xref: /freebsd/contrib/llvm-project/lld/ELF/Relocations.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include <algorithm>
59 
60 using namespace llvm;
61 using namespace llvm::ELF;
62 using namespace llvm::object;
63 using namespace llvm::support::endian;
64 using namespace lld;
65 using namespace lld::elf;
66 
67 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
68   for (SectionCommand *cmd : script->sectionCommands)
69     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
70       if (assign->sym == &sym)
71         return assign->location;
72   return std::nullopt;
73 }
74 
75 static std::string getDefinedLocation(const Symbol &sym) {
76   const char msg[] = "\n>>> defined in ";
77   if (sym.file)
78     return msg + toString(sym.file);
79   if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
80     return msg + *loc;
81   return "";
82 }
83 
84 // Construct a message in the following format.
85 //
86 // >>> defined in /home/alice/src/foo.o
87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
88 // >>>               /home/alice/src/bar.o:(.text+0x1)
89 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
90                                uint64_t off) {
91   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
92   std::string src = s.getSrcMsg(sym, off);
93   if (!src.empty())
94     msg += src + "\n>>>               ";
95   return msg + s.getObjMsg(off);
96 }
97 
98 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
99                            int64_t min, uint64_t max) {
100   ErrorPlace errPlace = getErrorPlace(loc);
101   std::string hint;
102   if (rel.sym && !rel.sym->isSection())
103     hint = "; references " + lld::toString(*rel.sym);
104   if (!errPlace.srcLoc.empty())
105     hint += "\n>>> referenced by " + errPlace.srcLoc;
106   if (rel.sym && !rel.sym->isSection())
107     hint += getDefinedLocation(*rel.sym);
108 
109   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
110     hint += "; consider recompiling with -fdebug-types-section to reduce size "
111             "of debug sections";
112 
113   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
114               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
115               ", " + Twine(max).str() + "]" + hint);
116 }
117 
118 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
119                            const Twine &msg) {
120   ErrorPlace errPlace = getErrorPlace(loc);
121   std::string hint;
122   if (!sym.getName().empty())
123     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
124   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
125               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
126               Twine(llvm::maxIntN(n)) + "]" + hint);
127 }
128 
129 // Build a bitmask with one bit set for each 64 subset of RelExpr.
130 static constexpr uint64_t buildMask() { return 0; }
131 
132 template <typename... Tails>
133 static constexpr uint64_t buildMask(int head, Tails... tails) {
134   return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
135          buildMask(tails...);
136 }
137 
138 // Return true if `Expr` is one of `Exprs`.
139 // There are more than 64 but less than 128 RelExprs, so we divide the set of
140 // exprs into [0, 64) and [64, 128) and represent each range as a constant
141 // 64-bit mask. Then we decide which mask to test depending on the value of
142 // expr and use a simple shift and bitwise-and to test for membership.
143 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
144   assert(0 <= expr && (int)expr < 128 &&
145          "RelExpr is too large for 128-bit mask!");
146 
147   if (expr >= 64)
148     return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
149   return (uint64_t(1) << expr) & buildMask(Exprs...);
150 }
151 
152 static RelType getMipsPairType(RelType type, bool isLocal) {
153   switch (type) {
154   case R_MIPS_HI16:
155     return R_MIPS_LO16;
156   case R_MIPS_GOT16:
157     // In case of global symbol, the R_MIPS_GOT16 relocation does not
158     // have a pair. Each global symbol has a unique entry in the GOT
159     // and a corresponding instruction with help of the R_MIPS_GOT16
160     // relocation loads an address of the symbol. In case of local
161     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
162     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
163     // relocations handle low 16 bits of the address. That allows
164     // to allocate only one GOT entry for every 64 KBytes of local data.
165     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
166   case R_MICROMIPS_GOT16:
167     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
168   case R_MIPS_PCHI16:
169     return R_MIPS_PCLO16;
170   case R_MICROMIPS_HI16:
171     return R_MICROMIPS_LO16;
172   default:
173     return R_MIPS_NONE;
174   }
175 }
176 
177 // True if non-preemptable symbol always has the same value regardless of where
178 // the DSO is loaded.
179 static bool isAbsolute(const Symbol &sym) {
180   if (sym.isUndefWeak())
181     return true;
182   if (const auto *dr = dyn_cast<Defined>(&sym))
183     return dr->section == nullptr; // Absolute symbol.
184   return false;
185 }
186 
187 static bool isAbsoluteValue(const Symbol &sym) {
188   return isAbsolute(sym) || sym.isTls();
189 }
190 
191 // Returns true if Expr refers a PLT entry.
192 static bool needsPlt(RelExpr expr) {
193   return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
194       expr);
195 }
196 
197 // Returns true if Expr refers a GOT entry. Note that this function
198 // returns false for TLS variables even though they need GOT, because
199 // TLS variables uses GOT differently than the regular variables.
200 static bool needsGot(RelExpr expr) {
201   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
202                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
203                R_AARCH64_GOT_PAGE>(expr);
204 }
205 
206 // True if this expression is of the form Sym - X, where X is a position in the
207 // file (PC, or GOT for example).
208 static bool isRelExpr(RelExpr expr) {
209   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
210                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
211                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
212 }
213 
214 
215 static RelExpr toPlt(RelExpr expr) {
216   switch (expr) {
217   case R_PPC64_CALL:
218     return R_PPC64_CALL_PLT;
219   case R_PC:
220     return R_PLT_PC;
221   case R_ABS:
222     return R_PLT;
223   default:
224     return expr;
225   }
226 }
227 
228 static RelExpr fromPlt(RelExpr expr) {
229   // We decided not to use a plt. Optimize a reference to the plt to a
230   // reference to the symbol itself.
231   switch (expr) {
232   case R_PLT_PC:
233   case R_PPC32_PLTREL:
234     return R_PC;
235   case R_PPC64_CALL_PLT:
236     return R_PPC64_CALL;
237   case R_PLT:
238     return R_ABS;
239   case R_PLT_GOTPLT:
240     return R_GOTPLTREL;
241   default:
242     return expr;
243   }
244 }
245 
246 // Returns true if a given shared symbol is in a read-only segment in a DSO.
247 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
248   using Elf_Phdr = typename ELFT::Phdr;
249 
250   // Determine if the symbol is read-only by scanning the DSO's program headers.
251   const auto &file = cast<SharedFile>(*ss.file);
252   for (const Elf_Phdr &phdr :
253        check(file.template getObj<ELFT>().program_headers()))
254     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
255         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
256         ss.value < phdr.p_vaddr + phdr.p_memsz)
257       return true;
258   return false;
259 }
260 
261 // Returns symbols at the same offset as a given symbol, including SS itself.
262 //
263 // If two or more symbols are at the same offset, and at least one of
264 // them are copied by a copy relocation, all of them need to be copied.
265 // Otherwise, they would refer to different places at runtime.
266 template <class ELFT>
267 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
268   using Elf_Sym = typename ELFT::Sym;
269 
270   const auto &file = cast<SharedFile>(*ss.file);
271 
272   SmallSet<SharedSymbol *, 4> ret;
273   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
274     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
275         s.getType() == STT_TLS || s.st_value != ss.value)
276       continue;
277     StringRef name = check(s.getName(file.getStringTable()));
278     Symbol *sym = symtab.find(name);
279     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
280       ret.insert(alias);
281   }
282 
283   // The loop does not check SHT_GNU_verneed, so ret does not contain
284   // non-default version symbols. If ss has a non-default version, ret won't
285   // contain ss. Just add ss unconditionally. If a non-default version alias is
286   // separately copy relocated, it and ss will have different addresses.
287   // Fortunately this case is impractical and fails with GNU ld as well.
288   ret.insert(&ss);
289   return ret;
290 }
291 
292 // When a symbol is copy relocated or we create a canonical plt entry, it is
293 // effectively a defined symbol. In the case of copy relocation the symbol is
294 // in .bss and in the case of a canonical plt entry it is in .plt. This function
295 // replaces the existing symbol with a Defined pointing to the appropriate
296 // location.
297 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
298                                uint64_t size) {
299   Symbol old = sym;
300   Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
301           size, &sec)
302       .overwrite(sym);
303 
304   sym.verdefIndex = old.verdefIndex;
305   sym.exportDynamic = true;
306   sym.isUsedInRegularObj = true;
307   // A copy relocated alias may need a GOT entry.
308   sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
309                   std::memory_order_relaxed);
310 }
311 
312 // Reserve space in .bss or .bss.rel.ro for copy relocation.
313 //
314 // The copy relocation is pretty much a hack. If you use a copy relocation
315 // in your program, not only the symbol name but the symbol's size, RW/RO
316 // bit and alignment become part of the ABI. In addition to that, if the
317 // symbol has aliases, the aliases become part of the ABI. That's subtle,
318 // but if you violate that implicit ABI, that can cause very counter-
319 // intuitive consequences.
320 //
321 // So, what is the copy relocation? It's for linking non-position
322 // independent code to DSOs. In an ideal world, all references to data
323 // exported by DSOs should go indirectly through GOT. But if object files
324 // are compiled as non-PIC, all data references are direct. There is no
325 // way for the linker to transform the code to use GOT, as machine
326 // instructions are already set in stone in object files. This is where
327 // the copy relocation takes a role.
328 //
329 // A copy relocation instructs the dynamic linker to copy data from a DSO
330 // to a specified address (which is usually in .bss) at load-time. If the
331 // static linker (that's us) finds a direct data reference to a DSO
332 // symbol, it creates a copy relocation, so that the symbol can be
333 // resolved as if it were in .bss rather than in a DSO.
