1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 const char msg[] = "\n>>> defined in "; 78 if (sym.file) 79 return msg + toString(sym.file); 80 if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 81 return msg + *loc; 82 return ""; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym && !rel.sym->isLocal()) 104 hint = "; references " + lld::toString(*rel.sym); 105 if (!errPlace.srcLoc.empty()) 106 hint += "\n>>> referenced by " + errPlace.srcLoc; 107 if (rel.sym && !rel.sym->isLocal()) 108 hint += getDefinedLocation(*rel.sym); 109 110 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 111 hint += "; consider recompiling with -fdebug-types-section to reduce size " 112 "of debug sections"; 113 114 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 115 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 116 ", " + Twine(max).str() + "]" + hint); 117 } 118 119 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 120 const Twine &msg) { 121 ErrorPlace errPlace = getErrorPlace(loc); 122 std::string hint; 123 if (!sym.getName().empty()) 124 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 125 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 126 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 127 Twine(llvm::maxIntN(n)) + "]" + hint); 128 } 129 130 // Build a bitmask with one bit set for each 64 subset of RelExpr. 131 static constexpr uint64_t buildMask() { return 0; } 132 133 template <typename... Tails> 134 static constexpr uint64_t buildMask(int head, Tails... tails) { 135 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | 136 buildMask(tails...); 137 } 138 139 // Return true if `Expr` is one of `Exprs`. 140 // There are more than 64 but less than 128 RelExprs, so we divide the set of 141 // exprs into [0, 64) and [64, 128) and represent each range as a constant 142 // 64-bit mask. Then we decide which mask to test depending on the value of 143 // expr and use a simple shift and bitwise-and to test for membership. 144 template <RelExpr... Exprs> static bool oneof(RelExpr expr) { 145 assert(0 <= expr && (int)expr < 128 && 146 "RelExpr is too large for 128-bit mask!"); 147 148 if (expr >= 64) 149 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); 150 return (uint64_t(1) << expr) & buildMask(Exprs...); 151 } 152 153 static RelType getMipsPairType(RelType type, bool isLocal) { 154 switch (type) { 155 case R_MIPS_HI16: 156 return R_MIPS_LO16; 157 case R_MIPS_GOT16: 158 // In case of global symbol, the R_MIPS_GOT16 relocation does not 159 // have a pair. Each global symbol has a unique entry in the GOT 160 // and a corresponding instruction with help of the R_MIPS_GOT16 161 // relocation loads an address of the symbol. In case of local 162 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 163 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 164 // relocations handle low 16 bits of the address. That allows 165 // to allocate only one GOT entry for every 64 KBytes of local data. 166 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 167 case R_MICROMIPS_GOT16: 168 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 169 case R_MIPS_PCHI16: 170 return R_MIPS_PCLO16; 171 case R_MICROMIPS_HI16: 172 return R_MICROMIPS_LO16; 173 default: 174 return R_MIPS_NONE; 175 } 176 } 177 178 // True if non-preemptable symbol always has the same value regardless of where 179 // the DSO is loaded. 180 static bool isAbsolute(const Symbol &sym) { 181 if (sym.isUndefWeak()) 182 return true; 183 if (const auto *dr = dyn_cast<Defined>(&sym)) 184 return dr->section == nullptr; // Absolute symbol. 185 return false; 186 } 187 188 static bool isAbsoluteValue(const Symbol &sym) { 189 return isAbsolute(sym) || sym.isTls(); 190 } 191 192 // Returns true if Expr refers a PLT entry. 193 static bool needsPlt(RelExpr expr) { 194 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>( 195 expr); 196 } 197 198 // Returns true if Expr refers a GOT entry. Note that this function 199 // returns false for TLS variables even though they need GOT, because 200 // TLS variables uses GOT differently than the regular variables. 201 static bool needsGot(RelExpr expr) { 202 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 203 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 204 R_AARCH64_GOT_PAGE>(expr); 205 } 206 207 // True if this expression is of the form Sym - X, where X is a position in the 208 // file (PC, or GOT for example). 209 static bool isRelExpr(RelExpr expr) { 210 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 211 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 212 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 213 } 214 215 216 static RelExpr toPlt(RelExpr expr) { 217 switch (expr) { 218 case R_PPC64_CALL: 219 return R_PPC64_CALL_PLT; 220 case R_PC: 221 return R_PLT_PC; 222 case R_ABS: 223 return R_PLT; 224 default: 225 return expr; 226 } 227 } 228 229 static RelExpr fromPlt(RelExpr expr) { 230 // We decided not to use a plt. Optimize a reference to the plt to a 231 // reference to the symbol itself. 232 switch (expr) { 233 case R_PLT_PC: 234 case R_PPC32_PLTREL: 235 return R_PC; 236 case R_PPC64_CALL_PLT: 237 return R_PPC64_CALL; 238 case R_PLT: 239 return R_ABS; 240 case R_PLT_GOTPLT: 241 return R_GOTPLTREL; 242 default: 243 return expr; 244 } 245 } 246 247 // Returns true if a given shared symbol is in a read-only segment in a DSO. 248 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 249 using Elf_Phdr = typename ELFT::Phdr; 250 251 // Determine if the symbol is read-only by scanning the DSO's program headers. 252 const SharedFile &file = ss.getFile(); 253 for (const Elf_Phdr &phdr : 254 check(file.template getObj<ELFT>().program_headers())) 255 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 256 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 257 ss.value < phdr.p_vaddr + phdr.p_memsz) 258 return true; 259 return false; 260 } 261 262 // Returns symbols at the same offset as a given symbol, including SS itself. 263 // 264 // If two or more symbols are at the same offset, and at least one of 265 // them are copied by a copy relocation, all of them need to be copied. 266 // Otherwise, they would refer to different places at runtime. 267 template <class ELFT> 268 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 269 using Elf_Sym = typename ELFT::Sym; 270 271 SharedFile &file = ss.getFile(); 272 273 SmallSet<SharedSymbol *, 4> ret; 274 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 275 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 276 s.getType() == STT_TLS || s.st_value != ss.value) 277 continue; 278 StringRef name = check(s.getName(file.getStringTable())); 279 Symbol *sym = symtab->find(name); 280 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 281 ret.insert(alias); 282 } 283 284 // The loop does not check SHT_GNU_verneed, so ret does not contain 285 // non-default version symbols. If ss has a non-default version, ret won't 286 // contain ss. Just add ss unconditionally. If a non-default version alias is 287 // separately copy relocated, it and ss will have different addresses. 288 // Fortunately this case is impractical and fails with GNU ld as well. 289 ret.insert(&ss); 290 return ret; 291 } 292 293 // When a symbol is copy relocated or we create a canonical plt entry, it is 294 // effectively a defined symbol. In the case of copy relocation the symbol is 295 // in .bss and in the case of a canonical plt entry it is in .plt. This function 296 // replaces the existing symbol with a Defined pointing to the appropriate 297 // location. 298 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 299 uint64_t size) { 300 Symbol old = sym; 301 302 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 303 sym.type, value, size, sec}); 304 305 sym.pltIndex = old.pltIndex; 306 sym.gotIndex = old.gotIndex; 307 sym.verdefIndex = old.verdefIndex; 308 sym.exportDynamic = true; 309 sym.isUsedInRegularObj = true; 310 } 311 312 // Reserve space in .bss or .bss.rel.ro for copy relocation. 313 // 314 // The copy relocation is pretty much a hack. If you use a copy relocation 315 // in your program, not only the symbol name but the symbol's size, RW/RO 316 // bit and alignment become part of the ABI. In addition to that, if the 317 // symbol has aliases, the aliases become part of the ABI. That's subtle, 318 // but if you violate that implicit ABI, that can cause very counter- 319 // intuitive consequences. 320 // 321 // So, what is the copy relocation? It's for linking non-position 322 // independent code to DSOs. In an ideal world, all references to data 323 // exported by DSOs should go indirectly through GOT. But if object files 324 // are compiled as non-PIC, all data references are direct. There is no 325 // way for the linker to transform the code to use GOT, as machine 326 // instructions are already set in stone in object files. This is where 327 // the copy relocation takes a role. 328 // 329 // A copy relocation instructs the dynamic linker to copy data from a DSO 330 // to a specified address (which is usually in .bss) at load-time. If the 331 // static linker (that's us) finds a direct data reference to a DSO 332 // symbol, it creates a copy relocation, so that the symbol can be 333 // resolved as if it were in .bss rather than in a DSO. 334 // 335 // As you can see in this function, we create a copy relocation for the 336 // dynamic linker, and the relocation contains not only symbol name but 337 // various other information about the symbol. So, such attributes become a 338 // part of the ABI. 339 // 340 // Note for application developers: I can give you a piece of advice if 341 // you are writing a shared library. You probably should export only 342 // functions from your library. You shouldn't export variables. 343 // 344 // As an example what can happen when you export variables without knowing 345 // the semantics of copy relocations, assume that you have an exported 346 // variable of type T. It is an ABI-breaking change to add new members at 347 // end of T even though doing that doesn't change the layout of the 348 // existing members. That's because the space for the new members are not 349 // reserved in .bss unless you recompile the main program. That means they 350 // are likely to overlap with other data that happens to be laid out next 351 // to the variable in .bss. This kind of issue is sometimes very hard to 352 // debug. What's a solution? Instead of exporting a variable V from a DSO, 353 // define an accessor getV(). 