xref: /freebsd/contrib/llvm-project/lld/ELF/Relocations.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Demangle/Demangle.h"
58 #include "llvm/Support/Endian.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67 
68 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (SectionCommand *cmd : script->sectionCommands)
70     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
71       if (assign->sym == &sym)
72         return assign->location;
73   return std::nullopt;
74 }
75 
76 static std::string getDefinedLocation(const Symbol &sym) {
77   const char msg[] = "\n>>> defined in ";
78   if (sym.file)
79     return msg + toString(sym.file);
80   if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
81     return msg + *loc;
82   return "";
83 }
84 
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>>               /home/alice/src/bar.o:(.text+0x1)
90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91                                uint64_t off) {
92   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93   std::string src = s.getSrcMsg(sym, off);
94   if (!src.empty())
95     msg += src + "\n>>>               ";
96   return msg + s.getObjMsg(off);
97 }
98 
99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100                            int64_t min, uint64_t max) {
101   ErrorPlace errPlace = getErrorPlace(loc);
102   std::string hint;
103   if (rel.sym) {
104     if (!rel.sym->isSection())
105       hint = "; references '" + lld::toString(*rel.sym) + '\'';
106     else if (auto *d = dyn_cast<Defined>(rel.sym))
107       hint = ("; references section '" + d->section->name + "'").str();
108 
109     if (config->emachine == EM_X86_64 && rel.type == R_X86_64_PC32 &&
110         rel.sym->getOutputSection() &&
111         (rel.sym->getOutputSection()->flags & SHF_X86_64_LARGE)) {
112       hint += "; R_X86_64_PC32 should not reference a section marked "
113               "SHF_X86_64_LARGE";
114     }
115   }
116   if (!errPlace.srcLoc.empty())
117     hint += "\n>>> referenced by " + errPlace.srcLoc;
118   if (rel.sym && !rel.sym->isSection())
119     hint += getDefinedLocation(*rel.sym);
120 
121   if (errPlace.isec && errPlace.isec->name.starts_with(".debug"))
122     hint += "; consider recompiling with -fdebug-types-section to reduce size "
123             "of debug sections";
124 
125   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
126               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
127               ", " + Twine(max).str() + "]" + hint);
128 }
129 
130 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
131                            const Twine &msg) {
132   ErrorPlace errPlace = getErrorPlace(loc);
133   std::string hint;
134   if (!sym.getName().empty())
135     hint =
136         "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym);
137   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
138               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
139               Twine(llvm::maxIntN(n)) + "]" + hint);
140 }
141 
142 // Build a bitmask with one bit set for each 64 subset of RelExpr.
143 static constexpr uint64_t buildMask() { return 0; }
144 
145 template <typename... Tails>
146 static constexpr uint64_t buildMask(int head, Tails... tails) {
147   return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
148          buildMask(tails...);
149 }
150 
151 // Return true if `Expr` is one of `Exprs`.
152 // There are more than 64 but less than 128 RelExprs, so we divide the set of
153 // exprs into [0, 64) and [64, 128) and represent each range as a constant
154 // 64-bit mask. Then we decide which mask to test depending on the value of
155 // expr and use a simple shift and bitwise-and to test for membership.
156 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
157   assert(0 <= expr && (int)expr < 128 &&
158          "RelExpr is too large for 128-bit mask!");
159 
160   if (expr >= 64)
161     return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
162   return (uint64_t(1) << expr) & buildMask(Exprs...);
163 }
164 
165 static RelType getMipsPairType(RelType type, bool isLocal) {
166   switch (type) {
167   case R_MIPS_HI16:
168     return R_MIPS_LO16;
169   case R_MIPS_GOT16:
170     // In case of global symbol, the R_MIPS_GOT16 relocation does not
171     // have a pair. Each global symbol has a unique entry in the GOT
172     // and a corresponding instruction with help of the R_MIPS_GOT16
173     // relocation loads an address of the symbol. In case of local
174     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
175     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
176     // relocations handle low 16 bits of the address. That allows
177     // to allocate only one GOT entry for every 64 KBytes of local data.
178     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
179   case R_MICROMIPS_GOT16:
180     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
181   case R_MIPS_PCHI16:
182     return R_MIPS_PCLO16;
183   case R_MICROMIPS_HI16:
184     return R_MICROMIPS_LO16;
185   default:
186     return R_MIPS_NONE;
187   }
188 }
189 
190 // True if non-preemptable symbol always has the same value regardless of where
191 // the DSO is loaded.
192 static bool isAbsolute(const Symbol &sym) {
193   if (sym.isUndefWeak())
194     return true;
195   if (const auto *dr = dyn_cast<Defined>(&sym))
196     return dr->section == nullptr; // Absolute symbol.
197   return false;
198 }
199 
200 static bool isAbsoluteValue(const Symbol &sym) {
201   return isAbsolute(sym) || sym.isTls();
202 }
203 
204 // Returns true if Expr refers a PLT entry.
205 static bool needsPlt(RelExpr expr) {
206   return oneof<R_PLT, R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL,
207                R_GOTPLT_PC, R_LOONGARCH_PLT_PAGE_PC, R_PPC32_PLTREL,
208                R_PPC64_CALL_PLT>(expr);
209 }
210 
211 bool lld::elf::needsGot(RelExpr expr) {
212   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
213                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
214                R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>(
215       expr);
216 }
217 
218 // True if this expression is of the form Sym - X, where X is a position in the
219 // file (PC, or GOT for example).