334 //
335 // As you can see in this function, we create a copy relocation for the
336 // dynamic linker, and the relocation contains not only symbol name but
337 // various other information about the symbol. So, such attributes become a
338 // part of the ABI.
339 //
340 // Note for application developers: I can give you a piece of advice if
341 // you are writing a shared library. You probably should export only
342 // functions from your library. You shouldn't export variables.
343 //
344 // As an example what can happen when you export variables without knowing
345 // the semantics of copy relocations, assume that you have an exported
346 // variable of type T. It is an ABI-breaking change to add new members at
347 // end of T even though doing that doesn't change the layout of the
348 // existing members. That's because the space for the new members are not
349 // reserved in .bss unless you recompile the main program. That means they
350 // are likely to overlap with other data that happens to be laid out next
351 // to the variable in .bss. This kind of issue is sometimes very hard to
352 // debug. What's a solution? Instead of exporting a variable V from a DSO,
353 // define an accessor getV().
354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
355   // Copy relocation against zero-sized symbol doesn't make sense.
356   uint64_t symSize = ss.getSize();
357   if (symSize == 0 || ss.alignment == 0)
358     fatal("cannot create a copy relocation for symbol " + toString(ss));
359 
360   // See if this symbol is in a read-only segment. If so, preserve the symbol's
361   // memory protection by reserving space in the .bss.rel.ro section.
362   bool isRO = isReadOnly<ELFT>(ss);
363   BssSection *sec =
364       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
365   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
366 
367   // At this point, sectionBases has been migrated to sections. Append sec to
368   // sections.
369   if (osec->commands.empty() ||
370       !isa<InputSectionDescription>(osec->commands.back()))
371     osec->commands.push_back(make<InputSectionDescription>(""));
372   auto *isd = cast<InputSectionDescription>(osec->commands.back());
373   isd->sections.push_back(sec);
374   osec->commitSection(sec);
375 
376   // Look through the DSO's dynamic symbol table for aliases and create a
377   // dynamic symbol for each one. This causes the copy relocation to correctly
378   // interpose any aliases.
379   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
380     replaceWithDefined(*sym, *sec, 0, sym->size);
381 
382   mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
383 }
384 
385 // .eh_frame sections are mergeable input sections, so their input
386 // offsets are not linearly mapped to output section. For each input
387 // offset, we need to find a section piece containing the offset and
388 // add the piece's base address to the input offset to compute the
389 // output offset. That isn't cheap.
390 //
391 // This class is to speed up the offset computation. When we process
392 // relocations, we access offsets in the monotonically increasing
393 // order. So we can optimize for that access pattern.
394 //
395 // For sections other than .eh_frame, this class doesn't do anything.
396 namespace {
397 class OffsetGetter {
398 public:
399   OffsetGetter() = default;
400   explicit OffsetGetter(InputSectionBase &sec) {
401     if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
402       cies = eh->cies;
403       fdes = eh->fdes;
404       i = cies.begin();
405       j = fdes.begin();
406     }
407   }
408 
409   // Translates offsets in input sections to offsets in output sections.
410   // Given offset must increase monotonically. We assume that Piece is
411   // sorted by inputOff.
412   uint64_t get(uint64_t off) {
413     if (cies.empty())
414       return off;
415 
416     while (j != fdes.end() && j->inputOff <= off)
417       ++j;
418     auto it = j;
419     if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
420       while (i != cies.end() && i->inputOff <= off)
421         ++i;
422       if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
423         fatal(".eh_frame: relocation is not in any piece");
424       it = i;
425     }
426 
427     // Offset -1 means that the piece is dead (i.e. garbage collected).
428     if (it[-1].outputOff == -1)
429       return -1;
430     return it[-1].outputOff + (off - it[-1].inputOff);
431   }
432 
433 private:
434   ArrayRef<EhSectionPiece> cies, fdes;
435   ArrayRef<EhSectionPiece>::iterator i, j;
436 };
437 
438 // This class encapsulates states needed to scan relocations for one
439 // InputSectionBase.
440 class RelocationScanner {
441 public:
442   template <class ELFT> void scanSection(InputSectionBase &s);
443 
444 private:
445   InputSectionBase *sec;
446   OffsetGetter getter;
447 
448   // End of relocations, used by Mips/PPC64.
449   const void *end = nullptr;
450 
451   template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
452   template <class ELFT, class RelTy>
453   int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
454   bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
455                                 uint64_t relOff) const;
456   void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
457                   int64_t addend) const;
458   template <class ELFT, class RelTy> void scanOne(RelTy *&i);
459   template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
460 };
461 } // namespace
462 
463 // MIPS has an odd notion of "paired" relocations to calculate addends.
464 // For example, if a relocation is of R_MIPS_HI16, there must be a
465 // R_MIPS_LO16 relocation after that, and an addend is calculated using
466 // the two relocations.
467 template <class ELFT, class RelTy>
468 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
469                                              bool isLocal) const {
470   if (expr == R_MIPS_GOTREL && isLocal)
471     return sec->getFile<ELFT>()->mipsGp0;
472 
473   // The ABI says that the paired relocation is used only for REL.
474   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
475   if (RelTy::IsRela)
476     return 0;
477 
478   RelType type = rel.getType(config->isMips64EL);
479   uint32_t pairTy = getMipsPairType(type, isLocal);
480   if (pairTy == R_MIPS_NONE)
481     return 0;
482 
483   const uint8_t *buf = sec->content().data();
484   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
485 
486   // To make things worse, paired relocations might not be contiguous in
487   // the relocation table, so we need to do linear search. *sigh*
488   for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
489     if (ri->getType(config->isMips64EL) == pairTy &&
490         ri->getSymbol(config->isMips64EL) == symIndex)
491       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
492 
493   warn("can't find matching " + toString(pairTy) + " relocation for " +
494        toString(type));
495   return 0;
496 }
497 
498 // Custom error message if Sym is defined in a discarded section.
499 template <class ELFT>
500 static std::string maybeReportDiscarded(Undefined &sym) {
501   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
502   if (!file || !sym.discardedSecIdx ||
503       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
504     return "";
505   ArrayRef<typename ELFT::Shdr> objSections =
506       file->template getELFShdrs<ELFT>();
507 
508   std::string msg;
509   if (sym.type == ELF::STT_SECTION) {
510     msg = "relocation refers to a discarded section: ";
511     msg += CHECK(
512         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
513   } else {
514     msg = "relocation refers to a symbol in a discarded section: " +
515           toString(sym);
516   }
517   msg += "\n>>> defined in " + toString(file);
518 
519   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
520   if (elfSec.sh_type != SHT_GROUP)
521     return msg;
522 
523   // If the discarded section is a COMDAT.
524   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
525   if (const InputFile *prevailing =
526           symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
527     msg += "\n>>> section group signature: " + signature.str() +
528            "\n>>> prevailing definition is in " + toString(prevailing);
529     if (sym.nonPrevailing) {
530       msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
531              "binding and the symbol in a non-prevailing group had STB_GLOBAL "
532              "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
533              "signature is not supported";
534     }
535   }
536   return msg;
537 }
538 
539 namespace {
540 // Undefined diagnostics are collected in a vector and emitted once all of
541 // them are known, so that some postprocessing on the list of undefined symbols
542 // can happen before lld emits diagnostics.
543 struct UndefinedDiag {
544   Undefined *sym;
545   struct Loc {
546     InputSectionBase *sec;
547     uint64_t offset;
548   };
549   std::vector<Loc> locs;
550   bool isWarning;
551 };
552 
553 std::vector<UndefinedDiag> undefs;
554 std::mutex relocMutex;
555 }
556 
557 // Check whether the definition name def is a mangled function name that matches
558 // the reference name ref.
559 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
560   llvm::ItaniumPartialDemangler d;
561   std::string name = def.str();
562   if (d.partialDemangle(name.c_str()))
563     return false;
564   char *buf = d.getFunctionName(nullptr, nullptr);
565   if (!buf)
566     return false;
567   bool ret = ref == buf;
568   free(buf);
569   return ret;
570 }
571 
572 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
573 // the suggested symbol, which is either in the symbol table, or in the same
574 // file of sym.
575 static const Symbol *getAlternativeSpelling(const Undefined &sym,
576                                             std::string &pre_hint,
577                                             std::string &post_hint) {
578   DenseMap<StringRef, const Symbol *> map;
579   if (sym.file && sym.file->kind() == InputFile::ObjKind) {
580     auto *file = cast<ELFFileBase>(sym.file);
581     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
582     // will give an error. Don't suggest an alternative spelling.
583     if (file && sym.discardedSecIdx != 0 &&
584         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
585       return nullptr;
586 
587     // Build a map of local defined symbols.
588     for (const Symbol *s : sym.file->getSymbols())
589       if (s->isLocal() && s->isDefined() && !s->getName().empty())
590         map.try_emplace(s->getName(), s);
591   }
592 
593   auto suggest = [&](StringRef newName) -> const Symbol * {
594     // If defined locally.
595     if (const Symbol *s = map.lookup(newName))
596       return s;
597 
598     // If in the symbol table and not undefined.
599     if (const Symbol *s = symtab.find(newName))
600       if (!s->isUndefined())
601         return s;
602 
603     return nullptr;
604   };
605 
606   // This loop enumerates all strings of Levenshtein distance 1 as typo
607   // correction candidates and suggests the one that exists as a non-undefined
608   // symbol.
609   StringRef name = sym.getName();
610   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
611     // Insert a character before name[i].
612     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
613     for (char c = '0'; c <= 'z'; ++c) {
614       newName[i] = c;
615       if (const Symbol *s = suggest(newName))
616         return s;
617     }
618     if (i == e)
619       break;
620 
621     // Substitute name[i].
