1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 66 namespace lld { 67 namespace elf { 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 // Construct a message in the following format. 77 // 78 // >>> defined in /home/alice/src/foo.o 79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 80 // >>> /home/alice/src/bar.o:(.text+0x1) 81 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 82 uint64_t off) { 83 std::string msg = "\n>>> defined in "; 84 if (sym.file) 85 msg += toString(sym.file); 86 else if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 87 msg += *loc; 88 89 msg += "\n>>> referenced by "; 90 std::string src = s.getSrcMsg(sym, off); 91 if (!src.empty()) 92 msg += src + "\n>>> "; 93 return msg + s.getObjMsg(off); 94 } 95 96 namespace { 97 // Build a bitmask with one bit set for each RelExpr. 98 // 99 // Constexpr function arguments can't be used in static asserts, so we 100 // use template arguments to build the mask. 101 // But function template partial specializations don't exist (needed 102 // for base case of the recursion), so we need a dummy struct. 103 template <RelExpr... Exprs> struct RelExprMaskBuilder { 104 static inline uint64_t build() { return 0; } 105 }; 106 107 // Specialization for recursive case. 108 template <RelExpr Head, RelExpr... Tail> 109 struct RelExprMaskBuilder<Head, Tail...> { 110 static inline uint64_t build() { 111 static_assert(0 <= Head && Head < 64, 112 "RelExpr is too large for 64-bit mask!"); 113 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 114 } 115 }; 116 } // namespace 117 118 // Return true if `Expr` is one of `Exprs`. 119 // There are fewer than 64 RelExpr's, so we can represent any set of 120 // RelExpr's as a constant bit mask and test for membership with a 121 // couple cheap bitwise operations. 122 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 123 assert(0 <= expr && (int)expr < 64 && 124 "RelExpr is too large for 64-bit mask!"); 125 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 126 } 127 128 // This function is similar to the `handleTlsRelocation`. MIPS does not 129 // support any relaxations for TLS relocations so by factoring out MIPS 130 // handling in to the separate function we can simplify the code and do not 131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 132 // Mips has a custom MipsGotSection that handles the writing of GOT entries 133 // without dynamic relocations. 134 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 135 InputSectionBase &c, uint64_t offset, 136 int64_t addend, RelExpr expr) { 137 if (expr == R_MIPS_TLSLD) { 138 in.mipsGot->addTlsIndex(*c.file); 139 c.relocations.push_back({expr, type, offset, addend, &sym}); 140 return 1; 141 } 142 if (expr == R_MIPS_TLSGD) { 143 in.mipsGot->addDynTlsEntry(*c.file, sym); 144 c.relocations.push_back({expr, type, offset, addend, &sym}); 145 return 1; 146 } 147 return 0; 148 } 149 150 // Notes about General Dynamic and Local Dynamic TLS models below. They may 151 // require the generation of a pair of GOT entries that have associated dynamic 152 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 153 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 154 // symbol in TLS block. 155 // 156 // Returns the number of relocations processed. 157 template <class ELFT> 158 static unsigned 159 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 160 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 161 if (!sym.isTls()) 162 return 0; 163 164 if (config->emachine == EM_MIPS) 165 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 166 167 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 168 expr) && 169 config->shared) { 170 if (in.got->addDynTlsEntry(sym)) { 171 uint64_t off = in.got->getGlobalDynOffset(sym); 172 mainPart->relaDyn->addReloc( 173 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); 174 } 175 if (expr != R_TLSDESC_CALL) 176 c.relocations.push_back({expr, type, offset, addend, &sym}); 177 return 1; 178 } 179 180 bool canRelax = config->emachine != EM_ARM && 181 config->emachine != EM_HEXAGON && 182 config->emachine != EM_RISCV; 183 184 // If we are producing an executable and the symbol is non-preemptable, it 185 // must be defined and the code sequence can be relaxed to use Local-Exec. 186 // 187 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 188 // we can omit the DTPMOD dynamic relocations and resolve them at link time 189 // because them are always 1. This may be necessary for static linking as 190 // DTPMOD may not be expected at load time. 191 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 192 193 // Local Dynamic is for access to module local TLS variables, while still 194 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 195 // module index, with a special value of 0 for the current module. GOT[e1] is 196 // unused. There only needs to be one module index entry. 197 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 198 expr)) { 199 // Local-Dynamic relocs can be relaxed to Local-Exec. 200 if (canRelax && !config->shared) { 201 c.relocations.push_back( 202 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 203 offset, addend, &sym}); 204 return target->getTlsGdRelaxSkip(type); 205 } 206 if (expr == R_TLSLD_HINT) 207 return 1; 208 if (in.got->addTlsIndex()) { 209 if (isLocalInExecutable) 210 in.got->relocations.push_back( 211 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 212 else 213 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, 214 in.got->getTlsIndexOff(), nullptr); 215 } 216 c.relocations.push_back({expr, type, offset, addend, &sym}); 217 return 1; 218 } 219 220 // Local-Dynamic relocs can be relaxed to Local-Exec. 221 if (expr == R_DTPREL && !config->shared) { 222 c.relocations.push_back( 223 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 224 offset, addend, &sym}); 225 return 1; 226 } 227 228 // Local-Dynamic sequence where offset of tls variable relative to dynamic 229 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 230 if (expr == R_TLSLD_GOT_OFF) { 231 if (!sym.isInGot()) { 232 in.got->addEntry(sym); 233 uint64_t off = sym.getGotOffset(); 234 in.got->relocations.push_back( 235 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 236 } 237 c.relocations.push_back({expr, type, offset, addend, &sym}); 238 return 1; 239 } 240 241 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 242 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 243 if (!canRelax || config->shared) { 244 if (in.got->addDynTlsEntry(sym)) { 245 uint64_t off = in.got->getGlobalDynOffset(sym); 246 247 if (isLocalInExecutable) 248 // Write one to the GOT slot. 249 in.got->relocations.push_back( 250 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 251 else 252 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); 253 254 // If the symbol is preemptible we need the dynamic linker to write 255 // the offset too. 256 uint64_t offsetOff = off + config->wordsize; 257 if (sym.isPreemptible) 258 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, 259 &sym); 260 else 261 in.got->relocations.push_back( 262 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 263 } 264 c.relocations.push_back({expr, type, offset, addend, &sym}); 265 return 1; 266 } 267 268 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 269 // depending on the symbol being locally defined or not. 270 if (sym.isPreemptible) { 271 c.relocations.push_back( 272 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type, 273 offset, addend, &sym}); 274 if (!sym.isInGot()) { 275 in.got->addEntry(sym); 276 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), 277 &sym); 278 } 279 } else { 280 c.relocations.push_back( 281 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type, 282 offset, addend, &sym}); 283 } 284 return target->getTlsGdRelaxSkip(type); 285 } 286 287 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 288 // defined. 289 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 290 R_TLSIE_HINT>(expr) && 291 canRelax && isLocalInExecutable) { 292 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 293 return 1; 294 } 295 296 if (expr == R_TLSIE_HINT) 297 return 1; 298 return 0; 299 } 300 301 static RelType getMipsPairType(RelType type, bool isLocal) { 302 switch (type) { 303 case R_MIPS_HI16: 304 return R_MIPS_LO16; 305 case R_MIPS_GOT16: 306 // In case of global symbol, the R_MIPS_GOT16 relocation does not 307 // have a pair. Each global symbol has a unique entry in the GOT 308 // and a corresponding instruction with help of the R_MIPS_GOT16 309 // relocation loads an address of the symbol. In case of local 310 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 311 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 312 // relocations handle low 16 bits of the address. That allows 313 // to allocate only one GOT entry for every 64 KBytes of local data. 314 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 315 case R_MICROMIPS_GOT16: 316 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 317 case R_MIPS_PCHI16: 318 return R_MIPS_PCLO16; 319 case R_MICROMIPS_HI16: 320 return R_MICROMIPS_LO16; 321 default: 322 return R_MIPS_NONE; 323 } 324 } 325 326 // True if non-preemptable symbol always has the same value regardless of where 327 // the DSO is loaded. 328 static bool isAbsolute(const Symbol &sym) { 329 if (sym.isUndefWeak()) 330 return true; 331 if (const auto *dr = dyn_cast<Defined>(&sym)) 332 return dr->section == nullptr; // Absolute symbol. 