1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 const char msg[] = "\n>>> defined in "; 78 if (sym.file) 79 return msg + toString(sym.file); 80 if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 81 return msg + *loc; 82 return ""; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym && !rel.sym->isLocal()) 104 hint = "; references " + lld::toString(*rel.sym) + 105 getDefinedLocation(*rel.sym); 106 107 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 108 hint += "; consider recompiling with -fdebug-types-section to reduce size " 109 "of debug sections"; 110 111 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 112 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 113 ", " + Twine(max).str() + "]" + hint); 114 } 115 116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 117 const Twine &msg) { 118 ErrorPlace errPlace = getErrorPlace(loc); 119 std::string hint; 120 if (!sym.getName().empty()) 121 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 122 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 123 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 124 Twine(llvm::maxIntN(n)) + "]" + hint); 125 } 126 127 namespace { 128 // Build a bitmask with one bit set for each RelExpr. 129 // 130 // Constexpr function arguments can't be used in static asserts, so we 131 // use template arguments to build the mask. 132 // But function template partial specializations don't exist (needed 133 // for base case of the recursion), so we need a dummy struct. 134 template <RelExpr... Exprs> struct RelExprMaskBuilder { 135 static inline uint64_t build() { return 0; } 136 }; 137 138 // Specialization for recursive case. 139 template <RelExpr Head, RelExpr... Tail> 140 struct RelExprMaskBuilder<Head, Tail...> { 141 static inline uint64_t build() { 142 static_assert(0 <= Head && Head < 64, 143 "RelExpr is too large for 64-bit mask!"); 144 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 145 } 146 }; 147 } // namespace 148 149 // Return true if `Expr` is one of `Exprs`. 150 // There are fewer than 64 RelExpr's, so we can represent any set of 151 // RelExpr's as a constant bit mask and test for membership with a 152 // couple cheap bitwise operations. 153 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 154 assert(0 <= expr && (int)expr < 64 && 155 "RelExpr is too large for 64-bit mask!"); 156 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 157 } 158 159 // This function is similar to the `handleTlsRelocation`. MIPS does not 160 // support any relaxations for TLS relocations so by factoring out MIPS 161 // handling in to the separate function we can simplify the code and do not 162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 163 // Mips has a custom MipsGotSection that handles the writing of GOT entries 164 // without dynamic relocations. 165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 166 InputSectionBase &c, uint64_t offset, 167 int64_t addend, RelExpr expr) { 168 if (expr == R_MIPS_TLSLD) { 169 in.mipsGot->addTlsIndex(*c.file); 170 c.relocations.push_back({expr, type, offset, addend, &sym}); 171 return 1; 172 } 173 if (expr == R_MIPS_TLSGD) { 174 in.mipsGot->addDynTlsEntry(*c.file, sym); 175 c.relocations.push_back({expr, type, offset, addend, &sym}); 176 return 1; 177 } 178 return 0; 179 } 180 181 // Notes about General Dynamic and Local Dynamic TLS models below. They may 182 // require the generation of a pair of GOT entries that have associated dynamic 183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 185 // symbol in TLS block. 186 // 187 // Returns the number of relocations processed. 188 template <class ELFT> 189 static unsigned 190 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 191 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 192 if (!sym.isTls()) 193 return 0; 194 195 if (config->emachine == EM_MIPS) 196 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 197 198 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 199 expr) && 200 config->shared) { 201 if (in.got->addDynTlsEntry(sym)) { 202 uint64_t off = in.got->getGlobalDynOffset(sym); 203 mainPart->relaDyn->addReloc( 204 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); 205 } 206 if (expr != R_TLSDESC_CALL) 207 c.relocations.push_back({expr, type, offset, addend, &sym}); 208 return 1; 209 } 210 211 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For 212 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 213 // relaxation as well. 214 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 215 config->emachine != EM_HEXAGON && 216 config->emachine != EM_RISCV && 217 !c.file->ppc64DisableTLSRelax; 218 219 // If we are producing an executable and the symbol is non-preemptable, it 220 // must be defined and the code sequence can be relaxed to use Local-Exec. 221 // 222 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 223 // we can omit the DTPMOD dynamic relocations and resolve them at link time 224 // because them are always 1. This may be necessary for static linking as 225 // DTPMOD may not be expected at load time. 226 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 227 228 // Local Dynamic is for access to module local TLS variables, while still 229 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 230 // module index, with a special value of 0 for the current module. GOT[e1] is 231 // unused. There only needs to be one module index entry. 232 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 233 expr)) { 234 // Local-Dynamic relocs can be relaxed to Local-Exec. 235 if (toExecRelax) { 236 c.relocations.push_back( 237 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset, 238 addend, &sym}); 239 return target->getTlsGdRelaxSkip(type); 240 } 241 if (expr == R_TLSLD_HINT) 242 return 1; 243 if (in.got->addTlsIndex()) { 244 if (isLocalInExecutable) 245 in.got->relocations.push_back( 246 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 247 else 248 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, 249 in.got->getTlsIndexOff(), nullptr); 250 } 251 c.relocations.push_back({expr, type, offset, addend, &sym}); 252 return 1; 253 } 254 255 // Local-Dynamic relocs can be relaxed to Local-Exec. 256 if (expr == R_DTPREL && toExecRelax) { 257 c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), 258 type, offset, addend, &sym}); 259 return 1; 260 } 261 262 // Local-Dynamic sequence where offset of tls variable relative to dynamic 263 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 264 if (expr == R_TLSLD_GOT_OFF) { 265 if (!sym.isInGot()) { 266 in.got->addEntry(sym); 267 uint64_t off = sym.getGotOffset(); 268 in.got->relocations.push_back( 269 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 270 } 271 c.relocations.push_back({expr, type, offset, addend, &sym}); 272 return 1; 273 } 274 275 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 276 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 277 if (!toExecRelax) { 278 if (in.got->addDynTlsEntry(sym)) { 279 uint64_t off = in.got->getGlobalDynOffset(sym); 280 281 if (isLocalInExecutable) 282 // Write one to the GOT slot. 283 in.got->relocations.push_back( 284 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 285 else 286 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); 287 288 // If the symbol is preemptible we need the dynamic linker to write 289 // the offset too. 290 uint64_t offsetOff = off + config->wordsize; 291 if (sym.isPreemptible) 292 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, 293 &sym); 294 else 295 in.got->relocations.push_back( 296 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 297 } 298 c.relocations.push_back({expr, type, offset, addend, &sym}); 299 return 1; 300 } 301 302 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 303 // depending on the symbol being locally defined or not. 304 if (sym.isPreemptible) { 305 c.relocations.push_back( 306 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset, 307 addend, &sym}); 308 if (!sym.isInGot()) { 309 in.got->addEntry(sym); 310 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), 311 &sym); 312 } 313 } else { 314 c.relocations.push_back( 315 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset, 316 addend, &sym}); 317 } 318 return target->getTlsGdRelaxSkip(type); 319 } 320 321 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 322 // defined. 323 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 324 R_TLSIE_HINT>(expr) && 325 toExecRelax && isLocalInExecutable) { 326 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 327 return 1; 328 } 329 330 if (expr == R_TLSIE_HINT) 331 return 1; 332 return 0; 333 } 334 335 static RelType getMipsPairType(RelType type, bool isLocal) { 336 switch (type) { 337 case R_MIPS_HI16: 338 return R_MIPS_LO16; 339 case R_MIPS_GOT16: 340 // In case of global symbol, the R_MIPS_GOT16 relocation does not 341 // have a pair. Each global symbol has a unique entry in the GOT 342 // and a corresponding instruction with help of the R_MIPS_GOT16 343 // relocation loads an address of the symbol. In case of local 344 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 345 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 346 // relocations handle low 16 bits of the address. That allows 347 // to allocate only one GOT entry for every 64 KBytes of local data. 348 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 349 case R_MICROMIPS_GOT16: 350 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 351 case R_MIPS_PCHI16: 352 return R_MIPS_PCLO16; 353 case R_MICROMIPS_HI16: 354 return R_MICROMIPS_LO16; 355 default: 356 return R_MIPS_NONE; 357 } 358 } 359 360 // True if non-preemptable symbol always has the same value regardless of where 361 // the DSO is loaded. 362 static bool isAbsolute(const Symbol &sym) { 363 if (sym.isUndefWeak()) 364 return true; 365 if (const auto *dr = dyn_cast<Defined>(&sym)) 366 return dr->section == nullptr; // Absolute symbol. 367 return false; 368 } 369 370 static bool isAbsoluteValue(const Symbol &sym) { 371 return isAbsolute(sym) || sym.isTls(); 372 } 373 374 // Returns true if Expr refers a PLT entry. 