354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 355 // Copy relocation against zero-sized symbol doesn't make sense. 356 uint64_t symSize = ss.getSize(); 357 if (symSize == 0 || ss.alignment == 0) 358 fatal("cannot create a copy relocation for symbol " + toString(ss)); 359 360 // See if this symbol is in a read-only segment. If so, preserve the symbol's 361 // memory protection by reserving space in the .bss.rel.ro section. 362 bool isRO = isReadOnly<ELFT>(ss); 363 BssSection *sec = 364 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 365 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 366 367 // At this point, sectionBases has been migrated to sections. Append sec to 368 // sections. 369 if (osec->sectionCommands.empty() || 370 !isa<InputSectionDescription>(osec->sectionCommands.back())) 371 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 372 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 373 isd->sections.push_back(sec); 374 osec->commitSection(sec); 375 376 // Look through the DSO's dynamic symbol table for aliases and create a 377 // dynamic symbol for each one. This causes the copy relocation to correctly 378 // interpose any aliases. 379 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 380 replaceWithDefined(*sym, sec, 0, sym->size); 381 382 mainPart->relaDyn->addSymbolReloc(target->copyRel, sec, 0, ss); 383 } 384 385 // MIPS has an odd notion of "paired" relocations to calculate addends. 386 // For example, if a relocation is of R_MIPS_HI16, there must be a 387 // R_MIPS_LO16 relocation after that, and an addend is calculated using 388 // the two relocations. 389 template <class ELFT, class RelTy> 390 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 391 InputSectionBase &sec, RelExpr expr, 392 bool isLocal) { 393 if (expr == R_MIPS_GOTREL && isLocal) 394 return sec.getFile<ELFT>()->mipsGp0; 395 396 // The ABI says that the paired relocation is used only for REL. 397 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 398 if (RelTy::IsRela) 399 return 0; 400 401 RelType type = rel.getType(config->isMips64EL); 402 uint32_t pairTy = getMipsPairType(type, isLocal); 403 if (pairTy == R_MIPS_NONE) 404 return 0; 405 406 const uint8_t *buf = sec.data().data(); 407 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 408 409 // To make things worse, paired relocations might not be contiguous in 410 // the relocation table, so we need to do linear search. *sigh* 411 for (const RelTy *ri = &rel; ri != end; ++ri) 412 if (ri->getType(config->isMips64EL) == pairTy && 413 ri->getSymbol(config->isMips64EL) == symIndex) 414 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 415 416 warn("can't find matching " + toString(pairTy) + " relocation for " + 417 toString(type)); 418 return 0; 419 } 420 421 // Returns an addend of a given relocation. If it is RELA, an addend 422 // is in a relocation itself. If it is REL, we need to read it from an 423 // input section. 424 template <class ELFT, class RelTy> 425 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 426 InputSectionBase &sec, RelExpr expr, 427 bool isLocal) { 428 int64_t addend; 429 RelType type = rel.getType(config->isMips64EL); 430 431 if (RelTy::IsRela) { 432 addend = getAddend<ELFT>(rel); 433 } else { 434 const uint8_t *buf = sec.data().data(); 435 addend = target->getImplicitAddend(buf + rel.r_offset, type); 436 } 437 438 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 439 addend += getPPC64TocBase(); 440 if (config->emachine == EM_MIPS) 441 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 442 443 return addend; 444 } 445 446 // Custom error message if Sym is defined in a discarded section. 447 template <class ELFT> 448 static std::string maybeReportDiscarded(Undefined &sym) { 449 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 450 if (!file || !sym.discardedSecIdx || 451 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 452 return ""; 453 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 454 CHECK(file->getObj().sections(), file); 455 456 std::string msg; 457 if (sym.type == ELF::STT_SECTION) { 458 msg = "relocation refers to a discarded section: "; 459 msg += CHECK( 460 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 461 } else { 462 msg = "relocation refers to a symbol in a discarded section: " + 463 toString(sym); 464 } 465 msg += "\n>>> defined in " + toString(file); 466 467 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 468 if (elfSec.sh_type != SHT_GROUP) 469 return msg; 470 471 // If the discarded section is a COMDAT. 472 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 473 if (const InputFile *prevailing = 474 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 475 msg += "\n>>> section group signature: " + signature.str() + 476 "\n>>> prevailing definition is in " + toString(prevailing); 477 return msg; 478 } 479 480 // Undefined diagnostics are collected in a vector and emitted once all of 481 // them are known, so that some postprocessing on the list of undefined symbols 482 // can happen before lld emits diagnostics. 483 struct UndefinedDiag { 484 Symbol *sym; 485 struct Loc { 486 InputSectionBase *sec; 487 uint64_t offset; 488 }; 489 std::vector<Loc> locs; 490 bool isWarning; 491 }; 492 493 static std::vector<UndefinedDiag> undefs; 494 495 // Check whether the definition name def is a mangled function name that matches 496 // the reference name ref. 497 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 498 llvm::ItaniumPartialDemangler d; 499 std::string name = def.str(); 500 if (d.partialDemangle(name.c_str())) 501 return false; 502 char *buf = d.getFunctionName(nullptr, nullptr); 503 if (!buf) 504 return false; 505 bool ret = ref == buf; 506 free(buf); 507 return ret; 508 } 509 510 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 511 // the suggested symbol, which is either in the symbol table, or in the same 512 // file of sym. 513 template <class ELFT> 514 static const Symbol *getAlternativeSpelling(const Undefined &sym, 515 std::string &pre_hint, 516 std::string &post_hint) { 517 DenseMap<StringRef, const Symbol *> map; 518 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 519 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 520 // will give an error. Don't suggest an alternative spelling. 521 if (file && sym.discardedSecIdx != 0 && 522 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 523 return nullptr; 524 525 // Build a map of local defined symbols. 526 for (const Symbol *s : sym.file->getSymbols()) 527 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 528 map.try_emplace(s->getName(), s); 529 } 530 531 auto suggest = [&](StringRef newName) -> const Symbol * { 532 // If defined locally. 533 if (const Symbol *s = map.lookup(newName)) 534 return s; 535 536 // If in the symbol table and not undefined. 537 if (const Symbol *s = symtab->find(newName)) 538 if (!s->isUndefined()) 539 return s; 540 541 return nullptr; 542 }; 543 544 // This loop enumerates all strings of Levenshtein distance 1 as typo 545 // correction candidates and suggests the one that exists as a non-undefined 546 // symbol. 547 StringRef name = sym.getName(); 548 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 549 // Insert a character before name[i]. 550 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 551 for (char c = '0'; c <= 'z'; ++c) { 552 newName[i] = c; 553 if (const Symbol *s = suggest(newName)) 554 return s; 555 } 556 if (i == e) 557 break; 558 559 // Substitute name[i]. 560 newName = std::string(name); 561 for (char c = '0'; c <= 'z'; ++c) { 562 newName[i] = c; 563 if (const Symbol *s = suggest(newName)) 564 return s; 565 } 566 567 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 568 // common. 569 if (i + 1 < e) { 570 newName[i] = name[i + 1]; 571 newName[i + 1] = name[i]; 572 if (const Symbol *s = suggest(newName)) 573 return s; 574 } 575 576 // Delete name[i]. 577 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 578 if (const Symbol *s = suggest(newName)) 579 return s; 580 } 581 582 // Case mismatch, e.g. Foo vs FOO. 583 for (auto &it : map) 584 if (name.equals_insensitive(it.first)) 585 return it.second; 586 for (Symbol *sym : symtab->symbols()) 587 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 588 return sym; 589 590 // The reference may be a mangled name while the definition is not. Suggest a 591 // missing extern "C". 592 if (name.startswith("_Z")) { 593 std::string buf = name.str(); 594 llvm::ItaniumPartialDemangler d; 595 if (!d.partialDemangle(buf.c_str())) 596 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 597 const Symbol *s = suggest(buf); 598 free(buf); 599 if (s) { 600 pre_hint = ": extern \"C\" "; 601 return s; 602 } 603 } 604 } else { 605 const Symbol *s = nullptr; 606 for (auto &it : map) 607 if (canSuggestExternCForCXX(name, it.first)) { 608 s = it.second; 609 break; 610 } 611 if (!s) 612 for (Symbol *sym : symtab->symbols()) 613 if (canSuggestExternCForCXX(name, sym->getName())) { 614 s = sym; 615 break; 616 } 617 if (s) { 618 pre_hint = " to declare "; 619 post_hint = " as extern \"C\"?"; 620 return s; 621 } 622 } 623 624 return nullptr; 625 } 626 627 template <class ELFT> 628 static void reportUndefinedSymbol(const UndefinedDiag &undef, 629 bool correctSpelling) { 630 Symbol &sym = *undef.sym; 631 632 auto visibility = [&]() -> std::string { 633 switch (sym.visibility) { 634 case STV_INTERNAL: 635 return "internal "; 636 case STV_HIDDEN: 637 return "hidden "; 638 case STV_PROTECTED: 639 return "protected "; 640 default: 641 return ""; 642 } 643 }; 644 645 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 646 if (msg.empty()) 647 msg = "undefined " + visibility() + "symbol: " + toString(sym); 648 649 const size_t maxUndefReferences = 3; 650 size_t i = 0; 651 for (UndefinedDiag::Loc l : undef.locs) { 652 if (i >= maxUndefReferences) 653 break; 654 InputSectionBase &sec = *l.sec; 655 uint64_t offset = l.offset; 656 657 msg += "\n>>> referenced by "; 658 std::string src = sec.getSrcMsg(sym, offset); 659 if (!src.empty()) 660 msg += src + "\n>>> "; 661 msg += sec.getObjMsg(offset); 662 i++; 663 } 664 665 if (i < undef.locs.size()) 666 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 667 .str(); 668 669 if (correctSpelling) { 670 std::string pre_hint = ": ", post_hint; 671 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 672 cast<Undefined>(sym), pre_hint, post_hint)) { 673 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 674 if (corrected->file) 675 msg += "\n>>> defined in: " + toString(corrected->file); 676 } 677 } 678 679 if (sym.getName().startswith("_ZTV")) 680 msg += 681 "\n>>> the vtable symbol may be undefined because the class is missing " 682 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 683 684 if (undef.isWarning) 685 warn(msg); 686 else 687 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 688 } 689 690 template <class ELFT> void elf::reportUndefinedSymbols() { 691 // Find the first "undefined symbol" diagnostic for each diagnostic, and 692 // collect all "referenced from" lines at the first diagnostic. 