333 return false; 334 } 335 336 static bool isAbsoluteValue(const Symbol &sym) { 337 return isAbsolute(sym) || sym.isTls(); 338 } 339 340 // Returns true if Expr refers a PLT entry. 341 static bool needsPlt(RelExpr expr) { 342 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 343 } 344 345 // Returns true if Expr refers a GOT entry. Note that this function 346 // returns false for TLS variables even though they need GOT, because 347 // TLS variables uses GOT differently than the regular variables. 348 static bool needsGot(RelExpr expr) { 349 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 350 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>( 351 expr); 352 } 353 354 // True if this expression is of the form Sym - X, where X is a position in the 355 // file (PC, or GOT for example). 356 static bool isRelExpr(RelExpr expr) { 357 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 358 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 359 R_RISCV_PC_INDIRECT>(expr); 360 } 361 362 // Returns true if a given relocation can be computed at link-time. 363 // 364 // For instance, we know the offset from a relocation to its target at 365 // link-time if the relocation is PC-relative and refers a 366 // non-interposable function in the same executable. This function 367 // will return true for such relocation. 368 // 369 // If this function returns false, that means we need to emit a 370 // dynamic relocation so that the relocation will be fixed at load-time. 371 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 372 InputSectionBase &s, uint64_t relOff) { 373 // These expressions always compute a constant 374 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 375 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 376 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 377 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 378 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 379 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 380 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>( 381 e)) 382 return true; 383 384 // These never do, except if the entire file is position dependent or if 385 // only the low bits are used. 386 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 387 return target->usesOnlyLowPageBits(type) || !config->isPic; 388 389 if (sym.isPreemptible) 390 return false; 391 if (!config->isPic) 392 return true; 393 394 // The size of a non preemptible symbol is a constant. 395 if (e == R_SIZE) 396 return true; 397 398 // For the target and the relocation, we want to know if they are 399 // absolute or relative. 400 bool absVal = isAbsoluteValue(sym); 401 bool relE = isRelExpr(e); 402 if (absVal && !relE) 403 return true; 404 if (!absVal && relE) 405 return true; 406 if (!absVal && !relE) 407 return target->usesOnlyLowPageBits(type); 408 409 assert(absVal && relE); 410 411 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 412 // in PIC mode. This is a little strange, but it allows us to link function 413 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 414 // Normally such a call will be guarded with a comparison, which will load a 415 // zero from the GOT. 416 if (sym.isUndefWeak()) 417 return true; 418 419 // We set the final symbols values for linker script defined symbols later. 420 // They always can be computed as a link time constant. 421 if (sym.scriptDefined) 422 return true; 423 424 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 425 toString(sym) + getLocation(s, sym, relOff)); 426 return true; 427 } 428 429 static RelExpr toPlt(RelExpr expr) { 430 switch (expr) { 431 case R_PPC64_CALL: 432 return R_PPC64_CALL_PLT; 433 case R_PC: 434 return R_PLT_PC; 435 case R_ABS: 436 return R_PLT; 437 default: 438 return expr; 439 } 440 } 441 442 static RelExpr fromPlt(RelExpr expr) { 443 // We decided not to use a plt. Optimize a reference to the plt to a 444 // reference to the symbol itself. 445 switch (expr) { 446 case R_PLT_PC: 447 case R_PPC32_PLTREL: 448 return R_PC; 449 case R_PPC64_CALL_PLT: 450 return R_PPC64_CALL; 451 case R_PLT: 452 return R_ABS; 453 default: 454 return expr; 455 } 456 } 457 458 // Returns true if a given shared symbol is in a read-only segment in a DSO. 459 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 460 using Elf_Phdr = typename ELFT::Phdr; 461 462 // Determine if the symbol is read-only by scanning the DSO's program headers. 463 const SharedFile &file = ss.getFile(); 464 for (const Elf_Phdr &phdr : 465 check(file.template getObj<ELFT>().program_headers())) 466 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 467 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 468 ss.value < phdr.p_vaddr + phdr.p_memsz) 469 return true; 470 return false; 471 } 472 473 // Returns symbols at the same offset as a given symbol, including SS itself. 474 // 475 // If two or more symbols are at the same offset, and at least one of 476 // them are copied by a copy relocation, all of them need to be copied. 477 // Otherwise, they would refer to different places at runtime. 478 template <class ELFT> 479 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 480 using Elf_Sym = typename ELFT::Sym; 481 482 SharedFile &file = ss.getFile(); 483 484 SmallSet<SharedSymbol *, 4> ret; 485 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 486 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 487 s.getType() == STT_TLS || s.st_value != ss.value) 488 continue; 489 StringRef name = check(s.getName(file.getStringTable())); 490 Symbol *sym = symtab->find(name); 491 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 492 ret.insert(alias); 493 } 494 return ret; 495 } 496 497 // When a symbol is copy relocated or we create a canonical plt entry, it is 498 // effectively a defined symbol. In the case of copy relocation the symbol is 499 // in .bss and in the case of a canonical plt entry it is in .plt. This function 500 // replaces the existing symbol with a Defined pointing to the appropriate 501 // location. 502 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 503 uint64_t size) { 504 Symbol old = sym; 505 506 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 507 sym.type, value, size, sec}); 508 509 sym.pltIndex = old.pltIndex; 510 sym.gotIndex = old.gotIndex; 511 sym.verdefIndex = old.verdefIndex; 512 sym.exportDynamic = true; 513 sym.isUsedInRegularObj = true; 514 } 515 516 // Reserve space in .bss or .bss.rel.ro for copy relocation. 517 // 518 // The copy relocation is pretty much a hack. If you use a copy relocation 519 // in your program, not only the symbol name but the symbol's size, RW/RO 520 // bit and alignment become part of the ABI. In addition to that, if the 521 // symbol has aliases, the aliases become part of the ABI. That's subtle, 522 // but if you violate that implicit ABI, that can cause very counter- 523 // intuitive consequences. 524 // 525 // So, what is the copy relocation? It's for linking non-position 526 // independent code to DSOs. In an ideal world, all references to data 527 // exported by DSOs should go indirectly through GOT. But if object files 528 // are compiled as non-PIC, all data references are direct. There is no 529 // way for the linker to transform the code to use GOT, as machine 530 // instructions are already set in stone in object files. This is where 531 // the copy relocation takes a role. 532 // 533 // A copy relocation instructs the dynamic linker to copy data from a DSO 534 // to a specified address (which is usually in .bss) at load-time. If the 535 // static linker (that's us) finds a direct data reference to a DSO 536 // symbol, it creates a copy relocation, so that the symbol can be 537 // resolved as if it were in .bss rather than in a DSO. 538 // 539 // As you can see in this function, we create a copy relocation for the 540 // dynamic linker, and the relocation contains not only symbol name but 541 // various other information about the symbol. So, such attributes become a 542 // part of the ABI. 543 // 544 // Note for application developers: I can give you a piece of advice if 545 // you are writing a shared library. You probably should export only 546 // functions from your library. You shouldn't export variables. 547 // 548 // As an example what can happen when you export variables without knowing 549 // the semantics of copy relocations, assume that you have an exported 550 // variable of type T. It is an ABI-breaking change to add new members at 551 // end of T even though doing that doesn't change the layout of the 552 // existing members. That's because the space for the new members are not 553 // reserved in .bss unless you recompile the main program. That means they 554 // are likely to overlap with other data that happens to be laid out next 555 // to the variable in .bss. This kind of issue is sometimes very hard to 556 // debug. What's a solution? Instead of exporting a variable V from a DSO, 557 // define an accessor getV(). 558 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 559 // Copy relocation against zero-sized symbol doesn't make sense. 560 uint64_t symSize = ss.getSize(); 561 if (symSize == 0 || ss.alignment == 0) 562 fatal("cannot create a copy relocation for symbol " + toString(ss)); 563 564 // See if this symbol is in a read-only segment. If so, preserve the symbol's 565 // memory protection by reserving space in the .bss.rel.ro section. 