622     newName = std::string(name);
623     for (char c = '0'; c <= 'z'; ++c) {
624       newName[i] = c;
625       if (const Symbol *s = suggest(newName))
626         return s;
627     }
628 
629     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
630     // common.
631     if (i + 1 < e) {
632       newName[i] = name[i + 1];
633       newName[i + 1] = name[i];
634       if (const Symbol *s = suggest(newName))
635         return s;
636     }
637 
638     // Delete name[i].
639     newName = (name.substr(0, i) + name.substr(i + 1)).str();
640     if (const Symbol *s = suggest(newName))
641       return s;
642   }
643 
644   // Case mismatch, e.g. Foo vs FOO.
645   for (auto &it : map)
646     if (name.equals_insensitive(it.first))
647       return it.second;
648   for (Symbol *sym : symtab.getSymbols())
649     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
650       return sym;
651 
652   // The reference may be a mangled name while the definition is not. Suggest a
653   // missing extern "C".
654   if (name.startswith("_Z")) {
655     std::string buf = name.str();
656     llvm::ItaniumPartialDemangler d;
657     if (!d.partialDemangle(buf.c_str()))
658       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
659         const Symbol *s = suggest(buf);
660         free(buf);
661         if (s) {
662           pre_hint = ": extern \"C\" ";
663           return s;
664         }
665       }
666   } else {
667     const Symbol *s = nullptr;
668     for (auto &it : map)
669       if (canSuggestExternCForCXX(name, it.first)) {
670         s = it.second;
671         break;
672       }
673     if (!s)
674       for (Symbol *sym : symtab.getSymbols())
675         if (canSuggestExternCForCXX(name, sym->getName())) {
676           s = sym;
677           break;
678         }
679     if (s) {
680       pre_hint = " to declare ";
681       post_hint = " as extern \"C\"?";
682       return s;
683     }
684   }
685 
686   return nullptr;
687 }
688 
689 static void reportUndefinedSymbol(const UndefinedDiag &undef,
690                                   bool correctSpelling) {
691   Undefined &sym = *undef.sym;
692 
693   auto visibility = [&]() -> std::string {
694     switch (sym.visibility()) {
695     case STV_INTERNAL:
696       return "internal ";
697     case STV_HIDDEN:
698       return "hidden ";
699     case STV_PROTECTED:
700       return "protected ";
701     default:
702       return "";
703     }
704   };
705 
706   std::string msg;
707   switch (config->ekind) {
708   case ELF32LEKind:
709     msg = maybeReportDiscarded<ELF32LE>(sym);
710     break;
711   case ELF32BEKind:
712     msg = maybeReportDiscarded<ELF32BE>(sym);
713     break;
714   case ELF64LEKind:
715     msg = maybeReportDiscarded<ELF64LE>(sym);
716     break;
717   case ELF64BEKind:
718     msg = maybeReportDiscarded<ELF64BE>(sym);
719     break;
720   default:
721     llvm_unreachable("");
722   }
723   if (msg.empty())
724     msg = "undefined " + visibility() + "symbol: " + toString(sym);
725 
726   const size_t maxUndefReferences = 3;
727   size_t i = 0;
728   for (UndefinedDiag::Loc l : undef.locs) {
729     if (i >= maxUndefReferences)
730       break;
731     InputSectionBase &sec = *l.sec;
732     uint64_t offset = l.offset;
733 
734     msg += "\n>>> referenced by ";
735     std::string src = sec.getSrcMsg(sym, offset);
736     if (!src.empty())
737       msg += src + "\n>>>               ";
738     msg += sec.getObjMsg(offset);
739     i++;
740   }
741 
742   if (i < undef.locs.size())
743     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
744                .str();
745 
746   if (correctSpelling) {
747     std::string pre_hint = ": ", post_hint;
748     if (const Symbol *corrected =
749             getAlternativeSpelling(sym, pre_hint, post_hint)) {
750       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
751       if (corrected->file)
752         msg += "\n>>> defined in: " + toString(corrected->file);
753     }
754   }
755 
756   if (sym.getName().startswith("_ZTV"))
757     msg +=
758         "\n>>> the vtable symbol may be undefined because the class is missing "
759         "its key function (see https://lld.llvm.org/missingkeyfunction)";
760   if (config->gcSections && config->zStartStopGC &&
761       sym.getName().startswith("__start_")) {
762     msg += "\n>>> the encapsulation symbol needs to be retained under "
763            "--gc-sections properly; consider -z nostart-stop-gc "
764            "(see https://lld.llvm.org/ELF/start-stop-gc)";
765   }
766 
767   if (undef.isWarning)
768     warn(msg);
769   else
770     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
771 }
772 
773 void elf::reportUndefinedSymbols() {
774   // Find the first "undefined symbol" diagnostic for each diagnostic, and
775   // collect all "referenced from" lines at the first diagnostic.
776   DenseMap<Symbol *, UndefinedDiag *> firstRef;
777   for (UndefinedDiag &undef : undefs) {
778     assert(undef.locs.size() == 1);
779     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
780       canon->locs.push_back(undef.locs[0]);
781       undef.locs.clear();
782     } else
783       firstRef[undef.sym] = &undef;
784   }
785 
786   // Enable spell corrector for the first 2 diagnostics.
787   for (const auto &[i, undef] : llvm::enumerate(undefs))
788     if (!undef.locs.empty())
789       reportUndefinedSymbol(undef, i < 2);
790   undefs.clear();
791 }
792 
793 // Report an undefined symbol if necessary.
794 // Returns true if the undefined symbol will produce an error message.
795 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
796                                  uint64_t offset) {
797   std::lock_guard<std::mutex> lock(relocMutex);
798   // If versioned, issue an error (even if the symbol is weak) because we don't
799   // know the defining filename which is required to construct a Verneed entry.
800   if (sym.hasVersionSuffix) {
801     undefs.push_back({&sym, {{&sec, offset}}, false});
802     return true;
803   }
804   if (sym.isWeak())
805     return false;
806 
807   bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
808   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
809     return false;
810 
811   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
812   // which references a switch table in a discarded .rodata/.text section. The
813   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
814   // spec says references from outside the group to a STB_LOCAL symbol are not
815   // allowed. Work around the bug.
816   //
817   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
818   // because .LC0-.LTOC is not representable if the two labels are in different
819   // .got2
820   if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
821     return false;
822 
823   bool isWarning =
824       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
825       config->noinhibitExec;
826   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
827   return !isWarning;
828 }
829 
830 // MIPS N32 ABI treats series of successive relocations with the same offset
831 // as a single relocation. The similar approach used by N64 ABI, but this ABI
832 // packs all relocations into the single relocation record. Here we emulate
833 // this for the N32 ABI. Iterate over relocation with the same offset and put
834 // theirs types into the single bit-set.
835 template <class RelTy>
836 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
837   RelType type = 0;
838   uint64_t offset = rel->r_offset;
839 
840   int n = 0;
841   while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
842     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
843   return type;
844 }
845 
846 template <bool shard = false>
847 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
848                              Symbol &sym, int64_t addend, RelExpr expr,
849                              RelType type) {
850   Partition &part = isec.getPartition();
851 
852   // Add a relative relocation. If relrDyn section is enabled, and the
853   // relocation offset is guaranteed to be even, add the relocation to
854   // the relrDyn section, otherwise add it to the relaDyn section.
855   // relrDyn sections don't support odd offsets. Also, relrDyn sections
856   // don't store the addend values, so we must write it to the relocated
857   // address.
858   if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
859     isec.addReloc({expr, type, offsetInSec, addend, &sym});
860     if (shard)
861       part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
862           {&isec, offsetInSec});
863     else
864       part.relrDyn->relocs.push_back({&isec, offsetInSec});
865     return;
866   }
867   part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
868                                         sym, addend, type, expr);
869 }
870 
871 template <class PltSection, class GotPltSection>
872 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
873                         RelocationBaseSection &rel, RelType type, Symbol &sym) {
874   plt.addEntry(sym);
875   gotPlt.addEntry(sym);
876   rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
877                 sym.isPreemptible ? DynamicReloc::AgainstSymbol
878                                   : DynamicReloc::AddendOnlyWithTargetVA,
879                 sym, 0, R_ABS});
880 }
881 
882 static void addGotEntry(Symbol &sym) {
883   in.got->addEntry(sym);
884   uint64_t off = sym.getGotOffset();
885 
886   // If preemptible, emit a GLOB_DAT relocation.
887   if (sym.isPreemptible) {
888     mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
889                                  DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
890     return;
891   }
892 
893   // Otherwise, the value is either a link-time constant or the load base
894   // plus a constant.
895   if (!config->isPic || isAbsolute(sym))
896     in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
897   else
898     addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
899 }
900 
901 static void addTpOffsetGotEntry(Symbol &sym) {
902   in.got->addEntry(sym);
903   uint64_t off = sym.getGotOffset();
904   if (!sym.isPreemptible && !config->isPic) {
905     in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
906     return;
907   }
908   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
909       target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
910 }
911 
912 // Return true if we can define a symbol in the executable that
913 // contains the value/function of a symbol defined in a shared
914 // library.
915 static bool canDefineSymbolInExecutable(Symbol &sym) {
916   // If the symbol has default visibility the symbol defined in the
917   // executable will preempt it.
918   // Note that we want the visibility of the shared symbol itself, not
919   // the visibility of the symbol in the output file we are producing.
920   if (!sym.dsoProtected)
921     return true;
922 
923   // If we are allowed to break address equality of functions, defining
924   // a plt entry will allow the program to call the function in the
925   // .so, but the .so and the executable will no agree on the address
926   // of the function. Similar logic for objects.
927   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
928           (sym.isObject() && config->ignoreDataAddressEquality));
929 }
930 
931 // Returns true if a given relocation can be computed at link-time.
