xref: /freebsd/contrib/llvm-project/lld/ELF/Relocations.cpp (revision 5c4aa6257210502c93ad65882a8a4842d984bae2)
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67 
68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (BaseCommand *base : script->sectionCommands)
70     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71       if (cmd->sym == &sym)
72         return cmd->location;
73   return None;
74 }
75 
76 static std::string getDefinedLocation(const Symbol &sym) {
77   const char msg[] = "\n>>> defined in ";
78   if (sym.file)
79     return msg + toString(sym.file);
80   if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81     return msg + *loc;
82   return "";
83 }
84 
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>>               /home/alice/src/bar.o:(.text+0x1)
90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91                                uint64_t off) {
92   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93   std::string src = s.getSrcMsg(sym, off);
94   if (!src.empty())
95     msg += src + "\n>>>               ";
96   return msg + s.getObjMsg(off);
97 }
98 
99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100                            int64_t min, uint64_t max) {
101   ErrorPlace errPlace = getErrorPlace(loc);
102   std::string hint;
103   if (rel.sym && !rel.sym->isLocal())
104     hint = "; references " + lld::toString(*rel.sym) +
105            getDefinedLocation(*rel.sym);
106 
107   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
108     hint += "; consider recompiling with -fdebug-types-section to reduce size "
109             "of debug sections";
110 
111   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
112               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
113               ", " + Twine(max).str() + "]" + hint);
114 }
115 
116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
117                            const Twine &msg) {
118   ErrorPlace errPlace = getErrorPlace(loc);
119   std::string hint;
120   if (!sym.getName().empty())
121     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
122   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
123               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
124               Twine(llvm::maxIntN(n)) + "]" + hint);
125 }
126 
127 namespace {
128 // Build a bitmask with one bit set for each RelExpr.
129 //
130 // Constexpr function arguments can't be used in static asserts, so we
131 // use template arguments to build the mask.
132 // But function template partial specializations don't exist (needed
133 // for base case of the recursion), so we need a dummy struct.
134 template <RelExpr... Exprs> struct RelExprMaskBuilder {
135   static inline uint64_t build() { return 0; }
136 };
137 
138 // Specialization for recursive case.
139 template <RelExpr Head, RelExpr... Tail>
140 struct RelExprMaskBuilder<Head, Tail...> {
141   static inline uint64_t build() {
142     static_assert(0 <= Head && Head < 64,
143                   "RelExpr is too large for 64-bit mask!");
144     return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
145   }
146 };
147 } // namespace
148 
149 // Return true if `Expr` is one of `Exprs`.
150 // There are fewer than 64 RelExpr's, so we can represent any set of
151 // RelExpr's as a constant bit mask and test for membership with a
152 // couple cheap bitwise operations.
153 template <RelExpr... Exprs> bool oneof(RelExpr expr) {
154   assert(0 <= expr && (int)expr < 64 &&
155          "RelExpr is too large for 64-bit mask!");
156   return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
157 }
158 
159 // This function is similar to the `handleTlsRelocation`. MIPS does not
160 // support any relaxations for TLS relocations so by factoring out MIPS
161 // handling in to the separate function we can simplify the code and do not
162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
163 // Mips has a custom MipsGotSection that handles the writing of GOT entries
164 // without dynamic relocations.
165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
166                                         InputSectionBase &c, uint64_t offset,
167                                         int64_t addend, RelExpr expr) {
168   if (expr == R_MIPS_TLSLD) {
169     in.mipsGot->addTlsIndex(*c.file);
170     c.relocations.push_back({expr, type, offset, addend, &sym});
171     return 1;
172   }
173   if (expr == R_MIPS_TLSGD) {
174     in.mipsGot->addDynTlsEntry(*c.file, sym);
175     c.relocations.push_back({expr, type, offset, addend, &sym});
176     return 1;
177   }
178   return 0;
179 }
180 
181 // Notes about General Dynamic and Local Dynamic TLS models below. They may
182 // require the generation of a pair of GOT entries that have associated dynamic
183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
185 // symbol in TLS block.
186 //
187 // Returns the number of relocations processed.
188 template <class ELFT>
189 static unsigned
190 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
191                     typename ELFT::uint offset, int64_t addend, RelExpr expr) {
192   if (!sym.isTls())
193     return 0;
194 
195   if (config->emachine == EM_MIPS)
196     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
197 
198   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
199           expr) &&
200       config->shared) {
201     if (in.got->addDynTlsEntry(sym)) {
202       uint64_t off = in.got->getGlobalDynOffset(sym);
203       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
204           target->tlsDescRel, in.got, off, sym, target->tlsDescRel);
205     }
206     if (expr != R_TLSDESC_CALL)
207       c.relocations.push_back({expr, type, offset, addend, &sym});
208     return 1;
209   }
210 
211   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
212   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
213   // relaxation as well.
214   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
215                      config->emachine != EM_HEXAGON &&
216                      config->emachine != EM_RISCV &&
217                      !c.file->ppc64DisableTLSRelax;
218 
219   // If we are producing an executable and the symbol is non-preemptable, it
220   // must be defined and the code sequence can be relaxed to use Local-Exec.
221   //
222   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
223   // we can omit the DTPMOD dynamic relocations and resolve them at link time
224   // because them are always 1. This may be necessary for static linking as
225   // DTPMOD may not be expected at load time.
226   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
227 
228   // Local Dynamic is for access to module local TLS variables, while still
229   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
230   // module index, with a special value of 0 for the current module. GOT[e1] is
231   // unused. There only needs to be one module index entry.
232   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
233           expr)) {
234     // Local-Dynamic relocs can be relaxed to Local-Exec.
235     if (toExecRelax) {
236       c.relocations.push_back(
237           {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
238            addend, &sym});
239       return target->getTlsGdRelaxSkip(type);
240     }
241     if (expr == R_TLSLD_HINT)
242       return 1;
243     if (in.got->addTlsIndex()) {
244       if (isLocalInExecutable)
245         in.got->relocations.push_back(
246             {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
247       else
248         mainPart->relaDyn->addReloc(
249             {target->tlsModuleIndexRel, in.got, in.got->getTlsIndexOff()});
250     }
251     c.relocations.push_back({expr, type, offset, addend, &sym});
252     return 1;
253   }
254 
255   // Local-Dynamic relocs can be relaxed to Local-Exec.
256   if (expr == R_DTPREL && toExecRelax) {
257     c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE),
258                              type, offset, addend, &sym});
259     return 1;
260   }
261 
262   // Local-Dynamic sequence where offset of tls variable relative to dynamic
263   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
264   if (expr == R_TLSLD_GOT_OFF) {
265     if (!sym.isInGot()) {
266       in.got->addEntry(sym);
267       uint64_t off = sym.getGotOffset();
268       in.got->relocations.push_back(
269           {R_ABS, target->tlsOffsetRel, off, 0, &sym});
270     }
271     c.relocations.push_back({expr, type, offset, addend, &sym});
272     return 1;
273   }
274 
275   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
276             R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
277     if (!toExecRelax) {
278       if (in.got->addDynTlsEntry(sym)) {
279         uint64_t off = in.got->getGlobalDynOffset(sym);
280 
281         if (isLocalInExecutable)
282           // Write one to the GOT slot.
283           in.got->relocations.push_back(
284               {R_ADDEND, target->symbolicRel, off, 1, &sym});
285         else
286           mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, in.got,
287                                             off, sym);
288 
289         // If the symbol is preemptible we need the dynamic linker to write
290         // the offset too.
291         uint64_t offsetOff = off + config->wordsize;
292         if (sym.isPreemptible)
293           mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, in.got,
294                                             offsetOff, sym);
295         else
296           in.got->relocations.push_back(
297               {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
298       }
299       c.relocations.push_back({expr, type, offset, addend, &sym});
300       return 1;
301     }
302 
303     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
304     // depending on the symbol being locally defined or not.
305     if (sym.isPreemptible) {
306       c.relocations.push_back(
307           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
308            addend, &sym});
309       if (!sym.isInGot()) {
310         in.got->addEntry(sym);
311         mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, in.got,
312                                           sym.getGotOffset(), sym);
313       }
314     } else {
315       c.relocations.push_back(
316           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
317            addend, &sym});
318     }
319     return target->getTlsGdRelaxSkip(type);
320   }
321 
322   // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
323   // defined.
324   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
325             R_TLSIE_HINT>(expr) &&
326       toExecRelax && isLocalInExecutable) {
327     c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
328     return 1;
329   }
330 
331   if (expr == R_TLSIE_HINT)
332     return 1;
333   return 0;
334 }
335 
336 static RelType getMipsPairType(RelType type, bool isLocal) {
337   switch (type) {
338   case R_MIPS_HI16:
339     return R_MIPS_LO16;
340   case R_MIPS_GOT16:
341     // In case of global symbol, the R_MIPS_GOT16 relocation does not
342     // have a pair. Each global symbol has a unique entry in the GOT
343     // and a corresponding instruction with help of the R_MIPS_GOT16
344     // relocation loads an address of the symbol. In case of local
345     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
346     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
347     // relocations handle low 16 bits of the address. That allows
348     // to allocate only one GOT entry for every 64 KBytes of local data.