220 static bool isRelExpr(RelExpr expr) {
221   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_ARM_PCA, R_MIPS_GOTREL,
222                R_PPC64_CALL, R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC,
223                R_RELAX_GOT_PC, R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC,
224                R_LOONGARCH_PAGE_PC>(expr);
225 }
226 
227 static RelExpr toPlt(RelExpr expr) {
228   switch (expr) {
229   case R_LOONGARCH_PAGE_PC:
230     return R_LOONGARCH_PLT_PAGE_PC;
231   case R_PPC64_CALL:
232     return R_PPC64_CALL_PLT;
233   case R_PC:
234     return R_PLT_PC;
235   case R_ABS:
236     return R_PLT;
237   case R_GOTREL:
238     return R_PLT_GOTREL;
239   default:
240     return expr;
241   }
242 }
243 
244 static RelExpr fromPlt(RelExpr expr) {
245   // We decided not to use a plt. Optimize a reference to the plt to a
246   // reference to the symbol itself.
247   switch (expr) {
248   case R_PLT_PC:
249   case R_PPC32_PLTREL:
250     return R_PC;
251   case R_LOONGARCH_PLT_PAGE_PC:
252     return R_LOONGARCH_PAGE_PC;
253   case R_PPC64_CALL_PLT:
254     return R_PPC64_CALL;
255   case R_PLT:
256     return R_ABS;
257   case R_PLT_GOTPLT:
258     return R_GOTPLTREL;
259   case R_PLT_GOTREL:
260     return R_GOTREL;
261   default:
262     return expr;
263   }
264 }
265 
266 // Returns true if a given shared symbol is in a read-only segment in a DSO.
267 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
268   using Elf_Phdr = typename ELFT::Phdr;
269 
270   // Determine if the symbol is read-only by scanning the DSO's program headers.
271   const auto &file = cast<SharedFile>(*ss.file);
272   for (const Elf_Phdr &phdr :
273        check(file.template getObj<ELFT>().program_headers()))
274     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
275         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
276         ss.value < phdr.p_vaddr + phdr.p_memsz)
277       return true;
278   return false;
279 }
280 
281 // Returns symbols at the same offset as a given symbol, including SS itself.
282 //
283 // If two or more symbols are at the same offset, and at least one of
284 // them are copied by a copy relocation, all of them need to be copied.
285 // Otherwise, they would refer to different places at runtime.
286 template <class ELFT>
287 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
288   using Elf_Sym = typename ELFT::Sym;
289 
290   const auto &file = cast<SharedFile>(*ss.file);
291 
292   SmallSet<SharedSymbol *, 4> ret;
293   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
294     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
295         s.getType() == STT_TLS || s.st_value != ss.value)
296       continue;
297     StringRef name = check(s.getName(file.getStringTable()));
298     Symbol *sym = symtab.find(name);
299     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
300       ret.insert(alias);
301   }
302 
303   // The loop does not check SHT_GNU_verneed, so ret does not contain
304   // non-default version symbols. If ss has a non-default version, ret won't
305   // contain ss. Just add ss unconditionally. If a non-default version alias is
306   // separately copy relocated, it and ss will have different addresses.
307   // Fortunately this case is impractical and fails with GNU ld as well.
308   ret.insert(&ss);
309   return ret;
310 }
311 
312 // When a symbol is copy relocated or we create a canonical plt entry, it is
313 // effectively a defined symbol. In the case of copy relocation the symbol is
314 // in .bss and in the case of a canonical plt entry it is in .plt. This function
315 // replaces the existing symbol with a Defined pointing to the appropriate
316 // location.
317 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
318                                uint64_t size) {
319   Symbol old = sym;
320   Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
321           size, &sec)
322       .overwrite(sym);
323 
324   sym.versionId = old.versionId;
325   sym.exportDynamic = true;
326   sym.isUsedInRegularObj = true;
327   // A copy relocated alias may need a GOT entry.
328   sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
329                   std::memory_order_relaxed);
330 }
331 
332 // Reserve space in .bss or .bss.rel.ro for copy relocation.
333 //
334 // The copy relocation is pretty much a hack. If you use a copy relocation
335 // in your program, not only the symbol name but the symbol's size, RW/RO
336 // bit and alignment become part of the ABI. In addition to that, if the
337 // symbol has aliases, the aliases become part of the ABI. That's subtle,
338 // but if you violate that implicit ABI, that can cause very counter-
339 // intuitive consequences.
340 //
341 // So, what is the copy relocation? It's for linking non-position
342 // independent code to DSOs. In an ideal world, all references to data
343 // exported by DSOs should go indirectly through GOT. But if object files
344 // are compiled as non-PIC, all data references are direct. There is no
345 // way for the linker to transform the code to use GOT, as machine
346 // instructions are already set in stone in object files. This is where
347 // the copy relocation takes a role.
348 //
349 // A copy relocation instructs the dynamic linker to copy data from a DSO
350 // to a specified address (which is usually in .bss) at load-time. If the
351 // static linker (that's us) finds a direct data reference to a DSO
352 // symbol, it creates a copy relocation, so that the symbol can be
353 // resolved as if it were in .bss rather than in a DSO.
354 //
355 // As you can see in this function, we create a copy relocation for the
356 // dynamic linker, and the relocation contains not only symbol name but
357 // various other information about the symbol. So, such attributes become a
358 // part of the ABI.