932 // This only handles relocation types expected in processAux.
933 //
934 // For instance, we know the offset from a relocation to its target at
935 // link-time if the relocation is PC-relative and refers a
936 // non-interposable function in the same executable. This function
937 // will return true for such relocation.
938 //
939 // If this function returns false, that means we need to emit a
940 // dynamic relocation so that the relocation will be fixed at load-time.
941 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
942                                                  const Symbol &sym,
943                                                  uint64_t relOff) const {
944   // These expressions always compute a constant
945   if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
946             R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
947             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
948             R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
949             R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
950     return true;
951 
952   // These never do, except if the entire file is position dependent or if
953   // only the low bits are used.
954   if (e == R_GOT || e == R_PLT)
955     return target->usesOnlyLowPageBits(type) || !config->isPic;
956 
957   if (sym.isPreemptible)
958     return false;
959   if (!config->isPic)
960     return true;
961 
962   // The size of a non preemptible symbol is a constant.
963   if (e == R_SIZE)
964     return true;
965 
966   // For the target and the relocation, we want to know if they are
967   // absolute or relative.
968   bool absVal = isAbsoluteValue(sym);
969   bool relE = isRelExpr(e);
970   if (absVal && !relE)
971     return true;
972   if (!absVal && relE)
973     return true;
974   if (!absVal && !relE)
975     return target->usesOnlyLowPageBits(type);
976 
977   assert(absVal && relE);
978 
979   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
980   // in PIC mode. This is a little strange, but it allows us to link function
981   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
982   // Normally such a call will be guarded with a comparison, which will load a
983   // zero from the GOT.
984   if (sym.isUndefWeak())
985     return true;
986 
987   // We set the final symbols values for linker script defined symbols later.
988   // They always can be computed as a link time constant.
989   if (sym.scriptDefined)
990       return true;
991 
992   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
993         toString(sym) + getLocation(*sec, sym, relOff));
994   return true;
995 }
996 
997 // The reason we have to do this early scan is as follows
998 // * To mmap the output file, we need to know the size
999 // * For that, we need to know how many dynamic relocs we will have.
1000 // It might be possible to avoid this by outputting the file with write:
1001 // * Write the allocated output sections, computing addresses.
1002 // * Apply relocations, recording which ones require a dynamic reloc.
1003 // * Write the dynamic relocations.
1004 // * Write the rest of the file.
1005 // This would have some drawbacks. For example, we would only know if .rela.dyn
1006 // is needed after applying relocations. If it is, it will go after rw and rx
1007 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1008 // complicates things for the dynamic linker and means we would have to reserve
1009 // space for the extra PT_LOAD even if we end up not using it.
1010 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1011                                    Symbol &sym, int64_t addend) const {
1012   // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1013   // indirection.
1014   const bool isIfunc = sym.isGnuIFunc();
1015   if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1016     if (expr != R_GOT_PC) {
1017       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1018       // stub type. It should be ignored if optimized to R_PC.
1019       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1020         addend &= ~0x8000;
1021       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1022       // call __tls_get_addr even if the symbol is non-preemptible.
1023       if (!(config->emachine == EM_HEXAGON &&
1024             (type == R_HEX_GD_PLT_B22_PCREL ||
1025              type == R_HEX_GD_PLT_B22_PCREL_X ||
1026              type == R_HEX_GD_PLT_B32_PCREL_X)))
1027         expr = fromPlt(expr);
1028     } else if (!isAbsoluteValue(sym)) {
1029       expr =
1030           target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1031     }
1032   }
1033 
1034   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1035   // direct relocation on through.
1036   if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) {
1037     std::lock_guard<std::mutex> lock(relocMutex);
1038     sym.exportDynamic = true;
1039     mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1040     return;
1041   }
1042 
1043   if (needsGot(expr)) {
1044     if (config->emachine == EM_MIPS) {
1045       // MIPS ABI has special rules to process GOT entries and doesn't
1046       // require relocation entries for them. A special case is TLS
1047       // relocations. In that case dynamic loader applies dynamic
1048       // relocations to initialize TLS GOT entries.
1049       // See "Global Offset Table" in Chapter 5 in the following document
1050       // for detailed description:
1051       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1052       in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1053     } else {
1054       sym.setFlags(NEEDS_GOT);
1055     }
1056   } else if (needsPlt(expr)) {
1057     sym.setFlags(NEEDS_PLT);
1058   } else if (LLVM_UNLIKELY(isIfunc)) {
1059     sym.setFlags(HAS_DIRECT_RELOC);
1060   }
1061 
1062   // If the relocation is known to be a link-time constant, we know no dynamic
1063   // relocation will be created, pass the control to relocateAlloc() or
1064   // relocateNonAlloc() to resolve it.
1065   //
1066   // The behavior of an undefined weak reference is implementation defined. For
1067   // non-link-time constants, we resolve relocations statically (let
1068   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1069   // relocations for -pie and -shared.
1070   //
1071   // The general expectation of -no-pie static linking is that there is no
1072   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1073   // -shared matches the spirit of its -z undefs default. -pie has freedom on
1074   // choices, and we choose dynamic relocations to be consistent with the
1075   // handling of GOT-generating relocations.
1076   if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1077       (!config->isPic && sym.isUndefWeak())) {
1078     sec->addReloc({expr, type, offset, addend, &sym});
1079     return;
1080   }
1081 
1082   // Use a simple -z notext rule that treats all sections except .eh_frame as
1083   // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1084   // SectionBase::getOffset would incorrectly adjust the offset).
1085   //
1086   // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1087   // conversion. We still emit a dynamic relocation.
1088   bool canWrite = (sec->flags & SHF_WRITE) ||
1089                   !(config->zText ||
1090                     (isa<EhInputSection>(sec) && config->emachine != EM_MIPS));
1091   if (canWrite) {
1092     RelType rel = target->getDynRel(type);
1093     if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1094       addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1095       return;
1096     } else if (rel != 0) {
1097       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1098         rel = target->relativeRel;
1099       std::lock_guard<std::mutex> lock(relocMutex);
1100       sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym,
1101                                                   addend, type);
1102 
1103       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1104       // While regular ABI uses dynamic relocations to fill up GOT entries
1105       // MIPS ABI requires dynamic linker to fills up GOT entries using
1106       // specially sorted dynamic symbol table. This affects even dynamic
1107       // relocations against symbols which do not require GOT entries
1108       // creation explicitly, i.e. do not have any GOT-relocations. So if
1109       // a preemptible symbol has a dynamic relocation we anyway have
1110       // to create a GOT entry for it.
1111       // If a non-preemptible symbol has a dynamic relocation against it,
1112       // dynamic linker takes it st_value, adds offset and writes down
1113       // result of the dynamic relocation. In case of preemptible symbol
1114       // dynamic linker performs symbol resolution, writes the symbol value
1115       // to the GOT entry and reads the GOT entry when it needs to perform
1116       // a dynamic relocation.
1117       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1118       if (config->emachine == EM_MIPS)
1119         in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1120       return;
1121     }
1122   }
1123 
1124   // When producing an executable, we can perform copy relocations (for
1125   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1126   if (!config->shared) {
1127     if (!canDefineSymbolInExecutable(sym)) {
1128       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1129                   getLocation(*sec, sym, offset));
1130       return;
1131     }
1132 
1133     if (sym.isObject()) {
1134       // Produce a copy relocation.
1135       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1136         if (!config->zCopyreloc)
1137           error("unresolvable relocation " + toString(type) +
1138                 " against symbol '" + toString(*ss) +
1139                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1140                 getLocation(*sec, sym, offset));
1141         sym.setFlags(NEEDS_COPY);
1142       }
1143       sec->addReloc({expr, type, offset, addend, &sym});
1144       return;
1145     }
1146 
1147     // This handles a non PIC program call to function in a shared library. In
1148     // an ideal world, we could just report an error saying the relocation can
1149     // overflow at runtime. In the real world with glibc, crt1.o has a
1150     // R_X86_64_PC32 pointing to libc.so.
1151     //
1152     // The general idea on how to handle such cases is to create a PLT entry and
1153     // use that as the function value.
1154     //
1155     // For the static linking part, we just return a plt expr and everything
1156     // else will use the PLT entry as the address.
1157     //
1158     // The remaining problem is making sure pointer equality still works. We
1159     // need the help of the dynamic linker for that. We let it know that we have
1160     // a direct reference to a so symbol by creating an undefined symbol with a
1161     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1162     // the value of the symbol we created. This is true even for got entries, so
1163     // pointer equality is maintained. To avoid an infinite loop, the only entry
1164     // that points to the real function is a dedicated got entry used by the
1165     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1166     // R_386_JMP_SLOT, etc).
1167 
1168     // For position independent executable on i386, the plt entry requires ebx
1169     // to be set. This causes two problems:
1170     // * If some code has a direct reference to a function, it was probably
1171     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1172     // * If a library definition gets preempted to the executable, it will have
1173     //   the wrong ebx value.
1174     if (sym.isFunc()) {
1175       if (config->pie && config->emachine == EM_386)
1176         errorOrWarn("symbol '" + toString(sym) +
1177                     "' cannot be preempted; recompile with -fPIE" +
1178                     getLocation(*sec, sym, offset));
1179       sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1180       sec->addReloc({expr, type, offset, addend, &sym});
1181       return;
1182     }
1183   }
1184 
1185   errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1186               (sym.getName().empty() ? "local symbol"
1187                                      : "symbol '" + toString(sym) + "'") +
1188               "; recompile with -fPIC" + getLocation(*sec, sym, offset));
1189 }
1190 
1191 // This function is similar to the `handleTlsRelocation`. MIPS does not
1192 // support any relaxations for TLS relocations so by factoring out MIPS
1193 // handling in to the separate function we can simplify the code and do not
1194 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1195 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1196 // without dynamic relocations.