375 static bool needsPlt(RelExpr expr) { 376 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 377 } 378 379 // Returns true if Expr refers a GOT entry. Note that this function 380 // returns false for TLS variables even though they need GOT, because 381 // TLS variables uses GOT differently than the regular variables. 382 static bool needsGot(RelExpr expr) { 383 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 384 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 385 R_AARCH64_GOT_PAGE>(expr); 386 } 387 388 // True if this expression is of the form Sym - X, where X is a position in the 389 // file (PC, or GOT for example). 390 static bool isRelExpr(RelExpr expr) { 391 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 392 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 393 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 394 } 395 396 // Returns true if a given relocation can be computed at link-time. 397 // 398 // For instance, we know the offset from a relocation to its target at 399 // link-time if the relocation is PC-relative and refers a 400 // non-interposable function in the same executable. This function 401 // will return true for such relocation. 402 // 403 // If this function returns false, that means we need to emit a 404 // dynamic relocation so that the relocation will be fixed at load-time. 405 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 406 InputSectionBase &s, uint64_t relOff) { 407 // These expressions always compute a constant 408 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 409 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 410 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 411 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 412 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 413 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 414 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT, 415 R_AARCH64_GOT_PAGE>( 416 e)) 417 return true; 418 419 // These never do, except if the entire file is position dependent or if 420 // only the low bits are used. 421 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 422 return target->usesOnlyLowPageBits(type) || !config->isPic; 423 424 if (sym.isPreemptible) 425 return false; 426 if (!config->isPic) 427 return true; 428 429 // The size of a non preemptible symbol is a constant. 430 if (e == R_SIZE) 431 return true; 432 433 // For the target and the relocation, we want to know if they are 434 // absolute or relative. 435 bool absVal = isAbsoluteValue(sym); 436 bool relE = isRelExpr(e); 437 if (absVal && !relE) 438 return true; 439 if (!absVal && relE) 440 return true; 441 if (!absVal && !relE) 442 return target->usesOnlyLowPageBits(type); 443 444 assert(absVal && relE); 445 446 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 447 // in PIC mode. This is a little strange, but it allows us to link function 448 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 449 // Normally such a call will be guarded with a comparison, which will load a 450 // zero from the GOT. 451 if (sym.isUndefWeak()) 452 return true; 453 454 // We set the final symbols values for linker script defined symbols later. 455 // They always can be computed as a link time constant. 456 if (sym.scriptDefined) 457 return true; 458 459 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 460 toString(sym) + getLocation(s, sym, relOff)); 461 return true; 462 } 463 464 static RelExpr toPlt(RelExpr expr) { 465 switch (expr) { 466 case R_PPC64_CALL: 467 return R_PPC64_CALL_PLT; 468 case R_PC: 469 return R_PLT_PC; 470 case R_ABS: 471 return R_PLT; 472 default: 473 return expr; 474 } 475 } 476 477 static RelExpr fromPlt(RelExpr expr) { 478 // We decided not to use a plt. Optimize a reference to the plt to a 479 // reference to the symbol itself. 480 switch (expr) { 481 case R_PLT_PC: 482 case R_PPC32_PLTREL: 483 return R_PC; 484 case R_PPC64_CALL_PLT: 485 return R_PPC64_CALL; 486 case R_PLT: 487 return R_ABS; 488 default: 489 return expr; 490 } 491 } 492 493 // Returns true if a given shared symbol is in a read-only segment in a DSO. 494 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 495 using Elf_Phdr = typename ELFT::Phdr; 496 497 // Determine if the symbol is read-only by scanning the DSO's program headers. 498 const SharedFile &file = ss.getFile(); 499 for (const Elf_Phdr &phdr : 500 check(file.template getObj<ELFT>().program_headers())) 501 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 502 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 503 ss.value < phdr.p_vaddr + phdr.p_memsz) 504 return true; 505 return false; 506 } 507 508 // Returns symbols at the same offset as a given symbol, including SS itself. 509 // 510 // If two or more symbols are at the same offset, and at least one of 511 // them are copied by a copy relocation, all of them need to be copied. 512 // Otherwise, they would refer to different places at runtime. 513 template <class ELFT> 514 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 515 using Elf_Sym = typename ELFT::Sym; 516 517 SharedFile &file = ss.getFile(); 518 519 SmallSet<SharedSymbol *, 4> ret; 520 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 521 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 522 s.getType() == STT_TLS || s.st_value != ss.value) 523 continue; 524 StringRef name = check(s.getName(file.getStringTable())); 525 Symbol *sym = symtab->find(name); 526 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 527 ret.insert(alias); 528 } 529 return ret; 530 } 531 532 // When a symbol is copy relocated or we create a canonical plt entry, it is 533 // effectively a defined symbol. In the case of copy relocation the symbol is 534 // in .bss and in the case of a canonical plt entry it is in .plt. This function 535 // replaces the existing symbol with a Defined pointing to the appropriate 536 // location. 537 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 538 uint64_t size) { 539 Symbol old = sym; 540 541 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 542 sym.type, value, size, sec}); 543 544 sym.pltIndex = old.pltIndex; 545 sym.gotIndex = old.gotIndex; 546 sym.verdefIndex = old.verdefIndex; 547 sym.exportDynamic = true; 548 sym.isUsedInRegularObj = true; 549 } 550 551 // Reserve space in .bss or .bss.rel.ro for copy relocation. 552 // 553 // The copy relocation is pretty much a hack. If you use a copy relocation 554 // in your program, not only the symbol name but the symbol's size, RW/RO 555 // bit and alignment become part of the ABI. In addition to that, if the 556 // symbol has aliases, the aliases become part of the ABI. That's subtle, 557 // but if you violate that implicit ABI, that can cause very counter- 558 // intuitive consequences. 559 // 560 // So, what is the copy relocation? It's for linking non-position 561 // independent code to DSOs. In an ideal world, all references to data 562 // exported by DSOs should go indirectly through GOT. But if object files 563 // are compiled as non-PIC, all data references are direct. There is no 564 // way for the linker to transform the code to use GOT, as machine 565 // instructions are already set in stone in object files. This is where 566 // the copy relocation takes a role. 567 // 568 // A copy relocation instructs the dynamic linker to copy data from a DSO 569 // to a specified address (which is usually in .bss) at load-time. If the 570 // static linker (that's us) finds a direct data reference to a DSO 571 // symbol, it creates a copy relocation, so that the symbol can be 572 // resolved as if it were in .bss rather than in a DSO. 573 // 574 // As you can see in this function, we create a copy relocation for the 575 // dynamic linker, and the relocation contains not only symbol name but 576 // various other information about the symbol. So, such attributes become a 577 // part of the ABI. 578 // 579 // Note for application developers: I can give you a piece of advice if 580 // you are writing a shared library. You probably should export only 581 // functions from your library. You shouldn't export variables. 582 // 583 // As an example what can happen when you export variables without knowing 584 // the semantics of copy relocations, assume that you have an exported 585 // variable of type T. It is an ABI-breaking change to add new members at 586 // end of T even though doing that doesn't change the layout of the 587 // existing members. That's because the space for the new members are not 588 // reserved in .bss unless you recompile the main program. That means they 589 // are likely to overlap with other data that happens to be laid out next 590 // to the variable in .bss. This kind of issue is sometimes very hard to 591 // debug. What's a solution? Instead of exporting a variable V from a DSO, 592 // define an accessor getV(). 593 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 594 // Copy relocation against zero-sized symbol doesn't make sense. 595 uint64_t symSize = ss.getSize(); 596 if (symSize == 0 || ss.alignment == 0) 597 fatal("cannot create a copy relocation for symbol " + toString(ss)); 598 599 // See if this symbol is in a read-only segment. If so, preserve the symbol's 600 // memory protection by reserving space in the .bss.rel.ro section. 601 bool isRO = isReadOnly<ELFT>(ss); 602 BssSection *sec = 603 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 604 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 605 606 // At this point, sectionBases has been migrated to sections. Append sec to 607 // sections. 608 if (osec->sectionCommands.empty() || 609 !isa<InputSectionDescription>(osec->sectionCommands.back())) 610 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 611 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 612 isd->sections.push_back(sec); 613 osec->commitSection(sec); 614 615 // Look through the DSO's dynamic symbol table for aliases and create a 616 // dynamic symbol for each one. This causes the copy relocation to correctly 617 // interpose any aliases. 