
859       return s;
860     }
861   }
862 
863   return nullptr;
864 }
865 
866 template <class ELFT>
867 static void reportUndefinedSymbol(const UndefinedDiag &undef,
868                                   bool correctSpelling) {
869   Symbol &sym = *undef.sym;
870 
871   auto visibility = [&]() -> std::string {
872     switch (sym.visibility) {
873     case STV_INTERNAL:
874       return "internal ";
875     case STV_HIDDEN:
876       return "hidden ";
877     case STV_PROTECTED:
878       return "protected ";
879     default:
880       return "";
881     }
882   };
883 
884   std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
885   if (msg.empty())
886     msg = "undefined " + visibility() + "symbol: " + toString(sym);
887 
888   const size_t maxUndefReferences = 3;
889   size_t i = 0;
890   for (UndefinedDiag::Loc l : undef.locs) {
891     if (i >= maxUndefReferences)
892       break;
893     InputSectionBase &sec = *l.sec;
894     uint64_t offset = l.offset;
895 
896     msg += "\n>>> referenced by ";
897     std::string src = sec.getSrcMsg(sym, offset);
898     if (!src.empty())
899       msg += src + "\n>>>               ";
900     msg += sec.getObjMsg(offset);
901     i++;
902   }
903 
904   if (i < undef.locs.size())
905     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
906                .str();
907 
908   if (correctSpelling) {
909     std::string pre_hint = ": ", post_hint;
910     if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
911             cast<Undefined>(sym), pre_hint, post_hint)) {
912       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
913       if (corrected->file)
914         msg += "\n>>> defined in: " + toString(corrected->file);
915     }
916   }
917 
918   if (sym.getName().startswith("_ZTV"))
919     msg +=
920         "\n>>> the vtable symbol may be undefined because the class is missing "
921         "its key function (see https://lld.llvm.org/missingkeyfunction)";
922 
923   if (undef.isWarning)
924     warn(msg);
925   else
926     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
927 }
928 
929 template <class ELFT> void elf::reportUndefinedSymbols() {
930   // Find the first "undefined symbol" diagnostic for each diagnostic, and
931   // collect all "referenced from" lines at the first diagnostic.
932   DenseMap<Symbol *, UndefinedDiag *> firstRef;
933   for (UndefinedDiag &undef : undefs) {
934     assert(undef.locs.size() == 1);
935     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
936       canon->locs.push_back(undef.locs[0]);
937       undef.locs.clear();
938     } else
939       firstRef[undef.sym] = &undef;
940   }
941 
942   // Enable spell corrector for the first 2 diagnostics.
943   for (auto it : enumerate(undefs))
944     if (!it.value().locs.empty())
945       reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
946   undefs.clear();
947 }
948 
949 // Report an undefined symbol if necessary.
950 // Returns true if the undefined symbol will produce an error message.
951 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
952                                  uint64_t offset) {
953   if (!sym.isUndefined())
954     return false;
955   // If versioned, issue an error (even if the symbol is weak) because we don't
956   // know the defining filename which is required to construct a Verneed entry.
957   if (*sym.getVersionSuffix() == '@') {
958     undefs.push_back({&sym, {{&sec, offset}}, false});
959     return true;
960   }
961   if (sym.isWeak())
962     return false;
963 
964   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
965   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
966     return false;
967 
968   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
969   // which references a switch table in a discarded .rodata/.text section. The
970   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
971   // spec says references from outside the group to a STB_LOCAL symbol are not
972   // allowed. Work around the bug.
973   //
974   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
975   // because .LC0-.LTOC is not representable if the two labels are in different
976   // .got2
977   if (cast<Undefined>(sym).discardedSecIdx != 0 &&
978       (sec.name == ".got2" || sec.name == ".toc"))
979     return false;
980 
981   bool isWarning =
982       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
983       config->noinhibitExec;
984   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
985   return !isWarning;
986 }
987 
988 // MIPS N32 ABI treats series of successive relocations with the same offset
989 // as a single relocation. The similar approach used by N64 ABI, but this ABI
990 // packs all relocations into the single relocation record. Here we emulate
991 // this for the N32 ABI. Iterate over relocation with the same offset and put
992 // theirs types into the single bit-set.
993 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
994   RelType type = 0;
995   uint64_t offset = rel->r_offset;
996 
997   int n = 0;
998   while (rel != end && rel->r_offset == offset)
999     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
1000   return type;
1001 }
1002 
1003 // .eh_frame sections are mergeable input sections, so their input
1004 // offsets are not linearly mapped to output section. For each input
1005 // offset, we need to find a section piece containing the offset and
1006 // add the piece's base address to the input offset to compute the
1007 // output offset. That isn't cheap.
1008 //
1009 // This class is to speed up the offset computation. When we process
1010 // relocations, we access offsets in the monotonically increasing
1011 // order. So we can optimize for that access pattern.
1012 //
1013 // For sections other than .eh_frame, this class doesn't do anything.
1014 namespace {
1015 class OffsetGetter {
1016 public:
1017   explicit OffsetGetter(InputSectionBase &sec) {
1018     if (auto *eh = dyn_cast<EhInputSection>(&sec))
1019       pieces = eh->pieces;
1020   }
1021 
1022   // Translates offsets in input sections to offsets in output sections.
1023   // Given offset must increase monotonically. We assume that Piece is
1024   // sorted by inputOff.
1025   uint64_t get(uint64_t off) {
1026     if (pieces.empty())
1027       return off;
1028 
1029     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
1030       ++i;
1031     if (i == pieces.size())
1032       fatal(".eh_frame: relocation is not in any piece");
1033 
1034     // Pieces must be contiguous, so there must be no holes in between.
1035     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
1036 
1037     // Offset -1 means that the piece is dead (i.e. garbage collected).