349     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
350   case R_MICROMIPS_GOT16:
351     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
352   case R_MIPS_PCHI16:
353     return R_MIPS_PCLO16;
354   case R_MICROMIPS_HI16:
355     return R_MICROMIPS_LO16;
356   default:
357     return R_MIPS_NONE;
358   }
359 }
360 
361 // True if non-preemptable symbol always has the same value regardless of where
362 // the DSO is loaded.
363 static bool isAbsolute(const Symbol &sym) {
364   if (sym.isUndefWeak())
365     return true;
366   if (const auto *dr = dyn_cast<Defined>(&sym))
367     return dr->section == nullptr; // Absolute symbol.
368   return false;
369 }
370 
371 static bool isAbsoluteValue(const Symbol &sym) {
372   return isAbsolute(sym) || sym.isTls();
373 }
374 
375 // Returns true if Expr refers a PLT entry.
376 static bool needsPlt(RelExpr expr) {
377   return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
378 }
379 
380 // Returns true if Expr refers a GOT entry. Note that this function
381 // returns false for TLS variables even though they need GOT, because
382 // TLS variables uses GOT differently than the regular variables.
383 static bool needsGot(RelExpr expr) {
384   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
385                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
386                R_AARCH64_GOT_PAGE>(expr);
387 }
388 
389 // True if this expression is of the form Sym - X, where X is a position in the
390 // file (PC, or GOT for example).
391 static bool isRelExpr(RelExpr expr) {
392   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
393                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
394                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
395 }
396 
397 // Returns true if a given relocation can be computed at link-time.
398 //
399 // For instance, we know the offset from a relocation to its target at
400 // link-time if the relocation is PC-relative and refers a
401 // non-interposable function in the same executable. This function
402 // will return true for such relocation.
403 //
404 // If this function returns false, that means we need to emit a
405 // dynamic relocation so that the relocation will be fixed at load-time.
406 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
407                                      InputSectionBase &s, uint64_t relOff) {
408   // These expressions always compute a constant
409   if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
410             R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
411             R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
412             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
413             R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
414             R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
415             R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT,
416             R_AARCH64_GOT_PAGE>(
417           e))
418     return true;
419 
420   // These never do, except if the entire file is position dependent or if
421   // only the low bits are used.
422   if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
423     return target->usesOnlyLowPageBits(type) || !config->isPic;
424 
425   if (sym.isPreemptible)
426     return false;
427   if (!config->isPic)
428     return true;
429 
430   // The size of a non preemptible symbol is a constant.
431   if (e == R_SIZE)
432     return true;
433 
434   // For the target and the relocation, we want to know if they are
435   // absolute or relative.
436   bool absVal = isAbsoluteValue(sym);
437   bool relE = isRelExpr(e);
438   if (absVal && !relE)
439     return true;
440   if (!absVal && relE)
441     return true;
442   if (!absVal && !relE)
443     return target->usesOnlyLowPageBits(type);
444 
445   assert(absVal && relE);
446 
447   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
448   // in PIC mode. This is a little strange, but it allows us to link function
449   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
450   // Normally such a call will be guarded with a comparison, which will load a
451   // zero from the GOT.
452   if (sym.isUndefWeak())
453     return true;
454 
455   // We set the final symbols values for linker script defined symbols later.
456   // They always can be computed as a link time constant.
457   if (sym.scriptDefined)
458       return true;
459 
460   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
461         toString(sym) + getLocation(s, sym, relOff));
462   return true;
463 }
464 
465 static RelExpr toPlt(RelExpr expr) {
466   switch (expr) {
467   case R_PPC64_CALL:
468     return R_PPC64_CALL_PLT;
469   case R_PC:
470     return R_PLT_PC;
471   case R_ABS:
472     return R_PLT;
473   default:
474     return expr;
475   }
476 }
477 
478 static RelExpr fromPlt(RelExpr expr) {
479   // We decided not to use a plt. Optimize a reference to the plt to a
480   // reference to the symbol itself.
481   switch (expr) {
482   case R_PLT_PC:
483   case R_PPC32_PLTREL:
484     return R_PC;
485   case R_PPC64_CALL_PLT:
486     return R_PPC64_CALL;
487   case R_PLT:
488     return R_ABS;
489   default:
490     return expr;
491   }
492 }
493 
494 // Returns true if a given shared symbol is in a read-only segment in a DSO.
495 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
496   using Elf_Phdr = typename ELFT::Phdr;
497 
498   // Determine if the symbol is read-only by scanning the DSO's program headers.
499   const SharedFile &file = ss.getFile();
500   for (const Elf_Phdr &phdr :
501        check(file.template getObj<ELFT>().program_headers()))
502     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
503         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
504         ss.value < phdr.p_vaddr + phdr.p_memsz)
505       return true;
506   return false;
507 }
508 
509 // Returns symbols at the same offset as a given symbol, including SS itself.
510 //
511 // If two or more symbols are at the same offset, and at least one of
512 // them are copied by a copy relocation, all of them need to be copied.
513 // Otherwise, they would refer to different places at runtime.
514 template <class ELFT>
515 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
516   using Elf_Sym = typename ELFT::Sym;
517 
518   SharedFile &file = ss.getFile();
519 
520   SmallSet<SharedSymbol *, 4> ret;
521   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
522     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
523         s.getType() == STT_TLS || s.st_value != ss.value)
524       continue;
525     StringRef name = check(s.getName(file.getStringTable()));
526     Symbol *sym = symtab->find(name);
527     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
528       ret.insert(alias);
529   }
530 
531   // The loop does not check SHT_GNU_verneed, so ret does not contain
532   // non-default version symbols. If ss has a non-default version, ret won't
533   // contain ss. Just add ss unconditionally. If a non-default version alias is
534   // separately copy relocated, it and ss will have different addresses.
535   // Fortunately this case is impractical and fails with GNU ld as well.
536   ret.insert(&ss);
537   return ret;
538 }
539 
540 // When a symbol is copy relocated or we create a canonical plt entry, it is
541 // effectively a defined symbol. In the case of copy relocation the symbol is
542 // in .bss and in the case of a canonical plt entry it is in .plt. This function
543 // replaces the existing symbol with a Defined pointing to the appropriate
544 // location.
545 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
546                                uint64_t size) {
547   Symbol old = sym;
548 
549   sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
550                       sym.type, value, size, sec});
551 
552   sym.pltIndex = old.pltIndex;
553   sym.gotIndex = old.gotIndex;
554   sym.verdefIndex = old.verdefIndex;
555   sym.exportDynamic = true;
556   sym.isUsedInRegularObj = true;
557 }
558 
559 // Reserve space in .bss or .bss.rel.ro for copy relocation.
560 //
561 // The copy relocation is pretty much a hack. If you use a copy relocation
562 // in your program, not only the symbol name but the symbol's size, RW/RO
563 // bit and alignment become part of the ABI. In addition to that, if the
564 // symbol has aliases, the aliases become part of the ABI. That's subtle,
565 // but if you violate that implicit ABI, that can cause very counter-
566 // intuitive consequences.
567 //
568 // So, what is the copy relocation? It's for linking non-position
569 // independent code to DSOs. In an ideal world, all references to data
570 // exported by DSOs should go indirectly through GOT. But if object files
571 // are compiled as non-PIC, all data references are direct. There is no
572 // way for the linker to transform the code to use GOT, as machine
573 // instructions are already set in stone in object files. This is where
574 // the copy relocation takes a role.
575 //
576 // A copy relocation instructs the dynamic linker to copy data from a DSO
577 // to a specified address (which is usually in .bss) at load-time. If the
578 // static linker (that's us) finds a direct data reference to a DSO
579 // symbol, it creates a copy relocation, so that the symbol can be
580 // resolved as if it were in .bss rather than in a DSO.
581 //
582 // As you can see in this function, we create a copy relocation for the
583 // dynamic linker, and the relocation contains not only symbol name but
584 // various other information about the symbol. So, such attributes become a
585 // part of the ABI.
586 //
587 // Note for application developers: I can give you a piece of advice if
588 // you are writing a shared library. You probably should export only
589 // functions from your library. You shouldn't export variables.
590 //
591 // As an example what can happen when you export variables without knowing
592 // the semantics of copy relocations, assume that you have an exported
593 // variable of type T. It is an ABI-breaking change to add new members at
594 // end of T even though doing that doesn't change the layout of the
595 // existing members. That's because the space for the new members are not
596 // reserved in .bss unless you recompile the main program. That means they
597 // are likely to overlap with other data that happens to be laid out next
598 // to the variable in .bss. This kind of issue is sometimes very hard to
599 // debug. What's a solution? Instead of exporting a variable V from a DSO,
600 // define an accessor getV().
601 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
602   // Copy relocation against zero-sized symbol doesn't make sense.
603   uint64_t symSize = ss.getSize();
604   if (symSize == 0 || ss.alignment == 0)
605     fatal("cannot create a copy relocation for symbol " + toString(ss));
606 
607   // See if this symbol is in a read-only segment. If so, preserve the symbol's
608   // memory protection by reserving space in the .bss.rel.ro section.
609   bool isRO = isReadOnly<ELFT>(ss);
610   BssSection *sec =
611       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
612   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
613 
614   // At this point, sectionBases has been migrated to sections. Append sec to
615   // sections.