618 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 619 replaceWithDefined(*sym, sec, 0, sym->size); 620 621 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); 622 } 623 624 // MIPS has an odd notion of "paired" relocations to calculate addends. 625 // For example, if a relocation is of R_MIPS_HI16, there must be a 626 // R_MIPS_LO16 relocation after that, and an addend is calculated using 627 // the two relocations. 628 template <class ELFT, class RelTy> 629 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 630 InputSectionBase &sec, RelExpr expr, 631 bool isLocal) { 632 if (expr == R_MIPS_GOTREL && isLocal) 633 return sec.getFile<ELFT>()->mipsGp0; 634 635 // The ABI says that the paired relocation is used only for REL. 636 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 637 if (RelTy::IsRela) 638 return 0; 639 640 RelType type = rel.getType(config->isMips64EL); 641 uint32_t pairTy = getMipsPairType(type, isLocal); 642 if (pairTy == R_MIPS_NONE) 643 return 0; 644 645 const uint8_t *buf = sec.data().data(); 646 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 647 648 // To make things worse, paired relocations might not be contiguous in 649 // the relocation table, so we need to do linear search. *sigh* 650 for (const RelTy *ri = &rel; ri != end; ++ri) 651 if (ri->getType(config->isMips64EL) == pairTy && 652 ri->getSymbol(config->isMips64EL) == symIndex) 653 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 654 655 warn("can't find matching " + toString(pairTy) + " relocation for " + 656 toString(type)); 657 return 0; 658 } 659 660 // Returns an addend of a given relocation. If it is RELA, an addend 661 // is in a relocation itself. If it is REL, we need to read it from an 662 // input section. 663 template <class ELFT, class RelTy> 664 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 665 InputSectionBase &sec, RelExpr expr, 666 bool isLocal) { 667 int64_t addend; 668 RelType type = rel.getType(config->isMips64EL); 669 670 if (RelTy::IsRela) { 671 addend = getAddend<ELFT>(rel); 672 } else { 673 const uint8_t *buf = sec.data().data(); 674 addend = target->getImplicitAddend(buf + rel.r_offset, type); 675 } 676 677 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 678 addend += getPPC64TocBase(); 679 if (config->emachine == EM_MIPS) 680 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 681 682 return addend; 683 } 684 685 // Custom error message if Sym is defined in a discarded section. 686 template <class ELFT> 687 static std::string maybeReportDiscarded(Undefined &sym) { 688 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 689 if (!file || !sym.discardedSecIdx || 690 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 691 return ""; 692 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 693 CHECK(file->getObj().sections(), file); 694 695 std::string msg; 696 if (sym.type == ELF::STT_SECTION) { 697 msg = "relocation refers to a discarded section: "; 698 msg += CHECK( 699 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 700 } else { 701 msg = "relocation refers to a symbol in a discarded section: " + 702 toString(sym); 703 } 704 msg += "\n>>> defined in " + toString(file); 705 706 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 707 if (elfSec.sh_type != SHT_GROUP) 708 return msg; 709 710 // If the discarded section is a COMDAT. 711 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 712 if (const InputFile *prevailing = 713 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 714 msg += "\n>>> section group signature: " + signature.str() + 715 "\n>>> prevailing definition is in " + toString(prevailing); 716 return msg; 717 } 718 719 // Undefined diagnostics are collected in a vector and emitted once all of 720 // them are known, so that some postprocessing on the list of undefined symbols 721 // can happen before lld emits diagnostics. 722 struct UndefinedDiag { 723 Symbol *sym; 724 struct Loc { 725 InputSectionBase *sec; 726 uint64_t offset; 727 }; 728 std::vector<Loc> locs; 729 bool isWarning; 730 }; 731 732 static std::vector<UndefinedDiag> undefs; 733 734 // Check whether the definition name def is a mangled function name that matches 735 // the reference name ref. 736 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 737 llvm::ItaniumPartialDemangler d; 738 std::string name = def.str(); 739 if (d.partialDemangle(name.c_str())) 740 return false; 741 char *buf = d.getFunctionName(nullptr, nullptr); 742 if (!buf) 743 return false; 744 bool ret = ref == buf; 745 free(buf); 746 return ret; 747 } 748 749 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 750 // the suggested symbol, which is either in the symbol table, or in the same 751 // file of sym. 752 template <class ELFT> 753 static const Symbol *getAlternativeSpelling(const Undefined &sym, 754 std::string &pre_hint, 755 std::string &post_hint) { 756 DenseMap<StringRef, const Symbol *> map; 757 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 758 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 759 // will give an error. Don't suggest an alternative spelling. 760 if (file && sym.discardedSecIdx != 0 && 761 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 762 return nullptr; 763 764 // Build a map of local defined symbols. 765 for (const Symbol *s : sym.file->getSymbols()) 766 if (s->isLocal() && s->isDefined()) 767 map.try_emplace(s->getName(), s); 768 } 769 770 auto suggest = [&](StringRef newName) -> const Symbol * { 771 // If defined locally. 772 if (const Symbol *s = map.lookup(newName)) 773 return s; 774 775 // If in the symbol table and not undefined. 776 if (const Symbol *s = symtab->find(newName)) 777 if (!s->isUndefined()) 778 return s; 779 780 return nullptr; 781 }; 782 783 // This loop enumerates all strings of Levenshtein distance 1 as typo 784 // correction candidates and suggests the one that exists as a non-undefined 785 // symbol. 786 StringRef name = sym.getName(); 787 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 788 // Insert a character before name[i]. 789 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 790 for (char c = '0'; c <= 'z'; ++c) { 791 newName[i] = c; 792 if (const Symbol *s = suggest(newName)) 793 return s; 794 } 795 if (i == e) 796 break; 797 798 // Substitute name[i]. 799 newName = std::string(name); 800 for (char c = '0'; c <= 'z'; ++c) { 801 newName[i] = c; 802 if (const Symbol *s = suggest(newName)) 803 return s; 804 } 805 806 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 807 // common. 808 if (i + 1 < e) { 809 newName[i] = name[i + 1]; 810 newName[i + 1] = name[i]; 811 if (const Symbol *s = suggest(newName)) 812 return s; 813 } 814 815 // Delete name[i]. 816 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 817 if (const Symbol *s = suggest(newName)) 818 return s; 819 } 820 821 // Case mismatch, e.g. Foo vs FOO. 822 for (auto &it : map) 823 if (name.equals_lower(it.first)) 824 return it.second; 825 for (Symbol *sym : symtab->symbols()) 826 if (!sym->isUndefined() && name.equals_lower(sym->getName())) 827 return sym; 828 829 // The reference may be a mangled name while the definition is not. Suggest a 830 // missing extern "C". 831 if (name.startswith("_Z")) { 832 std::string buf = name.str(); 833 llvm::ItaniumPartialDemangler d; 834 if (!d.partialDemangle(buf.c_str())) 835 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 836 const Symbol *s = suggest(buf); 837 free(buf); 838 if (s) { 839 pre_hint = ": extern \"C\" "; 840 return s; 841 } 842 } 843 } else { 844 const Symbol *s = nullptr; 845 for (auto &it : map) 846 if (canSuggestExternCForCXX(name, it.first)) { 847 s = it.second; 848 break; 849 } 850 if (!s) 851 for (Symbol *sym : symtab->symbols()) 852 if (canSuggestExternCForCXX(name, sym->getName())) { 853 s = sym; 854 break; 855 } 856 if (s) { 857 pre_hint = " to declare "; 858 post_hint = " as extern \"C\"?"; 859 return s; 860 } 861 } 862 863 return nullptr; 864 } 865 866 template <class ELFT> 867 static void reportUndefinedSymbol(const UndefinedDiag &undef, 868 bool correctSpelling) { 869 Symbol &sym = *undef.sym; 870 871 auto visibility = [&]() -> std::string { 872 switch (sym.visibility) { 873 case STV_INTERNAL: 874 return "internal "; 875 case STV_HIDDEN: 876 return "hidden "; 877 case STV_PROTECTED: 878 return "protected "; 879 default: 880 return ""; 881 } 882 }; 883 884 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 885 if (msg.empty()) 886 msg = "undefined " + visibility() + "symbol: " + toString(sym); 887 888 const size_t maxUndefReferences = 3; 889 size_t i = 0; 890 for (UndefinedDiag::Loc l : undef.locs) { 891 if (i >= maxUndefReferences) 892 break; 893 InputSectionBase &sec = *l.sec; 894 uint64_t offset = l.offset; 895 896 msg += "\n>>> referenced by "; 897 std::string src = sec.getSrcMsg(sym, offset); 898 if (!src.empty()) 899 msg += src + "\n>>> "; 900 msg += sec.getObjMsg(offset); 901 i++; 902 } 903 904 if (i < undef.locs.size()) 905 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 906 .str(); 907 908 if (correctSpelling) { 909 std::string pre_hint = ": ", post_hint; 910 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 911 cast<Undefined>(sym), pre_hint, post_hint)) { 912 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 913 if (corrected->file) 914 msg += "\n>>> defined in: " + toString(corrected->file); 915 } 916 } 917 918 if (sym.getName().startswith("_ZTV")) 919 msg += 920 "\n>>> the vtable symbol may be undefined because the class is missing " 921 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 922 923 if (undef.isWarning) 924 warn(msg); 925 else 926 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 927 } 928 929 template <class ELFT> void elf::reportUndefinedSymbols() { 930 // Find the first "undefined symbol" diagnostic for each diagnostic, and 931 // collect all "referenced from" lines at the first diagnostic. 