1038     if (pieces[i].outputOff == -1)
1039       return -1;
1040     return pieces[i].outputOff + off - pieces[i].inputOff;
1041   }
1042 
1043 private:
1044   ArrayRef<EhSectionPiece> pieces;
1045   size_t i = 0;
1046 };
1047 } // namespace
1048 
1049 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1050                              Symbol *sym, int64_t addend, RelExpr expr,
1051                              RelType type) {
1052   Partition &part = isec->getPartition();
1053 
1054   // Add a relative relocation. If relrDyn section is enabled, and the
1055   // relocation offset is guaranteed to be even, add the relocation to
1056   // the relrDyn section, otherwise add it to the relaDyn section.
1057   // relrDyn sections don't support odd offsets. Also, relrDyn sections
1058   // don't store the addend values, so we must write it to the relocated
1059   // address.
1060   if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1061     isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1062     part.relrDyn->relocs.push_back({isec, offsetInSec});
1063     return;
1064   }
1065   part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
1066                          expr, type);
1067 }
1068 
1069 template <class PltSection, class GotPltSection>
1070 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1071                         RelocationBaseSection *rel, RelType type, Symbol &sym) {
1072   plt->addEntry(sym);
1073   gotPlt->addEntry(sym);
1074   rel->addReloc(
1075       {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
1076 }
1077 
1078 static void addGotEntry(Symbol &sym) {
1079   in.got->addEntry(sym);
1080 
1081   RelExpr expr = sym.isTls() ? R_TPREL : R_ABS;
1082   uint64_t off = sym.getGotOffset();
1083 
1084   // If a GOT slot value can be calculated at link-time, which is now,
1085   // we can just fill that out.
1086   //
1087   // (We don't actually write a value to a GOT slot right now, but we
1088   // add a static relocation to a Relocations vector so that
1089   // InputSection::relocate will do the work for us. We may be able
1090   // to just write a value now, but it is a TODO.)
1091   bool isLinkTimeConstant =
1092       !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1093   if (isLinkTimeConstant) {
1094     in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1095     return;
1096   }
1097 
1098   // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1099   // the GOT slot will be fixed at load-time.
1100   if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
1101     addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
1102     return;
1103   }
1104   mainPart->relaDyn->addReloc(
1105       sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
1106       sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
1107 }
1108 
1109 // Return true if we can define a symbol in the executable that
1110 // contains the value/function of a symbol defined in a shared
1111 // library.
1112 static bool canDefineSymbolInExecutable(Symbol &sym) {
1113   // If the symbol has default visibility the symbol defined in the
1114   // executable will preempt it.
1115   // Note that we want the visibility of the shared symbol itself, not
1116   // the visibility of the symbol in the output file we are producing. That is
1117   // why we use Sym.stOther.
1118   if ((sym.stOther & 0x3) == STV_DEFAULT)
1119     return true;
1120 
1121   // If we are allowed to break address equality of functions, defining
1122   // a plt entry will allow the program to call the function in the
1123   // .so, but the .so and the executable will no agree on the address
1124   // of the function. Similar logic for objects.
1125   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1126           (sym.isObject() && config->ignoreDataAddressEquality));
1127 }
1128 
1129 // The reason we have to do this early scan is as follows
1130 // * To mmap the output file, we need to know the size
1131 // * For that, we need to know how many dynamic relocs we will have.
1132 // It might be possible to avoid this by outputting the file with write:
1133 // * Write the allocated output sections, computing addresses.
1134 // * Apply relocations, recording which ones require a dynamic reloc.
1135 // * Write the dynamic relocations.
1136 // * Write the rest of the file.
1137 // This would have some drawbacks. For example, we would only know if .rela.dyn
1138 // is needed after applying relocations. If it is, it will go after rw and rx
1139 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1140 // complicates things for the dynamic linker and means we would have to reserve
1141 // space for the extra PT_LOAD even if we end up not using it.
1142 template <class ELFT, class RelTy>
1143 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1144                             uint64_t offset, Symbol &sym, const RelTy &rel,
1145                             int64_t addend) {
1146   // If the relocation is known to be a link-time constant, we know no dynamic
1147   // relocation will be created, pass the control to relocateAlloc() or
1148   // relocateNonAlloc() to resolve it.
1149   //
1150   // The behavior of an undefined weak reference is implementation defined. If
1151   // the relocation is to a weak undef, and we are producing an executable, let
1152   // relocate{,Non}Alloc() resolve it.
1153   if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1154       (!config->shared && sym.isUndefWeak())) {
1155     sec.relocations.push_back({expr, type, offset, addend, &sym});
1156     return;
1157   }
1158 
1159   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1160   if (canWrite) {
1161     RelType rel = target->getDynRel(type);
1162     if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1163       addRelativeReloc(&sec, offset, &sym, addend, expr, type);
1164       return;
1165     } else if (rel != 0) {
1166       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1167         rel = target->relativeRel;
1168       sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
1169                                            R_ADDEND, type);
1170 
1171       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1172       // While regular ABI uses dynamic relocations to fill up GOT entries
1173       // MIPS ABI requires dynamic linker to fills up GOT entries using
1174       // specially sorted dynamic symbol table. This affects even dynamic
1175       // relocations against symbols which do not require GOT entries
1176       // creation explicitly, i.e. do not have any GOT-relocations. So if
1177       // a preemptible symbol has a dynamic relocation we anyway have
1178       // to create a GOT entry for it.
1179       // If a non-preemptible symbol has a dynamic relocation against it,
1180       // dynamic linker takes it st_value, adds offset and writes down
1181       // result of the dynamic relocation. In case of preemptible symbol
1182       // dynamic linker performs symbol resolution, writes the symbol value
1183       // to the GOT entry and reads the GOT entry when it needs to perform
1184       // a dynamic relocation.
1185       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1186       if (config->emachine == EM_MIPS)
1187         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1188       return;
1189     }
1190   }
1191 
1192   // When producing an executable, we can perform copy relocations (for
1193   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1194   if (!config->shared) {
1195     if (!canDefineSymbolInExecutable(sym)) {
1196       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1197                   getLocation(sec, sym, offset));
1198       return;
1199     }
1200 
1201     if (sym.isObject()) {
1202       // Produce a copy relocation.