1197 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1198                                         InputSectionBase &c, uint64_t offset,
1199                                         int64_t addend, RelExpr expr) {
1200   if (expr == R_MIPS_TLSLD) {
1201     in.mipsGot->addTlsIndex(*c.file);
1202     c.addReloc({expr, type, offset, addend, &sym});
1203     return 1;
1204   }
1205   if (expr == R_MIPS_TLSGD) {
1206     in.mipsGot->addDynTlsEntry(*c.file, sym);
1207     c.addReloc({expr, type, offset, addend, &sym});
1208     return 1;
1209   }
1210   return 0;
1211 }
1212 
1213 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1214 // require the generation of a pair of GOT entries that have associated dynamic
1215 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1216 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1217 // symbol in TLS block.
1218 //
1219 // Returns the number of relocations processed.
1220 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1221                                     InputSectionBase &c, uint64_t offset,
1222                                     int64_t addend, RelExpr expr) {
1223   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1224     if (config->shared) {
1225       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1226                   " cannot be used with -shared" + getLocation(c, sym, offset));
1227       return 1;
1228     }
1229     return 0;
1230   }
1231 
1232   if (config->emachine == EM_MIPS)
1233     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1234 
1235   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1236             R_TLSDESC_GOTPLT>(expr) &&
1237       config->shared) {
1238     if (expr != R_TLSDESC_CALL) {
1239       sym.setFlags(NEEDS_TLSDESC);
1240       c.addReloc({expr, type, offset, addend, &sym});
1241     }
1242     return 1;
1243   }
1244 
1245   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
1246   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1247   // relaxation as well.
1248   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1249                      config->emachine != EM_HEXAGON &&
1250                      config->emachine != EM_RISCV &&
1251                      !c.file->ppc64DisableTLSRelax;
1252 
1253   // If we are producing an executable and the symbol is non-preemptable, it
1254   // must be defined and the code sequence can be relaxed to use Local-Exec.
1255   //
1256   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1257   // we can omit the DTPMOD dynamic relocations and resolve them at link time
1258   // because them are always 1. This may be necessary for static linking as
1259   // DTPMOD may not be expected at load time.
1260   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1261 
1262   // Local Dynamic is for access to module local TLS variables, while still
1263   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1264   // module index, with a special value of 0 for the current module. GOT[e1] is
1265   // unused. There only needs to be one module index entry.
1266   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1267           expr)) {
1268     // Local-Dynamic relocs can be relaxed to Local-Exec.
1269     if (toExecRelax) {
1270       c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1271                   offset, addend, &sym});
1272       return target->getTlsGdRelaxSkip(type);
1273     }
1274     if (expr == R_TLSLD_HINT)
1275       return 1;
1276     ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1277     c.addReloc({expr, type, offset, addend, &sym});
1278     return 1;
1279   }
1280 
1281   // Local-Dynamic relocs can be relaxed to Local-Exec.
1282   if (expr == R_DTPREL) {
1283     if (toExecRelax)
1284       expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1285     c.addReloc({expr, type, offset, addend, &sym});
1286     return 1;
1287   }
1288 
1289   // Local-Dynamic sequence where offset of tls variable relative to dynamic
1290   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1291   if (expr == R_TLSLD_GOT_OFF) {
1292     sym.setFlags(NEEDS_GOT_DTPREL);
1293     c.addReloc({expr, type, offset, addend, &sym});
1294     return 1;
1295   }
1296 
1297   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1298             R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1299     if (!toExecRelax) {
1300       sym.setFlags(NEEDS_TLSGD);
1301       c.addReloc({expr, type, offset, addend, &sym});
1302       return 1;
1303     }
1304 
1305     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1306     // depending on the symbol being locally defined or not.
1307     if (sym.isPreemptible) {
1308       sym.setFlags(NEEDS_TLSGD_TO_IE);
1309       c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1310                   offset, addend, &sym});
1311     } else {
1312       c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1313                   offset, addend, &sym});
1314     }
1315     return target->getTlsGdRelaxSkip(type);
1316   }
1317 
1318   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1319             R_TLSIE_HINT>(expr)) {
1320     ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1321     // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1322     // defined.
1323     if (toExecRelax && isLocalInExecutable) {
1324       c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1325     } else if (expr != R_TLSIE_HINT) {
1326       sym.setFlags(NEEDS_TLSIE);
1327       // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1328       if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1329         addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1330       else
1331         c.addReloc({expr, type, offset, addend, &sym});
1332     }
1333     return 1;
1334   }
1335 
1336   return 0;
1337 }
1338 
1339 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1340   const RelTy &rel = *i;
1341   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1342   Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1343   RelType type;
1344   if (config->mipsN32Abi) {
1345     type = getMipsN32RelType(i);
1346   } else {
1347     type = rel.getType(config->isMips64EL);
1348     ++i;
1349   }
1350   // Get an offset in an output section this relocation is applied to.
1351   uint64_t offset = getter.get(rel.r_offset);
1352   if (offset == uint64_t(-1))
1353     return;
1354 
1355   RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1356   int64_t addend = RelTy::IsRela
1357                        ? getAddend<ELFT>(rel)
1358                        : target->getImplicitAddend(
1359                              sec->content().data() + rel.r_offset, type);
1360   if (LLVM_UNLIKELY(config->emachine == EM_MIPS))
1361     addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1362   else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1363     addend += getPPC64TocBase();
1364 
1365   // Ignore R_*_NONE and other marker relocations.
1366   if (expr == R_NONE)
1367     return;
1368 
1369   // Error if the target symbol is undefined. Symbol index 0 may be used by
1370   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1371   if (sym.isUndefined() && symIndex != 0 &&
1372       maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1373     return;
1374 
1375   if (config->emachine == EM_PPC64) {
1376     // We can separate the small code model relocations into 2 categories:
1377     // 1) Those that access the compiler generated .toc sections.
1378     // 2) Those that access the linker allocated got entries.
1379     // lld allocates got entries to symbols on demand. Since we don't try to
1380     // sort the got entries in any way, we don't have to track which objects
1381     // have got-based small code model relocs. The .toc sections get placed
1382     // after the end of the linker allocated .got section and we do sort those
1383     // so sections addressed with small code model relocations come first.
1384     if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1385       sec->file->ppc64SmallCodeModelTocRelocs = true;
1386 
1387     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1388     // InputSectionBase::relocateAlloc().
1389     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1390         cast<Defined>(sym).section->name == ".toc")
1391       ppc64noTocRelax.insert({&sym, addend});
1392 
1393     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1394         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1395       if (i == end) {
1396         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1397                     "relocation" +
1398                     getLocation(*sec, sym, offset));
1399         return;
1400       }
1401 
1402       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1403       // so we can discern it later from the toc-case.
1404       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1405         ++offset;
1406     }
1407   }
1408 
1409   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1410   // uses their addresses, we need GOT or GOTPLT to be created.
1411   //
1412   // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1413   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1414             R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1415     in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1416   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1417                    R_PPC64_RELAX_TOC>(expr)) {
1418     in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1419   }
1420 
1421   // Process TLS relocations, including relaxing TLS relocations. Note that
1422   // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1423   if (sym.isTls()) {
1424     if (unsigned processed =
1425             handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1426       i += processed - 1;
1427       return;
1428     }
1429   }
1430 
1431   processAux(expr, type, offset, sym, addend);
1432 }
1433 
1434 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1435 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1436 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1437 // instructions are generated by very old IBM XL compilers. Work around the
1438 // issue by disabling GD/LD to IE/LE relaxation.
1439 template <class RelTy>
1440 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1441   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1442   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1443     return;
1444   bool hasGDLD = false;
1445   for (const RelTy &rel : rels) {
1446     RelType type = rel.getType(false);
1447     switch (type) {
1448     case R_PPC64_TLSGD:
1449     case R_PPC64_TLSLD:
1450       return; // Found a marker
1451     case R_PPC64_GOT_TLSGD16:
1452     case R_PPC64_GOT_TLSGD16_HA:
1453     case R_PPC64_GOT_TLSGD16_HI:
1454     case R_PPC64_GOT_TLSGD16_LO:
1455     case R_PPC64_GOT_TLSLD16:
1456     case R_PPC64_GOT_TLSLD16_HA:
1457     case R_PPC64_GOT_TLSLD16_HI:
1458     case R_PPC64_GOT_TLSLD16_LO:
1459       hasGDLD = true;
1460       break;
1461     }
1462   }
1463   if (hasGDLD) {
1464     sec.file->ppc64DisableTLSRelax = true;
1465     warn(toString(sec.file) +
1466          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1467          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1468   }
1469 }
1470 
1471 template <class ELFT, class RelTy>
1472 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1473   // Not all relocations end up in Sec->Relocations, but a lot do.
1474   sec->relocations.reserve(rels.size());
1475 
1476   if (config->emachine == EM_PPC64)
1477     checkPPC64TLSRelax<RelTy>(*sec, rels);
1478 
1479   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1480   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1481   // script), the relocations may be unordered.