359 //
360 // Note for application developers: I can give you a piece of advice if
361 // you are writing a shared library. You probably should export only
362 // functions from your library. You shouldn't export variables.
363 //
364 // As an example what can happen when you export variables without knowing
365 // the semantics of copy relocations, assume that you have an exported
366 // variable of type T. It is an ABI-breaking change to add new members at
367 // end of T even though doing that doesn't change the layout of the
368 // existing members. That's because the space for the new members are not
369 // reserved in .bss unless you recompile the main program. That means they
370 // are likely to overlap with other data that happens to be laid out next
371 // to the variable in .bss. This kind of issue is sometimes very hard to
372 // debug. What's a solution? Instead of exporting a variable V from a DSO,
373 // define an accessor getV().
374 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
375   // Copy relocation against zero-sized symbol doesn't make sense.
376   uint64_t symSize = ss.getSize();
377   if (symSize == 0 || ss.alignment == 0)
378     fatal("cannot create a copy relocation for symbol " + toString(ss));
379 
380   // See if this symbol is in a read-only segment. If so, preserve the symbol's
381   // memory protection by reserving space in the .bss.rel.ro section.
382   bool isRO = isReadOnly<ELFT>(ss);
383   BssSection *sec =
384       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
385   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
386 
387   // At this point, sectionBases has been migrated to sections. Append sec to
388   // sections.
389   if (osec->commands.empty() ||
390       !isa<InputSectionDescription>(osec->commands.back()))
391     osec->commands.push_back(make<InputSectionDescription>(""));
392   auto *isd = cast<InputSectionDescription>(osec->commands.back());
393   isd->sections.push_back(sec);
394   osec->commitSection(sec);
395 
396   // Look through the DSO's dynamic symbol table for aliases and create a
397   // dynamic symbol for each one. This causes the copy relocation to correctly
398   // interpose any aliases.
399   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
400     replaceWithDefined(*sym, *sec, 0, sym->size);
401 
402   mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
403 }
404 
405 // .eh_frame sections are mergeable input sections, so their input
406 // offsets are not linearly mapped to output section. For each input
407 // offset, we need to find a section piece containing the offset and
408 // add the piece's base address to the input offset to compute the
409 // output offset. That isn't cheap.
410 //
411 // This class is to speed up the offset computation. When we process
412 // relocations, we access offsets in the monotonically increasing
413 // order. So we can optimize for that access pattern.
414 //
415 // For sections other than .eh_frame, this class doesn't do anything.
416 namespace {
417 class OffsetGetter {
418 public:
419   OffsetGetter() = default;
420   explicit OffsetGetter(InputSectionBase &sec) {
421     if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
422       cies = eh->cies;
423       fdes = eh->fdes;
424       i = cies.begin();
425       j = fdes.begin();
426     }
427   }
428 
429   // Translates offsets in input sections to offsets in output sections.
430   // Given offset must increase monotonically. We assume that Piece is
431   // sorted by inputOff.
432   uint64_t get(uint64_t off) {
433     if (cies.empty())
434       return off;
435 
436     while (j != fdes.end() && j->inputOff <= off)
437       ++j;
438     auto it = j;
439     if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
440       while (i != cies.end() && i->inputOff <= off)
441         ++i;
442       if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
443         fatal(".eh_frame: relocation is not in any piece");
444       it = i;
445     }
446 
447     // Offset -1 means that the piece is dead (i.e. garbage collected).
448     if (it[-1].outputOff == -1)
449       return -1;
450     return it[-1].outputOff + (off - it[-1].inputOff);
451   }
452 
453 private:
454   ArrayRef<EhSectionPiece> cies, fdes;
455   ArrayRef<EhSectionPiece>::iterator i, j;
456 };
457 
458 // This class encapsulates states needed to scan relocations for one
459 // InputSectionBase.
460 class RelocationScanner {
461 public:
462   template <class ELFT>
463   void scanSection(InputSectionBase &s, bool isEH = false);
464 
465 private:
466   InputSectionBase *sec;
467   OffsetGetter getter;
468 
469   // End of relocations, used by Mips/PPC64.
470   const void *end = nullptr;
471 
472   template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
473   template <class ELFT, class RelTy>
474   int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
475   bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
476                                 uint64_t relOff) const;
477   void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
478                   int64_t addend) const;
479   template <class ELFT, class RelTy>
480   void scanOne(typename Relocs<RelTy>::const_iterator &i);
481   template <class ELFT, class RelTy> void scan(Relocs<RelTy> rels);
482 };
483 } // namespace
484 
485 // MIPS has an odd notion of "paired" relocations to calculate addends.
486 // For example, if a relocation is of R_MIPS_HI16, there must be a
487 // R_MIPS_LO16 relocation after that, and an addend is calculated using
488 // the two relocations.
489 template <class ELFT, class RelTy>
490 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
491                                              bool isLocal) const {
492   if (expr == R_MIPS_GOTREL && isLocal)
493     return sec->getFile<ELFT>()->mipsGp0;
494 
495   // The ABI says that the paired relocation is used only for REL.
496   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
497   // This generalises to relocation types with implicit addends.