932 DenseMap<Symbol *, UndefinedDiag *> firstRef; 933 for (UndefinedDiag &undef : undefs) { 934 assert(undef.locs.size() == 1); 935 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 936 canon->locs.push_back(undef.locs[0]); 937 undef.locs.clear(); 938 } else 939 firstRef[undef.sym] = &undef; 940 } 941 942 // Enable spell corrector for the first 2 diagnostics. 943 for (auto it : enumerate(undefs)) 944 if (!it.value().locs.empty()) 945 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 946 undefs.clear(); 947 } 948 949 // Report an undefined symbol if necessary. 950 // Returns true if the undefined symbol will produce an error message. 951 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 952 uint64_t offset) { 953 if (!sym.isUndefined()) 954 return false; 955 // If versioned, issue an error (even if the symbol is weak) because we don't 956 // know the defining filename which is required to construct a Verneed entry. 957 if (*sym.getVersionSuffix() == '@') { 958 undefs.push_back({&sym, {{&sec, offset}}, false}); 959 return true; 960 } 961 if (sym.isWeak()) 962 return false; 963 964 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 965 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 966 return false; 967 968 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 969 // which references a switch table in a discarded .rodata/.text section. The 970 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 971 // spec says references from outside the group to a STB_LOCAL symbol are not 972 // allowed. Work around the bug. 973 // 974 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 975 // because .LC0-.LTOC is not representable if the two labels are in different 976 // .got2 977 if (cast<Undefined>(sym).discardedSecIdx != 0 && 978 (sec.name == ".got2" || sec.name == ".toc")) 979 return false; 980 981 bool isWarning = 982 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 983 config->noinhibitExec; 984 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 985 return !isWarning; 986 } 987 988 // MIPS N32 ABI treats series of successive relocations with the same offset 989 // as a single relocation. The similar approach used by N64 ABI, but this ABI 990 // packs all relocations into the single relocation record. Here we emulate 991 // this for the N32 ABI. Iterate over relocation with the same offset and put 992 // theirs types into the single bit-set. 993 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 994 RelType type = 0; 995 uint64_t offset = rel->r_offset; 996 997 int n = 0; 998 while (rel != end && rel->r_offset == offset) 999 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 1000 return type; 1001 } 1002 1003 // .eh_frame sections are mergeable input sections, so their input 1004 // offsets are not linearly mapped to output section. For each input 1005 // offset, we need to find a section piece containing the offset and 1006 // add the piece's base address to the input offset to compute the 1007 // output offset. That isn't cheap. 1008 // 1009 // This class is to speed up the offset computation. When we process 1010 // relocations, we access offsets in the monotonically increasing 1011 // order. So we can optimize for that access pattern. 1012 // 1013 // For sections other than .eh_frame, this class doesn't do anything. 1014 namespace { 1015 class OffsetGetter { 1016 public: 1017 explicit OffsetGetter(InputSectionBase &sec) { 1018 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 1019 pieces = eh->pieces; 1020 } 1021 1022 // Translates offsets in input sections to offsets in output sections. 1023 // Given offset must increase monotonically. We assume that Piece is 1024 // sorted by inputOff. 1025 uint64_t get(uint64_t off) { 1026 if (pieces.empty()) 1027 return off; 1028 1029 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 1030 ++i; 1031 if (i == pieces.size()) 1032 fatal(".eh_frame: relocation is not in any piece"); 1033 1034 // Pieces must be contiguous, so there must be no holes in between. 1035 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 1036 1037 // Offset -1 means that the piece is dead (i.e. garbage collected). 1038 if (pieces[i].outputOff == -1) 1039 return -1; 1040 return pieces[i].outputOff + off - pieces[i].inputOff; 1041 } 1042 1043 private: 1044 ArrayRef<EhSectionPiece> pieces; 1045 size_t i = 0; 1046 }; 1047 } // namespace 1048 1049 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 1050 Symbol *sym, int64_t addend, RelExpr expr, 1051 RelType type) { 1052 Partition &part = isec->getPartition(); 1053 1054 // Add a relative relocation. If relrDyn section is enabled, and the 1055 // relocation offset is guaranteed to be even, add the relocation to 1056 // the relrDyn section, otherwise add it to the relaDyn section. 1057 // relrDyn sections don't support odd offsets. Also, relrDyn sections 1058 // don't store the addend values, so we must write it to the relocated 1059 // address. 1060 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 1061 isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1062 part.relrDyn->relocs.push_back({isec, offsetInSec}); 1063 return; 1064 } 1065 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, 1066 expr, type); 1067 } 1068 1069 template <class PltSection, class GotPltSection> 1070 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 1071 RelocationBaseSection *rel, RelType type, Symbol &sym) { 1072 plt->addEntry(sym); 1073 gotPlt->addEntry(sym); 1074 rel->addReloc( 1075 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); 1076 } 1077 1078 static void addGotEntry(Symbol &sym) { 1079 in.got->addEntry(sym); 1080 1081 RelExpr expr = sym.isTls() ? R_TPREL : R_ABS; 1082 uint64_t off = sym.getGotOffset(); 1083 1084 // If a GOT slot value can be calculated at link-time, which is now, 1085 // we can just fill that out. 1086 // 1087 // (We don't actually write a value to a GOT slot right now, but we 1088 // add a static relocation to a Relocations vector so that 1089 // InputSection::relocate will do the work for us. We may be able 1090 // to just write a value now, but it is a TODO.) 1091 bool isLinkTimeConstant = 1092 !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); 1093 if (isLinkTimeConstant) { 1094 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); 1095 return; 1096 } 1097 1098 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 1099 // the GOT slot will be fixed at load-time. 1100 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { 1101 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); 1102 return; 1103 } 1104 mainPart->relaDyn->addReloc( 1105 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, 1106 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); 1107 } 1108 1109 // Return true if we can define a symbol in the executable that 1110 // contains the value/function of a symbol defined in a shared 1111 // library. 1112 static bool canDefineSymbolInExecutable(Symbol &sym) { 1113 // If the symbol has default visibility the symbol defined in the 1114 // executable will preempt it. 1115 // Note that we want the visibility of the shared symbol itself, not 1116 // the visibility of the symbol in the output file we are producing. That is 1117 // why we use Sym.stOther. 1118 if ((sym.stOther & 0x3) == STV_DEFAULT) 1119 return true; 1120 1121 // If we are allowed to break address equality of functions, defining 1122 // a plt entry will allow the program to call the function in the 1123 // .so, but the .so and the executable will no agree on the address 1124 // of the function. Similar logic for objects. 1125 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 1126 (sym.isObject() && config->ignoreDataAddressEquality)); 1127 } 1128 1129 // The reason we have to do this early scan is as follows 1130 // * To mmap the output file, we need to know the size 1131 // * For that, we need to know how many dynamic relocs we will have. 1132 // It might be possible to avoid this by outputting the file with write: 1133 // * Write the allocated output sections, computing addresses. 1134 // * Apply relocations, recording which ones require a dynamic reloc. 1135 // * Write the dynamic relocations. 1136 // * Write the rest of the file. 1137 // This would have some drawbacks. For example, we would only know if .rela.dyn 1138 // is needed after applying relocations. If it is, it will go after rw and rx 1139 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1140 // complicates things for the dynamic linker and means we would have to reserve 1141 // space for the extra PT_LOAD even if we end up not using it. 1142 template <class ELFT, class RelTy> 1143 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 1144 uint64_t offset, Symbol &sym, const RelTy &rel, 1145 int64_t addend) { 1146 // If the relocation is known to be a link-time constant, we know no dynamic 1147 // relocation will be created, pass the control to relocateAlloc() or 1148 // relocateNonAlloc() to resolve it. 1149 // 1150 // The behavior of an undefined weak reference is implementation defined. If 1151 // the relocation is to a weak undef, and we are producing an executable, let 1152 // relocate{,Non}Alloc() resolve it. 1153 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 1154 (!config->shared && sym.isUndefWeak())) { 1155 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1156 return; 1157 } 1158 1159 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 1160 if (canWrite) { 1161 RelType rel = target->getDynRel(type); 1162 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1163 addRelativeReloc(&sec, offset, &sym, addend, expr, type); 1164 return; 1165 } else if (rel != 0) { 1166 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1167 rel = target->relativeRel; 1168 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, 1169 R_ADDEND, type); 1170 1171 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1172 // While regular ABI uses dynamic relocations to fill up GOT entries 1173 // MIPS ABI requires dynamic linker to fills up GOT entries using 1174 // specially sorted dynamic symbol table. This affects even dynamic 1175 // relocations against symbols which do not require GOT entries 1176 // creation explicitly, i.e. do not have any GOT-relocations. So if 1177 // a preemptible symbol has a dynamic relocation we anyway have 1178 // to create a GOT entry for it. 1179 // If a non-preemptible symbol has a dynamic relocation against it, 1180 // dynamic linker takes it st_value, adds offset and writes down 1181 // result of the dynamic relocation. In case of preemptible symbol 1182 // dynamic linker performs symbol resolution, writes the symbol value 1183 // to the GOT entry and reads the GOT entry when it needs to perform 1184 // a dynamic relocation. 