1482   SmallVector<RelTy, 0> storage;
1483   if (isa<EhInputSection>(sec))
1484     rels = sortRels(rels, storage);
1485 
1486   end = static_cast<const void *>(rels.end());
1487   for (auto i = rels.begin(); i != end;)
1488     scanOne<ELFT>(i);
1489 
1490   // Sort relocations by offset for more efficient searching for
1491   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1492   if (config->emachine == EM_RISCV ||
1493       (config->emachine == EM_PPC64 && sec->name == ".toc"))
1494     llvm::stable_sort(sec->relocs(),
1495                       [](const Relocation &lhs, const Relocation &rhs) {
1496                         return lhs.offset < rhs.offset;
1497                       });
1498 }
1499 
1500 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) {
1501   sec = &s;
1502   getter = OffsetGetter(s);
1503   const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1504   if (rels.areRelocsRel())
1505     scan<ELFT>(rels.rels);
1506   else
1507     scan<ELFT>(rels.relas);
1508 }
1509 
1510 template <class ELFT> void elf::scanRelocations() {
1511   // Scan all relocations. Each relocation goes through a series of tests to
1512   // determine if it needs special treatment, such as creating GOT, PLT,
1513   // copy relocations, etc. Note that relocations for non-alloc sections are
1514   // directly processed by InputSection::relocateNonAlloc.
1515 
1516   // Deterministic parallellism needs sorting relocations which is unsuitable
1517   // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1518   // for parallelism.
1519   bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1520                 config->emachine == EM_PPC64;
1521   parallel::TaskGroup tg;
1522   for (ELFFileBase *f : ctx.objectFiles) {
1523     auto fn = [f]() {
1524       RelocationScanner scanner;
1525       for (InputSectionBase *s : f->getSections()) {
1526         if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1527             (s->flags & SHF_ALLOC) &&
1528             !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1529           scanner.template scanSection<ELFT>(*s);
1530       }
1531     };
1532     if (serial)
1533       fn();
1534     else
1535       tg.execute(fn);
1536   }
1537 
1538   // Both the main thread and thread pool index 0 use getThreadIndex()==0. Be
1539   // careful that they don't concurrently run scanSections. When serial is
1540   // true, fn() has finished at this point, so running execute is safe.
1541   tg.execute([] {
1542     RelocationScanner scanner;
1543     for (Partition &part : partitions) {
1544       for (EhInputSection *sec : part.ehFrame->sections)
1545         scanner.template scanSection<ELFT>(*sec);
1546       if (part.armExidx && part.armExidx->isLive())
1547         for (InputSection *sec : part.armExidx->exidxSections)
1548           scanner.template scanSection<ELFT>(*sec);
1549     }
1550   });
1551 }
1552 
1553 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1554   // Handle a reference to a non-preemptible ifunc. These are special in a
1555   // few ways:
1556   //
1557   // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1558   //   a fixed value. But assuming that all references to the ifunc are
1559   //   GOT-generating or PLT-generating, the handling of an ifunc is
1560   //   relatively straightforward. We create a PLT entry in Iplt, which is
1561   //   usually at the end of .plt, which makes an indirect call using a
1562   //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1563   //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1564   //   which is usually at the end of .rela.plt. Unlike most relocations in
1565   //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1566   //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1567   //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1568   //   .got.plt without requiring a separate GOT entry.
1569   //
1570   // - Despite the fact that an ifunc does not have a fixed value, compilers
1571   //   that are not passed -fPIC will assume that they do, and will emit
1572   //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1573   //   symbol. This means that if a direct relocation to the symbol is
1574   //   seen, the linker must set a value for the symbol, and this value must
1575   //   be consistent no matter what type of reference is made to the symbol.
1576   //   This can be done by creating a PLT entry for the symbol in the way
1577   //   described above and making it canonical, that is, making all references
1578   //   point to the PLT entry instead of the resolver. In lld we also store
1579   //   the address of the PLT entry in the dynamic symbol table, which means
1580   //   that the symbol will also have the same value in other modules.
1581   //   Because the value loaded from the GOT needs to be consistent with
1582   //   the value computed using a direct relocation, a non-preemptible ifunc
1583   //   may end up with two GOT entries, one in .got.plt that points to the
1584   //   address returned by the resolver and is used only by the PLT entry,
1585   //   and another in .got that points to the PLT entry and is used by
1586   //   GOT-generating relocations.
1587   //
1588   // - The fact that these symbols do not have a fixed value makes them an
1589   //   exception to the general rule that a statically linked executable does
1590   //   not require any form of dynamic relocation. To handle these relocations
1591   //   correctly, the IRELATIVE relocations are stored in an array which a
1592   //   statically linked executable's startup code must enumerate using the
1593   //   linker-defined symbols __rela?_iplt_{start,end}.
1594   if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1595     return false;
1596   // Skip unreferenced non-preemptible ifunc.
1597   if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1598     return true;
1599 
1600   sym.isInIplt = true;
1601 
1602   // Create an Iplt and the associated IRELATIVE relocation pointing to the
1603   // original section/value pairs. For non-GOT non-PLT relocation case below, we
1604   // may alter section/value, so create a copy of the symbol to make
1605   // section/value fixed.
1606   auto *directSym = makeDefined(cast<Defined>(sym));
1607   directSym->allocateAux();
1608   addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1609               *directSym);
1610   sym.allocateAux();
1611   symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1612 
1613   if (flags & HAS_DIRECT_RELOC) {
1614     // Change the value to the IPLT and redirect all references to it.
1615     auto &d = cast<Defined>(sym);
1616     d.section = in.iplt.get();
1617     d.value = d.getPltIdx() * target->ipltEntrySize;
1618     d.size = 0;
1619     // It's important to set the symbol type here so that dynamic loaders
1620     // don't try to call the PLT as if it were an ifunc resolver.
1621     d.type = STT_FUNC;
1622 
1623     if (flags & NEEDS_GOT)
1624       addGotEntry(sym);
1625   } else if (flags & NEEDS_GOT) {
1626     // Redirect GOT accesses to point to the Igot.
1627     sym.gotInIgot = true;
1628   }
1629   return true;
1630 }
1631 
1632 void elf::postScanRelocations() {
1633   auto fn = [](Symbol &sym) {
1634     auto flags = sym.flags.load(std::memory_order_relaxed);
1635     if (handleNonPreemptibleIfunc(sym, flags))
1636       return;
1637     if (!sym.needsDynReloc())
1638       return;
1639     sym.allocateAux();
1640 
1641     if (flags & NEEDS_GOT)
1642       addGotEntry(sym);
1643     if (flags & NEEDS_PLT)
1644       addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1645     if (flags & NEEDS_COPY) {
1646       if (sym.isObject()) {
1647         invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1648         // NEEDS_COPY is cleared for sym and its aliases so that in
1649         // later iterations aliases won't cause redundant copies.
1650         assert(!sym.hasFlag(NEEDS_COPY));
1651       } else {
1652         assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT));
1653         if (!sym.isDefined()) {
1654           replaceWithDefined(sym, *in.plt,
1655                              target->pltHeaderSize +
1656                                  target->pltEntrySize * sym.getPltIdx(),
1657                              0);
1658           sym.setFlags(NEEDS_COPY);
1659           if (config->emachine == EM_PPC) {
1660             // PPC32 canonical PLT entries are at the beginning of .glink
1661             cast<Defined>(sym).value = in.plt->headerSize;
1662             in.plt->headerSize += 16;
1663             cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1664           }
1665         }
1666       }
1667     }
1668 
1669     if (!sym.isTls())
1670       return;
1671     bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1672     GotSection *got = in.got.get();
1673 
1674     if (flags & NEEDS_TLSDESC) {
1675       got->addTlsDescEntry(sym);
1676       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1677           target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1678           target->tlsDescRel);
1679     }
1680     if (flags & NEEDS_TLSGD) {
1681       got->addDynTlsEntry(sym);
1682       uint64_t off = got->getGlobalDynOffset(sym);
1683       if (isLocalInExecutable)
1684         // Write one to the GOT slot.
1685         got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1686       else
1687         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1688                                           sym);
1689 
1690       // If the symbol is preemptible we need the dynamic linker to write
1691       // the offset too.
1692       uint64_t offsetOff = off + config->wordsize;
1693       if (sym.isPreemptible)
1694         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1695                                           sym);
1696       else
1697         got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1698     }
1699     if (flags & NEEDS_TLSGD_TO_IE) {
1700       got->addEntry(sym);
1701       mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1702                                         sym.getGotOffset(), sym);
1703     }
1704     if (flags & NEEDS_GOT_DTPREL) {
1705       got->addEntry(sym);
1706       got->addConstant(
1707           {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1708     }
1709 
1710     if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1711       addTpOffsetGotEntry(sym);
1712   };
1713 
1714   GotSection *got = in.got.get();
1715   if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1716     static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1717     if (config->shared)
1718       mainPart->relaDyn->addReloc(
1719           {target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1720     else
1721       got->addConstant(
1722           {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1723   }
1724 
1725   assert(symAux.size() == 1);
1726   for (Symbol *sym : symtab.getSymbols())
1727     fn(*sym);
1728 
1729   // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1730   // handling. They don't need regular PLT.
1731   for (ELFFileBase *file : ctx.objectFiles)
1732     for (Symbol *sym : file->getLocalSymbols())
1733       fn(*sym);
1734 }
1735 
1736 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1737   // std::merge requires a strict weak ordering.
1738   if (a->outSecOff < b->outSecOff)
1739     return true;
1740 
1741   // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1742   if (a->outSecOff == b->outSecOff && a != b) {
1743     auto *ta = dyn_cast<ThunkSection>(a);
1744     auto *tb = dyn_cast<ThunkSection>(b);
1745 
1746     // Check if Thunk is immediately before any specific Target
1747     // InputSection for example Mips LA25 Thunks.
1748     if (ta && ta->getTargetInputSection() == b)
1749       return true;
1750 
1751     // Place Thunk Sections without specific targets before
1752     // non-Thunk Sections.
1753     if (ta && !tb && !ta->getTargetInputSection())
1754       return true;
1755   }
1756 
1757   return false;
1758 }
1759 
1760 // Call Fn on every executable InputSection accessed via the linker script
1761 // InputSectionDescription::Sections.