1203       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1204         if (!config->zCopyreloc)
1205           error("unresolvable relocation " + toString(type) +
1206                 " against symbol '" + toString(*ss) +
1207                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1208                 getLocation(sec, sym, offset));
1209         addCopyRelSymbol<ELFT>(*ss);
1210       }
1211       sec.relocations.push_back({expr, type, offset, addend, &sym});
1212       return;
1213     }
1214 
1215     // This handles a non PIC program call to function in a shared library. In
1216     // an ideal world, we could just report an error saying the relocation can
1217     // overflow at runtime. In the real world with glibc, crt1.o has a
1218     // R_X86_64_PC32 pointing to libc.so.
1219     //
1220     // The general idea on how to handle such cases is to create a PLT entry and
1221     // use that as the function value.
1222     //
1223     // For the static linking part, we just return a plt expr and everything
1224     // else will use the PLT entry as the address.
1225     //
1226     // The remaining problem is making sure pointer equality still works. We
1227     // need the help of the dynamic linker for that. We let it know that we have
1228     // a direct reference to a so symbol by creating an undefined symbol with a
1229     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1230     // the value of the symbol we created. This is true even for got entries, so
1231     // pointer equality is maintained. To avoid an infinite loop, the only entry
1232     // that points to the real function is a dedicated got entry used by the
1233     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1234     // R_386_JMP_SLOT, etc).
1235 
1236     // For position independent executable on i386, the plt entry requires ebx
1237     // to be set. This causes two problems:
1238     // * If some code has a direct reference to a function, it was probably
1239     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1240     // * If a library definition gets preempted to the executable, it will have
1241     //   the wrong ebx value.
1242     if (sym.isFunc()) {
1243       if (config->pie && config->emachine == EM_386)
1244         errorOrWarn("symbol '" + toString(sym) +
1245                     "' cannot be preempted; recompile with -fPIE" +
1246                     getLocation(sec, sym, offset));
1247       if (!sym.isInPlt())
1248         addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1249       if (!sym.isDefined()) {
1250         replaceWithDefined(
1251             sym, in.plt,
1252             target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1253         if (config->emachine == EM_PPC) {
1254           // PPC32 canonical PLT entries are at the beginning of .glink
1255           cast<Defined>(sym).value = in.plt->headerSize;
1256           in.plt->headerSize += 16;
1257           cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1258         }
1259       }
1260       sym.needsPltAddr = true;
1261       sec.relocations.push_back({expr, type, offset, addend, &sym});
1262       return;
1263     }
1264   }
1265 
1266   if (config->isPic) {
1267     if (!canWrite && !isRelExpr(expr))
1268       errorOrWarn(
1269           "can't create dynamic relocation " + toString(type) + " against " +
1270           (sym.getName().empty() ? "local symbol"
1271                                  : "symbol: " + toString(sym)) +
1272           " in readonly segment; recompile object files with -fPIC "
1273           "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1274           getLocation(sec, sym, offset));
1275     else
1276       errorOrWarn(
1277           "relocation " + toString(type) + " cannot be used against " +
1278           (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1279           "; recompile with -fPIC" + getLocation(sec, sym, offset));
1280     return;
1281   }
1282 
1283   errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1284               getLocation(sec, sym, offset));
1285 }
1286 
1287 template <class ELFT, class RelTy>
1288 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1289                       RelTy *start, RelTy *end) {
1290   const RelTy &rel = *i;
1291   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1292   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1293   RelType type;
1294 
1295   // Deal with MIPS oddity.
1296   if (config->mipsN32Abi) {
1297     type = getMipsN32RelType(i, end);
1298   } else {
1299     type = rel.getType(config->isMips64EL);
1300     ++i;
1301   }
1302 
1303   // Get an offset in an output section this relocation is applied to.
1304   uint64_t offset = getOffset.get(rel.r_offset);
1305   if (offset == uint64_t(-1))
1306     return;
1307 
1308   // Error if the target symbol is undefined. Symbol index 0 may be used by
1309   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1310   if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1311     return;
1312 
1313   const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1314   RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1315 
1316   // Ignore R_*_NONE and other marker relocations.
1317   if (expr == R_NONE)
1318     return;
1319 
1320   if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
1321     warn("using ifunc symbols when text relocations are allowed may produce "
1322          "a binary that will segfault, if the object file is linked with "
1323          "old version of glibc (glibc 2.28 and earlier). If this applies to "
1324          "you, consider recompiling the object files without -fPIC and "
1325          "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
1326          "turn off this warning." +
1327          getLocation(sec, sym, offset));
1328   }
1329 
1330   // Read an addend.
1331   int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1332 
1333   if (config->emachine == EM_PPC64) {
1334     // We can separate the small code model relocations into 2 categories:
1335     // 1) Those that access the compiler generated .toc sections.
1336     // 2) Those that access the linker allocated got entries.
1337     // lld allocates got entries to symbols on demand. Since we don't try to
1338     // sort the got entries in any way, we don't have to track which objects
1339     // have got-based small code model relocs. The .toc sections get placed
1340     // after the end of the linker allocated .got section and we do sort those
1341     // so sections addressed with small code model relocations come first.
1342     if (isPPC64SmallCodeModelTocReloc(type))
1343       sec.file->ppc64SmallCodeModelTocRelocs = true;
1344 
1345     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1346     // InputSectionBase::relocateAlloc().
1347     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1348         cast<Defined>(sym).section->name == ".toc")
1349       ppc64noTocRelax.insert({&sym, addend});
1350 
1351     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1352         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1353       if (i == end) {
1354         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1355                     "relocation" +
1356                     getLocation(sec, sym, offset));
1357         return;
1358       }
1359 
1360       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1361       // so we can discern it later from the toc-case.