1185 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1186 if (config->emachine == EM_MIPS) 1187 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1188 return; 1189 } 1190 } 1191 1192 // When producing an executable, we can perform copy relocations (for 1193 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1194 if (!config->shared) { 1195 if (!canDefineSymbolInExecutable(sym)) { 1196 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1197 getLocation(sec, sym, offset)); 1198 return; 1199 } 1200 1201 if (sym.isObject()) { 1202 // Produce a copy relocation. 1203 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1204 if (!config->zCopyreloc) 1205 error("unresolvable relocation " + toString(type) + 1206 " against symbol '" + toString(*ss) + 1207 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1208 getLocation(sec, sym, offset)); 1209 addCopyRelSymbol<ELFT>(*ss); 1210 } 1211 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1212 return; 1213 } 1214 1215 // This handles a non PIC program call to function in a shared library. In 1216 // an ideal world, we could just report an error saying the relocation can 1217 // overflow at runtime. In the real world with glibc, crt1.o has a 1218 // R_X86_64_PC32 pointing to libc.so. 1219 // 1220 // The general idea on how to handle such cases is to create a PLT entry and 1221 // use that as the function value. 1222 // 1223 // For the static linking part, we just return a plt expr and everything 1224 // else will use the PLT entry as the address. 1225 // 1226 // The remaining problem is making sure pointer equality still works. We 1227 // need the help of the dynamic linker for that. We let it know that we have 1228 // a direct reference to a so symbol by creating an undefined symbol with a 1229 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1230 // the value of the symbol we created. This is true even for got entries, so 1231 // pointer equality is maintained. To avoid an infinite loop, the only entry 1232 // that points to the real function is a dedicated got entry used by the 1233 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1234 // R_386_JMP_SLOT, etc). 1235 1236 // For position independent executable on i386, the plt entry requires ebx 1237 // to be set. This causes two problems: 1238 // * If some code has a direct reference to a function, it was probably 1239 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1240 // * If a library definition gets preempted to the executable, it will have 1241 // the wrong ebx value. 1242 if (sym.isFunc()) { 1243 if (config->pie && config->emachine == EM_386) 1244 errorOrWarn("symbol '" + toString(sym) + 1245 "' cannot be preempted; recompile with -fPIE" + 1246 getLocation(sec, sym, offset)); 1247 if (!sym.isInPlt()) 1248 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1249 if (!sym.isDefined()) { 1250 replaceWithDefined( 1251 sym, in.plt, 1252 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1253 if (config->emachine == EM_PPC) { 1254 // PPC32 canonical PLT entries are at the beginning of .glink 1255 cast<Defined>(sym).value = in.plt->headerSize; 1256 in.plt->headerSize += 16; 1257 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1258 } 1259 } 1260 sym.needsPltAddr = true; 1261 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1262 return; 1263 } 1264 } 1265 1266 if (config->isPic) { 1267 if (!canWrite && !isRelExpr(expr)) 1268 errorOrWarn( 1269 "can't create dynamic relocation " + toString(type) + " against " + 1270 (sym.getName().empty() ? "local symbol" 1271 : "symbol: " + toString(sym)) + 1272 " in readonly segment; recompile object files with -fPIC " 1273 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1274 getLocation(sec, sym, offset)); 1275 else 1276 errorOrWarn( 1277 "relocation " + toString(type) + " cannot be used against " + 1278 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1279 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1280 return; 1281 } 1282 1283 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1284 getLocation(sec, sym, offset)); 1285 } 1286 1287 template <class ELFT, class RelTy> 1288 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1289 RelTy *start, RelTy *end) { 1290 const RelTy &rel = *i; 1291 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1292 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1293 RelType type; 1294 1295 // Deal with MIPS oddity. 1296 if (config->mipsN32Abi) { 1297 type = getMipsN32RelType(i, end); 1298 } else { 1299 type = rel.getType(config->isMips64EL); 1300 ++i; 1301 } 1302 1303 // Get an offset in an output section this relocation is applied to. 1304 uint64_t offset = getOffset.get(rel.r_offset); 1305 if (offset == uint64_t(-1)) 1306 return; 1307 1308 // Error if the target symbol is undefined. Symbol index 0 may be used by 1309 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1310 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1311 return; 1312 1313 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1314 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1315 1316 // Ignore R_*_NONE and other marker relocations. 1317 if (expr == R_NONE) 1318 return; 1319 1320 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { 1321 warn("using ifunc symbols when text relocations are allowed may produce " 1322 "a binary that will segfault, if the object file is linked with " 1323 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1324 "you, consider recompiling the object files without -fPIC and " 1325 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1326 "turn off this warning." + 1327 getLocation(sec, sym, offset)); 1328 } 1329 1330 // Read an addend. 1331 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1332 1333 if (config->emachine == EM_PPC64) { 1334 // We can separate the small code model relocations into 2 categories: 1335 // 1) Those that access the compiler generated .toc sections. 1336 // 2) Those that access the linker allocated got entries. 1337 // lld allocates got entries to symbols on demand. Since we don't try to 1338 // sort the got entries in any way, we don't have to track which objects 1339 // have got-based small code model relocs. The .toc sections get placed 1340 // after the end of the linker allocated .got section and we do sort those 1341 // so sections addressed with small code model relocations come first. 1342 if (isPPC64SmallCodeModelTocReloc(type)) 1343 sec.file->ppc64SmallCodeModelTocRelocs = true; 1344 1345 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1346 // InputSectionBase::relocateAlloc(). 1347 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1348 cast<Defined>(sym).section->name == ".toc") 1349 ppc64noTocRelax.insert({&sym, addend}); 1350 1351 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1352 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1353 if (i == end) { 1354 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1355 "relocation" + 1356 getLocation(sec, sym, offset)); 1357 return; 1358 } 1359 1360 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1361 // so we can discern it later from the toc-case. 1362 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1363 ++offset; 1364 } 1365 } 1366 1367 // Relax relocations. 1368 // 1369 // If we know that a PLT entry will be resolved within the same ELF module, we 1370 // can skip PLT access and directly jump to the destination function. For 1371 // example, if we are linking a main executable, all dynamic symbols that can 1372 // be resolved within the executable will actually be resolved that way at 1373 // runtime, because the main executable is always at the beginning of a search 1374 // list. We can leverage that fact. 1375 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1376 if (expr != R_GOT_PC) { 1377 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1378 // stub type. It should be ignored if optimized to R_PC. 1379 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1380 addend &= ~0x8000; 1381 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1382 // call __tls_get_addr even if the symbol is non-preemptible. 1383 if (!(config->emachine == EM_HEXAGON && 1384 (type == R_HEX_GD_PLT_B22_PCREL || 1385 type == R_HEX_GD_PLT_B22_PCREL_X || 1386 type == R_HEX_GD_PLT_B32_PCREL_X))) 1387 expr = fromPlt(expr); 1388 } else if (!isAbsoluteValue(sym)) { 1389 expr = target->adjustGotPcExpr(type, addend, relocatedAddr); 1390 } 1391 } 1392 1393 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1394 // uses their addresses, we need GOT or GOTPLT to be created. 1395 // 1396 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1397 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1398 in.gotPlt->hasGotPltOffRel = true; 1399 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1400 expr)) { 1401 in.got->hasGotOffRel = true; 1402 } 1403 1404 // Process TLS relocations, including relaxing TLS relocations. Note that 1405 // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux. 1406 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1407 if (config->shared) { 1408 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1409 " cannot be used with -shared" + 1410 getLocation(sec, sym, offset)); 1411 return; 1412 } 1413 } else if (unsigned processed = handleTlsRelocation<ELFT>( 1414 type, sym, sec, offset, addend, expr)) { 1415 i += (processed - 1); 1416 return; 1417 } 1418 1419 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1420 // direct relocation on through. 