1762 static void forEachInputSectionDescription(
1763     ArrayRef<OutputSection *> outputSections,
1764     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1765   for (OutputSection *os : outputSections) {
1766     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1767       continue;
1768     for (SectionCommand *bc : os->commands)
1769       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1770         fn(os, isd);
1771   }
1772 }
1773 
1774 // Thunk Implementation
1775 //
1776 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1777 // of code that the linker inserts inbetween a caller and a callee. The thunks
1778 // are added at link time rather than compile time as the decision on whether
1779 // a thunk is needed, such as the caller and callee being out of range, can only
1780 // be made at link time.
1781 //
1782 // It is straightforward to tell given the current state of the program when a
1783 // thunk is needed for a particular call. The more difficult part is that
1784 // the thunk needs to be placed in the program such that the caller can reach
1785 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1786 // the program alters addresses, which can mean more thunks etc.
1787 //
1788 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1789 // The decision to have a ThunkSection act as a container means that we can
1790 // more easily handle the most common case of a single block of contiguous
1791 // Thunks by inserting just a single ThunkSection.
1792 //
1793 // The implementation of Thunks in lld is split across these areas
1794 // Relocations.cpp : Framework for creating and placing thunks
1795 // Thunks.cpp : The code generated for each supported thunk
1796 // Target.cpp : Target specific hooks that the framework uses to decide when
1797 //              a thunk is used
1798 // Synthetic.cpp : Implementation of ThunkSection
1799 // Writer.cpp : Iteratively call framework until no more Thunks added
1800 //
1801 // Thunk placement requirements:
1802 // Mips LA25 thunks. These must be placed immediately before the callee section
1803 // We can assume that the caller is in range of the Thunk. These are modelled
1804 // by Thunks that return the section they must precede with
1805 // getTargetInputSection().
1806 //
1807 // ARM interworking and range extension thunks. These thunks must be placed
1808 // within range of the caller. All implemented ARM thunks can always reach the
1809 // callee as they use an indirect jump via a register that has no range
1810 // restrictions.
1811 //
1812 // Thunk placement algorithm:
1813 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1814 // getTargetInputSection().
1815 //
1816 // For thunks that must be placed within range of the caller there are many
1817 // possible choices given that the maximum range from the caller is usually
1818 // much larger than the average InputSection size. Desirable properties include:
1819 // - Maximize reuse of thunks by multiple callers
1820 // - Minimize number of ThunkSections to simplify insertion
1821 // - Handle impact of already added Thunks on addresses
1822 // - Simple to understand and implement
1823 //
1824 // In lld for the first pass, we pre-create one or more ThunkSections per
1825 // InputSectionDescription at Target specific intervals. A ThunkSection is
1826 // placed so that the estimated end of the ThunkSection is within range of the
1827 // start of the InputSectionDescription or the previous ThunkSection. For
1828 // example:
1829 // InputSectionDescription
1830 // Section 0
1831 // ...
1832 // Section N
1833 // ThunkSection 0
1834 // Section N + 1
1835 // ...
1836 // Section N + K
1837 // Thunk Section 1
1838 //
1839 // The intention is that we can add a Thunk to a ThunkSection that is well
1840 // spaced enough to service a number of callers without having to do a lot
1841 // of work. An important principle is that it is not an error if a Thunk cannot
1842 // be placed in a pre-created ThunkSection; when this happens we create a new
1843 // ThunkSection placed next to the caller. This allows us to handle the vast
1844 // majority of thunks simply, but also handle rare cases where the branch range
1845 // is smaller than the target specific spacing.
1846 //
1847 // The algorithm is expected to create all the thunks that are needed in a
1848 // single pass, with a small number of programs needing a second pass due to
1849 // the insertion of thunks in the first pass increasing the offset between
1850 // callers and callees that were only just in range.
1851 //
1852 // A consequence of allowing new ThunkSections to be created outside of the
1853 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1854 // range in pass K, are out of range in some pass > K due to the insertion of
1855 // more Thunks in between the caller and callee. When this happens we retarget
1856 // the relocation back to the original target and create another Thunk.
1857 
1858 // Remove ThunkSections that are empty, this should only be the initial set
1859 // precreated on pass 0.
1860 
1861 // Insert the Thunks for OutputSection OS into their designated place
1862 // in the Sections vector, and recalculate the InputSection output section
1863 // offsets.
1864 // This may invalidate any output section offsets stored outside of InputSection
1865 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1866   forEachInputSectionDescription(
1867       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1868         if (isd->thunkSections.empty())
1869           return;
1870 
1871         // Remove any zero sized precreated Thunks.
1872         llvm::erase_if(isd->thunkSections,
1873                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1874                          return ts.first->getSize() == 0;
1875                        });
1876 
1877         // ISD->ThunkSections contains all created ThunkSections, including
1878         // those inserted in previous passes. Extract the Thunks created this
1879         // pass and order them in ascending outSecOff.
1880         std::vector<ThunkSection *> newThunks;
1881         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1882           if (ts.second == pass)
1883             newThunks.push_back(ts.first);
1884         llvm::stable_sort(newThunks,
1885                           [](const ThunkSection *a, const ThunkSection *b) {
1886                             return a->outSecOff < b->outSecOff;
1887                           });
1888 
1889         // Merge sorted vectors of Thunks and InputSections by outSecOff
1890         SmallVector<InputSection *, 0> tmp;
1891         tmp.reserve(isd->sections.size() + newThunks.size());
1892 
1893         std::merge(isd->sections.begin(), isd->sections.end(),
1894                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1895                    mergeCmp);
1896 
1897         isd->sections = std::move(tmp);
1898       });
1899 }
1900 
1901 static int64_t getPCBias(RelType type) {
1902   if (config->emachine != EM_ARM)
1903     return 0;
1904   switch (type) {
1905   case R_ARM_THM_JUMP19:
1906   case R_ARM_THM_JUMP24:
1907   case R_ARM_THM_CALL:
1908     return 4;
1909   default:
1910     return 8;
1911   }
1912 }
1913 
1914 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1915 // is in range of Src. An ISD maps to a range of InputSections described by a
1916 // linker script section pattern such as { .text .text.* }.
1917 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1918                                            InputSection *isec,
1919                                            InputSectionDescription *isd,
1920                                            const Relocation &rel,
1921                                            uint64_t src) {
1922   // See the comment in getThunk for -pcBias below.
1923   const int64_t pcBias = getPCBias(rel.type);
1924   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1925     ThunkSection *ts = tp.first;
1926     uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
1927     uint64_t tsLimit = tsBase + ts->getSize();
1928     if (target->inBranchRange(rel.type, src,
1929                               (src > tsLimit) ? tsBase : tsLimit))
1930       return ts;
1931   }
1932 
1933   // No suitable ThunkSection exists. This can happen when there is a branch
1934   // with lower range than the ThunkSection spacing or when there are too
1935   // many Thunks. Create a new ThunkSection as close to the InputSection as
1936   // possible. Error if InputSection is so large we cannot place ThunkSection
1937   // anywhere in Range.
1938   uint64_t thunkSecOff = isec->outSecOff;
1939   if (!target->inBranchRange(rel.type, src,
1940                              os->addr + thunkSecOff + rel.addend)) {
1941     thunkSecOff = isec->outSecOff + isec->getSize();
1942     if (!target->inBranchRange(rel.type, src,
1943                                os->addr + thunkSecOff + rel.addend))
1944       fatal("InputSection too large for range extension thunk " +
1945             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1946   }
1947   return addThunkSection(os, isd, thunkSecOff);
1948 }
1949 
1950 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1951 // precedes its Target.
1952 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1953   ThunkSection *ts = thunkedSections.lookup(isec);
1954   if (ts)
1955     return ts;
1956 
1957   // Find InputSectionRange within Target Output Section (TOS) that the
1958   // InputSection (IS) that we need to precede is in.
1959   OutputSection *tos = isec->getParent();
1960   for (SectionCommand *bc : tos->commands) {
1961     auto *isd = dyn_cast<InputSectionDescription>(bc);
1962     if (!isd || isd->sections.empty())
1963       continue;
1964 
1965     InputSection *first = isd->sections.front();
1966     InputSection *last = isd->sections.back();
1967 
1968     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1969       continue;
1970 
1971     ts = addThunkSection(tos, isd, isec->outSecOff);
1972     thunkedSections[isec] = ts;
1973     return ts;
1974   }
1975 
1976   return nullptr;
1977 }
1978 
1979 // Create one or more ThunkSections per OS that can be used to place Thunks.
1980 // We attempt to place the ThunkSections using the following desirable
1981 // properties:
1982 // - Within range of the maximum number of callers
1983 // - Minimise the number of ThunkSections
1984 //
1985 // We follow a simple but conservative heuristic to place ThunkSections at
1986 // offsets that are multiples of a Target specific branch range.
1987 // For an InputSectionDescription that is smaller than the range, a single
1988 // ThunkSection at the end of the range will do.
1989 //
1990 // For an InputSectionDescription that is more than twice the size of the range,
1991 // we place the last ThunkSection at range bytes from the end of the
1992 // InputSectionDescription in order to increase the likelihood that the
1993 // distance from a thunk to its target will be sufficiently small to
1994 // allow for the creation of a short thunk.