1362       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1363         ++offset;
1364     }
1365   }
1366 
1367   // Relax relocations.
1368   //
1369   // If we know that a PLT entry will be resolved within the same ELF module, we
1370   // can skip PLT access and directly jump to the destination function. For
1371   // example, if we are linking a main executable, all dynamic symbols that can
1372   // be resolved within the executable will actually be resolved that way at
1373   // runtime, because the main executable is always at the beginning of a search
1374   // list. We can leverage that fact.
1375   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1376     if (expr != R_GOT_PC) {
1377       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1378       // stub type. It should be ignored if optimized to R_PC.
1379       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1380         addend &= ~0x8000;
1381       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1382       // call __tls_get_addr even if the symbol is non-preemptible.
1383       if (!(config->emachine == EM_HEXAGON &&
1384            (type == R_HEX_GD_PLT_B22_PCREL ||
1385             type == R_HEX_GD_PLT_B22_PCREL_X ||
1386             type == R_HEX_GD_PLT_B32_PCREL_X)))
1387       expr = fromPlt(expr);
1388     } else if (!isAbsoluteValue(sym)) {
1389       expr = target->adjustGotPcExpr(type, addend, relocatedAddr);
1390     }
1391   }
1392 
1393   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1394   // uses their addresses, we need GOT or GOTPLT to be created.
1395   //
1396   // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1397   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1398     in.gotPlt->hasGotPltOffRel = true;
1399   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1400                  expr)) {
1401     in.got->hasGotOffRel = true;
1402   }
1403 
1404   // Process TLS relocations, including relaxing TLS relocations. Note that
1405   // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux.
1406   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1407     if (config->shared) {
1408       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1409                   " cannot be used with -shared" +
1410                   getLocation(sec, sym, offset));
1411       return;
1412     }
1413   } else if (unsigned processed = handleTlsRelocation<ELFT>(
1414                  type, sym, sec, offset, addend, expr)) {
1415     i += (processed - 1);
1416     return;
1417   }
1418 
1419   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1420   // direct relocation on through.
1421   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1422     sym.exportDynamic = true;
1423     mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
1424     return;
1425   }
1426 
1427   // Non-preemptible ifuncs require special handling. First, handle the usual
1428   // case where the symbol isn't one of these.
1429   if (!sym.isGnuIFunc() || sym.isPreemptible) {
1430     // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1431     if (needsPlt(expr) && !sym.isInPlt())
1432       addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1433 
1434     // Create a GOT slot if a relocation needs GOT.
1435     if (needsGot(expr)) {
1436       if (config->emachine == EM_MIPS) {
1437         // MIPS ABI has special rules to process GOT entries and doesn't
1438         // require relocation entries for them. A special case is TLS
1439         // relocations. In that case dynamic loader applies dynamic
1440         // relocations to initialize TLS GOT entries.
1441         // See "Global Offset Table" in Chapter 5 in the following document
1442         // for detailed description:
1443         // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1444         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1445       } else if (!sym.isInGot()) {
1446         addGotEntry(sym);
1447       }
1448     }
1449   } else {
1450     // Handle a reference to a non-preemptible ifunc. These are special in a
1451     // few ways:
1452     //
1453     // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1454     //   a fixed value. But assuming that all references to the ifunc are
1455     //   GOT-generating or PLT-generating, the handling of an ifunc is
1456     //   relatively straightforward. We create a PLT entry in Iplt, which is
1457     //   usually at the end of .plt, which makes an indirect call using a
1458     //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1459     //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1460     //   which is usually at the end of .rela.plt. Unlike most relocations in
1461     //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1462     //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1463     //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1464     //   .got.plt without requiring a separate GOT entry.
1465     //
1466     // - Despite the fact that an ifunc does not have a fixed value, compilers
1467     //   that are not passed -fPIC will assume that they do, and will emit
1468     //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1469     //   symbol. This means that if a direct relocation to the symbol is
1470     //   seen, the linker must set a value for the symbol, and this value must
1471     //   be consistent no matter what type of reference is made to the symbol.
1472     //   This can be done by creating a PLT entry for the symbol in the way
1473     //   described above and making it canonical, that is, making all references
1474     //   point to the PLT entry instead of the resolver. In lld we also store
1475     //   the address of the PLT entry in the dynamic symbol table, which means
1476     //   that the symbol will also have the same value in other modules.
1477     //   Because the value loaded from the GOT needs to be consistent with
1478     //   the value computed using a direct relocation, a non-preemptible ifunc
1479     //   may end up with two GOT entries, one in .got.plt that points to the
1480     //   address returned by the resolver and is used only by the PLT entry,
1481     //   and another in .got that points to the PLT entry and is used by
1482     //   GOT-generating relocations.
1483     //
1484     // - The fact that these symbols do not have a fixed value makes them an
1485     //   exception to the general rule that a statically linked executable does
1486     //   not require any form of dynamic relocation. To handle these relocations
1487     //   correctly, the IRELATIVE relocations are stored in an array which a
1488     //   statically linked executable's startup code must enumerate using the
1489     //   linker-defined symbols __rela?_iplt_{start,end}.
1490     if (!sym.isInPlt()) {
1491       // Create PLT and GOTPLT slots for the symbol.
1492       sym.isInIplt = true;
1493 
1494       // Create a copy of the symbol to use as the target of the IRELATIVE
1495       // relocation in the igotPlt. This is in case we make the PLT canonical
1496       // later, which would overwrite the original symbol.
1497       //
1498       // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1499       // that's really needed to create the IRELATIVE is the section and value,
1500       // so ideally we should just need to copy those.
1501       auto *directSym = make<Defined>(cast<Defined>(sym));
1502       addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1503                   *directSym);
1504       sym.pltIndex = directSym->pltIndex;
1505     }
1506     if (needsGot(expr)) {
1507       // Redirect GOT accesses to point to the Igot.