1421 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1422 sym.exportDynamic = true; 1423 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); 1424 return; 1425 } 1426 1427 // Non-preemptible ifuncs require special handling. First, handle the usual 1428 // case where the symbol isn't one of these. 1429 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1430 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1431 if (needsPlt(expr) && !sym.isInPlt()) 1432 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1433 1434 // Create a GOT slot if a relocation needs GOT. 1435 if (needsGot(expr)) { 1436 if (config->emachine == EM_MIPS) { 1437 // MIPS ABI has special rules to process GOT entries and doesn't 1438 // require relocation entries for them. A special case is TLS 1439 // relocations. In that case dynamic loader applies dynamic 1440 // relocations to initialize TLS GOT entries. 1441 // See "Global Offset Table" in Chapter 5 in the following document 1442 // for detailed description: 1443 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1444 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1445 } else if (!sym.isInGot()) { 1446 addGotEntry(sym); 1447 } 1448 } 1449 } else { 1450 // Handle a reference to a non-preemptible ifunc. These are special in a 1451 // few ways: 1452 // 1453 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1454 // a fixed value. But assuming that all references to the ifunc are 1455 // GOT-generating or PLT-generating, the handling of an ifunc is 1456 // relatively straightforward. We create a PLT entry in Iplt, which is 1457 // usually at the end of .plt, which makes an indirect call using a 1458 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1459 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1460 // which is usually at the end of .rela.plt. Unlike most relocations in 1461 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1462 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1463 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1464 // .got.plt without requiring a separate GOT entry. 1465 // 1466 // - Despite the fact that an ifunc does not have a fixed value, compilers 1467 // that are not passed -fPIC will assume that they do, and will emit 1468 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1469 // symbol. This means that if a direct relocation to the symbol is 1470 // seen, the linker must set a value for the symbol, and this value must 1471 // be consistent no matter what type of reference is made to the symbol. 1472 // This can be done by creating a PLT entry for the symbol in the way 1473 // described above and making it canonical, that is, making all references 1474 // point to the PLT entry instead of the resolver. In lld we also store 1475 // the address of the PLT entry in the dynamic symbol table, which means 1476 // that the symbol will also have the same value in other modules. 1477 // Because the value loaded from the GOT needs to be consistent with 1478 // the value computed using a direct relocation, a non-preemptible ifunc 1479 // may end up with two GOT entries, one in .got.plt that points to the 1480 // address returned by the resolver and is used only by the PLT entry, 1481 // and another in .got that points to the PLT entry and is used by 1482 // GOT-generating relocations. 1483 // 1484 // - The fact that these symbols do not have a fixed value makes them an 1485 // exception to the general rule that a statically linked executable does 1486 // not require any form of dynamic relocation. To handle these relocations 1487 // correctly, the IRELATIVE relocations are stored in an array which a 1488 // statically linked executable's startup code must enumerate using the 1489 // linker-defined symbols __rela?_iplt_{start,end}. 1490 if (!sym.isInPlt()) { 1491 // Create PLT and GOTPLT slots for the symbol. 1492 sym.isInIplt = true; 1493 1494 // Create a copy of the symbol to use as the target of the IRELATIVE 1495 // relocation in the igotPlt. This is in case we make the PLT canonical 1496 // later, which would overwrite the original symbol. 1497 // 1498 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1499 // that's really needed to create the IRELATIVE is the section and value, 1500 // so ideally we should just need to copy those. 1501 auto *directSym = make<Defined>(cast<Defined>(sym)); 1502 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1503 *directSym); 1504 sym.pltIndex = directSym->pltIndex; 1505 } 1506 if (needsGot(expr)) { 1507 // Redirect GOT accesses to point to the Igot. 1508 // 1509 // This field is also used to keep track of whether we ever needed a GOT 1510 // entry. If we did and we make the PLT canonical later, we'll need to 1511 // create a GOT entry pointing to the PLT entry for Sym. 1512 sym.gotInIgot = true; 1513 } else if (!needsPlt(expr)) { 1514 // Make the ifunc's PLT entry canonical by changing the value of its 1515 // symbol to redirect all references to point to it. 1516 auto &d = cast<Defined>(sym); 1517 d.section = in.iplt; 1518 d.value = sym.pltIndex * target->ipltEntrySize; 1519 d.size = 0; 1520 // It's important to set the symbol type here so that dynamic loaders 1521 // don't try to call the PLT as if it were an ifunc resolver. 1522 d.type = STT_FUNC; 1523 1524 if (sym.gotInIgot) { 1525 // We previously encountered a GOT generating reference that we 1526 // redirected to the Igot. Now that the PLT entry is canonical we must 1527 // clear the redirection to the Igot and add a GOT entry. As we've 1528 // changed the symbol type to STT_FUNC future GOT generating references 1529 // will naturally use this GOT entry. 1530 // 1531 // We don't need to worry about creating a MIPS GOT here because ifuncs 1532 // aren't a thing on MIPS. 1533 sym.gotInIgot = false; 1534 addGotEntry(sym); 1535 } 1536 } 1537 } 1538 1539 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); 1540 } 1541 1542 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1543 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1544 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1545 // instructions are generated by very old IBM XL compilers. Work around the 1546 // issue by disabling GD/LD to IE/LE relaxation. 1547 template <class RelTy> 1548 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1549 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1550 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1551 return; 1552 bool hasGDLD = false; 1553 for (const RelTy &rel : rels) { 1554 RelType type = rel.getType(false); 1555 switch (type) { 1556 case R_PPC64_TLSGD: 1557 case R_PPC64_TLSLD: 1558 return; // Found a marker 1559 case R_PPC64_GOT_TLSGD16: 1560 case R_PPC64_GOT_TLSGD16_HA: 1561 case R_PPC64_GOT_TLSGD16_HI: 1562 case R_PPC64_GOT_TLSGD16_LO: 1563 case R_PPC64_GOT_TLSLD16: 1564 case R_PPC64_GOT_TLSLD16_HA: 1565 case R_PPC64_GOT_TLSLD16_HI: 1566 case R_PPC64_GOT_TLSLD16_LO: 1567 hasGDLD = true; 1568 break; 1569 } 1570 } 1571 if (hasGDLD) { 1572 sec.file->ppc64DisableTLSRelax = true; 1573 warn(toString(sec.file) + 1574 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1575 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1576 } 1577 } 1578 1579 template <class ELFT, class RelTy> 1580 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1581 OffsetGetter getOffset(sec); 1582 1583 // Not all relocations end up in Sec.Relocations, but a lot do. 1584 sec.relocations.reserve(rels.size()); 1585 1586 if (config->emachine == EM_PPC64) 1587 checkPPC64TLSRelax<RelTy>(sec, rels); 1588 1589 for (auto i = rels.begin(), end = rels.end(); i != end;) 1590 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end); 1591 1592 // Sort relocations by offset for more efficient searching for 1593 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1594 if (config->emachine == EM_RISCV || 1595 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1596 llvm::stable_sort(sec.relocations, 1597 [](const Relocation &lhs, const Relocation &rhs) { 1598 return lhs.offset < rhs.offset; 1599 }); 1600 } 1601 1602 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1603 if (s.areRelocsRela) 1604 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1605 else 1606 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1607 } 1608 1609 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1610 // std::merge requires a strict weak ordering. 1611 if (a->outSecOff < b->outSecOff) 1612 return true; 1613 1614 if (a->outSecOff == b->outSecOff) { 1615 auto *ta = dyn_cast<ThunkSection>(a); 1616 auto *tb = dyn_cast<ThunkSection>(b); 1617 1618 // Check if Thunk is immediately before any specific Target 1619 // InputSection for example Mips LA25 Thunks. 1620 if (ta && ta->getTargetInputSection() == b) 1621 return true; 1622 1623 // Place Thunk Sections without specific targets before 1624 // non-Thunk Sections. 1625 if (ta && !tb && !ta->getTargetInputSection()) 1626 return true; 1627 } 1628 1629 return false; 1630 } 1631 1632 // Call Fn on every executable InputSection accessed via the linker script 1633 // InputSectionDescription::Sections. 1634 static void forEachInputSectionDescription( 1635 ArrayRef<OutputSection *> outputSections, 1636 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1637 for (OutputSection *os : outputSections) { 1638 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1639 continue; 1640 for (BaseCommand *bc : os->sectionCommands) 1641 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1642 fn(os, isd); 1643 } 1644 } 1645 1646 // Thunk Implementation 1647 // 1648 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1649 // of code that the linker inserts inbetween a caller and a callee. The thunks 1650 // are added at link time rather than compile time as the decision on whether 1651 // a thunk is needed, such as the caller and callee being out of range, can only 1652 // be made at link time. 1653 // 1654 // It is straightforward to tell given the current state of the program when a 1655 // thunk is needed for a particular call. The more difficult part is that 1656 // the thunk needs to be placed in the program such that the caller can reach 1657 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1658 // the program alters addresses, which can mean more thunks etc. 1659 // 1660 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1661 // The decision to have a ThunkSection act as a container means that we can 1662 // more easily handle the most common case of a single block of contiguous 1663 // Thunks by inserting just a single ThunkSection. 