498   if (RelTy::HasAddend)
499     return 0;
500 
501   RelType type = rel.getType(config->isMips64EL);
502   uint32_t pairTy = getMipsPairType(type, isLocal);
503   if (pairTy == R_MIPS_NONE)
504     return 0;
505 
506   const uint8_t *buf = sec->content().data();
507   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
508 
509   // To make things worse, paired relocations might not be contiguous in
510   // the relocation table, so we need to do linear search. *sigh*
511   for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
512     if (ri->getType(config->isMips64EL) == pairTy &&
513         ri->getSymbol(config->isMips64EL) == symIndex)
514       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
515 
516   warn("can't find matching " + toString(pairTy) + " relocation for " +
517        toString(type));
518   return 0;
519 }
520 
521 // Custom error message if Sym is defined in a discarded section.
522 template <class ELFT>
523 static std::string maybeReportDiscarded(Undefined &sym) {
524   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
525   if (!file || !sym.discardedSecIdx)
526     return "";
527   ArrayRef<typename ELFT::Shdr> objSections =
528       file->template getELFShdrs<ELFT>();
529 
530   std::string msg;
531   if (sym.type == ELF::STT_SECTION) {
532     msg = "relocation refers to a discarded section: ";
533     msg += CHECK(
534         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
535   } else {
536     msg = "relocation refers to a symbol in a discarded section: " +
537           toString(sym);
538   }
539   msg += "\n>>> defined in " + toString(file);
540 
541   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
542   if (elfSec.sh_type != SHT_GROUP)
543     return msg;
544 
545   // If the discarded section is a COMDAT.
546   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
547   if (const InputFile *prevailing =
548           symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
549     msg += "\n>>> section group signature: " + signature.str() +
550            "\n>>> prevailing definition is in " + toString(prevailing);
551     if (sym.nonPrevailing) {
552       msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
553              "binding and the symbol in a non-prevailing group had STB_GLOBAL "
554              "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
555              "signature is not supported";
556     }
557   }
558   return msg;
559 }
560 
561 namespace {
562 // Undefined diagnostics are collected in a vector and emitted once all of
563 // them are known, so that some postprocessing on the list of undefined symbols
564 // can happen before lld emits diagnostics.
565 struct UndefinedDiag {
566   Undefined *sym;
567   struct Loc {
568     InputSectionBase *sec;
569     uint64_t offset;
570   };
571   std::vector<Loc> locs;
572   bool isWarning;
573 };
574 
575 std::vector<UndefinedDiag> undefs;
576 std::mutex relocMutex;
577 }
578 
579 // Check whether the definition name def is a mangled function name that matches
580 // the reference name ref.
581 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
582   llvm::ItaniumPartialDemangler d;
583   std::string name = def.str();
584   if (d.partialDemangle(name.c_str()))
585     return false;
586   char *buf = d.getFunctionName(nullptr, nullptr);
587   if (!buf)
588     return false;
589   bool ret = ref == buf;
590   free(buf);
591   return ret;
592 }
593 
594 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
595 // the suggested symbol, which is either in the symbol table, or in the same
596 // file of sym.
597 static const Symbol *getAlternativeSpelling(const Undefined &sym,
598                                             std::string &pre_hint,
599                                             std::string &post_hint) {
600   DenseMap<StringRef, const Symbol *> map;
601   if (sym.file && sym.file->kind() == InputFile::ObjKind) {
602     auto *file = cast<ELFFileBase>(sym.file);
603     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
604     // will give an error. Don't suggest an alternative spelling.
605     if (file && sym.discardedSecIdx != 0 &&
606         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
607       return nullptr;
608 
609     // Build a map of local defined symbols.
610     for (const Symbol *s : sym.file->getSymbols())
611       if (s->isLocal() && s->isDefined() && !s->getName().empty())
612         map.try_emplace(s->getName(), s);
613   }
614 
615   auto suggest = [&](StringRef newName) -> const Symbol * {
616     // If defined locally.
617     if (const Symbol *s = map.lookup(newName))
618       return s;
619 
620     // If in the symbol table and not undefined.
621     if (const Symbol *s = symtab.find(newName))
622       if (!s->isUndefined())
623         return s;
624 
625     return nullptr;
626   };
627 
628   // This loop enumerates all strings of Levenshtein distance 1 as typo
629   // correction candidates and suggests the one that exists as a non-undefined
630   // symbol.
631   StringRef name = sym.getName();
632   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
633     // Insert a character before name[i].
634     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
635     for (char c = '0'; c <= 'z'; ++c) {
636       newName[i] = c;
637       if (const Symbol *s = suggest(newName))
638         return s;
639     }
640     if (i == e)
641       break;
642 
643     // Substitute name[i].
644     newName = std::string(name);
645     for (char c = '0'; c <= 'z'; ++c) {
646       newName[i] = c;
647       if (const Symbol *s = suggest(newName))
648         return s;
649     }
650 
651     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
652     // common.
653     if (i + 1 < e) {
654       newName[i] = name[i + 1];
655       newName[i + 1] = name[i];
656       if (const Symbol *s = suggest(newName))
657         return s;
658     }
659 
660     // Delete name[i].
661     newName = (name.substr(0, i) + name.substr(i + 1)).str();
662     if (const Symbol *s = suggest(newName))
663       return s;
664   }
665 
666   // Case mismatch, e.g. Foo vs FOO.
667   for (auto &it : map)
668     if (name.equals_insensitive(it.first))
669       return it.second;
670   for (Symbol *sym : symtab.getSymbols())
671     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
672       return sym;
673 
674   // The reference may be a mangled name while the definition is not. Suggest a
675   // missing extern "C".