693 DenseMap<Symbol *, UndefinedDiag *> firstRef; 694 for (UndefinedDiag &undef : undefs) { 695 assert(undef.locs.size() == 1); 696 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 697 canon->locs.push_back(undef.locs[0]); 698 undef.locs.clear(); 699 } else 700 firstRef[undef.sym] = &undef; 701 } 702 703 // Enable spell corrector for the first 2 diagnostics. 704 for (auto it : enumerate(undefs)) 705 if (!it.value().locs.empty()) 706 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 707 undefs.clear(); 708 } 709 710 // Report an undefined symbol if necessary. 711 // Returns true if the undefined symbol will produce an error message. 712 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 713 uint64_t offset) { 714 if (!sym.isUndefined()) 715 return false; 716 // If versioned, issue an error (even if the symbol is weak) because we don't 717 // know the defining filename which is required to construct a Verneed entry. 718 if (*sym.getVersionSuffix() == '@') { 719 undefs.push_back({&sym, {{&sec, offset}}, false}); 720 return true; 721 } 722 if (sym.isWeak()) 723 return false; 724 725 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 726 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 727 return false; 728 729 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 730 // which references a switch table in a discarded .rodata/.text section. The 731 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 732 // spec says references from outside the group to a STB_LOCAL symbol are not 733 // allowed. Work around the bug. 734 // 735 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 736 // because .LC0-.LTOC is not representable if the two labels are in different 737 // .got2 738 if (cast<Undefined>(sym).discardedSecIdx != 0 && 739 (sec.name == ".got2" || sec.name == ".toc")) 740 return false; 741 742 bool isWarning = 743 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 744 config->noinhibitExec; 745 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 746 return !isWarning; 747 } 748 749 // MIPS N32 ABI treats series of successive relocations with the same offset 750 // as a single relocation. The similar approach used by N64 ABI, but this ABI 751 // packs all relocations into the single relocation record. Here we emulate 752 // this for the N32 ABI. Iterate over relocation with the same offset and put 753 // theirs types into the single bit-set. 754 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 755 RelType type = 0; 756 uint64_t offset = rel->r_offset; 757 758 int n = 0; 759 while (rel != end && rel->r_offset == offset) 760 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 761 return type; 762 } 763 764 // .eh_frame sections are mergeable input sections, so their input 765 // offsets are not linearly mapped to output section. For each input 766 // offset, we need to find a section piece containing the offset and 767 // add the piece's base address to the input offset to compute the 768 // output offset. That isn't cheap. 769 // 770 // This class is to speed up the offset computation. When we process 771 // relocations, we access offsets in the monotonically increasing 772 // order. So we can optimize for that access pattern. 773 // 774 // For sections other than .eh_frame, this class doesn't do anything. 775 namespace { 776 class OffsetGetter { 777 public: 778 explicit OffsetGetter(InputSectionBase &sec) { 779 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 780 pieces = eh->pieces; 781 } 782 783 // Translates offsets in input sections to offsets in output sections. 784 // Given offset must increase monotonically. We assume that Piece is 785 // sorted by inputOff. 786 uint64_t get(uint64_t off) { 787 if (pieces.empty()) 788 return off; 789 790 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 791 ++i; 792 if (i == pieces.size()) 793 fatal(".eh_frame: relocation is not in any piece"); 794 795 // Pieces must be contiguous, so there must be no holes in between. 796 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 797 798 // Offset -1 means that the piece is dead (i.e. garbage collected). 799 if (pieces[i].outputOff == -1) 800 return -1; 801 return pieces[i].outputOff + off - pieces[i].inputOff; 802 } 803 804 private: 805 ArrayRef<EhSectionPiece> pieces; 806 size_t i = 0; 807 }; 808 } // namespace 809 810 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 811 Symbol &sym, int64_t addend, RelExpr expr, 812 RelType type) { 813 Partition &part = isec->getPartition(); 814 815 // Add a relative relocation. If relrDyn section is enabled, and the 816 // relocation offset is guaranteed to be even, add the relocation to 817 // the relrDyn section, otherwise add it to the relaDyn section. 818 // relrDyn sections don't support odd offsets. Also, relrDyn sections 819 // don't store the addend values, so we must write it to the relocated 820 // address. 821 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 822 isec->relocations.push_back({expr, type, offsetInSec, addend, &sym}); 823 part.relrDyn->relocs.push_back({isec, offsetInSec}); 824 return; 825 } 826 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym, 827 addend, type, expr); 828 } 829 830 template <class PltSection, class GotPltSection> 831 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 832 RelocationBaseSection *rel, RelType type, Symbol &sym) { 833 plt->addEntry(sym); 834 gotPlt->addEntry(sym); 835 rel->addReloc({type, gotPlt, sym.getGotPltOffset(), 836 sym.isPreemptible ? DynamicReloc::AgainstSymbol 837 : DynamicReloc::AddendOnlyWithTargetVA, 838 sym, 0, R_ABS}); 839 } 840 841 static void addGotEntry(Symbol &sym) { 842 in.got->addEntry(sym); 843 uint64_t off = sym.getGotOffset(); 844 845 // If preemptible, emit a GLOB_DAT relocation. 846 if (sym.isPreemptible) { 847 mainPart->relaDyn->addReloc({target->gotRel, in.got, off, 848 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 849 return; 850 } 851 852 // Otherwise, the value is either a link-time constant or the load base 853 // plus a constant. 854 if (!config->isPic || isAbsolute(sym)) 855 in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym}); 856 else 857 addRelativeReloc(in.got, off, sym, 0, R_ABS, target->symbolicRel); 858 } 859 860 static void addTpOffsetGotEntry(Symbol &sym) { 861 in.got->addEntry(sym); 862 uint64_t off = sym.getGotOffset(); 863 if (!sym.isPreemptible && !config->isPic) { 864 in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym}); 865 return; 866 } 867 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 868 target->tlsGotRel, in.got, off, sym, target->symbolicRel); 869 } 870 871 // Return true if we can define a symbol in the executable that 872 // contains the value/function of a symbol defined in a shared 873 // library. 874 static bool canDefineSymbolInExecutable(Symbol &sym) { 875 // If the symbol has default visibility the symbol defined in the 876 // executable will preempt it. 877 // Note that we want the visibility of the shared symbol itself, not 878 // the visibility of the symbol in the output file we are producing. That is 879 // why we use Sym.stOther. 880 if ((sym.stOther & 0x3) == STV_DEFAULT) 881 return true; 882 883 // If we are allowed to break address equality of functions, defining 884 // a plt entry will allow the program to call the function in the 885 // .so, but the .so and the executable will no agree on the address 886 // of the function. Similar logic for objects. 887 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 888 (sym.isObject() && config->ignoreDataAddressEquality)); 889 } 890 891 // Returns true if a given relocation can be computed at link-time. 892 // This only handles relocation types expected in processRelocAux. 893 // 894 // For instance, we know the offset from a relocation to its target at 895 // link-time if the relocation is PC-relative and refers a 896 // non-interposable function in the same executable. This function 897 // will return true for such relocation. 898 // 899 // If this function returns false, that means we need to emit a 900 // dynamic relocation so that the relocation will be fixed at load-time. 901 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 902 InputSectionBase &s, uint64_t relOff) { 903 // These expressions always compute a constant 904 if (oneof<R_GOTPLT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, 905 R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, 906 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 907 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT, 908 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e)) 909 return true; 910 911 // These never do, except if the entire file is position dependent or if 912 // only the low bits are used. 913 if (e == R_GOT || e == R_PLT) 914 return target->usesOnlyLowPageBits(type) || !config->isPic; 915 916 if (sym.isPreemptible) 917 return false; 918 if (!config->isPic) 919 return true; 920 921 // The size of a non preemptible symbol is a constant. 