566 bool isRO = isReadOnly<ELFT>(ss); 567 BssSection *sec = 568 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 569 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 570 571 // At this point, sectionBases has been migrated to sections. Append sec to 572 // sections. 573 if (osec->sectionCommands.empty() || 574 !isa<InputSectionDescription>(osec->sectionCommands.back())) 575 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 576 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 577 isd->sections.push_back(sec); 578 osec->commitSection(sec); 579 580 // Look through the DSO's dynamic symbol table for aliases and create a 581 // dynamic symbol for each one. This causes the copy relocation to correctly 582 // interpose any aliases. 583 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 584 replaceWithDefined(*sym, sec, 0, sym->size); 585 586 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); 587 } 588 589 // MIPS has an odd notion of "paired" relocations to calculate addends. 590 // For example, if a relocation is of R_MIPS_HI16, there must be a 591 // R_MIPS_LO16 relocation after that, and an addend is calculated using 592 // the two relocations. 593 template <class ELFT, class RelTy> 594 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 595 InputSectionBase &sec, RelExpr expr, 596 bool isLocal) { 597 if (expr == R_MIPS_GOTREL && isLocal) 598 return sec.getFile<ELFT>()->mipsGp0; 599 600 // The ABI says that the paired relocation is used only for REL. 601 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 602 if (RelTy::IsRela) 603 return 0; 604 605 RelType type = rel.getType(config->isMips64EL); 606 uint32_t pairTy = getMipsPairType(type, isLocal); 607 if (pairTy == R_MIPS_NONE) 608 return 0; 609 610 const uint8_t *buf = sec.data().data(); 611 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 612 613 // To make things worse, paired relocations might not be contiguous in 614 // the relocation table, so we need to do linear search. *sigh* 615 for (const RelTy *ri = &rel; ri != end; ++ri) 616 if (ri->getType(config->isMips64EL) == pairTy && 617 ri->getSymbol(config->isMips64EL) == symIndex) 618 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 619 620 warn("can't find matching " + toString(pairTy) + " relocation for " + 621 toString(type)); 622 return 0; 623 } 624 625 // Returns an addend of a given relocation. If it is RELA, an addend 626 // is in a relocation itself. If it is REL, we need to read it from an 627 // input section. 628 template <class ELFT, class RelTy> 629 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 630 InputSectionBase &sec, RelExpr expr, 631 bool isLocal) { 632 int64_t addend; 633 RelType type = rel.getType(config->isMips64EL); 634 635 if (RelTy::IsRela) { 636 addend = getAddend<ELFT>(rel); 637 } else { 638 const uint8_t *buf = sec.data().data(); 639 addend = target->getImplicitAddend(buf + rel.r_offset, type); 640 } 641 642 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 643 addend += getPPC64TocBase(); 644 if (config->emachine == EM_MIPS) 645 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 646 647 return addend; 648 } 649 650 // Custom error message if Sym is defined in a discarded section. 651 template <class ELFT> 652 static std::string maybeReportDiscarded(Undefined &sym) { 653 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 654 if (!file || !sym.discardedSecIdx || 655 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 656 return ""; 657 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 658 CHECK(file->getObj().sections(), file); 659 660 std::string msg; 661 if (sym.type == ELF::STT_SECTION) { 662 msg = "relocation refers to a discarded section: "; 663 msg += CHECK( 664 file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file); 665 } else { 666 msg = "relocation refers to a symbol in a discarded section: " + 667 toString(sym); 668 } 669 msg += "\n>>> defined in " + toString(file); 670 671 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 672 if (elfSec.sh_type != SHT_GROUP) 673 return msg; 674 675 // If the discarded section is a COMDAT. 676 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 677 if (const InputFile *prevailing = 678 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 679 msg += "\n>>> section group signature: " + signature.str() + 680 "\n>>> prevailing definition is in " + toString(prevailing); 681 return msg; 682 } 683 684 // Undefined diagnostics are collected in a vector and emitted once all of 685 // them are known, so that some postprocessing on the list of undefined symbols 686 // can happen before lld emits diagnostics. 687 struct UndefinedDiag { 688 Symbol *sym; 689 struct Loc { 690 InputSectionBase *sec; 691 uint64_t offset; 692 }; 693 std::vector<Loc> locs; 694 bool isWarning; 695 }; 696 697 static std::vector<UndefinedDiag> undefs; 698 699 // Check whether the definition name def is a mangled function name that matches 700 // the reference name ref. 701 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 702 llvm::ItaniumPartialDemangler d; 703 std::string name = def.str(); 704 if (d.partialDemangle(name.c_str())) 705 return false; 706 char *buf = d.getFunctionName(nullptr, nullptr); 707 if (!buf) 708 return false; 709 bool ret = ref == buf; 710 free(buf); 711 return ret; 712 } 713 714 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 715 // the suggested symbol, which is either in the symbol table, or in the same 716 // file of sym. 717 template <class ELFT> 718 static const Symbol *getAlternativeSpelling(const Undefined &sym, 719 std::string &pre_hint, 720 std::string &post_hint) { 721 DenseMap<StringRef, const Symbol *> map; 722 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 723 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 724 // will give an error. Don't suggest an alternative spelling. 725 if (file && sym.discardedSecIdx != 0 && 726 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 727 return nullptr; 728 729 // Build a map of local defined symbols. 730 for (const Symbol *s : sym.file->getSymbols()) 731 if (s->isLocal() && s->isDefined()) 732 map.try_emplace(s->getName(), s); 733 } 734 735 auto suggest = [&](StringRef newName) -> const Symbol * { 736 // If defined locally. 737 if (const Symbol *s = map.lookup(newName)) 738 return s; 739 740 // If in the symbol table and not undefined. 741 if (const Symbol *s = symtab->find(newName)) 742 if (!s->isUndefined()) 743 return s; 744 745 return nullptr; 746 }; 747 748 // This loop enumerates all strings of Levenshtein distance 1 as typo 749 // correction candidates and suggests the one that exists as a non-undefined 750 // symbol. 751 StringRef name = sym.getName(); 752 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 753 // Insert a character before name[i]. 754 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 755 for (char c = '0'; c <= 'z'; ++c) { 756 newName[i] = c; 757 if (const Symbol *s = suggest(newName)) 758 return s; 759 } 760 if (i == e) 761 break; 762 763 // Substitute name[i]. 764 newName = name; 765 for (char c = '0'; c <= 'z'; ++c) { 766 newName[i] = c; 767 if (const Symbol *s = suggest(newName)) 768 return s; 769 } 770 771 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 772 // common. 773 if (i + 1 < e) { 774 newName[i] = name[i + 1]; 775 newName[i + 1] = name[i]; 776 if (const Symbol *s = suggest(newName)) 777 return s; 778 } 779 780 // Delete name[i]. 781 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 782 if (const Symbol *s = suggest(newName)) 783 return s; 784 } 785 786 // Case mismatch, e.g. Foo vs FOO. 787 for (auto &it : map) 788 if (name.equals_lower(it.first)) 789 return it.second; 790 for (Symbol *sym : symtab->symbols()) 791 if (!sym->isUndefined() && name.equals_lower(sym->getName())) 792 return sym; 793 794 // The reference may be a mangled name while the definition is not. Suggest a 795 // missing extern "C". 796 if (name.startswith("_Z")) { 797 std::string buf = name.str(); 798 llvm::ItaniumPartialDemangler d; 799 if (!d.partialDemangle(buf.c_str())) 800 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 801 const Symbol *s = suggest(buf); 802 free(buf); 803 if (s) { 804 pre_hint = ": extern \"C\" "; 805 return s; 806 } 807 } 808 } else { 809 const Symbol *s = nullptr; 810 for (auto &it : map) 811 if (canSuggestExternCForCXX(name, it.first)) { 812 s = it.second; 813 break; 814 } 815 if (!s) 816 for (Symbol *sym : symtab->symbols()) 817 if (canSuggestExternCForCXX(name, sym->getName())) { 818 s = sym; 819 break; 820 } 821 if (s) { 822 pre_hint = " to declare "; 823 post_hint = " as extern \"C\"?"; 824 return s; 825 } 826 } 827 828 return nullptr; 829 } 830 831 template <class ELFT> 832 static void reportUndefinedSymbol(const UndefinedDiag &undef, 833 bool correctSpelling) { 834 Symbol &sym = *undef.sym; 835 836 auto visibility = [&]() -> std::string { 837 switch (sym.visibility) { 838 case STV_INTERNAL: 839 return "internal "; 840 case STV_HIDDEN: 841 return "hidden "; 842 case STV_PROTECTED: 843 return "protected "; 844 default: 845 return ""; 846 } 847 }; 848 849 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 850 if (msg.empty()) 851 msg = "undefined " + visibility() + "symbol: " + toString(sym); 852 853 const size_t maxUndefReferences = 10; 854 size_t i = 0; 855 for (UndefinedDiag::Loc l : undef.locs) { 856 if (i >= maxUndefReferences) 857 break; 858 InputSectionBase &sec = *l.sec; 859 uint64_t offset = l.offset; 860 861 msg += "\n>>> referenced by "; 862 std::string src = sec.getSrcMsg(sym, offset); 863 if (!src.empty()) 864 msg += src + "\n>>> "; 865 msg += sec.getObjMsg(offset); 866 i++; 867 } 868 869 if (i < undef.locs.size()) 870 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 871 .str(); 872 873 if (correctSpelling) { 874 std::string pre_hint = ": ", post_hint; 875 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 876 cast<Undefined>(sym), pre_hint, post_hint)) { 877 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 878 if (corrected->file) 879 msg += "\n>>> defined in: " + toString(corrected->file); 880 } 881 } 882 883 if (sym.getName().startswith("_ZTV")) 884 msg += "\nthe vtable symbol may be undefined because the class is missing " 885 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 886 887 if (undef.isWarning) 888 warn(msg); 889 else 890 error(msg); 891 } 892 893 template <class ELFT> void reportUndefinedSymbols() { 894 // Find the first "undefined symbol" diagnostic for each diagnostic, and 895 // collect all "referenced from" lines at the first diagnostic. 