676   if (name.starts_with("_Z")) {
677     std::string buf = name.str();
678     llvm::ItaniumPartialDemangler d;
679     if (!d.partialDemangle(buf.c_str()))
680       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
681         const Symbol *s = suggest(buf);
682         free(buf);
683         if (s) {
684           pre_hint = ": extern \"C\" ";
685           return s;
686         }
687       }
688   } else {
689     const Symbol *s = nullptr;
690     for (auto &it : map)
691       if (canSuggestExternCForCXX(name, it.first)) {
692         s = it.second;
693         break;
694       }
695     if (!s)
696       for (Symbol *sym : symtab.getSymbols())
697         if (canSuggestExternCForCXX(name, sym->getName())) {
698           s = sym;
699           break;
700         }
701     if (s) {
702       pre_hint = " to declare ";
703       post_hint = " as extern \"C\"?";
704       return s;
705     }
706   }
707 
708   return nullptr;
709 }
710 
711 static void reportUndefinedSymbol(const UndefinedDiag &undef,
712                                   bool correctSpelling) {
713   Undefined &sym = *undef.sym;
714 
715   auto visibility = [&]() -> std::string {
716     switch (sym.visibility()) {
717     case STV_INTERNAL:
718       return "internal ";
719     case STV_HIDDEN:
720       return "hidden ";
721     case STV_PROTECTED:
722       return "protected ";
723     default:
724       return "";
725     }
726   };
727 
728   std::string msg;
729   switch (config->ekind) {
730   case ELF32LEKind:
731     msg = maybeReportDiscarded<ELF32LE>(sym);
732     break;
733   case ELF32BEKind:
734     msg = maybeReportDiscarded<ELF32BE>(sym);
735     break;
736   case ELF64LEKind:
737     msg = maybeReportDiscarded<ELF64LE>(sym);
738     break;
739   case ELF64BEKind:
740     msg = maybeReportDiscarded<ELF64BE>(sym);
741     break;
742   default:
743     llvm_unreachable("");
744   }
745   if (msg.empty())
746     msg = "undefined " + visibility() + "symbol: " + toString(sym);
747 
748   const size_t maxUndefReferences = 3;
749   size_t i = 0;
750   for (UndefinedDiag::Loc l : undef.locs) {
751     if (i >= maxUndefReferences)
752       break;
753     InputSectionBase &sec = *l.sec;
754     uint64_t offset = l.offset;
755 
756     msg += "\n>>> referenced by ";
757     // In the absence of line number information, utilize DW_TAG_variable (if
758     // present) for the enclosing symbol (e.g. var in `int *a[] = {&undef};`).
759     Symbol *enclosing = sec.getEnclosingSymbol(offset);
760     std::string src = sec.getSrcMsg(enclosing ? *enclosing : sym, offset);
761     if (!src.empty())
762       msg += src + "\n>>>               ";
763     msg += sec.getObjMsg(offset);
764     i++;
765   }
766 
767   if (i < undef.locs.size())
768     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
769                .str();
770 
771   if (correctSpelling) {
772     std::string pre_hint = ": ", post_hint;
773     if (const Symbol *corrected =
774             getAlternativeSpelling(sym, pre_hint, post_hint)) {
775       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
776       if (corrected->file)
777         msg += "\n>>> defined in: " + toString(corrected->file);
778     }
779   }
780 
781   if (sym.getName().starts_with("_ZTV"))
782     msg +=
783         "\n>>> the vtable symbol may be undefined because the class is missing "
784         "its key function (see https://lld.llvm.org/missingkeyfunction)";
785   if (config->gcSections && config->zStartStopGC &&
786       sym.getName().starts_with("__start_")) {
787     msg += "\n>>> the encapsulation symbol needs to be retained under "
788            "--gc-sections properly; consider -z nostart-stop-gc "
789            "(see https://lld.llvm.org/ELF/start-stop-gc)";
790   }
791 
792   if (undef.isWarning)
793     warn(msg);
794   else
795     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
796 }
797 
798 void elf::reportUndefinedSymbols() {
799   // Find the first "undefined symbol" diagnostic for each diagnostic, and
800   // collect all "referenced from" lines at the first diagnostic.
801   DenseMap<Symbol *, UndefinedDiag *> firstRef;
802   for (UndefinedDiag &undef : undefs) {
803     assert(undef.locs.size() == 1);
804     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
805       canon->locs.push_back(undef.locs[0]);
806       undef.locs.clear();
807     } else
808       firstRef[undef.sym] = &undef;
809   }
810 
811   // Enable spell corrector for the first 2 diagnostics.
812   for (const auto &[i, undef] : llvm::enumerate(undefs))
813     if (!undef.locs.empty())
814       reportUndefinedSymbol(undef, i < 2);
815   undefs.clear();
816 }
817 
818 // Report an undefined symbol if necessary.
819 // Returns true if the undefined symbol will produce an error message.
820 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
821                                  uint64_t offset) {
822   std::lock_guard<std::mutex> lock(relocMutex);
823   // If versioned, issue an error (even if the symbol is weak) because we don't
824   // know the defining filename which is required to construct a Verneed entry.
825   if (sym.hasVersionSuffix) {
826     undefs.push_back({&sym, {{&sec, offset}}, false});
827     return true;
828   }
829   if (sym.isWeak())
830     return false;
831 
832   bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
833   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
834     return false;
835 
836   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
837   // which references a switch table in a discarded .rodata/.text section. The
838   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
839   // spec says references from outside the group to a STB_LOCAL symbol are not
840   // allowed. Work around the bug.