1508       //
1509       // This field is also used to keep track of whether we ever needed a GOT
1510       // entry. If we did and we make the PLT canonical later, we'll need to
1511       // create a GOT entry pointing to the PLT entry for Sym.
1512       sym.gotInIgot = true;
1513     } else if (!needsPlt(expr)) {
1514       // Make the ifunc's PLT entry canonical by changing the value of its
1515       // symbol to redirect all references to point to it.
1516       auto &d = cast<Defined>(sym);
1517       d.section = in.iplt;
1518       d.value = sym.pltIndex * target->ipltEntrySize;
1519       d.size = 0;
1520       // It's important to set the symbol type here so that dynamic loaders
1521       // don't try to call the PLT as if it were an ifunc resolver.
1522       d.type = STT_FUNC;
1523 
1524       if (sym.gotInIgot) {
1525         // We previously encountered a GOT generating reference that we
1526         // redirected to the Igot. Now that the PLT entry is canonical we must
1527         // clear the redirection to the Igot and add a GOT entry. As we've
1528         // changed the symbol type to STT_FUNC future GOT generating references
1529         // will naturally use this GOT entry.
1530         //
1531         // We don't need to worry about creating a MIPS GOT here because ifuncs
1532         // aren't a thing on MIPS.
1533         sym.gotInIgot = false;
1534         addGotEntry(sym);
1535       }
1536     }
1537   }
1538 
1539   processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1540 }
1541 
1542 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1543 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1544 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1545 // instructions are generated by very old IBM XL compilers. Work around the
1546 // issue by disabling GD/LD to IE/LE relaxation.
1547 template <class RelTy>
1548 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1549   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1550   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1551     return;
1552   bool hasGDLD = false;
1553   for (const RelTy &rel : rels) {
1554     RelType type = rel.getType(false);
1555     switch (type) {
1556     case R_PPC64_TLSGD:
1557     case R_PPC64_TLSLD:
1558       return; // Found a marker
1559     case R_PPC64_GOT_TLSGD16:
1560     case R_PPC64_GOT_TLSGD16_HA:
1561     case R_PPC64_GOT_TLSGD16_HI:
1562     case R_PPC64_GOT_TLSGD16_LO:
1563     case R_PPC64_GOT_TLSLD16:
1564     case R_PPC64_GOT_TLSLD16_HA:
1565     case R_PPC64_GOT_TLSLD16_HI:
1566     case R_PPC64_GOT_TLSLD16_LO:
1567       hasGDLD = true;
1568       break;
1569     }
1570   }
1571   if (hasGDLD) {
1572     sec.file->ppc64DisableTLSRelax = true;
1573     warn(toString(sec.file) +
1574          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1575          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1576   }
1577 }
1578 
1579 template <class ELFT, class RelTy>
1580 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1581   OffsetGetter getOffset(sec);
1582 
1583   // Not all relocations end up in Sec.Relocations, but a lot do.
1584   sec.relocations.reserve(rels.size());
1585 
1586   if (config->emachine == EM_PPC64)
1587     checkPPC64TLSRelax<RelTy>(sec, rels);
1588 
1589   for (auto i = rels.begin(), end = rels.end(); i != end;)
1590     scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end);
1591 
1592   // Sort relocations by offset for more efficient searching for
1593   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1594   if (config->emachine == EM_RISCV ||
1595       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1596     llvm::stable_sort(sec.relocations,
1597                       [](const Relocation &lhs, const Relocation &rhs) {
1598                         return lhs.offset < rhs.offset;
1599                       });
1600 }
1601 
1602 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1603   if (s.areRelocsRela)
1604     scanRelocs<ELFT>(s, s.relas<ELFT>());
1605   else
1606     scanRelocs<ELFT>(s, s.rels<ELFT>());
1607 }
1608 
1609 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1610   // std::merge requires a strict weak ordering.
1611   if (a->outSecOff < b->outSecOff)
1612     return true;
1613 
1614   if (a->outSecOff == b->outSecOff) {
1615     auto *ta = dyn_cast<ThunkSection>(a);
1616     auto *tb = dyn_cast<ThunkSection>(b);
1617 
1618     // Check if Thunk is immediately before any specific Target
1619     // InputSection for example Mips LA25 Thunks.
1620     if (ta && ta->getTargetInputSection() == b)
1621       return true;
1622 
1623     // Place Thunk Sections without specific targets before
1624     // non-Thunk Sections.
1625     if (ta && !tb && !ta->getTargetInputSection())
1626       return true;
1627   }
1628 
1629   return false;
1630 }
1631 
1632 // Call Fn on every executable InputSection accessed via the linker script
1633 // InputSectionDescription::Sections.
1634 static void forEachInputSectionDescription(
1635     ArrayRef<OutputSection *> outputSections,
1636     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1637   for (OutputSection *os : outputSections) {
1638     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1639       continue;
1640     for (BaseCommand *bc : os->sectionCommands)
1641       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1642         fn(os, isd);
1643   }
1644 }
1645 
1646 // Thunk Implementation
1647 //
1648 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1649 // of code that the linker inserts inbetween a caller and a callee. The thunks
1650 // are added at link time rather than compile time as the decision on whether
1651 // a thunk is needed, such as the caller and callee being out of range, can only
1652 // be made at link time.
1653 //
1654 // It is straightforward to tell given the current state of the program when a
1655 // thunk is needed for a particular call. The more difficult part is that
1656 // the thunk needs to be placed in the program such that the caller can reach
1657 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1658 // the program alters addresses, which can mean more thunks etc.
1659 //
1660 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1661 // The decision to have a ThunkSection act as a container means that we can
1662 // more easily handle the most common case of a single block of contiguous
1663 // Thunks by inserting just a single ThunkSection.