1995 void ThunkCreator::createInitialThunkSections(
1996     ArrayRef<OutputSection *> outputSections) {
1997   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1998 
1999   forEachInputSectionDescription(
2000       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2001         if (isd->sections.empty())
2002           return;
2003 
2004         uint32_t isdBegin = isd->sections.front()->outSecOff;
2005         uint32_t isdEnd =
2006             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
2007         uint32_t lastThunkLowerBound = -1;
2008         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2009           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2010 
2011         uint32_t isecLimit;
2012         uint32_t prevIsecLimit = isdBegin;
2013         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2014 
2015         for (const InputSection *isec : isd->sections) {
2016           isecLimit = isec->outSecOff + isec->getSize();
2017           if (isecLimit > thunkUpperBound) {
2018             addThunkSection(os, isd, prevIsecLimit);
2019             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2020           }
2021           if (isecLimit > lastThunkLowerBound)
2022             break;
2023           prevIsecLimit = isecLimit;
2024         }
2025         addThunkSection(os, isd, isecLimit);
2026       });
2027 }
2028 
2029 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2030                                             InputSectionDescription *isd,
2031                                             uint64_t off) {
2032   auto *ts = make<ThunkSection>(os, off);
2033   ts->partition = os->partition;
2034   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2035       !isd->sections.empty()) {
2036     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2037     // thunks we disturb the base addresses of sections placed after the thunks
2038     // this makes patches we have generated redundant, and may cause us to
2039     // generate more patches as different instructions are now in sensitive
2040     // locations. When we generate more patches we may force more branches to
2041     // go out of range, causing more thunks to be generated. In pathological
2042     // cases this can cause the address dependent content pass not to converge.
2043     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2044     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2045     // which means that adding Thunks to the section does not invalidate
2046     // errata patches for following code.
2047     // Rounding up the size to 4KiB has consequences for code-size and can
2048     // trip up linker script defined assertions. For example the linux kernel
2049     // has an assertion that what LLD represents as an InputSectionDescription
2050     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2051     // We use the heuristic of rounding up the size when both of the following
2052     // conditions are true:
2053     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2054     //     accounts for the case where no single InputSectionDescription is
2055     //     larger than the OutputSection size. This is conservative but simple.
2056     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2057     //     any assertion failures that an InputSectionDescription is < 4 KiB
2058     //     in size.
2059     uint64_t isdSize = isd->sections.back()->outSecOff +
2060                        isd->sections.back()->getSize() -
2061                        isd->sections.front()->outSecOff;
2062     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2063       ts->roundUpSizeForErrata = true;
2064   }
2065   isd->thunkSections.push_back({ts, pass});
2066   return ts;
2067 }
2068 
2069 static bool isThunkSectionCompatible(InputSection *source,
2070                                      SectionBase *target) {
2071   // We can't reuse thunks in different loadable partitions because they might
2072   // not be loaded. But partition 1 (the main partition) will always be loaded.
2073   if (source->partition != target->partition)
2074     return target->partition == 1;
2075   return true;
2076 }
2077 
2078 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2079                                                 Relocation &rel, uint64_t src) {
2080   std::vector<Thunk *> *thunkVec = nullptr;
2081   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2082   // out in the relocation addend. We compensate for the PC bias so that
2083   // an Arm and Thumb relocation to the same destination get the same keyAddend,
2084   // which is usually 0.
2085   const int64_t pcBias = getPCBias(rel.type);
2086   const int64_t keyAddend = rel.addend + pcBias;
2087 
2088   // We use a ((section, offset), addend) pair to find the thunk position if
2089   // possible so that we create only one thunk for aliased symbols or ICFed
2090   // sections. There may be multiple relocations sharing the same (section,
2091   // offset + addend) pair. We may revert the relocation back to its original
2092   // non-Thunk target, so we cannot fold offset + addend.
2093   if (auto *d = dyn_cast<Defined>(rel.sym))
2094     if (!d->isInPlt() && d->section)
2095       thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2096                                                     keyAddend}];
2097   if (!thunkVec)
2098     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2099 
2100   // Check existing Thunks for Sym to see if they can be reused
2101   for (Thunk *t : *thunkVec)
2102     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2103         t->isCompatibleWith(*isec, rel) &&
2104         target->inBranchRange(rel.type, src,
2105                               t->getThunkTargetSym()->getVA(-pcBias)))
2106       return std::make_pair(t, false);
2107 
2108   // No existing compatible Thunk in range, create a new one
2109   Thunk *t = addThunk(*isec, rel);
2110   thunkVec->push_back(t);
2111   return std::make_pair(t, true);
2112 }
2113 
2114 // Return true if the relocation target is an in range Thunk.
2115 // Return false if the relocation is not to a Thunk. If the relocation target
2116 // was originally to a Thunk, but is no longer in range we revert the
2117 // relocation back to its original non-Thunk target.
2118 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2119   if (Thunk *t = thunks.lookup(rel.sym)) {
2120     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2121       return true;
2122     rel.sym = &t->destination;
2123     rel.addend = t->addend;
2124     if (rel.sym->isInPlt())
2125       rel.expr = toPlt(rel.expr);
2126   }
2127   return false;
2128 }
2129 
2130 // Process all relocations from the InputSections that have been assigned
2131 // to InputSectionDescriptions and redirect through Thunks if needed. The
2132 // function should be called iteratively until it returns false.
2133 //
2134 // PreConditions:
2135 // All InputSections that may need a Thunk are reachable from
2136 // OutputSectionCommands.
2137 //
2138 // All OutputSections have an address and all InputSections have an offset
2139 // within the OutputSection.
2140 //
2141 // The offsets between caller (relocation place) and callee
2142 // (relocation target) will not be modified outside of createThunks().
2143 //
2144 // PostConditions:
2145 // If return value is true then ThunkSections have been inserted into
2146 // OutputSections. All relocations that needed a Thunk based on the information
2147 // available to createThunks() on entry have been redirected to a Thunk. Note
2148 // that adding Thunks changes offsets between caller and callee so more Thunks
2149 // may be required.
2150 //
2151 // If return value is false then no more Thunks are needed, and createThunks has
2152 // made no changes. If the target requires range extension thunks, currently
2153 // ARM, then any future change in offset between caller and callee risks a
2154 // relocation out of range error.
2155 bool ThunkCreator::createThunks(uint32_t pass,
2156                                 ArrayRef<OutputSection *> outputSections) {
2157   this->pass = pass;
2158   bool addressesChanged = false;
2159 
2160   if (pass == 0 && target->getThunkSectionSpacing())
2161     createInitialThunkSections(outputSections);
2162 
2163   // Create all the Thunks and insert them into synthetic ThunkSections. The
2164   // ThunkSections are later inserted back into InputSectionDescriptions.
2165   // We separate the creation of ThunkSections from the insertion of the
2166   // ThunkSections as ThunkSections are not always inserted into the same
2167   // InputSectionDescription as the caller.
2168   forEachInputSectionDescription(
2169       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2170         for (InputSection *isec : isd->sections)
2171           for (Relocation &rel : isec->relocs()) {
2172             uint64_t src = isec->getVA(rel.offset);
2173 
2174             // If we are a relocation to an existing Thunk, check if it is
2175             // still in range. If not then Rel will be altered to point to its
2176             // original target so another Thunk can be generated.
2177             if (pass > 0 && normalizeExistingThunk(rel, src))
2178               continue;
2179 
2180             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2181                                     *rel.sym, rel.addend))
2182               continue;
2183 
2184             Thunk *t;
2185             bool isNew;
2186             std::tie(t, isNew) = getThunk(isec, rel, src);
2187 
2188             if (isNew) {
2189               // Find or create a ThunkSection for the new Thunk
2190               ThunkSection *ts;
2191               if (auto *tis = t->getTargetInputSection())
2192                 ts = getISThunkSec(tis);
2193               else
2194                 ts = getISDThunkSec(os, isec, isd, rel, src);
2195               ts->addThunk(t);
2196               thunks[t->getThunkTargetSym()] = t;
2197             }
2198 
2199             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2200             rel.sym = t->getThunkTargetSym();
2201             rel.expr = fromPlt(rel.expr);
2202 
2203             // On AArch64 and PPC, a jump/call relocation may be encoded as
2204             // STT_SECTION + non-zero addend, clear the addend after
2205             // redirection.
2206             if (config->emachine != EM_MIPS)
2207               rel.addend = -getPCBias(rel.type);
2208           }
2209 
2210         for (auto &p : isd->thunkSections)
2211           addressesChanged |= p.first->assignOffsets();
2212       });
2213 
2214   for (auto &p : thunkedSections)
2215     addressesChanged |= p.second->assignOffsets();
2216 
2217   // Merge all created synthetic ThunkSections back into OutputSection
2218   mergeThunks(outputSections);
2219   return addressesChanged;
2220 }
2221 
2222 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2223 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2224 // __tls_get_addr.
2225 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2226 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2227   bool needTlsSymbol = false;
2228   forEachInputSectionDescription(
2229       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2230         for (InputSection *isec : isd->sections)
2231           for (Relocation &rel : isec->relocs())
2232             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2233               needTlsSymbol = true;
2234               return;
2235             }
2236       });
2237   return needTlsSymbol;
2238 }
2239 
2240 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2241   Symbol *sym = symtab.find("__tls_get_addr");
2242   if (!sym)
2243     return;
2244   bool needEntry = true;
2245   forEachInputSectionDescription(
2246       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2247         for (InputSection *isec : isd->sections)
2248           for (Relocation &rel : isec->relocs())
2249             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2250               if (needEntry) {
2251                 sym->allocateAux();
2252                 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2253                             *sym);
2254                 needEntry = false;
2255               }
2256               rel.sym = sym;
2257             }
2258       });
2259 }
2260 
2261 template void elf::scanRelocations<ELF32LE>();
2262 template void elf::scanRelocations<ELF32BE>();
2263 template void elf::scanRelocations<ELF64LE>();
2264 template void elf::scanRelocations<ELF64BE>();
2265