896 DenseMap<Symbol *, UndefinedDiag *> firstRef; 897 for (UndefinedDiag &undef : undefs) { 898 assert(undef.locs.size() == 1); 899 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 900 canon->locs.push_back(undef.locs[0]); 901 undef.locs.clear(); 902 } else 903 firstRef[undef.sym] = &undef; 904 } 905 906 // Enable spell corrector for the first 2 diagnostics. 907 for (auto it : enumerate(undefs)) 908 if (!it.value().locs.empty()) 909 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 910 undefs.clear(); 911 } 912 913 // Report an undefined symbol if necessary. 914 // Returns true if the undefined symbol will produce an error message. 915 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 916 uint64_t offset) { 917 if (!sym.isUndefined() || sym.isWeak()) 918 return false; 919 920 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 921 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 922 return false; 923 924 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 925 // which references a switch table in a discarded .rodata/.text section. The 926 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 927 // spec says references from outside the group to a STB_LOCAL symbol are not 928 // allowed. Work around the bug. 929 if (config->emachine == EM_PPC64 && 930 cast<Undefined>(sym).discardedSecIdx != 0 && sec.name == ".toc") 931 return false; 932 933 bool isWarning = 934 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 935 config->noinhibitExec; 936 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 937 return !isWarning; 938 } 939 940 // MIPS N32 ABI treats series of successive relocations with the same offset 941 // as a single relocation. The similar approach used by N64 ABI, but this ABI 942 // packs all relocations into the single relocation record. Here we emulate 943 // this for the N32 ABI. Iterate over relocation with the same offset and put 944 // theirs types into the single bit-set. 945 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 946 RelType type = 0; 947 uint64_t offset = rel->r_offset; 948 949 int n = 0; 950 while (rel != end && rel->r_offset == offset) 951 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 952 return type; 953 } 954 955 // .eh_frame sections are mergeable input sections, so their input 956 // offsets are not linearly mapped to output section. For each input 957 // offset, we need to find a section piece containing the offset and 958 // add the piece's base address to the input offset to compute the 959 // output offset. That isn't cheap. 960 // 961 // This class is to speed up the offset computation. When we process 962 // relocations, we access offsets in the monotonically increasing 963 // order. So we can optimize for that access pattern. 964 // 965 // For sections other than .eh_frame, this class doesn't do anything. 966 namespace { 967 class OffsetGetter { 968 public: 969 explicit OffsetGetter(InputSectionBase &sec) { 970 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 971 pieces = eh->pieces; 972 } 973 974 // Translates offsets in input sections to offsets in output sections. 975 // Given offset must increase monotonically. We assume that Piece is 976 // sorted by inputOff. 977 uint64_t get(uint64_t off) { 978 if (pieces.empty()) 979 return off; 980 981 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 982 ++i; 983 if (i == pieces.size()) 984 fatal(".eh_frame: relocation is not in any piece"); 985 986 // Pieces must be contiguous, so there must be no holes in between. 987 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 988 989 // Offset -1 means that the piece is dead (i.e. garbage collected). 990 if (pieces[i].outputOff == -1) 991 return -1; 992 return pieces[i].outputOff + off - pieces[i].inputOff; 993 } 994 995 private: 996 ArrayRef<EhSectionPiece> pieces; 997 size_t i = 0; 998 }; 999 } // namespace 1000 1001 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 1002 Symbol *sym, int64_t addend, RelExpr expr, 1003 RelType type) { 1004 Partition &part = isec->getPartition(); 1005 1006 // Add a relative relocation. If relrDyn section is enabled, and the 1007 // relocation offset is guaranteed to be even, add the relocation to 1008 // the relrDyn section, otherwise add it to the relaDyn section. 1009 // relrDyn sections don't support odd offsets. Also, relrDyn sections 1010 // don't store the addend values, so we must write it to the relocated 1011 // address. 1012 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 1013 isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1014 part.relrDyn->relocs.push_back({isec, offsetInSec}); 1015 return; 1016 } 1017 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, 1018 expr, type); 1019 } 1020 1021 template <class PltSection, class GotPltSection> 1022 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 1023 RelocationBaseSection *rel, RelType type, Symbol &sym) { 1024 plt->addEntry(sym); 1025 gotPlt->addEntry(sym); 1026 rel->addReloc( 1027 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); 1028 } 1029 1030 static void addGotEntry(Symbol &sym) { 1031 in.got->addEntry(sym); 1032 1033 RelExpr expr = sym.isTls() ? R_TLS : R_ABS; 1034 uint64_t off = sym.getGotOffset(); 1035 1036 // If a GOT slot value can be calculated at link-time, which is now, 1037 // we can just fill that out. 1038 // 1039 // (We don't actually write a value to a GOT slot right now, but we 1040 // add a static relocation to a Relocations vector so that 1041 // InputSection::relocate will do the work for us. We may be able 1042 // to just write a value now, but it is a TODO.) 1043 bool isLinkTimeConstant = 1044 !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); 1045 if (isLinkTimeConstant) { 1046 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); 1047 return; 1048 } 1049 1050 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 1051 // the GOT slot will be fixed at load-time. 1052 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { 1053 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); 1054 return; 1055 } 1056 mainPart->relaDyn->addReloc( 1057 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, 1058 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); 1059 } 1060 1061 // Return true if we can define a symbol in the executable that 1062 // contains the value/function of a symbol defined in a shared 1063 // library. 1064 static bool canDefineSymbolInExecutable(Symbol &sym) { 1065 // If the symbol has default visibility the symbol defined in the 1066 // executable will preempt it. 1067 // Note that we want the visibility of the shared symbol itself, not 1068 // the visibility of the symbol in the output file we are producing. That is 1069 // why we use Sym.stOther. 1070 if ((sym.stOther & 0x3) == STV_DEFAULT) 1071 return true; 1072 1073 // If we are allowed to break address equality of functions, defining 1074 // a plt entry will allow the program to call the function in the 1075 // .so, but the .so and the executable will no agree on the address 1076 // of the function. Similar logic for objects. 1077 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 1078 (sym.isObject() && config->ignoreDataAddressEquality)); 1079 } 1080 1081 // The reason we have to do this early scan is as follows 1082 // * To mmap the output file, we need to know the size 1083 // * For that, we need to know how many dynamic relocs we will have. 1084 // It might be possible to avoid this by outputting the file with write: 1085 // * Write the allocated output sections, computing addresses. 1086 // * Apply relocations, recording which ones require a dynamic reloc. 1087 // * Write the dynamic relocations. 