1664 // 1665 // The implementation of Thunks in lld is split across these areas 1666 // Relocations.cpp : Framework for creating and placing thunks 1667 // Thunks.cpp : The code generated for each supported thunk 1668 // Target.cpp : Target specific hooks that the framework uses to decide when 1669 // a thunk is used 1670 // Synthetic.cpp : Implementation of ThunkSection 1671 // Writer.cpp : Iteratively call framework until no more Thunks added 1672 // 1673 // Thunk placement requirements: 1674 // Mips LA25 thunks. These must be placed immediately before the callee section 1675 // We can assume that the caller is in range of the Thunk. These are modelled 1676 // by Thunks that return the section they must precede with 1677 // getTargetInputSection(). 1678 // 1679 // ARM interworking and range extension thunks. These thunks must be placed 1680 // within range of the caller. All implemented ARM thunks can always reach the 1681 // callee as they use an indirect jump via a register that has no range 1682 // restrictions. 1683 // 1684 // Thunk placement algorithm: 1685 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1686 // getTargetInputSection(). 1687 // 1688 // For thunks that must be placed within range of the caller there are many 1689 // possible choices given that the maximum range from the caller is usually 1690 // much larger than the average InputSection size. Desirable properties include: 1691 // - Maximize reuse of thunks by multiple callers 1692 // - Minimize number of ThunkSections to simplify insertion 1693 // - Handle impact of already added Thunks on addresses 1694 // - Simple to understand and implement 1695 // 1696 // In lld for the first pass, we pre-create one or more ThunkSections per 1697 // InputSectionDescription at Target specific intervals. A ThunkSection is 1698 // placed so that the estimated end of the ThunkSection is within range of the 1699 // start of the InputSectionDescription or the previous ThunkSection. For 1700 // example: 1701 // InputSectionDescription 1702 // Section 0 1703 // ... 1704 // Section N 1705 // ThunkSection 0 1706 // Section N + 1 1707 // ... 1708 // Section N + K 1709 // Thunk Section 1 1710 // 1711 // The intention is that we can add a Thunk to a ThunkSection that is well 1712 // spaced enough to service a number of callers without having to do a lot 1713 // of work. An important principle is that it is not an error if a Thunk cannot 1714 // be placed in a pre-created ThunkSection; when this happens we create a new 1715 // ThunkSection placed next to the caller. This allows us to handle the vast 1716 // majority of thunks simply, but also handle rare cases where the branch range 1717 // is smaller than the target specific spacing. 1718 // 1719 // The algorithm is expected to create all the thunks that are needed in a 1720 // single pass, with a small number of programs needing a second pass due to 1721 // the insertion of thunks in the first pass increasing the offset between 1722 // callers and callees that were only just in range. 1723 // 1724 // A consequence of allowing new ThunkSections to be created outside of the 1725 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1726 // range in pass K, are out of range in some pass > K due to the insertion of 1727 // more Thunks in between the caller and callee. When this happens we retarget 1728 // the relocation back to the original target and create another Thunk. 1729 1730 // Remove ThunkSections that are empty, this should only be the initial set 1731 // precreated on pass 0. 1732 1733 // Insert the Thunks for OutputSection OS into their designated place 1734 // in the Sections vector, and recalculate the InputSection output section 1735 // offsets. 1736 // This may invalidate any output section offsets stored outside of InputSection 1737 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1738 forEachInputSectionDescription( 1739 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1740 if (isd->thunkSections.empty()) 1741 return; 1742 1743 // Remove any zero sized precreated Thunks. 1744 llvm::erase_if(isd->thunkSections, 1745 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1746 return ts.first->getSize() == 0; 1747 }); 1748 1749 // ISD->ThunkSections contains all created ThunkSections, including 1750 // those inserted in previous passes. Extract the Thunks created this 1751 // pass and order them in ascending outSecOff. 1752 std::vector<ThunkSection *> newThunks; 1753 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1754 if (ts.second == pass) 1755 newThunks.push_back(ts.first); 1756 llvm::stable_sort(newThunks, 1757 [](const ThunkSection *a, const ThunkSection *b) { 1758 return a->outSecOff < b->outSecOff; 1759 }); 1760 1761 // Merge sorted vectors of Thunks and InputSections by outSecOff 1762 std::vector<InputSection *> tmp; 1763 tmp.reserve(isd->sections.size() + newThunks.size()); 1764 1765 std::merge(isd->sections.begin(), isd->sections.end(), 1766 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1767 mergeCmp); 1768 1769 isd->sections = std::move(tmp); 1770 }); 1771 } 1772 1773 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1774 // is in range of Src. An ISD maps to a range of InputSections described by a 1775 // linker script section pattern such as { .text .text.* }. 1776 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, 1777 InputSectionDescription *isd, 1778 uint32_t type, uint64_t src) { 1779 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1780 ThunkSection *ts = tp.first; 1781 uint64_t tsBase = os->addr + ts->outSecOff; 1782 uint64_t tsLimit = tsBase + ts->getSize(); 1783 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) 1784 return ts; 1785 } 1786 1787 // No suitable ThunkSection exists. This can happen when there is a branch 1788 // with lower range than the ThunkSection spacing or when there are too 1789 // many Thunks. Create a new ThunkSection as close to the InputSection as 1790 // possible. Error if InputSection is so large we cannot place ThunkSection 1791 // anywhere in Range. 1792 uint64_t thunkSecOff = isec->outSecOff; 1793 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { 1794 thunkSecOff = isec->outSecOff + isec->getSize(); 1795 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) 1796 fatal("InputSection too large for range extension thunk " + 1797 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1798 } 1799 return addThunkSection(os, isd, thunkSecOff); 1800 } 1801 1802 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1803 // precedes its Target. 1804 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1805 ThunkSection *ts = thunkedSections.lookup(isec); 1806 if (ts) 1807 return ts; 1808 1809 // Find InputSectionRange within Target Output Section (TOS) that the 1810 // InputSection (IS) that we need to precede is in. 1811 OutputSection *tos = isec->getParent(); 1812 for (BaseCommand *bc : tos->sectionCommands) { 1813 auto *isd = dyn_cast<InputSectionDescription>(bc); 1814 if (!isd || isd->sections.empty()) 1815 continue; 1816 1817 InputSection *first = isd->sections.front(); 1818 InputSection *last = isd->sections.back(); 1819 1820 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1821 continue; 1822 1823 ts = addThunkSection(tos, isd, isec->outSecOff); 1824 thunkedSections[isec] = ts; 1825 return ts; 1826 } 1827 1828 return nullptr; 1829 } 1830 1831 // Create one or more ThunkSections per OS that can be used to place Thunks. 1832 // We attempt to place the ThunkSections using the following desirable 1833 // properties: 1834 // - Within range of the maximum number of callers 1835 // - Minimise the number of ThunkSections 1836 // 1837 // We follow a simple but conservative heuristic to place ThunkSections at 1838 // offsets that are multiples of a Target specific branch range. 1839 // For an InputSectionDescription that is smaller than the range, a single 1840 // ThunkSection at the end of the range will do. 1841 // 1842 // For an InputSectionDescription that is more than twice the size of the range, 1843 // we place the last ThunkSection at range bytes from the end of the 1844 // InputSectionDescription in order to increase the likelihood that the 1845 // distance from a thunk to its target will be sufficiently small to 1846 // allow for the creation of a short thunk. 1847 void ThunkCreator::createInitialThunkSections( 1848 ArrayRef<OutputSection *> outputSections) { 1849 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1850 1851 forEachInputSectionDescription( 1852 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1853 if (isd->sections.empty()) 1854 return; 1855 1856 uint32_t isdBegin = isd->sections.front()->outSecOff; 1857 uint32_t isdEnd = 1858 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1859 uint32_t lastThunkLowerBound = -1; 1860 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1861 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1862 1863 uint32_t isecLimit; 1864 uint32_t prevIsecLimit = isdBegin; 1865 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1866 1867 for (const InputSection *isec : isd->sections) { 1868 isecLimit = isec->outSecOff + isec->getSize(); 1869 if (isecLimit > thunkUpperBound) { 1870 addThunkSection(os, isd, prevIsecLimit); 1871 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1872 } 1873 if (isecLimit > lastThunkLowerBound) 1874 break; 1875 prevIsecLimit = isecLimit; 1876 } 1877 addThunkSection(os, isd, isecLimit); 1878 }); 1879 } 1880 1881 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1882 InputSectionDescription *isd, 1883 uint64_t off) { 1884 auto *ts = make<ThunkSection>(os, off); 1885 ts->partition = os->partition; 1886 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1887 !isd->sections.empty()) { 1888 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1889 // thunks we disturb the base addresses of sections placed after the thunks 1890 // this makes patches we have generated redundant, and may cause us to 1891 // generate more patches as different instructions are now in sensitive 1892 // locations. When we generate more patches we may force more branches to 1893 // go out of range, causing more thunks to be generated. In pathological 1894 // cases this can cause the address dependent content pass not to converge. 