616   if (osec->sectionCommands.empty() ||
617       !isa<InputSectionDescription>(osec->sectionCommands.back()))
618     osec->sectionCommands.push_back(make<InputSectionDescription>(""));
619   auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
620   isd->sections.push_back(sec);
621   osec->commitSection(sec);
622 
623   // Look through the DSO's dynamic symbol table for aliases and create a
624   // dynamic symbol for each one. This causes the copy relocation to correctly
625   // interpose any aliases.
626   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
627     replaceWithDefined(*sym, sec, 0, sym->size);
628 
629   mainPart->relaDyn->addSymbolReloc(target->copyRel, sec, 0, ss);
630 }
631 
632 // MIPS has an odd notion of "paired" relocations to calculate addends.
633 // For example, if a relocation is of R_MIPS_HI16, there must be a
634 // R_MIPS_LO16 relocation after that, and an addend is calculated using
635 // the two relocations.
636 template <class ELFT, class RelTy>
637 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
638                                  InputSectionBase &sec, RelExpr expr,
639                                  bool isLocal) {
640   if (expr == R_MIPS_GOTREL && isLocal)
641     return sec.getFile<ELFT>()->mipsGp0;
642 
643   // The ABI says that the paired relocation is used only for REL.
644   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
645   if (RelTy::IsRela)
646     return 0;
647 
648   RelType type = rel.getType(config->isMips64EL);
649   uint32_t pairTy = getMipsPairType(type, isLocal);
650   if (pairTy == R_MIPS_NONE)
651     return 0;
652 
653   const uint8_t *buf = sec.data().data();
654   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
655 
656   // To make things worse, paired relocations might not be contiguous in
657   // the relocation table, so we need to do linear search. *sigh*
658   for (const RelTy *ri = &rel; ri != end; ++ri)
659     if (ri->getType(config->isMips64EL) == pairTy &&
660         ri->getSymbol(config->isMips64EL) == symIndex)
661       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
662 
663   warn("can't find matching " + toString(pairTy) + " relocation for " +
664        toString(type));
665   return 0;
666 }
667 
668 // Returns an addend of a given relocation. If it is RELA, an addend
669 // is in a relocation itself. If it is REL, we need to read it from an
670 // input section.
671 template <class ELFT, class RelTy>
672 static int64_t computeAddend(const RelTy &rel, const RelTy *end,
673                              InputSectionBase &sec, RelExpr expr,
674                              bool isLocal) {
675   int64_t addend;
676   RelType type = rel.getType(config->isMips64EL);
677 
678   if (RelTy::IsRela) {
679     addend = getAddend<ELFT>(rel);
680   } else {
681     const uint8_t *buf = sec.data().data();
682     addend = target->getImplicitAddend(buf + rel.r_offset, type);
683   }
684 
685   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
686     addend += getPPC64TocBase();
687   if (config->emachine == EM_MIPS)
688     addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
689 
690   return addend;
691 }
692 
693 // Custom error message if Sym is defined in a discarded section.
694 template <class ELFT>
695 static std::string maybeReportDiscarded(Undefined &sym) {
696   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
697   if (!file || !sym.discardedSecIdx ||
698       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
699     return "";
700   ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
701       CHECK(file->getObj().sections(), file);
702 
703   std::string msg;
704   if (sym.type == ELF::STT_SECTION) {
705     msg = "relocation refers to a discarded section: ";
706     msg += CHECK(
707         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
708   } else {
709     msg = "relocation refers to a symbol in a discarded section: " +
710           toString(sym);
711   }
712   msg += "\n>>> defined in " + toString(file);
713 
714   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
715   if (elfSec.sh_type != SHT_GROUP)
716     return msg;
717 
718   // If the discarded section is a COMDAT.
719   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
720   if (const InputFile *prevailing =
721           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
722     msg += "\n>>> section group signature: " + signature.str() +
723            "\n>>> prevailing definition is in " + toString(prevailing);
724   return msg;
725 }
726 
727 // Undefined diagnostics are collected in a vector and emitted once all of
728 // them are known, so that some postprocessing on the list of undefined symbols
729 // can happen before lld emits diagnostics.
730 struct UndefinedDiag {
731   Symbol *sym;
732   struct Loc {
733     InputSectionBase *sec;
734     uint64_t offset;
735   };
736   std::vector<Loc> locs;
737   bool isWarning;
738 };
739 
740 static std::vector<UndefinedDiag> undefs;
741 
742 // Check whether the definition name def is a mangled function name that matches
743 // the reference name ref.
744 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
745   llvm::ItaniumPartialDemangler d;
746   std::string name = def.str();
747   if (d.partialDemangle(name.c_str()))
748     return false;
749   char *buf = d.getFunctionName(nullptr, nullptr);
750   if (!buf)
751     return false;
752   bool ret = ref == buf;
753   free(buf);
754   return ret;
755 }
756 
757 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
758 // the suggested symbol, which is either in the symbol table, or in the same
759 // file of sym.
760 template <class ELFT>
761 static const Symbol *getAlternativeSpelling(const Undefined &sym,
762                                             std::string &pre_hint,
763                                             std::string &post_hint) {
764   DenseMap<StringRef, const Symbol *> map;
765   if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
766     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
767     // will give an error. Don't suggest an alternative spelling.
768     if (file && sym.discardedSecIdx != 0 &&
769         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
770       return nullptr;
771 
772     // Build a map of local defined symbols.
773     for (const Symbol *s : sym.file->getSymbols())
774       if (s->isLocal() && s->isDefined() && !s->getName().empty())
775         map.try_emplace(s->getName(), s);
776   }
777 
778   auto suggest = [&](StringRef newName) -> const Symbol * {
779     // If defined locally.
780     if (const Symbol *s = map.lookup(newName))
781       return s;
782 
783     // If in the symbol table and not undefined.
784     if (const Symbol *s = symtab->find(newName))
785       if (!s->isUndefined())
786         return s;
787 
788     return nullptr;
789   };
790 
791   // This loop enumerates all strings of Levenshtein distance 1 as typo
792   // correction candidates and suggests the one that exists as a non-undefined
793   // symbol.
794   StringRef name = sym.getName();
795   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
796     // Insert a character before name[i].
797     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
798     for (char c = '0'; c <= 'z'; ++c) {
799       newName[i] = c;
800       if (const Symbol *s = suggest(newName))
801         return s;
802     }
803     if (i == e)
804       break;
805 
806     // Substitute name[i].
807     newName = std::string(name);
808     for (char c = '0'; c <= 'z'; ++c) {
809       newName[i] = c;
810       if (const Symbol *s = suggest(newName))
811         return s;
812     }
813 
814     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
815     // common.
816     if (i + 1 < e) {
817       newName[i] = name[i + 1];
818       newName[i + 1] = name[i];
819       if (const Symbol *s = suggest(newName))
820         return s;
821     }
822 
823     // Delete name[i].
824     newName = (name.substr(0, i) + name.substr(i + 1)).str();
825     if (const Symbol *s = suggest(newName))
826       return s;
827   }
828 
829   // Case mismatch, e.g. Foo vs FOO.
830   for (auto &it : map)
831     if (name.equals_insensitive(it.first))
832       return it.second;
833   for (Symbol *sym : symtab->symbols())
834     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
835       return sym;
836 
837   // The reference may be a mangled name while the definition is not. Suggest a
838   // missing extern "C".
839   if (name.startswith("_Z")) {
840     std::string buf = name.str();
841     llvm::ItaniumPartialDemangler d;
842     if (!d.partialDemangle(buf.c_str()))
843       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
844         const Symbol *s = suggest(buf);
845         free(buf);
846         if (s) {
847           pre_hint = ": extern \"C\" ";
848           return s;
849         }
850       }
851   } else {
852     const Symbol *s = nullptr;
853     for (auto &it : map)
854       if (canSuggestExternCForCXX(name, it.first)) {
855         s = it.second;
856         break;
857       }
858     if (!s)
859       for (Symbol *sym : symtab->symbols())
860         if (canSuggestExternCForCXX(name, sym->getName())) {
861           s = sym;
862           break;
863         }
864     if (s) {
865       pre_hint = " to declare ";
866       post_hint = " as extern \"C\"?";
867       return s;
868     }
869   }
870 
871   return nullptr;
872 }
873 
874 template <class ELFT>
875 static void reportUndefinedSymbol(const UndefinedDiag &undef,
876                                   bool correctSpelling) {
877   Symbol &sym = *undef.sym;
878 
879   auto visibility = [&]() -> std::string {
880     switch (sym.visibility) {
881     case STV_INTERNAL:
882       return "internal ";
883     case STV_HIDDEN:
884       return "hidden ";
885     case STV_PROTECTED:
886       return "protected ";
887     default:
888       return "";
889     }
890   };
891 
892   std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
893   if (msg.empty())
894     msg = "undefined " + visibility() + "symbol: " + toString(sym);
895 
896   const size_t maxUndefReferences = 3;
897   size_t i = 0;
898   for (UndefinedDiag::Loc l : undef.locs) {
899     if (i >= maxUndefReferences)
900       break;
901     InputSectionBase &sec = *l.sec;
902     uint64_t offset = l.offset;
903 
904     msg += "\n>>> referenced by ";
905     std::string src = sec.getSrcMsg(sym, offset);
906     if (!src.empty())
907       msg += src + "\n>>>               ";
908     msg += sec.getObjMsg(offset);
909     i++;
910   }
911 
912   if (i < undef.locs.size())
913     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
914                .str();
915 
916   if (correctSpelling) {
917     std::string pre_hint = ": ", post_hint;
918     if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
919             cast<Undefined>(sym), pre_hint, post_hint)) {
920       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
921       if (corrected->file)
922         msg += "\n>>> defined in: " + toString(corrected->file);
923     }
924   }
925 
926   if (sym.getName().startswith("_ZTV"))
927     msg +=
928         "\n>>> the vtable symbol may be undefined because the class is missing "
929         "its key function (see https://lld.llvm.org/missingkeyfunction)";
930 
931   if (undef.isWarning)
932     warn(msg);
933   else
934     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
935 }
936 
937 template <class ELFT> void elf::reportUndefinedSymbols() {
938   // Find the first "undefined symbol" diagnostic for each diagnostic, and
939   // collect all "referenced from" lines at the first diagnostic.