1088 // * Write the rest of the file. 1089 // This would have some drawbacks. For example, we would only know if .rela.dyn 1090 // is needed after applying relocations. If it is, it will go after rw and rx 1091 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1092 // complicates things for the dynamic linker and means we would have to reserve 1093 // space for the extra PT_LOAD even if we end up not using it. 1094 template <class ELFT, class RelTy> 1095 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 1096 uint64_t offset, Symbol &sym, const RelTy &rel, 1097 int64_t addend) { 1098 // If the relocation is known to be a link-time constant, we know no dynamic 1099 // relocation will be created, pass the control to relocateAlloc() or 1100 // relocateNonAlloc() to resolve it. 1101 // 1102 // The behavior of an undefined weak reference is implementation defined. If 1103 // the relocation is to a weak undef, and we are producing an executable, let 1104 // relocate{,Non}Alloc() resolve it. 1105 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 1106 (!config->shared && sym.isUndefWeak())) { 1107 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1108 return; 1109 } 1110 1111 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 1112 if (canWrite) { 1113 RelType rel = target->getDynRel(type); 1114 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1115 addRelativeReloc(&sec, offset, &sym, addend, expr, type); 1116 return; 1117 } else if (rel != 0) { 1118 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1119 rel = target->relativeRel; 1120 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, 1121 R_ADDEND, type); 1122 1123 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1124 // While regular ABI uses dynamic relocations to fill up GOT entries 1125 // MIPS ABI requires dynamic linker to fills up GOT entries using 1126 // specially sorted dynamic symbol table. This affects even dynamic 1127 // relocations against symbols which do not require GOT entries 1128 // creation explicitly, i.e. do not have any GOT-relocations. So if 1129 // a preemptible symbol has a dynamic relocation we anyway have 1130 // to create a GOT entry for it. 1131 // If a non-preemptible symbol has a dynamic relocation against it, 1132 // dynamic linker takes it st_value, adds offset and writes down 1133 // result of the dynamic relocation. In case of preemptible symbol 1134 // dynamic linker performs symbol resolution, writes the symbol value 1135 // to the GOT entry and reads the GOT entry when it needs to perform 1136 // a dynamic relocation. 1137 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1138 if (config->emachine == EM_MIPS) 1139 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1140 return; 1141 } 1142 } 1143 1144 // When producing an executable, we can perform copy relocations (for 1145 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1146 if (!config->shared) { 1147 if (!canDefineSymbolInExecutable(sym)) { 1148 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1149 getLocation(sec, sym, offset)); 1150 return; 1151 } 1152 1153 if (sym.isObject()) { 1154 // Produce a copy relocation. 1155 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1156 if (!config->zCopyreloc) 1157 error("unresolvable relocation " + toString(type) + 1158 " against symbol '" + toString(*ss) + 1159 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1160 getLocation(sec, sym, offset)); 1161 addCopyRelSymbol<ELFT>(*ss); 1162 } 1163 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1164 return; 1165 } 1166 1167 // This handles a non PIC program call to function in a shared library. In 1168 // an ideal world, we could just report an error saying the relocation can 1169 // overflow at runtime. In the real world with glibc, crt1.o has a 1170 // R_X86_64_PC32 pointing to libc.so. 1171 // 1172 // The general idea on how to handle such cases is to create a PLT entry and 1173 // use that as the function value. 1174 // 1175 // For the static linking part, we just return a plt expr and everything 1176 // else will use the PLT entry as the address. 1177 // 1178 // The remaining problem is making sure pointer equality still works. We 1179 // need the help of the dynamic linker for that. We let it know that we have 1180 // a direct reference to a so symbol by creating an undefined symbol with a 1181 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1182 // the value of the symbol we created. This is true even for got entries, so 1183 // pointer equality is maintained. To avoid an infinite loop, the only entry 1184 // that points to the real function is a dedicated got entry used by the 1185 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1186 // R_386_JMP_SLOT, etc). 1187 1188 // For position independent executable on i386, the plt entry requires ebx 1189 // to be set. This causes two problems: 1190 // * If some code has a direct reference to a function, it was probably 1191 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1192 // * If a library definition gets preempted to the executable, it will have 1193 // the wrong ebx value. 1194 if (sym.isFunc()) { 1195 if (config->pie && config->emachine == EM_386) 1196 errorOrWarn("symbol '" + toString(sym) + 1197 "' cannot be preempted; recompile with -fPIE" + 1198 getLocation(sec, sym, offset)); 1199 if (!sym.isInPlt()) 1200 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1201 if (!sym.isDefined()) { 1202 replaceWithDefined( 1203 sym, in.plt, 1204 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1205 if (config->emachine == EM_PPC) { 1206 // PPC32 canonical PLT entries are at the beginning of .glink 1207 cast<Defined>(sym).value = in.plt->headerSize; 1208 in.plt->headerSize += 16; 1209 } 1210 } 1211 sym.needsPltAddr = true; 1212 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1213 return; 1214 } 1215 } 1216 1217 if (config->isPic) { 1218 if (!canWrite && !isRelExpr(expr)) 1219 errorOrWarn( 1220 "can't create dynamic relocation " + toString(type) + " against " + 1221 (sym.getName().empty() ? "local symbol" 1222 : "symbol: " + toString(sym)) + 1223 " in readonly segment; recompile object files with -fPIC " 1224 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1225 getLocation(sec, sym, offset)); 1226 else 1227 errorOrWarn( 1228 "relocation " + toString(type) + " cannot be used against " + 1229 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1230 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1231 return; 1232 } 1233 1234 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1235 getLocation(sec, sym, offset)); 1236 } 1237 1238 template <class ELFT, class RelTy> 1239 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1240 RelTy *end) { 1241 const RelTy &rel = *i; 1242 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1243 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1244 RelType type; 1245 1246 // Deal with MIPS oddity. 1247 if (config->mipsN32Abi) { 1248 type = getMipsN32RelType(i, end); 1249 } else { 1250 type = rel.getType(config->isMips64EL); 1251 ++i; 1252 } 1253 1254 // Get an offset in an output section this relocation is applied to. 1255 uint64_t offset = getOffset.get(rel.r_offset); 1256 if (offset == uint64_t(-1)) 1257 return; 1258 1259 // Error if the target symbol is undefined. Symbol index 0 may be used by 1260 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1261 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1262 return; 1263 1264 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1265 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1266 1267 // Ignore R_*_NONE and other marker relocations. 1268 if (expr == R_NONE) 1269 return; 1270 1271 // We can separate the small code model relocations into 2 categories: 1272 // 1) Those that access the compiler generated .toc sections. 1273 // 2) Those that access the linker allocated got entries. 1274 // lld allocates got entries to symbols on demand. Since we don't try to sort 1275 // the got entries in any way, we don't have to track which objects have 1276 // got-based small code model relocs. The .toc sections get placed after the 1277 // end of the linker allocated .got section and we do sort those so sections 1278 // addressed with small code model relocations come first. 1279 if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type)) 1280 sec.file->ppc64SmallCodeModelTocRelocs = true; 1281 1282 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { 1283 warn("using ifunc symbols when text relocations are allowed may produce " 1284 "a binary that will segfault, if the object file is linked with " 1285 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1286 "you, consider recompiling the object files without -fPIC and " 1287 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1288 "turn off this warning." + 1289 getLocation(sec, sym, offset)); 1290 } 1291 1292 // Read an addend. 1293 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1294 1295 // Relax relocations. 1296 // 1297 // If we know that a PLT entry will be resolved within the same ELF module, we 1298 // can skip PLT access and directly jump to the destination function. For 1299 // example, if we are linking a main executable, all dynamic symbols that can 1300 // be resolved within the executable will actually be resolved that way at 1301 // runtime, because the main executable is always at the beginning of a search 1302 // list. We can leverage that fact. 1303 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1304 if (expr == R_GOT_PC && !isAbsoluteValue(sym)) { 1305 expr = target->adjustRelaxExpr(type, relocatedAddr, expr); 1306 } else { 1307 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1308 // stub type. It should be ignored if optimized to R_PC. 1309 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1310 addend &= ~0x8000; 1311 expr = fromPlt(expr); 1312 } 1313 } 1314 1315 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1316 // uses their addresses, we need GOT or GOTPLT to be created. 