1664 //
1665 // The implementation of Thunks in lld is split across these areas
1666 // Relocations.cpp : Framework for creating and placing thunks
1667 // Thunks.cpp : The code generated for each supported thunk
1668 // Target.cpp : Target specific hooks that the framework uses to decide when
1669 //              a thunk is used
1670 // Synthetic.cpp : Implementation of ThunkSection
1671 // Writer.cpp : Iteratively call framework until no more Thunks added
1672 //
1673 // Thunk placement requirements:
1674 // Mips LA25 thunks. These must be placed immediately before the callee section
1675 // We can assume that the caller is in range of the Thunk. These are modelled
1676 // by Thunks that return the section they must precede with
1677 // getTargetInputSection().
1678 //
1679 // ARM interworking and range extension thunks. These thunks must be placed
1680 // within range of the caller. All implemented ARM thunks can always reach the
1681 // callee as they use an indirect jump via a register that has no range
1682 // restrictions.
1683 //
1684 // Thunk placement algorithm:
1685 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1686 // getTargetInputSection().
1687 //
1688 // For thunks that must be placed within range of the caller there are many
1689 // possible choices given that the maximum range from the caller is usually
1690 // much larger than the average InputSection size. Desirable properties include:
1691 // - Maximize reuse of thunks by multiple callers
1692 // - Minimize number of ThunkSections to simplify insertion
1693 // - Handle impact of already added Thunks on addresses
1694 // - Simple to understand and implement
1695 //
1696 // In lld for the first pass, we pre-create one or more ThunkSections per
1697 // InputSectionDescription at Target specific intervals. A ThunkSection is
1698 // placed so that the estimated end of the ThunkSection is within range of the
1699 // start of the InputSectionDescription or the previous ThunkSection. For
1700 // example:
1701 // InputSectionDescription
1702 // Section 0
1703 // ...
1704 // Section N
1705 // ThunkSection 0
1706 // Section N + 1
1707 // ...
1708 // Section N + K
1709 // Thunk Section 1
1710 //
1711 // The intention is that we can add a Thunk to a ThunkSection that is well
1712 // spaced enough to service a number of callers without having to do a lot
1713 // of work. An important principle is that it is not an error if a Thunk cannot
1714 // be placed in a pre-created ThunkSection; when this happens we create a new
1715 // ThunkSection placed next to the caller. This allows us to handle the vast
1716 // majority of thunks simply, but also handle rare cases where the branch range
1717 // is smaller than the target specific spacing.
1718 //
1719 // The algorithm is expected to create all the thunks that are needed in a
1720 // single pass, with a small number of programs needing a second pass due to
1721 // the insertion of thunks in the first pass increasing the offset between
1722 // callers and callees that were only just in range.
1723 //
1724 // A consequence of allowing new ThunkSections to be created outside of the
1725 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1726 // range in pass K, are out of range in some pass > K due to the insertion of
1727 // more Thunks in between the caller and callee. When this happens we retarget
1728 // the relocation back to the original target and create another Thunk.
1729 
1730 // Remove ThunkSections that are empty, this should only be the initial set
1731 // precreated on pass 0.
1732 
1733 // Insert the Thunks for OutputSection OS into their designated place
1734 // in the Sections vector, and recalculate the InputSection output section
1735 // offsets.
1736 // This may invalidate any output section offsets stored outside of InputSection
1737 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1738   forEachInputSectionDescription(
1739       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1740         if (isd->thunkSections.empty())
1741           return;
1742 
1743         // Remove any zero sized precreated Thunks.
1744         llvm::erase_if(isd->thunkSections,
1745                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1746                          return ts.first->getSize() == 0;
1747                        });
1748 
1749         // ISD->ThunkSections contains all created ThunkSections, including
1750         // those inserted in previous passes. Extract the Thunks created this
1751         // pass and order them in ascending outSecOff.
1752         std::vector<ThunkSection *> newThunks;
1753         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1754           if (ts.second == pass)
1755             newThunks.push_back(ts.first);
1756         llvm::stable_sort(newThunks,
1757                           [](const ThunkSection *a, const ThunkSection *b) {
1758                             return a->outSecOff < b->outSecOff;
1759                           });
1760 
1761         // Merge sorted vectors of Thunks and InputSections by outSecOff
1762         std::vector<InputSection *> tmp;
1763         tmp.reserve(isd->sections.size() + newThunks.size());
1764 
1765         std::merge(isd->sections.begin(), isd->sections.end(),
1766                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1767                    mergeCmp);
1768 
1769         isd->sections = std::move(tmp);
1770       });
1771 }
1772 
1773 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1774 // is in range of Src. An ISD maps to a range of InputSections described by a
1775 // linker script section pattern such as { .text .text.* }.
1776 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
1777                                            InputSectionDescription *isd,
1778                                            uint32_t type, uint64_t src) {
1779   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1780     ThunkSection *ts = tp.first;
1781     uint64_t tsBase = os->addr + ts->outSecOff;
1782     uint64_t tsLimit = tsBase + ts->getSize();
1783     if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
1784       return ts;
1785   }
1786 
1787   // No suitable ThunkSection exists. This can happen when there is a branch
1788   // with lower range than the ThunkSection spacing or when there are too
1789   // many Thunks. Create a new ThunkSection as close to the InputSection as
1790   // possible. Error if InputSection is so large we cannot place ThunkSection
1791   // anywhere in Range.
1792   uint64_t thunkSecOff = isec->outSecOff;
1793   if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
1794     thunkSecOff = isec->outSecOff + isec->getSize();
1795     if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
1796       fatal("InputSection too large for range extension thunk " +
1797             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1798   }
1799   return addThunkSection(os, isd, thunkSecOff);
1800 }
1801 
1802 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1803 // precedes its Target.
1804 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1805   ThunkSection *ts = thunkedSections.lookup(isec);
1806   if (ts)
1807     return ts;
1808 
1809   // Find InputSectionRange within Target Output Section (TOS) that the
1810   // InputSection (IS) that we need to precede is in.