922 if (e == R_SIZE) 923 return true; 924 925 // For the target and the relocation, we want to know if they are 926 // absolute or relative. 927 bool absVal = isAbsoluteValue(sym); 928 bool relE = isRelExpr(e); 929 if (absVal && !relE) 930 return true; 931 if (!absVal && relE) 932 return true; 933 if (!absVal && !relE) 934 return target->usesOnlyLowPageBits(type); 935 936 assert(absVal && relE); 937 938 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 939 // in PIC mode. This is a little strange, but it allows us to link function 940 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 941 // Normally such a call will be guarded with a comparison, which will load a 942 // zero from the GOT. 943 if (sym.isUndefWeak()) 944 return true; 945 946 // We set the final symbols values for linker script defined symbols later. 947 // They always can be computed as a link time constant. 948 if (sym.scriptDefined) 949 return true; 950 951 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 952 toString(sym) + getLocation(s, sym, relOff)); 953 return true; 954 } 955 956 // The reason we have to do this early scan is as follows 957 // * To mmap the output file, we need to know the size 958 // * For that, we need to know how many dynamic relocs we will have. 959 // It might be possible to avoid this by outputting the file with write: 960 // * Write the allocated output sections, computing addresses. 961 // * Apply relocations, recording which ones require a dynamic reloc. 962 // * Write the dynamic relocations. 963 // * Write the rest of the file. 964 // This would have some drawbacks. For example, we would only know if .rela.dyn 965 // is needed after applying relocations. If it is, it will go after rw and rx 966 // sections. Given that it is ro, we will need an extra PT_LOAD. This 967 // complicates things for the dynamic linker and means we would have to reserve 968 // space for the extra PT_LOAD even if we end up not using it. 969 template <class ELFT> 970 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 971 uint64_t offset, Symbol &sym, int64_t addend) { 972 // If the relocation is known to be a link-time constant, we know no dynamic 973 // relocation will be created, pass the control to relocateAlloc() or 974 // relocateNonAlloc() to resolve it. 975 // 976 // The behavior of an undefined weak reference is implementation defined. For 977 // non-link-time constants, we resolve relocations statically (let 978 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 979 // relocations for -pie and -shared. 980 // 981 // The general expectation of -no-pie static linking is that there is no 982 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 983 // -shared matches the spirit of its -z undefs default. -pie has freedom on 984 // choices, and we choose dynamic relocations to be consistent with the 985 // handling of GOT-generating relocations. 986 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 987 (!config->isPic && sym.isUndefWeak())) { 988 sec.relocations.push_back({expr, type, offset, addend, &sym}); 989 return; 990 } 991 992 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 993 if (canWrite) { 994 RelType rel = target->getDynRel(type); 995 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 996 addRelativeReloc(&sec, offset, sym, addend, expr, type); 997 return; 998 } else if (rel != 0) { 999 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1000 rel = target->relativeRel; 1001 sec.getPartition().relaDyn->addSymbolReloc(rel, &sec, offset, sym, addend, 1002 type); 1003 1004 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1005 // While regular ABI uses dynamic relocations to fill up GOT entries 1006 // MIPS ABI requires dynamic linker to fills up GOT entries using 1007 // specially sorted dynamic symbol table. This affects even dynamic 1008 // relocations against symbols which do not require GOT entries 1009 // creation explicitly, i.e. do not have any GOT-relocations. So if 1010 // a preemptible symbol has a dynamic relocation we anyway have 1011 // to create a GOT entry for it. 1012 // If a non-preemptible symbol has a dynamic relocation against it, 1013 // dynamic linker takes it st_value, adds offset and writes down 1014 // result of the dynamic relocation. In case of preemptible symbol 1015 // dynamic linker performs symbol resolution, writes the symbol value 1016 // to the GOT entry and reads the GOT entry when it needs to perform 1017 // a dynamic relocation. 1018 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1019 if (config->emachine == EM_MIPS) 1020 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1021 return; 1022 } 1023 } 1024 1025 // When producing an executable, we can perform copy relocations (for 1026 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1027 if (!config->shared) { 1028 if (!canDefineSymbolInExecutable(sym)) { 1029 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1030 getLocation(sec, sym, offset)); 1031 return; 1032 } 1033 1034 if (sym.isObject()) { 1035 // Produce a copy relocation. 1036 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1037 if (!config->zCopyreloc) 1038 error("unresolvable relocation " + toString(type) + 1039 " against symbol '" + toString(*ss) + 1040 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1041 getLocation(sec, sym, offset)); 1042 addCopyRelSymbol<ELFT>(*ss); 1043 } 1044 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1045 return; 1046 } 1047 1048 // This handles a non PIC program call to function in a shared library. In 1049 // an ideal world, we could just report an error saying the relocation can 1050 // overflow at runtime. In the real world with glibc, crt1.o has a 1051 // R_X86_64_PC32 pointing to libc.so. 1052 // 1053 // The general idea on how to handle such cases is to create a PLT entry and 1054 // use that as the function value. 1055 // 1056 // For the static linking part, we just return a plt expr and everything 1057 // else will use the PLT entry as the address. 1058 // 1059 // The remaining problem is making sure pointer equality still works. We 1060 // need the help of the dynamic linker for that. We let it know that we have 1061 // a direct reference to a so symbol by creating an undefined symbol with a 1062 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1063 // the value of the symbol we created. This is true even for got entries, so 1064 // pointer equality is maintained. To avoid an infinite loop, the only entry 1065 // that points to the real function is a dedicated got entry used by the 1066 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1067 // R_386_JMP_SLOT, etc). 1068 1069 // For position independent executable on i386, the plt entry requires ebx 1070 // to be set. This causes two problems: 1071 // * If some code has a direct reference to a function, it was probably 1072 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1073 // * If a library definition gets preempted to the executable, it will have 1074 // the wrong ebx value. 1075 if (sym.isFunc()) { 1076 if (config->pie && config->emachine == EM_386) 1077 errorOrWarn("symbol '" + toString(sym) + 1078 "' cannot be preempted; recompile with -fPIE" + 1079 getLocation(sec, sym, offset)); 1080 if (!sym.isInPlt()) 1081 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1082 if (!sym.isDefined()) { 1083 replaceWithDefined( 1084 sym, in.plt, 1085 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1086 if (config->emachine == EM_PPC) { 1087 // PPC32 canonical PLT entries are at the beginning of .glink 1088 cast<Defined>(sym).value = in.plt->headerSize; 1089 in.plt->headerSize += 16; 1090 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1091 } 1092 } 1093 sym.needsPltAddr = true; 1094 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1095 return; 1096 } 1097 } 1098 1099 errorOrWarn("relocation " + toString(type) + " cannot be used against " + 1100 (sym.getName().empty() ? "local symbol" 1101 : "symbol '" + toString(sym) + "'") + 1102 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1103 } 1104 1105 // This function is similar to the `handleTlsRelocation`. MIPS does not 1106 // support any relaxations for TLS relocations so by factoring out MIPS 1107 // handling in to the separate function we can simplify the code and do not 1108 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1109 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1110 // without dynamic relocations. 1111 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1112 InputSectionBase &c, uint64_t offset, 1113 int64_t addend, RelExpr expr) { 1114 if (expr == R_MIPS_TLSLD) { 1115 in.mipsGot->addTlsIndex(*c.file); 1116 c.relocations.push_back({expr, type, offset, addend, &sym}); 1117 return 1; 1118 } 1119 if (expr == R_MIPS_TLSGD) { 1120 in.mipsGot->addDynTlsEntry(*c.file, sym); 1121 c.relocations.push_back({expr, type, offset, addend, &sym}); 1122 return 1; 1123 } 1124 return 0; 1125 } 1126 1127 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1128 // require the generation of a pair of GOT entries that have associated dynamic 1129 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1130 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1131 // symbol in TLS block. 1132 // 1133 // Returns the number of relocations processed. 