1317 // 1318 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1319 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1320 in.gotPlt->hasGotPltOffRel = true; 1321 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1322 expr)) { 1323 in.got->hasGotOffRel = true; 1324 } 1325 1326 // Process some TLS relocations, including relaxing TLS relocations. 1327 // Note that this function does not handle all TLS relocations. 1328 if (unsigned processed = 1329 handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) { 1330 i += (processed - 1); 1331 return; 1332 } 1333 1334 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1335 // direct relocation on through. 1336 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1337 sym.exportDynamic = true; 1338 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); 1339 return; 1340 } 1341 1342 // Non-preemptible ifuncs require special handling. First, handle the usual 1343 // case where the symbol isn't one of these. 1344 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1345 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1346 if (needsPlt(expr) && !sym.isInPlt()) 1347 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1348 1349 // Create a GOT slot if a relocation needs GOT. 1350 if (needsGot(expr)) { 1351 if (config->emachine == EM_MIPS) { 1352 // MIPS ABI has special rules to process GOT entries and doesn't 1353 // require relocation entries for them. A special case is TLS 1354 // relocations. In that case dynamic loader applies dynamic 1355 // relocations to initialize TLS GOT entries. 1356 // See "Global Offset Table" in Chapter 5 in the following document 1357 // for detailed description: 1358 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1359 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1360 } else if (!sym.isInGot()) { 1361 addGotEntry(sym); 1362 } 1363 } 1364 } else { 1365 // Handle a reference to a non-preemptible ifunc. These are special in a 1366 // few ways: 1367 // 1368 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1369 // a fixed value. But assuming that all references to the ifunc are 1370 // GOT-generating or PLT-generating, the handling of an ifunc is 1371 // relatively straightforward. We create a PLT entry in Iplt, which is 1372 // usually at the end of .plt, which makes an indirect call using a 1373 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1374 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1375 // which is usually at the end of .rela.plt. Unlike most relocations in 1376 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1377 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1378 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1379 // .got.plt without requiring a separate GOT entry. 1380 // 1381 // - Despite the fact that an ifunc does not have a fixed value, compilers 1382 // that are not passed -fPIC will assume that they do, and will emit 1383 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1384 // symbol. This means that if a direct relocation to the symbol is 1385 // seen, the linker must set a value for the symbol, and this value must 1386 // be consistent no matter what type of reference is made to the symbol. 1387 // This can be done by creating a PLT entry for the symbol in the way 1388 // described above and making it canonical, that is, making all references 1389 // point to the PLT entry instead of the resolver. In lld we also store 1390 // the address of the PLT entry in the dynamic symbol table, which means 1391 // that the symbol will also have the same value in other modules. 1392 // Because the value loaded from the GOT needs to be consistent with 1393 // the value computed using a direct relocation, a non-preemptible ifunc 1394 // may end up with two GOT entries, one in .got.plt that points to the 1395 // address returned by the resolver and is used only by the PLT entry, 1396 // and another in .got that points to the PLT entry and is used by 1397 // GOT-generating relocations. 1398 // 1399 // - The fact that these symbols do not have a fixed value makes them an 1400 // exception to the general rule that a statically linked executable does 1401 // not require any form of dynamic relocation. To handle these relocations 1402 // correctly, the IRELATIVE relocations are stored in an array which a 1403 // statically linked executable's startup code must enumerate using the 1404 // linker-defined symbols __rela?_iplt_{start,end}. 1405 if (!sym.isInPlt()) { 1406 // Create PLT and GOTPLT slots for the symbol. 1407 sym.isInIplt = true; 1408 1409 // Create a copy of the symbol to use as the target of the IRELATIVE 1410 // relocation in the igotPlt. This is in case we make the PLT canonical 1411 // later, which would overwrite the original symbol. 1412 // 1413 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1414 // that's really needed to create the IRELATIVE is the section and value, 1415 // so ideally we should just need to copy those. 1416 auto *directSym = make<Defined>(cast<Defined>(sym)); 1417 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1418 *directSym); 1419 sym.pltIndex = directSym->pltIndex; 1420 } 1421 if (needsGot(expr)) { 1422 // Redirect GOT accesses to point to the Igot. 1423 // 1424 // This field is also used to keep track of whether we ever needed a GOT 1425 // entry. If we did and we make the PLT canonical later, we'll need to 1426 // create a GOT entry pointing to the PLT entry for Sym. 1427 sym.gotInIgot = true; 1428 } else if (!needsPlt(expr)) { 1429 // Make the ifunc's PLT entry canonical by changing the value of its 1430 // symbol to redirect all references to point to it. 1431 auto &d = cast<Defined>(sym); 1432 d.section = in.iplt; 1433 d.value = sym.pltIndex * target->ipltEntrySize; 1434 d.size = 0; 1435 // It's important to set the symbol type here so that dynamic loaders 1436 // don't try to call the PLT as if it were an ifunc resolver. 1437 d.type = STT_FUNC; 1438 1439 if (sym.gotInIgot) { 1440 // We previously encountered a GOT generating reference that we 1441 // redirected to the Igot. Now that the PLT entry is canonical we must 1442 // clear the redirection to the Igot and add a GOT entry. As we've 1443 // changed the symbol type to STT_FUNC future GOT generating references 1444 // will naturally use this GOT entry. 1445 // 1446 // We don't need to worry about creating a MIPS GOT here because ifuncs 1447 // aren't a thing on MIPS. 1448 sym.gotInIgot = false; 1449 addGotEntry(sym); 1450 } 1451 } 1452 } 1453 1454 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); 1455 } 1456 1457 template <class ELFT, class RelTy> 1458 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1459 OffsetGetter getOffset(sec); 1460 1461 // Not all relocations end up in Sec.Relocations, but a lot do. 1462 sec.relocations.reserve(rels.size()); 1463 1464 for (auto i = rels.begin(), end = rels.end(); i != end;) 1465 scanReloc<ELFT>(sec, getOffset, i, end); 1466 1467 // Sort relocations by offset for more efficient searching for 1468 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1469 if (config->emachine == EM_RISCV || 1470 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1471 llvm::stable_sort(sec.relocations, 1472 [](const Relocation &lhs, const Relocation &rhs) { 1473 return lhs.offset < rhs.offset; 1474 }); 1475 } 1476 1477 template <class ELFT> void scanRelocations(InputSectionBase &s) { 1478 if (s.areRelocsRela) 1479 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1480 else 1481 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1482 } 1483 1484 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1485 // std::merge requires a strict weak ordering. 1486 if (a->outSecOff < b->outSecOff) 1487 return true; 1488 1489 if (a->outSecOff == b->outSecOff) { 1490 auto *ta = dyn_cast<ThunkSection>(a); 1491 auto *tb = dyn_cast<ThunkSection>(b); 1492 1493 // Check if Thunk is immediately before any specific Target 1494 // InputSection for example Mips LA25 Thunks. 1495 if (ta && ta->getTargetInputSection() == b) 1496 return true; 1497 1498 // Place Thunk Sections without specific targets before 1499 // non-Thunk Sections. 1500 if (ta && !tb && !ta->getTargetInputSection()) 1501 return true; 1502 } 1503 1504 return false; 1505 } 1506 1507 // Call Fn on every executable InputSection accessed via the linker script 1508 // InputSectionDescription::Sections. 1509 static void forEachInputSectionDescription( 1510 ArrayRef<OutputSection *> outputSections, 1511 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1512 for (OutputSection *os : outputSections) { 1513 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1514 continue; 1515 for (BaseCommand *bc : os->sectionCommands) 1516 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1517 fn(os, isd); 1518 } 1519 } 1520 1521 // Thunk Implementation 1522 // 1523 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1524 // of code that the linker inserts inbetween a caller and a callee. The thunks 1525 // are added at link time rather than compile time as the decision on whether 1526 // a thunk is needed, such as the caller and callee being out of range, can only 1527 // be made at link time. 1528 // 1529 // It is straightforward to tell given the current state of the program when a 1530 // thunk is needed for a particular call. The more difficult part is that 1531 // the thunk needs to be placed in the program such that the caller can reach 1532 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1533 // the program alters addresses, which can mean more thunks etc. 1534 // 1535 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1536 // The decision to have a ThunkSection act as a container means that we can 1537 // more easily handle the most common case of a single block of contiguous 1538 // Thunks by inserting just a single ThunkSection. 