1811   OutputSection *tos = isec->getParent();
1812   for (BaseCommand *bc : tos->sectionCommands) {
1813     auto *isd = dyn_cast<InputSectionDescription>(bc);
1814     if (!isd || isd->sections.empty())
1815       continue;
1816 
1817     InputSection *first = isd->sections.front();
1818     InputSection *last = isd->sections.back();
1819 
1820     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1821       continue;
1822 
1823     ts = addThunkSection(tos, isd, isec->outSecOff);
1824     thunkedSections[isec] = ts;
1825     return ts;
1826   }
1827 
1828   return nullptr;
1829 }
1830 
1831 // Create one or more ThunkSections per OS that can be used to place Thunks.
1832 // We attempt to place the ThunkSections using the following desirable
1833 // properties:
1834 // - Within range of the maximum number of callers
1835 // - Minimise the number of ThunkSections
1836 //
1837 // We follow a simple but conservative heuristic to place ThunkSections at
1838 // offsets that are multiples of a Target specific branch range.
1839 // For an InputSectionDescription that is smaller than the range, a single
1840 // ThunkSection at the end of the range will do.
1841 //
1842 // For an InputSectionDescription that is more than twice the size of the range,
1843 // we place the last ThunkSection at range bytes from the end of the
1844 // InputSectionDescription in order to increase the likelihood that the
1845 // distance from a thunk to its target will be sufficiently small to
1846 // allow for the creation of a short thunk.
1847 void ThunkCreator::createInitialThunkSections(
1848     ArrayRef<OutputSection *> outputSections) {
1849   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1850 
1851   forEachInputSectionDescription(
1852       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1853         if (isd->sections.empty())
1854           return;
1855 
1856         uint32_t isdBegin = isd->sections.front()->outSecOff;
1857         uint32_t isdEnd =
1858             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1859         uint32_t lastThunkLowerBound = -1;
1860         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1861           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1862 
1863         uint32_t isecLimit;
1864         uint32_t prevIsecLimit = isdBegin;
1865         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1866 
1867         for (const InputSection *isec : isd->sections) {
1868           isecLimit = isec->outSecOff + isec->getSize();
1869           if (isecLimit > thunkUpperBound) {
1870             addThunkSection(os, isd, prevIsecLimit);
1871             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1872           }
1873           if (isecLimit > lastThunkLowerBound)
1874             break;
1875           prevIsecLimit = isecLimit;
1876         }
1877         addThunkSection(os, isd, isecLimit);
1878       });
1879 }
1880 
1881 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1882                                             InputSectionDescription *isd,
1883                                             uint64_t off) {
1884   auto *ts = make<ThunkSection>(os, off);
1885   ts->partition = os->partition;
1886   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1887       !isd->sections.empty()) {
1888     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1889     // thunks we disturb the base addresses of sections placed after the thunks
1890     // this makes patches we have generated redundant, and may cause us to
1891     // generate more patches as different instructions are now in sensitive
1892     // locations. When we generate more patches we may force more branches to
1893     // go out of range, causing more thunks to be generated. In pathological
1894     // cases this can cause the address dependent content pass not to converge.
1895     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1896     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1897     // which means that adding Thunks to the section does not invalidate
1898     // errata patches for following code.
1899     // Rounding up the size to 4KiB has consequences for code-size and can
1900     // trip up linker script defined assertions. For example the linux kernel
1901     // has an assertion that what LLD represents as an InputSectionDescription
1902     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1903     // We use the heuristic of rounding up the size when both of the following
1904     // conditions are true:
1905     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1906     //     accounts for the case where no single InputSectionDescription is
1907     //     larger than the OutputSection size. This is conservative but simple.
1908     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1909     //     any assertion failures that an InputSectionDescription is < 4 KiB
1910     //     in size.
1911     uint64_t isdSize = isd->sections.back()->outSecOff +
1912                        isd->sections.back()->getSize() -
1913                        isd->sections.front()->outSecOff;
1914     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1915       ts->roundUpSizeForErrata = true;
1916   }
1917   isd->thunkSections.push_back({ts, pass});
1918   return ts;
1919 }
1920 
1921 static bool isThunkSectionCompatible(InputSection *source,
1922                                      SectionBase *target) {
1923   // We can't reuse thunks in different loadable partitions because they might
1924   // not be loaded. But partition 1 (the main partition) will always be loaded.
1925   if (source->partition != target->partition)
1926     return target->partition == 1;
1927   return true;
1928 }
1929 
1930 static int64_t getPCBias(RelType type) {
1931   if (config->emachine != EM_ARM)
1932     return 0;
1933   switch (type) {
1934   case R_ARM_THM_JUMP19:
1935   case R_ARM_THM_JUMP24:
1936   case R_ARM_THM_CALL:
1937     return 4;
1938   default:
1939     return 8;
1940   }
1941 }
1942 
1943 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1944                                                 Relocation &rel, uint64_t src) {
1945   std::vector<Thunk *> *thunkVec = nullptr;
1946   int64_t addend = rel.addend + getPCBias(rel.type);
1947 
1948   // We use a ((section, offset), addend) pair to find the thunk position if
1949   // possible so that we create only one thunk for aliased symbols or ICFed
1950   // sections. There may be multiple relocations sharing the same (section,
1951   // offset + addend) pair. We may revert the relocation back to its original
1952   // non-Thunk target, so we cannot fold offset + addend.
1953   if (auto *d = dyn_cast<Defined>(rel.sym))
1954     if (!d->isInPlt() && d->section)
1955       thunkVec = &thunkedSymbolsBySectionAndAddend[{
1956           {d->section->repl, d->value}, addend}];
1957   if (!thunkVec)
1958     thunkVec = &thunkedSymbols[{rel.sym, addend}];
1959 
1960   // Check existing Thunks for Sym to see if they can be reused
1961   for (Thunk *t : *thunkVec)
1962     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1963         t->isCompatibleWith(*isec, rel) &&
1964         target->inBranchRange(rel.type, src,
1965                               t->getThunkTargetSym()->getVA(rel.addend) +
1966                                   getPCBias(rel.type)))
1967       return std::make_pair(t, false);
1968 
1969   // No existing compatible Thunk in range, create a new one
1970   Thunk *t = addThunk(*isec, rel);
1971   thunkVec->push_back(t);
1972   return std::make_pair(t, true);
1973 }
1974 
1975 // Return true if the relocation target is an in range Thunk.