940   DenseMap<Symbol *, UndefinedDiag *> firstRef;
941   for (UndefinedDiag &undef : undefs) {
942     assert(undef.locs.size() == 1);
943     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
944       canon->locs.push_back(undef.locs[0]);
945       undef.locs.clear();
946     } else
947       firstRef[undef.sym] = &undef;
948   }
949 
950   // Enable spell corrector for the first 2 diagnostics.
951   for (auto it : enumerate(undefs))
952     if (!it.value().locs.empty())
953       reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
954   undefs.clear();
955 }
956 
957 // Report an undefined symbol if necessary.
958 // Returns true if the undefined symbol will produce an error message.
959 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
960                                  uint64_t offset) {
961   if (!sym.isUndefined())
962     return false;
963   // If versioned, issue an error (even if the symbol is weak) because we don't
964   // know the defining filename which is required to construct a Verneed entry.
965   if (*sym.getVersionSuffix() == '@') {
966     undefs.push_back({&sym, {{&sec, offset}}, false});
967     return true;
968   }
969   if (sym.isWeak())
970     return false;
971 
972   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
973   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
974     return false;
975 
976   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
977   // which references a switch table in a discarded .rodata/.text section. The
978   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
979   // spec says references from outside the group to a STB_LOCAL symbol are not
980   // allowed. Work around the bug.
981   //
982   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
983   // because .LC0-.LTOC is not representable if the two labels are in different
984   // .got2
985   if (cast<Undefined>(sym).discardedSecIdx != 0 &&
986       (sec.name == ".got2" || sec.name == ".toc"))
987     return false;
988 
989   bool isWarning =
990       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
991       config->noinhibitExec;
992   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
993   return !isWarning;
994 }
995 
996 // MIPS N32 ABI treats series of successive relocations with the same offset
997 // as a single relocation. The similar approach used by N64 ABI, but this ABI
998 // packs all relocations into the single relocation record. Here we emulate
999 // this for the N32 ABI. Iterate over relocation with the same offset and put
1000 // theirs types into the single bit-set.
1001 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
1002   RelType type = 0;
1003   uint64_t offset = rel->r_offset;
1004 
1005   int n = 0;
1006   while (rel != end && rel->r_offset == offset)
1007     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
1008   return type;
1009 }
1010 
1011 // .eh_frame sections are mergeable input sections, so their input
1012 // offsets are not linearly mapped to output section. For each input
1013 // offset, we need to find a section piece containing the offset and
1014 // add the piece's base address to the input offset to compute the
1015 // output offset. That isn't cheap.
1016 //
1017 // This class is to speed up the offset computation. When we process
1018 // relocations, we access offsets in the monotonically increasing
1019 // order. So we can optimize for that access pattern.
1020 //
1021 // For sections other than .eh_frame, this class doesn't do anything.
1022 namespace {
1023 class OffsetGetter {
1024 public:
1025   explicit OffsetGetter(InputSectionBase &sec) {
1026     if (auto *eh = dyn_cast<EhInputSection>(&sec))
1027       pieces = eh->pieces;
1028   }
1029 
1030   // Translates offsets in input sections to offsets in output sections.
1031   // Given offset must increase monotonically. We assume that Piece is
1032   // sorted by inputOff.
1033   uint64_t get(uint64_t off) {
1034     if (pieces.empty())
1035       return off;
1036 
1037     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
1038       ++i;
1039     if (i == pieces.size())
1040       fatal(".eh_frame: relocation is not in any piece");
1041 
1042     // Pieces must be contiguous, so there must be no holes in between.
1043     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
1044 
1045     // Offset -1 means that the piece is dead (i.e. garbage collected).
1046     if (pieces[i].outputOff == -1)
1047       return -1;
1048     return pieces[i].outputOff + off - pieces[i].inputOff;
1049   }
1050 
1051 private:
1052   ArrayRef<EhSectionPiece> pieces;
1053   size_t i = 0;
1054 };
1055 } // namespace
1056 
1057 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1058                              Symbol &sym, int64_t addend, RelExpr expr,
1059                              RelType type) {
1060   Partition &part = isec->getPartition();
1061 
1062   // Add a relative relocation. If relrDyn section is enabled, and the
1063   // relocation offset is guaranteed to be even, add the relocation to
1064   // the relrDyn section, otherwise add it to the relaDyn section.
1065   // relrDyn sections don't support odd offsets. Also, relrDyn sections
1066   // don't store the addend values, so we must write it to the relocated
1067   // address.
1068   if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1069     isec->relocations.push_back({expr, type, offsetInSec, addend, &sym});
1070     part.relrDyn->relocs.push_back({isec, offsetInSec});
1071     return;
1072   }
1073   part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
1074                                  addend, type, expr);
1075 }
1076 
1077 template <class PltSection, class GotPltSection>
1078 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1079                         RelocationBaseSection *rel, RelType type, Symbol &sym) {
1080   plt->addEntry(sym);
1081   gotPlt->addEntry(sym);
1082   rel->addReloc({type, gotPlt, sym.getGotPltOffset(),
1083                  sym.isPreemptible ? DynamicReloc::AgainstSymbol
1084                                    : DynamicReloc::AddendOnlyWithTargetVA,
1085                  sym, 0, R_ABS});
1086 }
1087 
1088 static void addGotEntry(Symbol &sym) {
1089   in.got->addEntry(sym);
1090 
1091   RelExpr expr = sym.isTls() ? R_TPREL : R_ABS;
1092   uint64_t off = sym.getGotOffset();
1093 
1094   // If a GOT slot value can be calculated at link-time, which is now,
1095   // we can just fill that out.
1096   //
1097   // (We don't actually write a value to a GOT slot right now, but we
1098   // add a static relocation to a Relocations vector so that
1099   // InputSection::relocate will do the work for us. We may be able
1100   // to just write a value now, but it is a TODO.)
1101   bool isLinkTimeConstant =
1102       !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1103   if (isLinkTimeConstant) {
1104     in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1105     return;
1106   }
1107 
1108   // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1109   // the GOT slot will be fixed at load-time.
1110   if (!sym.isTls() && !sym.isPreemptible && config->isPic) {
1111     addRelativeReloc(in.got, off, sym, 0, R_ABS, target->symbolicRel);
1112     return;
1113   }
1114   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1115       sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, sym,
1116       target->symbolicRel);
1117 }
1118 
1119 // Return true if we can define a symbol in the executable that
1120 // contains the value/function of a symbol defined in a shared
1121 // library.
1122 static bool canDefineSymbolInExecutable(Symbol &sym) {
1123   // If the symbol has default visibility the symbol defined in the
1124   // executable will preempt it.
1125   // Note that we want the visibility of the shared symbol itself, not
1126   // the visibility of the symbol in the output file we are producing. That is
1127   // why we use Sym.stOther.
1128   if ((sym.stOther & 0x3) == STV_DEFAULT)
1129     return true;
1130 
1131   // If we are allowed to break address equality of functions, defining
1132   // a plt entry will allow the program to call the function in the
1133   // .so, but the .so and the executable will no agree on the address
1134   // of the function. Similar logic for objects.
1135   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1136           (sym.isObject() && config->ignoreDataAddressEquality));
1137 }
1138 
1139 // The reason we have to do this early scan is as follows
1140 // * To mmap the output file, we need to know the size
1141 // * For that, we need to know how many dynamic relocs we will have.
1142 // It might be possible to avoid this by outputting the file with write:
1143 // * Write the allocated output sections, computing addresses.
1144 // * Apply relocations, recording which ones require a dynamic reloc.
1145 // * Write the dynamic relocations.
1146 // * Write the rest of the file.
1147 // This would have some drawbacks. For example, we would only know if .rela.dyn
1148 // is needed after applying relocations. If it is, it will go after rw and rx
1149 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1150 // complicates things for the dynamic linker and means we would have to reserve
1151 // space for the extra PT_LOAD even if we end up not using it.
1152 template <class ELFT, class RelTy>
1153 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1154                             uint64_t offset, Symbol &sym, const RelTy &rel,
1155                             int64_t addend) {
1156   // If the relocation is known to be a link-time constant, we know no dynamic
1157   // relocation will be created, pass the control to relocateAlloc() or
1158   // relocateNonAlloc() to resolve it.
1159   //
1160   // The behavior of an undefined weak reference is implementation defined. For
1161   // non-link-time constants, we resolve relocations statically (let
1162   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1163   // relocations for -pie and -shared.