841   //
842   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
843   // because .LC0-.LTOC is not representable if the two labels are in different
844   // .got2
845   if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
846     return false;
847 
848   bool isWarning =
849       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
850       config->noinhibitExec;
851   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
852   return !isWarning;
853 }
854 
855 // MIPS N32 ABI treats series of successive relocations with the same offset
856 // as a single relocation. The similar approach used by N64 ABI, but this ABI
857 // packs all relocations into the single relocation record. Here we emulate
858 // this for the N32 ABI. Iterate over relocation with the same offset and put
859 // theirs types into the single bit-set.
860 template <class RelTy>
861 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
862   RelType type = 0;
863   uint64_t offset = rel->r_offset;
864 
865   int n = 0;
866   while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
867     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
868   return type;
869 }
870 
871 template <bool shard = false>
872 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
873                              Symbol &sym, int64_t addend, RelExpr expr,
874                              RelType type) {
875   Partition &part = isec.getPartition();
876 
877   if (sym.isTagged()) {
878     std::lock_guard<std::mutex> lock(relocMutex);
879     part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
880                                    addend, type, expr);
881     // With MTE globals, we always want to derive the address tag by `ldg`-ing
882     // the symbol. When we have a RELATIVE relocation though, we no longer have
883     // a reference to the symbol. Because of this, when we have an addend that
884     // puts the result of the RELATIVE relocation out-of-bounds of the symbol
885     // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI
886     // says we should store the offset to the start of the symbol in the target
887     // field. This is described in further detail in:
888     // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative
889     if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize())
890       isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
891     return;
892   }
893 
894   // Add a relative relocation. If relrDyn section is enabled, and the
895   // relocation offset is guaranteed to be even, add the relocation to
896   // the relrDyn section, otherwise add it to the relaDyn section.
897   // relrDyn sections don't support odd offsets. Also, relrDyn sections
898   // don't store the addend values, so we must write it to the relocated
899   // address.
900   if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
901     isec.addReloc({expr, type, offsetInSec, addend, &sym});
902     if (shard)
903       part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
904           {&isec, isec.relocs().size() - 1});
905     else
906       part.relrDyn->relocs.push_back({&isec, isec.relocs().size() - 1});
907     return;
908   }
909   part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
910                                         sym, addend, type, expr);
911 }
912 
913 template <class PltSection, class GotPltSection>
914 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
915                         RelocationBaseSection &rel, RelType type, Symbol &sym) {
916   plt.addEntry(sym);
917   gotPlt.addEntry(sym);
918   rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
919                 sym.isPreemptible ? DynamicReloc::AgainstSymbol
920                                   : DynamicReloc::AddendOnlyWithTargetVA,
921                 sym, 0, R_ABS});
922 }
923 
924 void elf::addGotEntry(Symbol &sym) {
925   in.got->addEntry(sym);
926   uint64_t off = sym.getGotOffset();
927 
928   // If preemptible, emit a GLOB_DAT relocation.
929   if (sym.isPreemptible) {
930     mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
931                                  DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
932     return;
933   }
934 
935   // Otherwise, the value is either a link-time constant or the load base
936   // plus a constant.
937   if (!config->isPic || isAbsolute(sym))
938     in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
939   else
940     addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
941 }
942 
943 static void addTpOffsetGotEntry(Symbol &sym) {
944   in.got->addEntry(sym);
945   uint64_t off = sym.getGotOffset();
946   if (!sym.isPreemptible && !config->shared) {
947     in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
948     return;
949   }
950   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
951       target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
952 }
953 
954 // Return true if we can define a symbol in the executable that
955 // contains the value/function of a symbol defined in a shared
956 // library.
957 static bool canDefineSymbolInExecutable(Symbol &sym) {
958   // If the symbol has default visibility the symbol defined in the
959   // executable will preempt it.
960   // Note that we want the visibility of the shared symbol itself, not
961   // the visibility of the symbol in the output file we are producing.
962   if (!sym.dsoProtected)
963     return true;
964 
965   // If we are allowed to break address equality of functions, defining
966   // a plt entry will allow the program to call the function in the
967   // .so, but the .so and the executable will no agree on the address
968   // of the function. Similar logic for objects.
969   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
970           (sym.isObject() && config->ignoreDataAddressEquality));
971 }
972 
973 // Returns true if a given relocation can be computed at link-time.
974 // This only handles relocation types expected in processAux.
975 //
976 // For instance, we know the offset from a relocation to its target at
977 // link-time if the relocation is PC-relative and refers a
978 // non-interposable function in the same executable. This function
979 // will return true for such relocation.
980 //
981 // If this function returns false, that means we need to emit a
982 // dynamic relocation so that the relocation will be fixed at load-time.
983 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
984                                                  const Symbol &sym,
985                                                  uint64_t relOff) const {
986   // These expressions always compute a constant
987   if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
988             R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
989             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
990             R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, R_GOTPLT_PC,
991             R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD,
992             R_AARCH64_GOT_PAGE, R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT,
993             R_LOONGARCH_GOT_PAGE_PC>(e))
994     return true;
995 
996   // These never do, except if the entire file is position dependent or if
997   // only the low bits are used.