1134 template <class ELFT> 1135 static unsigned 1136 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 1137 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 1138 if (!sym.isTls()) 1139 return 0; 1140 1141 if (config->emachine == EM_MIPS) 1142 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1143 1144 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1145 R_TLSDESC_GOTPLT>(expr) && 1146 config->shared) { 1147 if (in.got->addDynTlsEntry(sym)) { 1148 uint64_t off = in.got->getGlobalDynOffset(sym); 1149 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1150 target->tlsDescRel, in.got, off, sym, target->tlsDescRel); 1151 } 1152 if (expr != R_TLSDESC_CALL) 1153 c.relocations.push_back({expr, type, offset, addend, &sym}); 1154 return 1; 1155 } 1156 1157 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For 1158 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1159 // relaxation as well. 1160 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 1161 config->emachine != EM_HEXAGON && 1162 config->emachine != EM_RISCV && 1163 !c.file->ppc64DisableTLSRelax; 1164 1165 // If we are producing an executable and the symbol is non-preemptable, it 1166 // must be defined and the code sequence can be relaxed to use Local-Exec. 1167 // 1168 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1169 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1170 // because them are always 1. This may be necessary for static linking as 1171 // DTPMOD may not be expected at load time. 1172 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1173 1174 // Local Dynamic is for access to module local TLS variables, while still 1175 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1176 // module index, with a special value of 0 for the current module. GOT[e1] is 1177 // unused. There only needs to be one module index entry. 1178 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 1179 expr)) { 1180 // Local-Dynamic relocs can be relaxed to Local-Exec. 1181 if (toExecRelax) { 1182 c.relocations.push_back( 1183 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset, 1184 addend, &sym}); 1185 return target->getTlsGdRelaxSkip(type); 1186 } 1187 if (expr == R_TLSLD_HINT) 1188 return 1; 1189 if (in.got->addTlsIndex()) { 1190 if (isLocalInExecutable) 1191 in.got->relocations.push_back( 1192 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 1193 else 1194 mainPart->relaDyn->addReloc( 1195 {target->tlsModuleIndexRel, in.got, in.got->getTlsIndexOff()}); 1196 } 1197 c.relocations.push_back({expr, type, offset, addend, &sym}); 1198 return 1; 1199 } 1200 1201 // Local-Dynamic relocs can be relaxed to Local-Exec. 1202 if (expr == R_DTPREL) { 1203 if (toExecRelax) 1204 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); 1205 c.relocations.push_back({expr, type, offset, addend, &sym}); 1206 return 1; 1207 } 1208 1209 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1210 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 1211 if (expr == R_TLSLD_GOT_OFF) { 1212 if (!sym.isInGot()) { 1213 in.got->addEntry(sym); 1214 uint64_t off = sym.getGotOffset(); 1215 in.got->relocations.push_back( 1216 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 1217 } 1218 c.relocations.push_back({expr, type, offset, addend, &sym}); 1219 return 1; 1220 } 1221 1222 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1223 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 1224 if (!toExecRelax) { 1225 if (in.got->addDynTlsEntry(sym)) { 1226 uint64_t off = in.got->getGlobalDynOffset(sym); 1227 1228 if (isLocalInExecutable) 1229 // Write one to the GOT slot. 1230 in.got->relocations.push_back( 1231 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 1232 else 1233 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, in.got, 1234 off, sym); 1235 1236 // If the symbol is preemptible we need the dynamic linker to write 1237 // the offset too. 1238 uint64_t offsetOff = off + config->wordsize; 1239 if (sym.isPreemptible) 1240 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, in.got, 1241 offsetOff, sym); 1242 else 1243 in.got->relocations.push_back( 1244 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1245 } 1246 c.relocations.push_back({expr, type, offset, addend, &sym}); 1247 return 1; 1248 } 1249 1250 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 1251 // depending on the symbol being locally defined or not. 1252 if (sym.isPreemptible) { 1253 c.relocations.push_back( 1254 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset, 1255 addend, &sym}); 1256 if (!sym.isInGot()) { 1257 in.got->addEntry(sym); 1258 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, in.got, 1259 sym.getGotOffset(), sym); 1260 } 1261 } else { 1262 c.relocations.push_back( 1263 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset, 1264 addend, &sym}); 1265 } 1266 return target->getTlsGdRelaxSkip(type); 1267 } 1268 1269 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 1270 R_TLSIE_HINT>(expr)) { 1271 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 1272 // defined. 1273 if (toExecRelax && isLocalInExecutable) { 1274 c.relocations.push_back( 1275 {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1276 } else if (expr != R_TLSIE_HINT) { 1277 if (!sym.isInGot()) 1278 addTpOffsetGotEntry(sym); 1279 // R_GOT needs a relative relocation for PIC on i386 and Hexagon. 1280 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) 1281 addRelativeReloc(&c, offset, sym, addend, expr, type); 1282 else 1283 c.relocations.push_back({expr, type, offset, addend, &sym}); 1284 } 1285 return 1; 1286 } 1287 1288 return 0; 1289 } 1290 1291 template <class ELFT, class RelTy> 1292 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1293 RelTy *start, RelTy *end) { 1294 const RelTy &rel = *i; 1295 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1296 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1297 RelType type; 1298 1299 // Deal with MIPS oddity. 1300 if (config->mipsN32Abi) { 1301 type = getMipsN32RelType(i, end); 1302 } else { 1303 type = rel.getType(config->isMips64EL); 1304 ++i; 1305 } 1306 1307 // Get an offset in an output section this relocation is applied to. 1308 uint64_t offset = getOffset.get(rel.r_offset); 1309 if (offset == uint64_t(-1)) 1310 return; 1311 1312 // Error if the target symbol is undefined. Symbol index 0 may be used by 1313 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1314 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1315 return; 1316 1317 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1318 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1319 1320 // Ignore R_*_NONE and other marker relocations. 1321 if (expr == R_NONE) 1322 return; 1323 1324 // Read an addend. 1325 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1326 1327 if (config->emachine == EM_PPC64) { 1328 // We can separate the small code model relocations into 2 categories: 1329 // 1) Those that access the compiler generated .toc sections. 1330 // 2) Those that access the linker allocated got entries. 1331 // lld allocates got entries to symbols on demand. Since we don't try to 1332 // sort the got entries in any way, we don't have to track which objects 1333 // have got-based small code model relocs. The .toc sections get placed 1334 // after the end of the linker allocated .got section and we do sort those 1335 // so sections addressed with small code model relocations come first. 1336 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) 1337 sec.file->ppc64SmallCodeModelTocRelocs = true; 1338 1339 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1340 // InputSectionBase::relocateAlloc(). 1341 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1342 cast<Defined>(sym).section->name == ".toc") 1343 ppc64noTocRelax.insert({&sym, addend}); 1344 1345 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1346 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1347 if (i == end) { 1348 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1349 "relocation" + 1350 getLocation(sec, sym, offset)); 1351 return; 1352 } 1353 1354 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1355 // so we can discern it later from the toc-case. 1356 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1357 ++offset; 1358 } 1359 } 1360 1361 // Relax relocations. 1362 // 1363 // If we know that a PLT entry will be resolved within the same ELF module, we 1364 // can skip PLT access and directly jump to the destination function. For 1365 // example, if we are linking a main executable, all dynamic symbols that can 1366 // be resolved within the executable will actually be resolved that way at 1367 // runtime, because the main executable is always at the beginning of a search 1368 // list. We can leverage that fact. 1369 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1370 if (expr != R_GOT_PC) { 1371 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1372 // stub type. It should be ignored if optimized to R_PC. 1373 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1374 addend &= ~0x8000; 1375 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1376 // call __tls_get_addr even if the symbol is non-preemptible. 1377 if (!(config->emachine == EM_HEXAGON && 1378 (type == R_HEX_GD_PLT_B22_PCREL || 1379 type == R_HEX_GD_PLT_B22_PCREL_X || 1380 type == R_HEX_GD_PLT_B32_PCREL_X))) 1381 expr = fromPlt(expr); 1382 } else if (!isAbsoluteValue(sym)) { 1383 expr = target->adjustGotPcExpr(type, addend, relocatedAddr); 1384 } 1385 } 1386 1387 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1388 // uses their addresses, we need GOT or GOTPLT to be created. 1389 // 1390 // The 5 types that relative GOTPLT are all x86 and x86-64 specific. 1391 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, 1392 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1393 in.gotPlt->hasGotPltOffRel = true; 1394 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1395 expr)) { 1396 in.got->hasGotOffRel = true; 1397 } 1398 1399 // Process TLS relocations, including relaxing TLS relocations. Note that 1400 // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux. 1401 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1402 if (config->shared) { 1403 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1404 " cannot be used with -shared" + 1405 getLocation(sec, sym, offset)); 1406 return; 1407 } 1408 } else if (unsigned processed = handleTlsRelocation<ELFT>( 1409 type, sym, sec, offset, addend, expr)) { 1410 i += (processed - 1); 1411 return; 1412 } 1413 1414 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1415 // direct relocation on through. 1416 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1417 sym.exportDynamic = true; 1418 mainPart->relaDyn->addSymbolReloc(type, &sec, offset, sym, addend, type); 1419 return; 1420 } 1421 1422 // Non-preemptible ifuncs require special handling. First, handle the usual 1423 // case where the symbol isn't one of these. 