1164   //
1165   // The general expectation of -no-pie static linking is that there is no
1166   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1167   // -shared matches the spirit of its -z undefs default. -pie has freedom on
1168   // choices, and we choose dynamic relocations to be consistent with the
1169   // handling of GOT-generating relocations.
1170   if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1171       (!config->isPic && sym.isUndefWeak())) {
1172     sec.relocations.push_back({expr, type, offset, addend, &sym});
1173     return;
1174   }
1175 
1176   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1177   if (canWrite) {
1178     RelType rel = target->getDynRel(type);
1179     if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1180       addRelativeReloc(&sec, offset, sym, addend, expr, type);
1181       return;
1182     } else if (rel != 0) {
1183       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1184         rel = target->relativeRel;
1185       sec.getPartition().relaDyn->addSymbolReloc(rel, &sec, offset, sym, addend,
1186                                                  type);
1187 
1188       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1189       // While regular ABI uses dynamic relocations to fill up GOT entries
1190       // MIPS ABI requires dynamic linker to fills up GOT entries using
1191       // specially sorted dynamic symbol table. This affects even dynamic
1192       // relocations against symbols which do not require GOT entries
1193       // creation explicitly, i.e. do not have any GOT-relocations. So if
1194       // a preemptible symbol has a dynamic relocation we anyway have
1195       // to create a GOT entry for it.
1196       // If a non-preemptible symbol has a dynamic relocation against it,
1197       // dynamic linker takes it st_value, adds offset and writes down
1198       // result of the dynamic relocation. In case of preemptible symbol
1199       // dynamic linker performs symbol resolution, writes the symbol value
1200       // to the GOT entry and reads the GOT entry when it needs to perform
1201       // a dynamic relocation.
1202       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1203       if (config->emachine == EM_MIPS)
1204         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1205       return;
1206     }
1207   }
1208 
1209   // When producing an executable, we can perform copy relocations (for
1210   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1211   if (!config->shared) {
1212     if (!canDefineSymbolInExecutable(sym)) {
1213       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1214                   getLocation(sec, sym, offset));
1215       return;
1216     }
1217 
1218     if (sym.isObject()) {
1219       // Produce a copy relocation.
1220       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1221         if (!config->zCopyreloc)
1222           error("unresolvable relocation " + toString(type) +
1223                 " against symbol '" + toString(*ss) +
1224                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1225                 getLocation(sec, sym, offset));
1226         addCopyRelSymbol<ELFT>(*ss);
1227       }
1228       sec.relocations.push_back({expr, type, offset, addend, &sym});
1229       return;
1230     }
1231 
1232     // This handles a non PIC program call to function in a shared library. In
1233     // an ideal world, we could just report an error saying the relocation can
1234     // overflow at runtime. In the real world with glibc, crt1.o has a
1235     // R_X86_64_PC32 pointing to libc.so.
1236     //
1237     // The general idea on how to handle such cases is to create a PLT entry and
1238     // use that as the function value.
1239     //
1240     // For the static linking part, we just return a plt expr and everything
1241     // else will use the PLT entry as the address.
1242     //
1243     // The remaining problem is making sure pointer equality still works. We
1244     // need the help of the dynamic linker for that. We let it know that we have
1245     // a direct reference to a so symbol by creating an undefined symbol with a
1246     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1247     // the value of the symbol we created. This is true even for got entries, so
1248     // pointer equality is maintained. To avoid an infinite loop, the only entry
1249     // that points to the real function is a dedicated got entry used by the
1250     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1251     // R_386_JMP_SLOT, etc).
1252 
1253     // For position independent executable on i386, the plt entry requires ebx
1254     // to be set. This causes two problems:
1255     // * If some code has a direct reference to a function, it was probably
1256     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1257     // * If a library definition gets preempted to the executable, it will have
1258     //   the wrong ebx value.
1259     if (sym.isFunc()) {
1260       if (config->pie && config->emachine == EM_386)
1261         errorOrWarn("symbol '" + toString(sym) +
1262                     "' cannot be preempted; recompile with -fPIE" +
1263                     getLocation(sec, sym, offset));
1264       if (!sym.isInPlt())
1265         addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1266       if (!sym.isDefined()) {
1267         replaceWithDefined(
1268             sym, in.plt,
1269             target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1270         if (config->emachine == EM_PPC) {
1271           // PPC32 canonical PLT entries are at the beginning of .glink
1272           cast<Defined>(sym).value = in.plt->headerSize;
1273           in.plt->headerSize += 16;
1274           cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1275         }
1276       }
1277       sym.needsPltAddr = true;
1278       sec.relocations.push_back({expr, type, offset, addend, &sym});
1279       return;
1280     }
1281   }
1282 
1283   if (config->isPic) {
1284     if (!canWrite && !isRelExpr(expr))
1285       errorOrWarn(
1286           "can't create dynamic relocation " + toString(type) + " against " +
1287           (sym.getName().empty() ? "local symbol"
1288                                  : "symbol: " + toString(sym)) +
1289           " in readonly segment; recompile object files with -fPIC "
1290           "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1291           getLocation(sec, sym, offset));
1292     else
1293       errorOrWarn(
1294           "relocation " + toString(type) + " cannot be used against " +
1295           (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1296           "; recompile with -fPIC" + getLocation(sec, sym, offset));
1297     return;
1298   }
1299 
1300   errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1301               getLocation(sec, sym, offset));
1302 }
1303 
1304 template <class ELFT, class RelTy>
1305 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1306                       RelTy *start, RelTy *end) {
1307   const RelTy &rel = *i;
1308   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1309   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1310   RelType type;
1311 
1312   // Deal with MIPS oddity.
1313   if (config->mipsN32Abi) {
1314     type = getMipsN32RelType(i, end);
1315   } else {
1316     type = rel.getType(config->isMips64EL);
1317     ++i;
1318   }
1319 
1320   // Get an offset in an output section this relocation is applied to.
1321   uint64_t offset = getOffset.get(rel.r_offset);
1322   if (offset == uint64_t(-1))
1323     return;
1324 
1325   // Error if the target symbol is undefined. Symbol index 0 may be used by
1326   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1327   if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1328     return;
1329 
1330   const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1331   RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1332 
1333   // Ignore R_*_NONE and other marker relocations.
1334   if (expr == R_NONE)
1335     return;
1336 
1337   // Read an addend.
1338   int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1339 
1340   if (config->emachine == EM_PPC64) {
1341     // We can separate the small code model relocations into 2 categories:
1342     // 1) Those that access the compiler generated .toc sections.
1343     // 2) Those that access the linker allocated got entries.
1344     // lld allocates got entries to symbols on demand. Since we don't try to
1345     // sort the got entries in any way, we don't have to track which objects
1346     // have got-based small code model relocs. The .toc sections get placed
1347     // after the end of the linker allocated .got section and we do sort those
1348     // so sections addressed with small code model relocations come first.
1349     if (isPPC64SmallCodeModelTocReloc(type))
1350       sec.file->ppc64SmallCodeModelTocRelocs = true;
1351 
1352     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1353     // InputSectionBase::relocateAlloc().
1354     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1355         cast<Defined>(sym).section->name == ".toc")
1356       ppc64noTocRelax.insert({&sym, addend});
1357 
1358     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1359         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1360       if (i == end) {
1361         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1362                     "relocation" +
1363                     getLocation(sec, sym, offset));
1364         return;
1365       }
1366 
1367       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1368       // so we can discern it later from the toc-case.
1369       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1370         ++offset;
1371     }
1372   }
1373 
1374   // Relax relocations.
1375   //
1376   // If we know that a PLT entry will be resolved within the same ELF module, we
1377   // can skip PLT access and directly jump to the destination function. For
1378   // example, if we are linking a main executable, all dynamic symbols that can
1379   // be resolved within the executable will actually be resolved that way at
1380   // runtime, because the main executable is always at the beginning of a search
1381   // list. We can leverage that fact.
1382   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1383     if (expr != R_GOT_PC) {
1384       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1385       // stub type. It should be ignored if optimized to R_PC.
1386       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1387         addend &= ~0x8000;
1388       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1389       // call __tls_get_addr even if the symbol is non-preemptible.
1390       if (!(config->emachine == EM_HEXAGON &&
1391            (type == R_HEX_GD_PLT_B22_PCREL ||
1392             type == R_HEX_GD_PLT_B22_PCREL_X ||
1393             type == R_HEX_GD_PLT_B32_PCREL_X)))
1394       expr = fromPlt(expr);
1395     } else if (!isAbsoluteValue(sym)) {
1396       expr = target->adjustGotPcExpr(type, addend, relocatedAddr);
1397     }
1398   }
1399 
1400   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1401   // uses their addresses, we need GOT or GOTPLT to be created.
1402   //
1403   // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1404   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1405     in.gotPlt->hasGotPltOffRel = true;
1406   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1407                  expr)) {
1408     in.got->hasGotOffRel = true;
1409   }
1410 
1411   // Process TLS relocations, including relaxing TLS relocations. Note that
1412   // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux.
1413   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1414     if (config->shared) {
1415       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1416                   " cannot be used with -shared" +
1417                   getLocation(sec, sym, offset));
1418       return;
1419     }
1420   } else if (unsigned processed = handleTlsRelocation<ELFT>(
1421                  type, sym, sec, offset, addend, expr)) {
1422     i += (processed - 1);
1423     return;
1424   }
1425 
1426   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1427   // direct relocation on through.