998   if (e == R_GOT || e == R_PLT)
999     return target->usesOnlyLowPageBits(type) || !config->isPic;
1000 
1001   // R_AARCH64_AUTH_ABS64 requires a dynamic relocation.
1002   if (sym.isPreemptible || e == R_AARCH64_AUTH)
1003     return false;
1004   if (!config->isPic)
1005     return true;
1006 
1007   // Constant when referencing a non-preemptible symbol.
1008   if (e == R_SIZE || e == R_RISCV_LEB128)
1009     return true;
1010 
1011   // For the target and the relocation, we want to know if they are
1012   // absolute or relative.
1013   bool absVal = isAbsoluteValue(sym);
1014   bool relE = isRelExpr(e);
1015   if (absVal && !relE)
1016     return true;
1017   if (!absVal && relE)
1018     return true;
1019   if (!absVal && !relE)
1020     return target->usesOnlyLowPageBits(type);
1021 
1022   assert(absVal && relE);
1023 
1024   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
1025   // in PIC mode. This is a little strange, but it allows us to link function
1026   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
1027   // Normally such a call will be guarded with a comparison, which will load a
1028   // zero from the GOT.
1029   if (sym.isUndefWeak())
1030     return true;
1031 
1032   // We set the final symbols values for linker script defined symbols later.
1033   // They always can be computed as a link time constant.
1034   if (sym.scriptDefined)
1035       return true;
1036 
1037   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1038         toString(sym) + getLocation(*sec, sym, relOff));
1039   return true;
1040 }
1041 
1042 // The reason we have to do this early scan is as follows
1043 // * To mmap the output file, we need to know the size
1044 // * For that, we need to know how many dynamic relocs we will have.
1045 // It might be possible to avoid this by outputting the file with write:
1046 // * Write the allocated output sections, computing addresses.
1047 // * Apply relocations, recording which ones require a dynamic reloc.
1048 // * Write the dynamic relocations.
1049 // * Write the rest of the file.
1050 // This would have some drawbacks. For example, we would only know if .rela.dyn
1051 // is needed after applying relocations. If it is, it will go after rw and rx
1052 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1053 // complicates things for the dynamic linker and means we would have to reserve
1054 // space for the extra PT_LOAD even if we end up not using it.
1055 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1056                                    Symbol &sym, int64_t addend) const {
1057   // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1058   // indirection.
1059   const bool isIfunc = sym.isGnuIFunc();
1060   if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1061     if (expr != R_GOT_PC) {
1062       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1063       // stub type. It should be ignored if optimized to R_PC.
1064       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1065         addend &= ~0x8000;
1066       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1067       // call __tls_get_addr even if the symbol is non-preemptible.
1068       if (!(config->emachine == EM_HEXAGON &&
1069             (type == R_HEX_GD_PLT_B22_PCREL ||
1070              type == R_HEX_GD_PLT_B22_PCREL_X ||
1071              type == R_HEX_GD_PLT_B32_PCREL_X)))
1072         expr = fromPlt(expr);
1073     } else if (!isAbsoluteValue(sym)) {
1074       expr =
1075           target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1076       // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up
1077       // needing the GOT if we can't relax everything.
1078       if (expr == R_RELAX_GOT_PC)
1079         in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1080     }
1081   }
1082 
1083   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1084   // direct relocation on through.
1085   if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) {
1086     std::lock_guard<std::mutex> lock(relocMutex);
1087     sym.exportDynamic = true;
1088     mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1089     return;
1090   }
1091 
1092   if (needsGot(expr)) {
1093     if (config->emachine == EM_MIPS) {
1094       // MIPS ABI has special rules to process GOT entries and doesn't
1095       // require relocation entries for them. A special case is TLS
1096       // relocations. In that case dynamic loader applies dynamic
1097       // relocations to initialize TLS GOT entries.
1098       // See "Global Offset Table" in Chapter 5 in the following document
1099       // for detailed description:
1100       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1101       in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1102     } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) {
1103       // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which
1104       // case the NEEDS_GOT flag shouldn't get set.
1105       sym.setFlags(NEEDS_GOT);
1106     }
1107   } else if (needsPlt(expr)) {
1108     sym.setFlags(NEEDS_PLT);
1109   } else if (LLVM_UNLIKELY(isIfunc)) {
1110     sym.setFlags(HAS_DIRECT_RELOC);
1111   }
1112 
1113   // If the relocation is known to be a link-time constant, we know no dynamic
1114   // relocation will be created, pass the control to relocateAlloc() or
1115   // relocateNonAlloc() to resolve it.
1116   //
1117   // The behavior of an undefined weak reference is implementation defined. For
1118   // non-link-time constants, we resolve relocations statically (let
1119   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1120   // relocations for -pie and -shared.
1121   //
1122   // The general expectation of -no-pie static linking is that there is no
1123   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1124   // -shared matches the spirit of its -z undefs default. -pie has freedom on
1125   // choices, and we choose dynamic relocations to be consistent with the
1126   // handling of GOT-generating relocations.
1127   if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1128       (!config->isPic && sym.isUndefWeak())) {
1129     sec->addReloc({expr, type, offset, addend, &sym});
1130     return;
1131   }
1132 
1133   // Use a simple -z notext rule that treats all sections except .eh_frame as
1134   // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1135   // SectionBase::getOffset would incorrectly adjust the offset).
1136   //
1137   // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1138   // conversion. We still emit a dynamic relocation.