1424 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1425 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1426 if (needsPlt(expr) && !sym.isInPlt()) 1427 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1428 1429 // Create a GOT slot if a relocation needs GOT. 1430 if (needsGot(expr)) { 1431 if (config->emachine == EM_MIPS) { 1432 // MIPS ABI has special rules to process GOT entries and doesn't 1433 // require relocation entries for them. A special case is TLS 1434 // relocations. In that case dynamic loader applies dynamic 1435 // relocations to initialize TLS GOT entries. 1436 // See "Global Offset Table" in Chapter 5 in the following document 1437 // for detailed description: 1438 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1439 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1440 } else if (!sym.isInGot()) { 1441 addGotEntry(sym); 1442 } 1443 } 1444 } else { 1445 // Handle a reference to a non-preemptible ifunc. These are special in a 1446 // few ways: 1447 // 1448 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1449 // a fixed value. But assuming that all references to the ifunc are 1450 // GOT-generating or PLT-generating, the handling of an ifunc is 1451 // relatively straightforward. We create a PLT entry in Iplt, which is 1452 // usually at the end of .plt, which makes an indirect call using a 1453 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1454 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1455 // which is usually at the end of .rela.plt. Unlike most relocations in 1456 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1457 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1458 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1459 // .got.plt without requiring a separate GOT entry. 1460 // 1461 // - Despite the fact that an ifunc does not have a fixed value, compilers 1462 // that are not passed -fPIC will assume that they do, and will emit 1463 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1464 // symbol. This means that if a direct relocation to the symbol is 1465 // seen, the linker must set a value for the symbol, and this value must 1466 // be consistent no matter what type of reference is made to the symbol. 1467 // This can be done by creating a PLT entry for the symbol in the way 1468 // described above and making it canonical, that is, making all references 1469 // point to the PLT entry instead of the resolver. In lld we also store 1470 // the address of the PLT entry in the dynamic symbol table, which means 1471 // that the symbol will also have the same value in other modules. 1472 // Because the value loaded from the GOT needs to be consistent with 1473 // the value computed using a direct relocation, a non-preemptible ifunc 1474 // may end up with two GOT entries, one in .got.plt that points to the 1475 // address returned by the resolver and is used only by the PLT entry, 1476 // and another in .got that points to the PLT entry and is used by 1477 // GOT-generating relocations. 1478 // 1479 // - The fact that these symbols do not have a fixed value makes them an 1480 // exception to the general rule that a statically linked executable does 1481 // not require any form of dynamic relocation. To handle these relocations 1482 // correctly, the IRELATIVE relocations are stored in an array which a 1483 // statically linked executable's startup code must enumerate using the 1484 // linker-defined symbols __rela?_iplt_{start,end}. 1485 if (!sym.isInPlt()) { 1486 // Create PLT and GOTPLT slots for the symbol. 1487 sym.isInIplt = true; 1488 1489 // Create a copy of the symbol to use as the target of the IRELATIVE 1490 // relocation in the igotPlt. This is in case we make the PLT canonical 1491 // later, which would overwrite the original symbol. 1492 // 1493 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1494 // that's really needed to create the IRELATIVE is the section and value, 1495 // so ideally we should just need to copy those. 1496 auto *directSym = make<Defined>(cast<Defined>(sym)); 1497 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1498 *directSym); 1499 sym.pltIndex = directSym->pltIndex; 1500 } 1501 if (needsGot(expr)) { 1502 // Redirect GOT accesses to point to the Igot. 1503 // 1504 // This field is also used to keep track of whether we ever needed a GOT 1505 // entry. If we did and we make the PLT canonical later, we'll need to 1506 // create a GOT entry pointing to the PLT entry for Sym. 1507 sym.gotInIgot = true; 1508 } else if (!needsPlt(expr)) { 1509 // Make the ifunc's PLT entry canonical by changing the value of its 1510 // symbol to redirect all references to point to it. 1511 auto &d = cast<Defined>(sym); 1512 d.section = in.iplt; 1513 d.value = sym.pltIndex * target->ipltEntrySize; 1514 d.size = 0; 1515 // It's important to set the symbol type here so that dynamic loaders 1516 // don't try to call the PLT as if it were an ifunc resolver. 1517 d.type = STT_FUNC; 1518 1519 if (sym.gotInIgot) { 1520 // We previously encountered a GOT generating reference that we 1521 // redirected to the Igot. Now that the PLT entry is canonical we must 1522 // clear the redirection to the Igot and add a GOT entry. As we've 1523 // changed the symbol type to STT_FUNC future GOT generating references 1524 // will naturally use this GOT entry. 1525 // 1526 // We don't need to worry about creating a MIPS GOT here because ifuncs 1527 // aren't a thing on MIPS. 1528 sym.gotInIgot = false; 1529 addGotEntry(sym); 1530 } 1531 } 1532 } 1533 1534 processRelocAux<ELFT>(sec, expr, type, offset, sym, addend); 1535 } 1536 1537 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1538 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1539 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1540 // instructions are generated by very old IBM XL compilers. Work around the 1541 // issue by disabling GD/LD to IE/LE relaxation. 1542 template <class RelTy> 1543 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1544 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1545 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1546 return; 1547 bool hasGDLD = false; 1548 for (const RelTy &rel : rels) { 1549 RelType type = rel.getType(false); 1550 switch (type) { 1551 case R_PPC64_TLSGD: 1552 case R_PPC64_TLSLD: 1553 return; // Found a marker 1554 case R_PPC64_GOT_TLSGD16: 1555 case R_PPC64_GOT_TLSGD16_HA: 1556 case R_PPC64_GOT_TLSGD16_HI: 1557 case R_PPC64_GOT_TLSGD16_LO: 1558 case R_PPC64_GOT_TLSLD16: 1559 case R_PPC64_GOT_TLSLD16_HA: 1560 case R_PPC64_GOT_TLSLD16_HI: 1561 case R_PPC64_GOT_TLSLD16_LO: 1562 hasGDLD = true; 1563 break; 1564 } 1565 } 1566 if (hasGDLD) { 1567 sec.file->ppc64DisableTLSRelax = true; 1568 warn(toString(sec.file) + 1569 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1570 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1571 } 1572 } 1573 1574 template <class ELFT, class RelTy> 1575 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1576 OffsetGetter getOffset(sec); 1577 1578 // Not all relocations end up in Sec.Relocations, but a lot do. 1579 sec.relocations.reserve(rels.size()); 1580 1581 if (config->emachine == EM_PPC64) 1582 checkPPC64TLSRelax<RelTy>(sec, rels); 1583 1584 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1585 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1586 // script), the relocations may be unordered. 1587 SmallVector<RelTy, 0> storage; 1588 if (isa<EhInputSection>(sec)) 1589 rels = sortRels(rels, storage); 1590 1591 for (auto i = rels.begin(), end = rels.end(); i != end;) 1592 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end); 1593 1594 // Sort relocations by offset for more efficient searching for 1595 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1596 if (config->emachine == EM_RISCV || 1597 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1598 llvm::stable_sort(sec.relocations, 1599 [](const Relocation &lhs, const Relocation &rhs) { 1600 return lhs.offset < rhs.offset; 1601 }); 1602 } 1603 1604 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1605 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(); 1606 if (rels.areRelocsRel()) 1607 scanRelocs<ELFT>(s, rels.rels); 1608 else 1609 scanRelocs<ELFT>(s, rels.relas); 1610 } 1611 1612 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1613 // std::merge requires a strict weak ordering. 1614 if (a->outSecOff < b->outSecOff) 1615 return true; 1616 1617 if (a->outSecOff == b->outSecOff) { 1618 auto *ta = dyn_cast<ThunkSection>(a); 1619 auto *tb = dyn_cast<ThunkSection>(b); 1620 1621 // Check if Thunk is immediately before any specific Target 1622 // InputSection for example Mips LA25 Thunks. 1623 if (ta && ta->getTargetInputSection() == b) 1624 return true; 1625 1626 // Place Thunk Sections without specific targets before 1627 // non-Thunk Sections. 1628 if (ta && !tb && !ta->getTargetInputSection()) 1629 return true; 1630 } 1631 1632 return false; 1633 } 1634 1635 // Call Fn on every executable InputSection accessed via the linker script 1636 // InputSectionDescription::Sections. 1637 static void forEachInputSectionDescription( 1638 ArrayRef<OutputSection *> outputSections, 1639 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1640 for (OutputSection *os : outputSections) { 1641 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1642 continue; 1643 for (BaseCommand *bc : os->sectionCommands) 1644 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1645 fn(os, isd); 1646 } 1647 } 1648 1649 // Thunk Implementation 1650 // 1651 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1652 // of code that the linker inserts inbetween a caller and a callee. The thunks 1653 // are added at link time rather than compile time as the decision on whether 1654 // a thunk is needed, such as the caller and callee being out of range, can only 1655 // be made at link time. 1656 // 1657 // It is straightforward to tell given the current state of the program when a 1658 // thunk is needed for a particular call. The more difficult part is that 1659 // the thunk needs to be placed in the program such that the caller can reach 1660 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1661 // the program alters addresses, which can mean more thunks etc. 1662 // 1663 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1664 // The decision to have a ThunkSection act as a container means that we can 1665 // more easily handle the most common case of a single block of contiguous 1666 // Thunks by inserting just a single ThunkSection. 