1976 // Return false if the relocation is not to a Thunk. If the relocation target
1977 // was originally to a Thunk, but is no longer in range we revert the
1978 // relocation back to its original non-Thunk target.
1979 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
1980   if (Thunk *t = thunks.lookup(rel.sym)) {
1981     if (target->inBranchRange(rel.type, src,
1982                               rel.sym->getVA(rel.addend) + getPCBias(rel.type)))
1983       return true;
1984     rel.sym = &t->destination;
1985     rel.addend = t->addend;
1986     if (rel.sym->isInPlt())
1987       rel.expr = toPlt(rel.expr);
1988   }
1989   return false;
1990 }
1991 
1992 // Process all relocations from the InputSections that have been assigned
1993 // to InputSectionDescriptions and redirect through Thunks if needed. The
1994 // function should be called iteratively until it returns false.
1995 //
1996 // PreConditions:
1997 // All InputSections that may need a Thunk are reachable from
1998 // OutputSectionCommands.
1999 //
2000 // All OutputSections have an address and all InputSections have an offset
2001 // within the OutputSection.
2002 //
2003 // The offsets between caller (relocation place) and callee
2004 // (relocation target) will not be modified outside of createThunks().
2005 //
2006 // PostConditions:
2007 // If return value is true then ThunkSections have been inserted into
2008 // OutputSections. All relocations that needed a Thunk based on the information
2009 // available to createThunks() on entry have been redirected to a Thunk. Note
2010 // that adding Thunks changes offsets between caller and callee so more Thunks
2011 // may be required.
2012 //
2013 // If return value is false then no more Thunks are needed, and createThunks has
2014 // made no changes. If the target requires range extension thunks, currently
2015 // ARM, then any future change in offset between caller and callee risks a
2016 // relocation out of range error.
2017 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2018   bool addressesChanged = false;
2019 
2020   if (pass == 0 && target->getThunkSectionSpacing())
2021     createInitialThunkSections(outputSections);
2022 
2023   // Create all the Thunks and insert them into synthetic ThunkSections. The
2024   // ThunkSections are later inserted back into InputSectionDescriptions.
2025   // We separate the creation of ThunkSections from the insertion of the
2026   // ThunkSections as ThunkSections are not always inserted into the same
2027   // InputSectionDescription as the caller.
2028   forEachInputSectionDescription(
2029       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2030         for (InputSection *isec : isd->sections)
2031           for (Relocation &rel : isec->relocations) {
2032             uint64_t src = isec->getVA(rel.offset);
2033 
2034             // If we are a relocation to an existing Thunk, check if it is
2035             // still in range. If not then Rel will be altered to point to its
2036             // original target so another Thunk can be generated.
2037             if (pass > 0 && normalizeExistingThunk(rel, src))
2038               continue;
2039 
2040             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2041                                     *rel.sym, rel.addend))
2042               continue;
2043 
2044             Thunk *t;
2045             bool isNew;
2046             std::tie(t, isNew) = getThunk(isec, rel, src);
2047 
2048             if (isNew) {
2049               // Find or create a ThunkSection for the new Thunk
2050               ThunkSection *ts;
2051               if (auto *tis = t->getTargetInputSection())
2052                 ts = getISThunkSec(tis);
2053               else
2054                 ts = getISDThunkSec(os, isec, isd, rel.type, src);
2055               ts->addThunk(t);
2056               thunks[t->getThunkTargetSym()] = t;
2057             }
2058 
2059             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2060             rel.sym = t->getThunkTargetSym();
2061             rel.expr = fromPlt(rel.expr);
2062 
2063             // On AArch64 and PPC, a jump/call relocation may be encoded as
2064             // STT_SECTION + non-zero addend, clear the addend after
2065             // redirection.
2066             if (config->emachine != EM_MIPS)
2067               rel.addend = -getPCBias(rel.type);
2068           }
2069 
2070         for (auto &p : isd->thunkSections)
2071           addressesChanged |= p.first->assignOffsets();
2072       });
2073 
2074   for (auto &p : thunkedSections)
2075     addressesChanged |= p.second->assignOffsets();
2076 
2077   // Merge all created synthetic ThunkSections back into OutputSection
2078   mergeThunks(outputSections);
2079   ++pass;
2080   return addressesChanged;
2081 }
2082 
2083 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2084 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2085 // __tls_get_addr.
2086 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2087 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2088   bool needTlsSymbol = false;
2089   forEachInputSectionDescription(
2090       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2091         for (InputSection *isec : isd->sections)
2092           for (Relocation &rel : isec->relocations)
2093             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2094               needTlsSymbol = true;
2095               return;
2096             }
2097       });
2098   return needTlsSymbol;
2099 }
2100 
2101 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2102   Symbol *sym = symtab->find("__tls_get_addr");
2103   if (!sym)
2104     return;
2105   bool needEntry = true;
2106   forEachInputSectionDescription(
2107       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2108         for (InputSection *isec : isd->sections)
2109           for (Relocation &rel : isec->relocations)
2110             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2111               if (needEntry) {
2112                 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
2113                             *sym);
2114                 needEntry = false;
2115               }
2116               rel.sym = sym;
2117             }
2118       });
2119 }
2120 
2121 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2122 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2123 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2124 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2125 template void elf::reportUndefinedSymbols<ELF32LE>();
2126 template void elf::reportUndefinedSymbols<ELF32BE>();
2127 template void elf::reportUndefinedSymbols<ELF64LE>();
2128 template void elf::reportUndefinedSymbols<ELF64BE>();
2129