1428   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1429     sym.exportDynamic = true;
1430     mainPart->relaDyn->addSymbolReloc(type, &sec, offset, sym, addend, type);
1431     return;
1432   }
1433 
1434   // Non-preemptible ifuncs require special handling. First, handle the usual
1435   // case where the symbol isn't one of these.
1436   if (!sym.isGnuIFunc() || sym.isPreemptible) {
1437     // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1438     if (needsPlt(expr) && !sym.isInPlt())
1439       addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1440 
1441     // Create a GOT slot if a relocation needs GOT.
1442     if (needsGot(expr)) {
1443       if (config->emachine == EM_MIPS) {
1444         // MIPS ABI has special rules to process GOT entries and doesn't
1445         // require relocation entries for them. A special case is TLS
1446         // relocations. In that case dynamic loader applies dynamic
1447         // relocations to initialize TLS GOT entries.
1448         // See "Global Offset Table" in Chapter 5 in the following document
1449         // for detailed description:
1450         // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1451         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1452       } else if (!sym.isInGot()) {
1453         addGotEntry(sym);
1454       }
1455     }
1456   } else {
1457     // Handle a reference to a non-preemptible ifunc. These are special in a
1458     // few ways:
1459     //
1460     // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1461     //   a fixed value. But assuming that all references to the ifunc are
1462     //   GOT-generating or PLT-generating, the handling of an ifunc is
1463     //   relatively straightforward. We create a PLT entry in Iplt, which is
1464     //   usually at the end of .plt, which makes an indirect call using a
1465     //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1466     //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1467     //   which is usually at the end of .rela.plt. Unlike most relocations in
1468     //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1469     //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1470     //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1471     //   .got.plt without requiring a separate GOT entry.
1472     //
1473     // - Despite the fact that an ifunc does not have a fixed value, compilers
1474     //   that are not passed -fPIC will assume that they do, and will emit
1475     //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1476     //   symbol. This means that if a direct relocation to the symbol is
1477     //   seen, the linker must set a value for the symbol, and this value must
1478     //   be consistent no matter what type of reference is made to the symbol.
1479     //   This can be done by creating a PLT entry for the symbol in the way
1480     //   described above and making it canonical, that is, making all references
1481     //   point to the PLT entry instead of the resolver. In lld we also store
1482     //   the address of the PLT entry in the dynamic symbol table, which means
1483     //   that the symbol will also have the same value in other modules.
1484     //   Because the value loaded from the GOT needs to be consistent with
1485     //   the value computed using a direct relocation, a non-preemptible ifunc
1486     //   may end up with two GOT entries, one in .got.plt that points to the
1487     //   address returned by the resolver and is used only by the PLT entry,
1488     //   and another in .got that points to the PLT entry and is used by
1489     //   GOT-generating relocations.
1490     //
1491     // - The fact that these symbols do not have a fixed value makes them an
1492     //   exception to the general rule that a statically linked executable does
1493     //   not require any form of dynamic relocation. To handle these relocations
1494     //   correctly, the IRELATIVE relocations are stored in an array which a
1495     //   statically linked executable's startup code must enumerate using the
1496     //   linker-defined symbols __rela?_iplt_{start,end}.
1497     if (!sym.isInPlt()) {
1498       // Create PLT and GOTPLT slots for the symbol.
1499       sym.isInIplt = true;
1500 
1501       // Create a copy of the symbol to use as the target of the IRELATIVE
1502       // relocation in the igotPlt. This is in case we make the PLT canonical
1503       // later, which would overwrite the original symbol.
1504       //
1505       // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1506       // that's really needed to create the IRELATIVE is the section and value,
1507       // so ideally we should just need to copy those.
1508       auto *directSym = make<Defined>(cast<Defined>(sym));
1509       addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1510                   *directSym);
1511       sym.pltIndex = directSym->pltIndex;
1512     }
1513     if (needsGot(expr)) {
1514       // Redirect GOT accesses to point to the Igot.
1515       //
1516       // This field is also used to keep track of whether we ever needed a GOT
1517       // entry. If we did and we make the PLT canonical later, we'll need to
1518       // create a GOT entry pointing to the PLT entry for Sym.
1519       sym.gotInIgot = true;
1520     } else if (!needsPlt(expr)) {
1521       // Make the ifunc's PLT entry canonical by changing the value of its
1522       // symbol to redirect all references to point to it.
1523       auto &d = cast<Defined>(sym);
1524       d.section = in.iplt;
1525       d.value = sym.pltIndex * target->ipltEntrySize;
1526       d.size = 0;
1527       // It's important to set the symbol type here so that dynamic loaders
1528       // don't try to call the PLT as if it were an ifunc resolver.
1529       d.type = STT_FUNC;
1530 
1531       if (sym.gotInIgot) {
1532         // We previously encountered a GOT generating reference that we
1533         // redirected to the Igot. Now that the PLT entry is canonical we must
1534         // clear the redirection to the Igot and add a GOT entry. As we've
1535         // changed the symbol type to STT_FUNC future GOT generating references
1536         // will naturally use this GOT entry.
1537         //
1538         // We don't need to worry about creating a MIPS GOT here because ifuncs
1539         // aren't a thing on MIPS.
1540         sym.gotInIgot = false;
1541         addGotEntry(sym);
1542       }
1543     }
1544   }
1545 
1546   processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1547 }
1548 
1549 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1550 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1551 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1552 // instructions are generated by very old IBM XL compilers. Work around the
1553 // issue by disabling GD/LD to IE/LE relaxation.
1554 template <class RelTy>
1555 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1556   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1557   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1558     return;
1559   bool hasGDLD = false;
1560   for (const RelTy &rel : rels) {
1561     RelType type = rel.getType(false);
1562     switch (type) {
1563     case R_PPC64_TLSGD:
1564     case R_PPC64_TLSLD:
1565       return; // Found a marker
1566     case R_PPC64_GOT_TLSGD16:
1567     case R_PPC64_GOT_TLSGD16_HA:
1568     case R_PPC64_GOT_TLSGD16_HI:
1569     case R_PPC64_GOT_TLSGD16_LO:
1570     case R_PPC64_GOT_TLSLD16:
1571     case R_PPC64_GOT_TLSLD16_HA:
1572     case R_PPC64_GOT_TLSLD16_HI:
1573     case R_PPC64_GOT_TLSLD16_LO:
1574       hasGDLD = true;
1575       break;
1576     }
1577   }
1578   if (hasGDLD) {
1579     sec.file->ppc64DisableTLSRelax = true;
1580     warn(toString(sec.file) +
1581          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1582          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1583   }
1584 }
1585 
1586 template <class ELFT, class RelTy>
1587 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1588   OffsetGetter getOffset(sec);
1589 
1590   // Not all relocations end up in Sec.Relocations, but a lot do.
1591   sec.relocations.reserve(rels.size());
1592 
1593   if (config->emachine == EM_PPC64)
1594     checkPPC64TLSRelax<RelTy>(sec, rels);
1595 
1596   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1597   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1598   // script), the relocations may be unordered.
1599   SmallVector<RelTy, 0> storage;
1600   if (isa<EhInputSection>(sec))
1601     rels = sortRels(rels, storage);
1602 
1603   for (auto i = rels.begin(), end = rels.end(); i != end;)
1604     scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end);
1605 
1606   // Sort relocations by offset for more efficient searching for
1607   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1608   if (config->emachine == EM_RISCV ||
1609       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1610     llvm::stable_sort(sec.relocations,
1611                       [](const Relocation &lhs, const Relocation &rhs) {
1612                         return lhs.offset < rhs.offset;
1613                       });
1614 }
1615 
1616 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1617   if (s.areRelocsRela)
1618     scanRelocs<ELFT>(s, s.relas<ELFT>());
1619   else
1620     scanRelocs<ELFT>(s, s.rels<ELFT>());
1621 }
1622 
1623 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1624   // std::merge requires a strict weak ordering.
1625   if (a->outSecOff < b->outSecOff)
1626     return true;
1627 
1628   if (a->outSecOff == b->outSecOff) {
1629     auto *ta = dyn_cast<ThunkSection>(a);
1630     auto *tb = dyn_cast<ThunkSection>(b);
1631 
1632     // Check if Thunk is immediately before any specific Target
1633     // InputSection for example Mips LA25 Thunks.
1634     if (ta && ta->getTargetInputSection() == b)
1635       return true;
1636 
1637     // Place Thunk Sections without specific targets before
1638     // non-Thunk Sections.
1639     if (ta && !tb && !ta->getTargetInputSection())
1640       return true;
1641   }
1642 
1643   return false;
1644 }
1645 
1646 // Call Fn on every executable InputSection accessed via the linker script
1647 // InputSectionDescription::Sections.
1648 static void forEachInputSectionDescription(
1649     ArrayRef<OutputSection *> outputSections,
1650     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1651   for (OutputSection *os : outputSections) {
1652     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1653       continue;
1654     for (BaseCommand *bc : os->sectionCommands)
1655       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1656         fn(os, isd);
1657   }
1658 }
1659 
1660 // Thunk Implementation
1661 //
1662 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1663 // of code that the linker inserts inbetween a caller and a callee. The thunks
1664 // are added at link time rather than compile time as the decision on whether
1665 // a thunk is needed, such as the caller and callee being out of range, can only
1666 // be made at link time.