1667 // 1668 // The implementation of Thunks in lld is split across these areas 1669 // Relocations.cpp : Framework for creating and placing thunks 1670 // Thunks.cpp : The code generated for each supported thunk 1671 // Target.cpp : Target specific hooks that the framework uses to decide when 1672 // a thunk is used 1673 // Synthetic.cpp : Implementation of ThunkSection 1674 // Writer.cpp : Iteratively call framework until no more Thunks added 1675 // 1676 // Thunk placement requirements: 1677 // Mips LA25 thunks. These must be placed immediately before the callee section 1678 // We can assume that the caller is in range of the Thunk. These are modelled 1679 // by Thunks that return the section they must precede with 1680 // getTargetInputSection(). 1681 // 1682 // ARM interworking and range extension thunks. These thunks must be placed 1683 // within range of the caller. All implemented ARM thunks can always reach the 1684 // callee as they use an indirect jump via a register that has no range 1685 // restrictions. 1686 // 1687 // Thunk placement algorithm: 1688 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1689 // getTargetInputSection(). 1690 // 1691 // For thunks that must be placed within range of the caller there are many 1692 // possible choices given that the maximum range from the caller is usually 1693 // much larger than the average InputSection size. Desirable properties include: 1694 // - Maximize reuse of thunks by multiple callers 1695 // - Minimize number of ThunkSections to simplify insertion 1696 // - Handle impact of already added Thunks on addresses 1697 // - Simple to understand and implement 1698 // 1699 // In lld for the first pass, we pre-create one or more ThunkSections per 1700 // InputSectionDescription at Target specific intervals. A ThunkSection is 1701 // placed so that the estimated end of the ThunkSection is within range of the 1702 // start of the InputSectionDescription or the previous ThunkSection. For 1703 // example: 1704 // InputSectionDescription 1705 // Section 0 1706 // ... 1707 // Section N 1708 // ThunkSection 0 1709 // Section N + 1 1710 // ... 1711 // Section N + K 1712 // Thunk Section 1 1713 // 1714 // The intention is that we can add a Thunk to a ThunkSection that is well 1715 // spaced enough to service a number of callers without having to do a lot 1716 // of work. An important principle is that it is not an error if a Thunk cannot 1717 // be placed in a pre-created ThunkSection; when this happens we create a new 1718 // ThunkSection placed next to the caller. This allows us to handle the vast 1719 // majority of thunks simply, but also handle rare cases where the branch range 1720 // is smaller than the target specific spacing. 1721 // 1722 // The algorithm is expected to create all the thunks that are needed in a 1723 // single pass, with a small number of programs needing a second pass due to 1724 // the insertion of thunks in the first pass increasing the offset between 1725 // callers and callees that were only just in range. 1726 // 1727 // A consequence of allowing new ThunkSections to be created outside of the 1728 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1729 // range in pass K, are out of range in some pass > K due to the insertion of 1730 // more Thunks in between the caller and callee. When this happens we retarget 1731 // the relocation back to the original target and create another Thunk. 1732 1733 // Remove ThunkSections that are empty, this should only be the initial set 1734 // precreated on pass 0. 1735 1736 // Insert the Thunks for OutputSection OS into their designated place 1737 // in the Sections vector, and recalculate the InputSection output section 1738 // offsets. 1739 // This may invalidate any output section offsets stored outside of InputSection 1740 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1741 forEachInputSectionDescription( 1742 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1743 if (isd->thunkSections.empty()) 1744 return; 1745 1746 // Remove any zero sized precreated Thunks. 1747 llvm::erase_if(isd->thunkSections, 1748 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1749 return ts.first->getSize() == 0; 1750 }); 1751 1752 // ISD->ThunkSections contains all created ThunkSections, including 1753 // those inserted in previous passes. Extract the Thunks created this 1754 // pass and order them in ascending outSecOff. 1755 std::vector<ThunkSection *> newThunks; 1756 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1757 if (ts.second == pass) 1758 newThunks.push_back(ts.first); 1759 llvm::stable_sort(newThunks, 1760 [](const ThunkSection *a, const ThunkSection *b) { 1761 return a->outSecOff < b->outSecOff; 1762 }); 1763 1764 // Merge sorted vectors of Thunks and InputSections by outSecOff 1765 std::vector<InputSection *> tmp; 1766 tmp.reserve(isd->sections.size() + newThunks.size()); 1767 1768 std::merge(isd->sections.begin(), isd->sections.end(), 1769 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1770 mergeCmp); 1771 1772 isd->sections = std::move(tmp); 1773 }); 1774 } 1775 1776 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1777 // is in range of Src. An ISD maps to a range of InputSections described by a 1778 // linker script section pattern such as { .text .text.* }. 1779 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 1780 InputSection *isec, 1781 InputSectionDescription *isd, 1782 const Relocation &rel, 1783 uint64_t src) { 1784 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1785 ThunkSection *ts = tp.first; 1786 uint64_t tsBase = os->addr + ts->outSecOff + rel.addend; 1787 uint64_t tsLimit = tsBase + ts->getSize() + rel.addend; 1788 if (target->inBranchRange(rel.type, src, 1789 (src > tsLimit) ? tsBase : tsLimit)) 1790 return ts; 1791 } 1792 1793 // No suitable ThunkSection exists. This can happen when there is a branch 1794 // with lower range than the ThunkSection spacing or when there are too 1795 // many Thunks. Create a new ThunkSection as close to the InputSection as 1796 // possible. Error if InputSection is so large we cannot place ThunkSection 1797 // anywhere in Range. 1798 uint64_t thunkSecOff = isec->outSecOff; 1799 if (!target->inBranchRange(rel.type, src, 1800 os->addr + thunkSecOff + rel.addend)) { 1801 thunkSecOff = isec->outSecOff + isec->getSize(); 1802 if (!target->inBranchRange(rel.type, src, 1803 os->addr + thunkSecOff + rel.addend)) 1804 fatal("InputSection too large for range extension thunk " + 1805 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1806 } 1807 return addThunkSection(os, isd, thunkSecOff); 1808 } 1809 1810 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1811 // precedes its Target. 1812 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1813 ThunkSection *ts = thunkedSections.lookup(isec); 1814 if (ts) 1815 return ts; 1816 1817 // Find InputSectionRange within Target Output Section (TOS) that the 1818 // InputSection (IS) that we need to precede is in. 1819 OutputSection *tos = isec->getParent(); 1820 for (BaseCommand *bc : tos->sectionCommands) { 1821 auto *isd = dyn_cast<InputSectionDescription>(bc); 1822 if (!isd || isd->sections.empty()) 1823 continue; 1824 1825 InputSection *first = isd->sections.front(); 1826 InputSection *last = isd->sections.back(); 1827 1828 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1829 continue; 1830 1831 ts = addThunkSection(tos, isd, isec->outSecOff); 1832 thunkedSections[isec] = ts; 1833 return ts; 1834 } 1835 1836 return nullptr; 1837 } 1838 1839 // Create one or more ThunkSections per OS that can be used to place Thunks. 1840 // We attempt to place the ThunkSections using the following desirable 1841 // properties: 1842 // - Within range of the maximum number of callers 1843 // - Minimise the number of ThunkSections 1844 // 1845 // We follow a simple but conservative heuristic to place ThunkSections at 1846 // offsets that are multiples of a Target specific branch range. 1847 // For an InputSectionDescription that is smaller than the range, a single 1848 // ThunkSection at the end of the range will do. 1849 // 1850 // For an InputSectionDescription that is more than twice the size of the range, 1851 // we place the last ThunkSection at range bytes from the end of the 1852 // InputSectionDescription in order to increase the likelihood that the 1853 // distance from a thunk to its target will be sufficiently small to 1854 // allow for the creation of a short thunk. 1855 void ThunkCreator::createInitialThunkSections( 1856 ArrayRef<OutputSection *> outputSections) { 1857 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1858 1859 forEachInputSectionDescription( 1860 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1861 if (isd->sections.empty()) 1862 return; 1863 1864 uint32_t isdBegin = isd->sections.front()->outSecOff; 1865 uint32_t isdEnd = 1866 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1867 uint32_t lastThunkLowerBound = -1; 1868 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1869 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1870 1871 uint32_t isecLimit; 1872 uint32_t prevIsecLimit = isdBegin; 1873 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1874 1875 for (const InputSection *isec : isd->sections) { 1876 isecLimit = isec->outSecOff + isec->getSize(); 1877 if (isecLimit > thunkUpperBound) { 1878 addThunkSection(os, isd, prevIsecLimit); 1879 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1880 } 1881 if (isecLimit > lastThunkLowerBound) 1882 break; 1883 prevIsecLimit = isecLimit; 1884 } 1885 addThunkSection(os, isd, isecLimit); 1886 }); 1887 } 1888 1889 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1890 InputSectionDescription *isd, 1891 uint64_t off) { 1892 auto *ts = make<ThunkSection>(os, off); 1893 ts->partition = os->partition; 1894 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1895 !isd->sections.empty()) { 1896 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1897 // thunks we disturb the base addresses of sections placed after the thunks 1898 // this makes patches we have generated redundant, and may cause us to 1899 // generate more patches as different instructions are now in sensitive 1900 // locations. When we generate more patches we may force more branches to 1901 // go out of range, causing more thunks to be generated. In pathological 1902 // cases this can cause the address dependent content pass not to converge. 