1539 // 1540 // The implementation of Thunks in lld is split across these areas 1541 // Relocations.cpp : Framework for creating and placing thunks 1542 // Thunks.cpp : The code generated for each supported thunk 1543 // Target.cpp : Target specific hooks that the framework uses to decide when 1544 // a thunk is used 1545 // Synthetic.cpp : Implementation of ThunkSection 1546 // Writer.cpp : Iteratively call framework until no more Thunks added 1547 // 1548 // Thunk placement requirements: 1549 // Mips LA25 thunks. These must be placed immediately before the callee section 1550 // We can assume that the caller is in range of the Thunk. These are modelled 1551 // by Thunks that return the section they must precede with 1552 // getTargetInputSection(). 1553 // 1554 // ARM interworking and range extension thunks. These thunks must be placed 1555 // within range of the caller. All implemented ARM thunks can always reach the 1556 // callee as they use an indirect jump via a register that has no range 1557 // restrictions. 1558 // 1559 // Thunk placement algorithm: 1560 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1561 // getTargetInputSection(). 1562 // 1563 // For thunks that must be placed within range of the caller there are many 1564 // possible choices given that the maximum range from the caller is usually 1565 // much larger than the average InputSection size. Desirable properties include: 1566 // - Maximize reuse of thunks by multiple callers 1567 // - Minimize number of ThunkSections to simplify insertion 1568 // - Handle impact of already added Thunks on addresses 1569 // - Simple to understand and implement 1570 // 1571 // In lld for the first pass, we pre-create one or more ThunkSections per 1572 // InputSectionDescription at Target specific intervals. A ThunkSection is 1573 // placed so that the estimated end of the ThunkSection is within range of the 1574 // start of the InputSectionDescription or the previous ThunkSection. For 1575 // example: 1576 // InputSectionDescription 1577 // Section 0 1578 // ... 1579 // Section N 1580 // ThunkSection 0 1581 // Section N + 1 1582 // ... 1583 // Section N + K 1584 // Thunk Section 1 1585 // 1586 // The intention is that we can add a Thunk to a ThunkSection that is well 1587 // spaced enough to service a number of callers without having to do a lot 1588 // of work. An important principle is that it is not an error if a Thunk cannot 1589 // be placed in a pre-created ThunkSection; when this happens we create a new 1590 // ThunkSection placed next to the caller. This allows us to handle the vast 1591 // majority of thunks simply, but also handle rare cases where the branch range 1592 // is smaller than the target specific spacing. 1593 // 1594 // The algorithm is expected to create all the thunks that are needed in a 1595 // single pass, with a small number of programs needing a second pass due to 1596 // the insertion of thunks in the first pass increasing the offset between 1597 // callers and callees that were only just in range. 1598 // 1599 // A consequence of allowing new ThunkSections to be created outside of the 1600 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1601 // range in pass K, are out of range in some pass > K due to the insertion of 1602 // more Thunks in between the caller and callee. When this happens we retarget 1603 // the relocation back to the original target and create another Thunk. 1604 1605 // Remove ThunkSections that are empty, this should only be the initial set 1606 // precreated on pass 0. 1607 1608 // Insert the Thunks for OutputSection OS into their designated place 1609 // in the Sections vector, and recalculate the InputSection output section 1610 // offsets. 1611 // This may invalidate any output section offsets stored outside of InputSection 1612 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1613 forEachInputSectionDescription( 1614 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1615 if (isd->thunkSections.empty()) 1616 return; 1617 1618 // Remove any zero sized precreated Thunks. 1619 llvm::erase_if(isd->thunkSections, 1620 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1621 return ts.first->getSize() == 0; 1622 }); 1623 1624 // ISD->ThunkSections contains all created ThunkSections, including 1625 // those inserted in previous passes. Extract the Thunks created this 1626 // pass and order them in ascending outSecOff. 1627 std::vector<ThunkSection *> newThunks; 1628 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1629 if (ts.second == pass) 1630 newThunks.push_back(ts.first); 1631 llvm::stable_sort(newThunks, 1632 [](const ThunkSection *a, const ThunkSection *b) { 1633 return a->outSecOff < b->outSecOff; 1634 }); 1635 1636 // Merge sorted vectors of Thunks and InputSections by outSecOff 1637 std::vector<InputSection *> tmp; 1638 tmp.reserve(isd->sections.size() + newThunks.size()); 1639 1640 std::merge(isd->sections.begin(), isd->sections.end(), 1641 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1642 mergeCmp); 1643 1644 isd->sections = std::move(tmp); 1645 }); 1646 } 1647 1648 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1649 // is in range of Src. An ISD maps to a range of InputSections described by a 1650 // linker script section pattern such as { .text .text.* }. 1651 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, 1652 InputSectionDescription *isd, 1653 uint32_t type, uint64_t src) { 1654 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1655 ThunkSection *ts = tp.first; 1656 uint64_t tsBase = os->addr + ts->outSecOff; 1657 uint64_t tsLimit = tsBase + ts->getSize(); 1658 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) 1659 return ts; 1660 } 1661 1662 // No suitable ThunkSection exists. This can happen when there is a branch 1663 // with lower range than the ThunkSection spacing or when there are too 1664 // many Thunks. Create a new ThunkSection as close to the InputSection as 1665 // possible. Error if InputSection is so large we cannot place ThunkSection 1666 // anywhere in Range. 1667 uint64_t thunkSecOff = isec->outSecOff; 1668 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { 1669 thunkSecOff = isec->outSecOff + isec->getSize(); 1670 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) 1671 fatal("InputSection too large for range extension thunk " + 1672 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1673 } 1674 return addThunkSection(os, isd, thunkSecOff); 1675 } 1676 1677 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1678 // precedes its Target. 1679 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1680 ThunkSection *ts = thunkedSections.lookup(isec); 1681 if (ts) 1682 return ts; 1683 1684 // Find InputSectionRange within Target Output Section (TOS) that the 1685 // InputSection (IS) that we need to precede is in. 1686 OutputSection *tos = isec->getParent(); 1687 for (BaseCommand *bc : tos->sectionCommands) { 1688 auto *isd = dyn_cast<InputSectionDescription>(bc); 1689 if (!isd || isd->sections.empty()) 1690 continue; 1691 1692 InputSection *first = isd->sections.front(); 1693 InputSection *last = isd->sections.back(); 1694 1695 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1696 continue; 1697 1698 ts = addThunkSection(tos, isd, isec->outSecOff); 1699 thunkedSections[isec] = ts; 1700 return ts; 1701 } 1702 1703 return nullptr; 1704 } 1705 1706 // Create one or more ThunkSections per OS that can be used to place Thunks. 1707 // We attempt to place the ThunkSections using the following desirable 1708 // properties: 1709 // - Within range of the maximum number of callers 1710 // - Minimise the number of ThunkSections 1711 // 1712 // We follow a simple but conservative heuristic to place ThunkSections at 1713 // offsets that are multiples of a Target specific branch range. 1714 // For an InputSectionDescription that is smaller than the range, a single 1715 // ThunkSection at the end of the range will do. 1716 // 1717 // For an InputSectionDescription that is more than twice the size of the range, 1718 // we place the last ThunkSection at range bytes from the end of the 1719 // InputSectionDescription in order to increase the likelihood that the 1720 // distance from a thunk to its target will be sufficiently small to 1721 // allow for the creation of a short thunk. 