1667 //
1668 // It is straightforward to tell given the current state of the program when a
1669 // thunk is needed for a particular call. The more difficult part is that
1670 // the thunk needs to be placed in the program such that the caller can reach
1671 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1672 // the program alters addresses, which can mean more thunks etc.
1673 //
1674 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1675 // The decision to have a ThunkSection act as a container means that we can
1676 // more easily handle the most common case of a single block of contiguous
1677 // Thunks by inserting just a single ThunkSection.
1678 //
1679 // The implementation of Thunks in lld is split across these areas
1680 // Relocations.cpp : Framework for creating and placing thunks
1681 // Thunks.cpp : The code generated for each supported thunk
1682 // Target.cpp : Target specific hooks that the framework uses to decide when
1683 //              a thunk is used
1684 // Synthetic.cpp : Implementation of ThunkSection
1685 // Writer.cpp : Iteratively call framework until no more Thunks added
1686 //
1687 // Thunk placement requirements:
1688 // Mips LA25 thunks. These must be placed immediately before the callee section
1689 // We can assume that the caller is in range of the Thunk. These are modelled
1690 // by Thunks that return the section they must precede with
1691 // getTargetInputSection().
1692 //
1693 // ARM interworking and range extension thunks. These thunks must be placed
1694 // within range of the caller. All implemented ARM thunks can always reach the
1695 // callee as they use an indirect jump via a register that has no range
1696 // restrictions.
1697 //
1698 // Thunk placement algorithm:
1699 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1700 // getTargetInputSection().
1701 //
1702 // For thunks that must be placed within range of the caller there are many
1703 // possible choices given that the maximum range from the caller is usually
1704 // much larger than the average InputSection size. Desirable properties include:
1705 // - Maximize reuse of thunks by multiple callers
1706 // - Minimize number of ThunkSections to simplify insertion
1707 // - Handle impact of already added Thunks on addresses
1708 // - Simple to understand and implement
1709 //
1710 // In lld for the first pass, we pre-create one or more ThunkSections per
1711 // InputSectionDescription at Target specific intervals. A ThunkSection is
1712 // placed so that the estimated end of the ThunkSection is within range of the
1713 // start of the InputSectionDescription or the previous ThunkSection. For
1714 // example:
1715 // InputSectionDescription
1716 // Section 0
1717 // ...
1718 // Section N
1719 // ThunkSection 0
1720 // Section N + 1
1721 // ...
1722 // Section N + K
1723 // Thunk Section 1
1724 //
1725 // The intention is that we can add a Thunk to a ThunkSection that is well
1726 // spaced enough to service a number of callers without having to do a lot
1727 // of work. An important principle is that it is not an error if a Thunk cannot
1728 // be placed in a pre-created ThunkSection; when this happens we create a new
1729 // ThunkSection placed next to the caller. This allows us to handle the vast
1730 // majority of thunks simply, but also handle rare cases where the branch range
1731 // is smaller than the target specific spacing.
1732 //
1733 // The algorithm is expected to create all the thunks that are needed in a
1734 // single pass, with a small number of programs needing a second pass due to
1735 // the insertion of thunks in the first pass increasing the offset between
1736 // callers and callees that were only just in range.
1737 //
1738 // A consequence of allowing new ThunkSections to be created outside of the
1739 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1740 // range in pass K, are out of range in some pass > K due to the insertion of
1741 // more Thunks in between the caller and callee. When this happens we retarget
1742 // the relocation back to the original target and create another Thunk.
1743 
1744 // Remove ThunkSections that are empty, this should only be the initial set
1745 // precreated on pass 0.
1746 
1747 // Insert the Thunks for OutputSection OS into their designated place
1748 // in the Sections vector, and recalculate the InputSection output section
1749 // offsets.
1750 // This may invalidate any output section offsets stored outside of InputSection
1751 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1752   forEachInputSectionDescription(
1753       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1754         if (isd->thunkSections.empty())
1755           return;
1756 
1757         // Remove any zero sized precreated Thunks.
1758         llvm::erase_if(isd->thunkSections,
1759                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1760                          return ts.first->getSize() == 0;
1761                        });
1762 
1763         // ISD->ThunkSections contains all created ThunkSections, including
1764         // those inserted in previous passes. Extract the Thunks created this
1765         // pass and order them in ascending outSecOff.
1766         std::vector<ThunkSection *> newThunks;
1767         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1768           if (ts.second == pass)
1769             newThunks.push_back(ts.first);
1770         llvm::stable_sort(newThunks,
1771                           [](const ThunkSection *a, const ThunkSection *b) {
1772                             return a->outSecOff < b->outSecOff;
1773                           });
1774 
1775         // Merge sorted vectors of Thunks and InputSections by outSecOff
1776         std::vector<InputSection *> tmp;
1777         tmp.reserve(isd->sections.size() + newThunks.size());
1778 
1779         std::merge(isd->sections.begin(), isd->sections.end(),
1780                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1781                    mergeCmp);
1782 
1783         isd->sections = std::move(tmp);
1784       });
1785 }
1786 
1787 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1788 // is in range of Src. An ISD maps to a range of InputSections described by a
1789 // linker script section pattern such as { .text .text.* }.
1790 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1791                                            InputSection *isec,
1792                                            InputSectionDescription *isd,
1793                                            const Relocation &rel,
1794                                            uint64_t src) {
1795   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1796     ThunkSection *ts = tp.first;
1797     uint64_t tsBase = os->addr + ts->outSecOff + rel.addend;
1798     uint64_t tsLimit = tsBase + ts->getSize() + rel.addend;
1799     if (target->inBranchRange(rel.type, src,
1800                               (src > tsLimit) ? tsBase : tsLimit))
1801       return ts;
1802   }
1803 
1804   // No suitable ThunkSection exists. This can happen when there is a branch
1805   // with lower range than the ThunkSection spacing or when there are too
1806   // many Thunks. Create a new ThunkSection as close to the InputSection as
1807   // possible. Error if InputSection is so large we cannot place ThunkSection
1808   // anywhere in Range.
1809   uint64_t thunkSecOff = isec->outSecOff;
1810   if (!target->inBranchRange(rel.type, src,
1811                              os->addr + thunkSecOff + rel.addend)) {
1812     thunkSecOff = isec->outSecOff + isec->getSize();
1813     if (!target->inBranchRange(rel.type, src,
1814                                os->addr + thunkSecOff + rel.addend))
1815       fatal("InputSection too large for range extension thunk " +
1816             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1817   }
1818   return addThunkSection(os, isd, thunkSecOff);
1819 }
1820 
1821 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1822 // precedes its Target.
1823 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1824   ThunkSection *ts = thunkedSections.lookup(isec);
1825   if (ts)
1826     return ts;
1827 
1828   // Find InputSectionRange within Target Output Section (TOS) that the
1829   // InputSection (IS) that we need to precede is in.
1830   OutputSection *tos = isec->getParent();
1831   for (BaseCommand *bc : tos->sectionCommands) {
1832     auto *isd = dyn_cast<InputSectionDescription>(bc);
1833     if (!isd || isd->sections.empty())
1834       continue;
1835 
1836     InputSection *first = isd->sections.front();
1837     InputSection *last = isd->sections.back();
1838 
1839     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1840       continue;
1841 
1842     ts = addThunkSection(tos, isd, isec->outSecOff);
1843     thunkedSections[isec] = ts;
1844     return ts;
1845   }
1846 
1847   return nullptr;
1848 }
1849 
1850 // Create one or more ThunkSections per OS that can be used to place Thunks.
1851 // We attempt to place the ThunkSections using the following desirable
1852 // properties:
1853 // - Within range of the maximum number of callers
1854 // - Minimise the number of ThunkSections
1855 //
1856 // We follow a simple but conservative heuristic to place ThunkSections at
1857 // offsets that are multiples of a Target specific branch range.
1858 // For an InputSectionDescription that is smaller than the range, a single
1859 // ThunkSection at the end of the range will do.
1860 //
1861 // For an InputSectionDescription that is more than twice the size of the range,
1862 // we place the last ThunkSection at range bytes from the end of the
1863 // InputSectionDescription in order to increase the likelihood that the
1864 // distance from a thunk to its target will be sufficiently small to
1865 // allow for the creation of a short thunk.
1866 void ThunkCreator::createInitialThunkSections(
1867     ArrayRef<OutputSection *> outputSections) {
1868   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1869 
1870   forEachInputSectionDescription(
1871       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1872         if (isd->sections.empty())
1873           return;
1874 
1875         uint32_t isdBegin = isd->sections.front()->outSecOff;
1876         uint32_t isdEnd =
1877             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1878         uint32_t lastThunkLowerBound = -1;
1879         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1880           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1881 
1882         uint32_t isecLimit;
1883         uint32_t prevIsecLimit = isdBegin;
1884         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1885 
1886         for (const InputSection *isec : isd->sections) {
1887           isecLimit = isec->outSecOff + isec->getSize();
1888           if (isecLimit > thunkUpperBound) {
1889             addThunkSection(os, isd, prevIsecLimit);
1890             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1891           }
1892           if (isecLimit > lastThunkLowerBound)
1893             break;
1894           prevIsecLimit = isecLimit;
1895         }
1896         addThunkSection(os, isd, isecLimit);
1897       });
1898 }
1899 
1900 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1901                                             InputSectionDescription *isd,
1902                                             uint64_t off) {
1903   auto *ts = make<ThunkSection>(os, off);
1904   ts->partition = os->partition;
1905   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1906       !isd->sections.empty()) {
1907     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1908     // thunks we disturb the base addresses of sections placed after the thunks
1909     // this makes patches we have generated redundant, and may cause us to
1910     // generate more patches as different instructions are now in sensitive
1911     // locations. When we generate more patches we may force more branches to
1912     // go out of range, causing more thunks to be generated. In pathological
1913     // cases this can cause the address dependent content pass not to converge.