1903 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1904 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1905 // which means that adding Thunks to the section does not invalidate 1906 // errata patches for following code. 1907 // Rounding up the size to 4KiB has consequences for code-size and can 1908 // trip up linker script defined assertions. For example the linux kernel 1909 // has an assertion that what LLD represents as an InputSectionDescription 1910 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1911 // We use the heuristic of rounding up the size when both of the following 1912 // conditions are true: 1913 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1914 // accounts for the case where no single InputSectionDescription is 1915 // larger than the OutputSection size. This is conservative but simple. 1916 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1917 // any assertion failures that an InputSectionDescription is < 4 KiB 1918 // in size. 1919 uint64_t isdSize = isd->sections.back()->outSecOff + 1920 isd->sections.back()->getSize() - 1921 isd->sections.front()->outSecOff; 1922 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1923 ts->roundUpSizeForErrata = true; 1924 } 1925 isd->thunkSections.push_back({ts, pass}); 1926 return ts; 1927 } 1928 1929 static bool isThunkSectionCompatible(InputSection *source, 1930 SectionBase *target) { 1931 // We can't reuse thunks in different loadable partitions because they might 1932 // not be loaded. But partition 1 (the main partition) will always be loaded. 1933 if (source->partition != target->partition) 1934 return target->partition == 1; 1935 return true; 1936 } 1937 1938 static int64_t getPCBias(RelType type) { 1939 if (config->emachine != EM_ARM) 1940 return 0; 1941 switch (type) { 1942 case R_ARM_THM_JUMP19: 1943 case R_ARM_THM_JUMP24: 1944 case R_ARM_THM_CALL: 1945 return 4; 1946 default: 1947 return 8; 1948 } 1949 } 1950 1951 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1952 Relocation &rel, uint64_t src) { 1953 std::vector<Thunk *> *thunkVec = nullptr; 1954 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 1955 // out in the relocation addend. We compensate for the PC bias so that 1956 // an Arm and Thumb relocation to the same destination get the same keyAddend, 1957 // which is usually 0. 1958 const int64_t pcBias = getPCBias(rel.type); 1959 const int64_t keyAddend = rel.addend + pcBias; 1960 1961 // We use a ((section, offset), addend) pair to find the thunk position if 1962 // possible so that we create only one thunk for aliased symbols or ICFed 1963 // sections. There may be multiple relocations sharing the same (section, 1964 // offset + addend) pair. We may revert the relocation back to its original 1965 // non-Thunk target, so we cannot fold offset + addend. 1966 if (auto *d = dyn_cast<Defined>(rel.sym)) 1967 if (!d->isInPlt() && d->section) 1968 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1969 {d->section->repl, d->value}, keyAddend}]; 1970 if (!thunkVec) 1971 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 1972 1973 // Check existing Thunks for Sym to see if they can be reused 1974 for (Thunk *t : *thunkVec) 1975 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1976 t->isCompatibleWith(*isec, rel) && 1977 target->inBranchRange(rel.type, src, 1978 t->getThunkTargetSym()->getVA(-pcBias))) 1979 return std::make_pair(t, false); 1980 1981 // No existing compatible Thunk in range, create a new one 1982 Thunk *t = addThunk(*isec, rel); 1983 thunkVec->push_back(t); 1984 return std::make_pair(t, true); 1985 } 1986 1987 // Return true if the relocation target is an in range Thunk. 1988 // Return false if the relocation is not to a Thunk. If the relocation target 1989 // was originally to a Thunk, but is no longer in range we revert the 1990 // relocation back to its original non-Thunk target. 1991 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1992 if (Thunk *t = thunks.lookup(rel.sym)) { 1993 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 1994 return true; 1995 rel.sym = &t->destination; 1996 rel.addend = t->addend; 1997 if (rel.sym->isInPlt()) 1998 rel.expr = toPlt(rel.expr); 1999 } 2000 return false; 2001 } 2002 2003 // Process all relocations from the InputSections that have been assigned 2004 // to InputSectionDescriptions and redirect through Thunks if needed. The 2005 // function should be called iteratively until it returns false. 2006 // 2007 // PreConditions: 2008 // All InputSections that may need a Thunk are reachable from 2009 // OutputSectionCommands. 2010 // 2011 // All OutputSections have an address and all InputSections have an offset 2012 // within the OutputSection. 2013 // 2014 // The offsets between caller (relocation place) and callee 2015 // (relocation target) will not be modified outside of createThunks(). 2016 // 2017 // PostConditions: 2018 // If return value is true then ThunkSections have been inserted into 2019 // OutputSections. All relocations that needed a Thunk based on the information 2020 // available to createThunks() on entry have been redirected to a Thunk. Note 2021 // that adding Thunks changes offsets between caller and callee so more Thunks 2022 // may be required. 2023 // 2024 // If return value is false then no more Thunks are needed, and createThunks has 2025 // made no changes. If the target requires range extension thunks, currently 2026 // ARM, then any future change in offset between caller and callee risks a 2027 // relocation out of range error. 2028 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 2029 bool addressesChanged = false; 2030 2031 if (pass == 0 && target->getThunkSectionSpacing()) 2032 createInitialThunkSections(outputSections); 2033 2034 // Create all the Thunks and insert them into synthetic ThunkSections. The 2035 // ThunkSections are later inserted back into InputSectionDescriptions. 2036 // We separate the creation of ThunkSections from the insertion of the 2037 // ThunkSections as ThunkSections are not always inserted into the same 2038 // InputSectionDescription as the caller. 2039 forEachInputSectionDescription( 2040 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2041 for (InputSection *isec : isd->sections) 2042 for (Relocation &rel : isec->relocations) { 2043 uint64_t src = isec->getVA(rel.offset); 2044 2045 // If we are a relocation to an existing Thunk, check if it is 2046 // still in range. If not then Rel will be altered to point to its 2047 // original target so another Thunk can be generated. 2048 if (pass > 0 && normalizeExistingThunk(rel, src)) 2049 continue; 2050 2051 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2052 *rel.sym, rel.addend)) 2053 continue; 2054 2055 Thunk *t; 2056 bool isNew; 2057 std::tie(t, isNew) = getThunk(isec, rel, src); 2058 2059 if (isNew) { 2060 // Find or create a ThunkSection for the new Thunk 2061 ThunkSection *ts; 2062 if (auto *tis = t->getTargetInputSection()) 2063 ts = getISThunkSec(tis); 2064 else 2065 ts = getISDThunkSec(os, isec, isd, rel, src); 2066 ts->addThunk(t); 2067 thunks[t->getThunkTargetSym()] = t; 2068 } 2069 2070 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2071 rel.sym = t->getThunkTargetSym(); 2072 rel.expr = fromPlt(rel.expr); 2073 2074 // On AArch64 and PPC, a jump/call relocation may be encoded as 2075 // STT_SECTION + non-zero addend, clear the addend after 2076 // redirection. 2077 if (config->emachine != EM_MIPS) 2078 rel.addend = -getPCBias(rel.type); 2079 } 2080 2081 for (auto &p : isd->thunkSections) 2082 addressesChanged |= p.first->assignOffsets(); 2083 }); 2084 2085 for (auto &p : thunkedSections) 2086 addressesChanged |= p.second->assignOffsets(); 2087 2088 // Merge all created synthetic ThunkSections back into OutputSection 2089 mergeThunks(outputSections); 2090 ++pass; 2091 return addressesChanged; 2092 } 2093 2094 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2095 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2096 // __tls_get_addr. 2097 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2098 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2099 bool needTlsSymbol = false; 2100 forEachInputSectionDescription( 2101 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2102 for (InputSection *isec : isd->sections) 2103 for (Relocation &rel : isec->relocations) 2104 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2105 needTlsSymbol = true; 2106 return; 2107 } 2108 }); 2109 return needTlsSymbol; 2110 } 2111 2112 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2113 Symbol *sym = symtab->find("__tls_get_addr"); 2114 if (!sym) 2115 return; 2116 bool needEntry = true; 2117 forEachInputSectionDescription( 2118 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2119 for (InputSection *isec : isd->sections) 2120 for (Relocation &rel : isec->relocations) 2121 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2122 if (needEntry) { 2123 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, 2124 *sym); 2125 needEntry = false; 2126 } 2127 rel.sym = sym; 2128 } 2129 }); 2130 } 2131 2132 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 2133 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 2134 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 2135 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 2136 template void elf::reportUndefinedSymbols<ELF32LE>(); 2137 template void elf::reportUndefinedSymbols<ELF32BE>(); 2138 template void elf::reportUndefinedSymbols<ELF64LE>(); 2139 template void elf::reportUndefinedSymbols<ELF64BE>(); 2140