1722 void ThunkCreator::createInitialThunkSections( 1723 ArrayRef<OutputSection *> outputSections) { 1724 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1725 1726 forEachInputSectionDescription( 1727 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1728 if (isd->sections.empty()) 1729 return; 1730 1731 uint32_t isdBegin = isd->sections.front()->outSecOff; 1732 uint32_t isdEnd = 1733 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1734 uint32_t lastThunkLowerBound = -1; 1735 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1736 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1737 1738 uint32_t isecLimit; 1739 uint32_t prevIsecLimit = isdBegin; 1740 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1741 1742 for (const InputSection *isec : isd->sections) { 1743 isecLimit = isec->outSecOff + isec->getSize(); 1744 if (isecLimit > thunkUpperBound) { 1745 addThunkSection(os, isd, prevIsecLimit); 1746 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1747 } 1748 if (isecLimit > lastThunkLowerBound) 1749 break; 1750 prevIsecLimit = isecLimit; 1751 } 1752 addThunkSection(os, isd, isecLimit); 1753 }); 1754 } 1755 1756 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1757 InputSectionDescription *isd, 1758 uint64_t off) { 1759 auto *ts = make<ThunkSection>(os, off); 1760 ts->partition = os->partition; 1761 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1762 !isd->sections.empty()) { 1763 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1764 // thunks we disturb the base addresses of sections placed after the thunks 1765 // this makes patches we have generated redundant, and may cause us to 1766 // generate more patches as different instructions are now in sensitive 1767 // locations. When we generate more patches we may force more branches to 1768 // go out of range, causing more thunks to be generated. In pathological 1769 // cases this can cause the address dependent content pass not to converge. 1770 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1771 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1772 // which means that adding Thunks to the section does not invalidate 1773 // errata patches for following code. 1774 // Rounding up the size to 4KiB has consequences for code-size and can 1775 // trip up linker script defined assertions. For example the linux kernel 1776 // has an assertion that what LLD represents as an InputSectionDescription 1777 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1778 // We use the heuristic of rounding up the size when both of the following 1779 // conditions are true: 1780 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1781 // accounts for the case where no single InputSectionDescription is 1782 // larger than the OutputSection size. This is conservative but simple. 1783 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1784 // any assertion failures that an InputSectionDescription is < 4 KiB 1785 // in size. 1786 uint64_t isdSize = isd->sections.back()->outSecOff + 1787 isd->sections.back()->getSize() - 1788 isd->sections.front()->outSecOff; 1789 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1790 ts->roundUpSizeForErrata = true; 1791 } 1792 isd->thunkSections.push_back({ts, pass}); 1793 return ts; 1794 } 1795 1796 static bool isThunkSectionCompatible(InputSection *source, 1797 SectionBase *target) { 1798 // We can't reuse thunks in different loadable partitions because they might 1799 // not be loaded. But partition 1 (the main partition) will always be loaded. 1800 if (source->partition != target->partition) 1801 return target->partition == 1; 1802 return true; 1803 } 1804 1805 static int64_t getPCBias(RelType type) { 1806 if (config->emachine != EM_ARM) 1807 return 0; 1808 switch (type) { 1809 case R_ARM_THM_JUMP19: 1810 case R_ARM_THM_JUMP24: 1811 case R_ARM_THM_CALL: 1812 return 4; 1813 default: 1814 return 8; 1815 } 1816 } 1817 1818 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1819 Relocation &rel, uint64_t src) { 1820 std::vector<Thunk *> *thunkVec = nullptr; 1821 int64_t addend = rel.addend + getPCBias(rel.type); 1822 1823 // We use a ((section, offset), addend) pair to find the thunk position if 1824 // possible so that we create only one thunk for aliased symbols or ICFed 1825 // sections. There may be multiple relocations sharing the same (section, 1826 // offset + addend) pair. We may revert the relocation back to its original 1827 // non-Thunk target, so we cannot fold offset + addend. 1828 if (auto *d = dyn_cast<Defined>(rel.sym)) 1829 if (!d->isInPlt() && d->section) 1830 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1831 {d->section->repl, d->value}, addend}]; 1832 if (!thunkVec) 1833 thunkVec = &thunkedSymbols[{rel.sym, addend}]; 1834 1835 // Check existing Thunks for Sym to see if they can be reused 1836 for (Thunk *t : *thunkVec) 1837 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1838 t->isCompatibleWith(*isec, rel) && 1839 target->inBranchRange(rel.type, src, 1840 t->getThunkTargetSym()->getVA(rel.addend) + 1841 getPCBias(rel.type))) 1842 return std::make_pair(t, false); 1843 1844 // No existing compatible Thunk in range, create a new one 1845 Thunk *t = addThunk(*isec, rel); 1846 thunkVec->push_back(t); 1847 return std::make_pair(t, true); 1848 } 1849 1850 // Return true if the relocation target is an in range Thunk. 1851 // Return false if the relocation is not to a Thunk. If the relocation target 1852 // was originally to a Thunk, but is no longer in range we revert the 1853 // relocation back to its original non-Thunk target. 1854 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1855 if (Thunk *t = thunks.lookup(rel.sym)) { 1856 if (target->inBranchRange(rel.type, src, 1857 rel.sym->getVA(rel.addend) + getPCBias(rel.type))) 1858 return true; 1859 rel.sym = &t->destination; 1860 rel.addend = t->addend; 1861 if (rel.sym->isInPlt()) 1862 rel.expr = toPlt(rel.expr); 1863 } 1864 return false; 1865 } 1866 1867 // Process all relocations from the InputSections that have been assigned 1868 // to InputSectionDescriptions and redirect through Thunks if needed. The 1869 // function should be called iteratively until it returns false. 1870 // 1871 // PreConditions: 1872 // All InputSections that may need a Thunk are reachable from 1873 // OutputSectionCommands. 1874 // 1875 // All OutputSections have an address and all InputSections have an offset 1876 // within the OutputSection. 1877 // 1878 // The offsets between caller (relocation place) and callee 1879 // (relocation target) will not be modified outside of createThunks(). 1880 // 1881 // PostConditions: 1882 // If return value is true then ThunkSections have been inserted into 1883 // OutputSections. All relocations that needed a Thunk based on the information 1884 // available to createThunks() on entry have been redirected to a Thunk. Note 1885 // that adding Thunks changes offsets between caller and callee so more Thunks 1886 // may be required. 1887 // 1888 // If return value is false then no more Thunks are needed, and createThunks has 1889 // made no changes. If the target requires range extension thunks, currently 1890 // ARM, then any future change in offset between caller and callee risks a 1891 // relocation out of range error. 1892 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 1893 bool addressesChanged = false; 1894 1895 if (pass == 0 && target->getThunkSectionSpacing()) 1896 createInitialThunkSections(outputSections); 1897 1898 // Create all the Thunks and insert them into synthetic ThunkSections. The 1899 // ThunkSections are later inserted back into InputSectionDescriptions. 1900 // We separate the creation of ThunkSections from the insertion of the 1901 // ThunkSections as ThunkSections are not always inserted into the same 1902 // InputSectionDescription as the caller. 1903 forEachInputSectionDescription( 1904 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1905 for (InputSection *isec : isd->sections) 1906 for (Relocation &rel : isec->relocations) { 1907 uint64_t src = isec->getVA(rel.offset); 1908 1909 // If we are a relocation to an existing Thunk, check if it is 1910 // still in range. If not then Rel will be altered to point to its 1911 // original target so another Thunk can be generated. 1912 if (pass > 0 && normalizeExistingThunk(rel, src)) 1913 continue; 1914 1915 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 1916 *rel.sym, rel.addend)) 1917 continue; 1918 1919 Thunk *t; 1920 bool isNew; 1921 std::tie(t, isNew) = getThunk(isec, rel, src); 1922 1923 if (isNew) { 1924 // Find or create a ThunkSection for the new Thunk 1925 ThunkSection *ts; 1926 if (auto *tis = t->getTargetInputSection()) 1927 ts = getISThunkSec(tis); 1928 else 1929 ts = getISDThunkSec(os, isec, isd, rel.type, src); 1930 ts->addThunk(t); 1931 thunks[t->getThunkTargetSym()] = t; 1932 } 1933 1934 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1935 rel.sym = t->getThunkTargetSym(); 1936 rel.expr = fromPlt(rel.expr); 1937 1938 // On AArch64 and PPC, a jump/call relocation may be encoded as 1939 // STT_SECTION + non-zero addend, clear the addend after 1940 // redirection. 1941 if (config->emachine != EM_MIPS) 1942 rel.addend = -getPCBias(rel.type); 1943 } 1944 1945 for (auto &p : isd->thunkSections) 1946 addressesChanged |= p.first->assignOffsets(); 1947 }); 1948 1949 for (auto &p : thunkedSections) 1950 addressesChanged |= p.second->assignOffsets(); 1951 1952 // Merge all created synthetic ThunkSections back into OutputSection 1953 mergeThunks(outputSections); 1954 ++pass; 1955 return addressesChanged; 1956 } 1957 1958 template void scanRelocations<ELF32LE>(InputSectionBase &); 1959 template void scanRelocations<ELF32BE>(InputSectionBase &); 1960 template void scanRelocations<ELF64LE>(InputSectionBase &); 1961 template void scanRelocations<ELF64BE>(InputSectionBase &); 1962 template void reportUndefinedSymbols<ELF32LE>(); 1963 template void reportUndefinedSymbols<ELF32BE>(); 1964 template void reportUndefinedSymbols<ELF64LE>(); 1965 template void reportUndefinedSymbols<ELF64BE>(); 1966 1967 } // namespace elf 1968 } // namespace lld 1969