1895 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1896 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1897 // which means that adding Thunks to the section does not invalidate 1898 // errata patches for following code. 1899 // Rounding up the size to 4KiB has consequences for code-size and can 1900 // trip up linker script defined assertions. For example the linux kernel 1901 // has an assertion that what LLD represents as an InputSectionDescription 1902 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1903 // We use the heuristic of rounding up the size when both of the following 1904 // conditions are true: 1905 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1906 // accounts for the case where no single InputSectionDescription is 1907 // larger than the OutputSection size. This is conservative but simple. 1908 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1909 // any assertion failures that an InputSectionDescription is < 4 KiB 1910 // in size. 1911 uint64_t isdSize = isd->sections.back()->outSecOff + 1912 isd->sections.back()->getSize() - 1913 isd->sections.front()->outSecOff; 1914 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1915 ts->roundUpSizeForErrata = true; 1916 } 1917 isd->thunkSections.push_back({ts, pass}); 1918 return ts; 1919 } 1920 1921 static bool isThunkSectionCompatible(InputSection *source, 1922 SectionBase *target) { 1923 // We can't reuse thunks in different loadable partitions because they might 1924 // not be loaded. But partition 1 (the main partition) will always be loaded. 1925 if (source->partition != target->partition) 1926 return target->partition == 1; 1927 return true; 1928 } 1929 1930 static int64_t getPCBias(RelType type) { 1931 if (config->emachine != EM_ARM) 1932 return 0; 1933 switch (type) { 1934 case R_ARM_THM_JUMP19: 1935 case R_ARM_THM_JUMP24: 1936 case R_ARM_THM_CALL: 1937 return 4; 1938 default: 1939 return 8; 1940 } 1941 } 1942 1943 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1944 Relocation &rel, uint64_t src) { 1945 std::vector<Thunk *> *thunkVec = nullptr; 1946 int64_t addend = rel.addend + getPCBias(rel.type); 1947 1948 // We use a ((section, offset), addend) pair to find the thunk position if 1949 // possible so that we create only one thunk for aliased symbols or ICFed 1950 // sections. There may be multiple relocations sharing the same (section, 1951 // offset + addend) pair. We may revert the relocation back to its original 1952 // non-Thunk target, so we cannot fold offset + addend. 1953 if (auto *d = dyn_cast<Defined>(rel.sym)) 1954 if (!d->isInPlt() && d->section) 1955 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1956 {d->section->repl, d->value}, addend}]; 1957 if (!thunkVec) 1958 thunkVec = &thunkedSymbols[{rel.sym, addend}]; 1959 1960 // Check existing Thunks for Sym to see if they can be reused 1961 for (Thunk *t : *thunkVec) 1962 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1963 t->isCompatibleWith(*isec, rel) && 1964 target->inBranchRange(rel.type, src, 1965 t->getThunkTargetSym()->getVA(rel.addend) + 1966 getPCBias(rel.type))) 1967 return std::make_pair(t, false); 1968 1969 // No existing compatible Thunk in range, create a new one 1970 Thunk *t = addThunk(*isec, rel); 1971 thunkVec->push_back(t); 1972 return std::make_pair(t, true); 1973 } 1974 1975 // Return true if the relocation target is an in range Thunk. 1976 // Return false if the relocation is not to a Thunk. If the relocation target 1977 // was originally to a Thunk, but is no longer in range we revert the 1978 // relocation back to its original non-Thunk target. 1979 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1980 if (Thunk *t = thunks.lookup(rel.sym)) { 1981 if (target->inBranchRange(rel.type, src, 1982 rel.sym->getVA(rel.addend) + getPCBias(rel.type))) 1983 return true; 1984 rel.sym = &t->destination; 1985 rel.addend = t->addend; 1986 if (rel.sym->isInPlt()) 1987 rel.expr = toPlt(rel.expr); 1988 } 1989 return false; 1990 } 1991 1992 // Process all relocations from the InputSections that have been assigned 1993 // to InputSectionDescriptions and redirect through Thunks if needed. The 1994 // function should be called iteratively until it returns false. 1995 // 1996 // PreConditions: 1997 // All InputSections that may need a Thunk are reachable from 1998 // OutputSectionCommands. 1999 // 2000 // All OutputSections have an address and all InputSections have an offset 2001 // within the OutputSection. 2002 // 2003 // The offsets between caller (relocation place) and callee 2004 // (relocation target) will not be modified outside of createThunks(). 2005 // 2006 // PostConditions: 2007 // If return value is true then ThunkSections have been inserted into 2008 // OutputSections. All relocations that needed a Thunk based on the information 2009 // available to createThunks() on entry have been redirected to a Thunk. Note 2010 // that adding Thunks changes offsets between caller and callee so more Thunks 2011 // may be required. 2012 // 2013 // If return value is false then no more Thunks are needed, and createThunks has 2014 // made no changes. If the target requires range extension thunks, currently 2015 // ARM, then any future change in offset between caller and callee risks a 2016 // relocation out of range error. 2017 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 2018 bool addressesChanged = false; 2019 2020 if (pass == 0 && target->getThunkSectionSpacing()) 2021 createInitialThunkSections(outputSections); 2022 2023 // Create all the Thunks and insert them into synthetic ThunkSections. The 2024 // ThunkSections are later inserted back into InputSectionDescriptions. 2025 // We separate the creation of ThunkSections from the insertion of the 2026 // ThunkSections as ThunkSections are not always inserted into the same 2027 // InputSectionDescription as the caller. 2028 forEachInputSectionDescription( 2029 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2030 for (InputSection *isec : isd->sections) 2031 for (Relocation &rel : isec->relocations) { 2032 uint64_t src = isec->getVA(rel.offset); 2033 2034 // If we are a relocation to an existing Thunk, check if it is 2035 // still in range. If not then Rel will be altered to point to its 2036 // original target so another Thunk can be generated. 2037 if (pass > 0 && normalizeExistingThunk(rel, src)) 2038 continue; 2039 2040 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2041 *rel.sym, rel.addend)) 2042 continue; 2043 2044 Thunk *t; 2045 bool isNew; 2046 std::tie(t, isNew) = getThunk(isec, rel, src); 2047 2048 if (isNew) { 2049 // Find or create a ThunkSection for the new Thunk 2050 ThunkSection *ts; 2051 if (auto *tis = t->getTargetInputSection()) 2052 ts = getISThunkSec(tis); 2053 else 2054 ts = getISDThunkSec(os, isec, isd, rel.type, src); 2055 ts->addThunk(t); 2056 thunks[t->getThunkTargetSym()] = t; 2057 } 2058 2059 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2060 rel.sym = t->getThunkTargetSym(); 2061 rel.expr = fromPlt(rel.expr); 2062 2063 // On AArch64 and PPC, a jump/call relocation may be encoded as 2064 // STT_SECTION + non-zero addend, clear the addend after 2065 // redirection. 2066 if (config->emachine != EM_MIPS) 2067 rel.addend = -getPCBias(rel.type); 2068 } 2069 2070 for (auto &p : isd->thunkSections) 2071 addressesChanged |= p.first->assignOffsets(); 2072 }); 2073 2074 for (auto &p : thunkedSections) 2075 addressesChanged |= p.second->assignOffsets(); 2076 2077 // Merge all created synthetic ThunkSections back into OutputSection 2078 mergeThunks(outputSections); 2079 ++pass; 2080 return addressesChanged; 2081 } 2082 2083 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2084 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2085 // __tls_get_addr. 2086 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2087 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2088 bool needTlsSymbol = false; 2089 forEachInputSectionDescription( 2090 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2091 for (InputSection *isec : isd->sections) 2092 for (Relocation &rel : isec->relocations) 2093 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2094 needTlsSymbol = true; 2095 return; 2096 } 2097 }); 2098 return needTlsSymbol; 2099 } 2100 2101 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2102 Symbol *sym = symtab->find("__tls_get_addr"); 2103 if (!sym) 2104 return; 2105 bool needEntry = true; 2106 forEachInputSectionDescription( 2107 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2108 for (InputSection *isec : isd->sections) 2109 for (Relocation &rel : isec->relocations) 2110 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2111 if (needEntry) { 2112 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, 2113 *sym); 2114 needEntry = false; 2115 } 2116 rel.sym = sym; 2117 } 2118 }); 2119 } 2120 2121 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 2122 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 2123 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 2124 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 2125 template void elf::reportUndefinedSymbols<ELF32LE>(); 2126 template void elf::reportUndefinedSymbols<ELF32BE>(); 2127 template void elf::reportUndefinedSymbols<ELF64LE>(); 2128 template void elf::reportUndefinedSymbols<ELF64BE>(); 2129