1914     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1915     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1916     // which means that adding Thunks to the section does not invalidate
1917     // errata patches for following code.
1918     // Rounding up the size to 4KiB has consequences for code-size and can
1919     // trip up linker script defined assertions. For example the linux kernel
1920     // has an assertion that what LLD represents as an InputSectionDescription
1921     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1922     // We use the heuristic of rounding up the size when both of the following
1923     // conditions are true:
1924     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1925     //     accounts for the case where no single InputSectionDescription is
1926     //     larger than the OutputSection size. This is conservative but simple.
1927     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1928     //     any assertion failures that an InputSectionDescription is < 4 KiB
1929     //     in size.
1930     uint64_t isdSize = isd->sections.back()->outSecOff +
1931                        isd->sections.back()->getSize() -
1932                        isd->sections.front()->outSecOff;
1933     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1934       ts->roundUpSizeForErrata = true;
1935   }
1936   isd->thunkSections.push_back({ts, pass});
1937   return ts;
1938 }
1939 
1940 static bool isThunkSectionCompatible(InputSection *source,
1941                                      SectionBase *target) {
1942   // We can't reuse thunks in different loadable partitions because they might
1943   // not be loaded. But partition 1 (the main partition) will always be loaded.
1944   if (source->partition != target->partition)
1945     return target->partition == 1;
1946   return true;
1947 }
1948 
1949 static int64_t getPCBias(RelType type) {
1950   if (config->emachine != EM_ARM)
1951     return 0;
1952   switch (type) {
1953   case R_ARM_THM_JUMP19:
1954   case R_ARM_THM_JUMP24:
1955   case R_ARM_THM_CALL:
1956     return 4;
1957   default:
1958     return 8;
1959   }
1960 }
1961 
1962 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1963                                                 Relocation &rel, uint64_t src) {
1964   std::vector<Thunk *> *thunkVec = nullptr;
1965   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
1966   // out in the relocation addend. We compensate for the PC bias so that
1967   // an Arm and Thumb relocation to the same destination get the same keyAddend,
1968   // which is usually 0.
1969   const int64_t pcBias = getPCBias(rel.type);
1970   const int64_t keyAddend = rel.addend + pcBias;
1971 
1972   // We use a ((section, offset), addend) pair to find the thunk position if
1973   // possible so that we create only one thunk for aliased symbols or ICFed
1974   // sections. There may be multiple relocations sharing the same (section,
1975   // offset + addend) pair. We may revert the relocation back to its original
1976   // non-Thunk target, so we cannot fold offset + addend.
1977   if (auto *d = dyn_cast<Defined>(rel.sym))
1978     if (!d->isInPlt() && d->section)
1979       thunkVec = &thunkedSymbolsBySectionAndAddend[{
1980           {d->section->repl, d->value}, keyAddend}];
1981   if (!thunkVec)
1982     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
1983 
1984   // Check existing Thunks for Sym to see if they can be reused
1985   for (Thunk *t : *thunkVec)
1986     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1987         t->isCompatibleWith(*isec, rel) &&
1988         target->inBranchRange(rel.type, src,
1989                               t->getThunkTargetSym()->getVA(-pcBias)))
1990       return std::make_pair(t, false);
1991 
1992   // No existing compatible Thunk in range, create a new one
1993   Thunk *t = addThunk(*isec, rel);
1994   thunkVec->push_back(t);
1995   return std::make_pair(t, true);
1996 }
1997 
1998 // Return true if the relocation target is an in range Thunk.
1999 // Return false if the relocation is not to a Thunk. If the relocation target
2000 // was originally to a Thunk, but is no longer in range we revert the
2001 // relocation back to its original non-Thunk target.
2002 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2003   if (Thunk *t = thunks.lookup(rel.sym)) {
2004     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2005       return true;
2006     rel.sym = &t->destination;
2007     rel.addend = t->addend;
2008     if (rel.sym->isInPlt())
2009       rel.expr = toPlt(rel.expr);
2010   }
2011   return false;
2012 }
2013 
2014 // Process all relocations from the InputSections that have been assigned
2015 // to InputSectionDescriptions and redirect through Thunks if needed. The
2016 // function should be called iteratively until it returns false.
2017 //
2018 // PreConditions:
2019 // All InputSections that may need a Thunk are reachable from
2020 // OutputSectionCommands.
2021 //
2022 // All OutputSections have an address and all InputSections have an offset
2023 // within the OutputSection.
2024 //
2025 // The offsets between caller (relocation place) and callee
2026 // (relocation target) will not be modified outside of createThunks().
2027 //
2028 // PostConditions:
2029 // If return value is true then ThunkSections have been inserted into
2030 // OutputSections. All relocations that needed a Thunk based on the information
2031 // available to createThunks() on entry have been redirected to a Thunk. Note
2032 // that adding Thunks changes offsets between caller and callee so more Thunks
2033 // may be required.
2034 //
2035 // If return value is false then no more Thunks are needed, and createThunks has
2036 // made no changes. If the target requires range extension thunks, currently
2037 // ARM, then any future change in offset between caller and callee risks a
2038 // relocation out of range error.
2039 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2040   bool addressesChanged = false;
2041 
2042   if (pass == 0 && target->getThunkSectionSpacing())
2043     createInitialThunkSections(outputSections);
2044 
2045   // Create all the Thunks and insert them into synthetic ThunkSections. The
2046   // ThunkSections are later inserted back into InputSectionDescriptions.
2047   // We separate the creation of ThunkSections from the insertion of the
2048   // ThunkSections as ThunkSections are not always inserted into the same
2049   // InputSectionDescription as the caller.
2050   forEachInputSectionDescription(
2051       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2052         for (InputSection *isec : isd->sections)
2053           for (Relocation &rel : isec->relocations) {
2054             uint64_t src = isec->getVA(rel.offset);
2055 
2056             // If we are a relocation to an existing Thunk, check if it is
2057             // still in range. If not then Rel will be altered to point to its
2058             // original target so another Thunk can be generated.
2059             if (pass > 0 && normalizeExistingThunk(rel, src))
2060               continue;
2061 
2062             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2063                                     *rel.sym, rel.addend))
2064               continue;
2065 
2066             Thunk *t;
2067             bool isNew;
2068             std::tie(t, isNew) = getThunk(isec, rel, src);
2069 
2070             if (isNew) {
2071               // Find or create a ThunkSection for the new Thunk
2072               ThunkSection *ts;
2073               if (auto *tis = t->getTargetInputSection())
2074                 ts = getISThunkSec(tis);
2075               else
2076                 ts = getISDThunkSec(os, isec, isd, rel, src);
2077               ts->addThunk(t);
2078               thunks[t->getThunkTargetSym()] = t;
2079             }
2080 
2081             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2082             rel.sym = t->getThunkTargetSym();
2083             rel.expr = fromPlt(rel.expr);
2084 
2085             // On AArch64 and PPC, a jump/call relocation may be encoded as
2086             // STT_SECTION + non-zero addend, clear the addend after
2087             // redirection.
2088             if (config->emachine != EM_MIPS)
2089               rel.addend = -getPCBias(rel.type);
2090           }
2091 
2092         for (auto &p : isd->thunkSections)
2093           addressesChanged |= p.first->assignOffsets();
2094       });
2095 
2096   for (auto &p : thunkedSections)
2097     addressesChanged |= p.second->assignOffsets();
2098 
2099   // Merge all created synthetic ThunkSections back into OutputSection
2100   mergeThunks(outputSections);
2101   ++pass;
2102   return addressesChanged;
2103 }
2104 
2105 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2106 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2107 // __tls_get_addr.
2108 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2109 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2110   bool needTlsSymbol = false;
2111   forEachInputSectionDescription(
2112       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2113         for (InputSection *isec : isd->sections)
2114           for (Relocation &rel : isec->relocations)
2115             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2116               needTlsSymbol = true;
2117               return;
2118             }
2119       });
2120   return needTlsSymbol;
2121 }
2122 
2123 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2124   Symbol *sym = symtab->find("__tls_get_addr");
2125   if (!sym)
2126     return;
2127   bool needEntry = true;
2128   forEachInputSectionDescription(
2129       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2130         for (InputSection *isec : isd->sections)
2131           for (Relocation &rel : isec->relocations)
2132             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2133               if (needEntry) {
2134                 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
2135                             *sym);
2136                 needEntry = false;
2137               }
2138               rel.sym = sym;
2139             }
2140       });
2141 }
2142 
2143 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2144 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2145 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2146 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2147 template void elf::reportUndefinedSymbols<ELF32LE>();
2148 template void elf::reportUndefinedSymbols<ELF32BE>();
2149 template void elf::reportUndefinedSymbols<ELF64LE>();
2150 template void elf::reportUndefinedSymbols<ELF64BE>();
2151