1139   bool canWrite = (sec->flags & SHF_WRITE) ||
1140                   !(config->zText ||
1141                     (isa<EhInputSection>(sec) && config->emachine != EM_MIPS));
1142   if (canWrite) {
1143     RelType rel = target->getDynRel(type);
1144     if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) ||
1145         (rel == target->symbolicRel && !sym.isPreemptible)) {
1146       addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1147       return;
1148     }
1149     if (rel != 0) {
1150       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1151         rel = target->relativeRel;
1152       std::lock_guard<std::mutex> lock(relocMutex);
1153       Partition &part = sec->getPartition();
1154       if (config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64) {
1155         // For a preemptible symbol, we can't use a relative relocation. For an
1156         // undefined symbol, we can't compute offset at link-time and use a
1157         // relative relocation. Use a symbolic relocation instead.
1158         if (sym.isPreemptible) {
1159           part.relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1160         } else if (part.relrAuthDyn && sec->addralign >= 2 && offset % 2 == 0) {
1161           // When symbol values are determined in
1162           // finalizeAddressDependentContent, some .relr.auth.dyn relocations
1163           // may be moved to .rela.dyn.
1164           sec->addReloc({expr, type, offset, addend, &sym});
1165           part.relrAuthDyn->relocs.push_back({sec, sec->relocs().size() - 1});
1166         } else {
1167           part.relaDyn->addReloc({R_AARCH64_AUTH_RELATIVE, sec, offset,
1168                                   DynamicReloc::AddendOnlyWithTargetVA, sym,
1169                                   addend, R_ABS});
1170         }
1171         return;
1172       }
1173       part.relaDyn->addSymbolReloc(rel, *sec, offset, sym, addend, type);
1174 
1175       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1176       // While regular ABI uses dynamic relocations to fill up GOT entries
1177       // MIPS ABI requires dynamic linker to fills up GOT entries using
1178       // specially sorted dynamic symbol table. This affects even dynamic
1179       // relocations against symbols which do not require GOT entries
1180       // creation explicitly, i.e. do not have any GOT-relocations. So if
1181       // a preemptible symbol has a dynamic relocation we anyway have
1182       // to create a GOT entry for it.
1183       // If a non-preemptible symbol has a dynamic relocation against it,
1184       // dynamic linker takes it st_value, adds offset and writes down
1185       // result of the dynamic relocation. In case of preemptible symbol
1186       // dynamic linker performs symbol resolution, writes the symbol value
1187       // to the GOT entry and reads the GOT entry when it needs to perform
1188       // a dynamic relocation.
1189       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1190       if (config->emachine == EM_MIPS)
1191         in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1192       return;
1193     }
1194   }
1195 
1196   // When producing an executable, we can perform copy relocations (for
1197   // STT_OBJECT) and canonical PLT (for STT_FUNC) if sym is defined by a DSO.
1198   // Copy relocations/canonical PLT entries are unsupported for
1199   // R_AARCH64_AUTH_ABS64.
1200   if (!config->shared && sym.isShared() &&
1201       !(config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64)) {
1202     if (!canDefineSymbolInExecutable(sym)) {
1203       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1204                   getLocation(*sec, sym, offset));
1205       return;
1206     }
1207 
1208     if (sym.isObject()) {
1209       // Produce a copy relocation.
1210       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1211         if (!config->zCopyreloc)
1212           error("unresolvable relocation " + toString(type) +
1213                 " against symbol '" + toString(*ss) +
1214                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1215                 getLocation(*sec, sym, offset));
1216         sym.setFlags(NEEDS_COPY);
1217       }
1218       sec->addReloc({expr, type, offset, addend, &sym});
1219       return;
1220     }
1221 
1222     // This handles a non PIC program call to function in a shared library. In
1223     // an ideal world, we could just report an error saying the relocation can
1224     // overflow at runtime. In the real world with glibc, crt1.o has a
1225     // R_X86_64_PC32 pointing to libc.so.
1226     //
1227     // The general idea on how to handle such cases is to create a PLT entry and
1228     // use that as the function value.
1229     //
1230     // For the static linking part, we just return a plt expr and everything
1231     // else will use the PLT entry as the address.
1232     //
1233     // The remaining problem is making sure pointer equality still works. We
1234     // need the help of the dynamic linker for that. We let it know that we have
1235     // a direct reference to a so symbol by creating an undefined symbol with a
1236     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1237     // the value of the symbol we created. This is true even for got entries, so
1238     // pointer equality is maintained. To avoid an infinite loop, the only entry
1239     // that points to the real function is a dedicated got entry used by the
1240     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1241     // R_386_JMP_SLOT, etc).
1242 
1243     // For position independent executable on i386, the plt entry requires ebx
1244     // to be set. This causes two problems:
1245     // * If some code has a direct reference to a function, it was probably
1246     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1247     // * If a library definition gets preempted to the executable, it will have
1248     //   the wrong ebx value.
1249     if (sym.isFunc()) {
1250       if (config->pie && config->emachine == EM_386)
1251         errorOrWarn("symbol '" + toString(sym) +
1252                     "' cannot be preempted; recompile with -fPIE" +
1253                     getLocation(*sec, sym, offset));
1254       sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1255       sec->addReloc({expr, type, offset, addend, &sym});
1256       return;
1257     }
1258   }
1259 
1260   errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1261               (sym.getName().empty() ? "local symbol"
1262                                      : "symbol '" + toString(sym) + "'") +
1263               "; recompile with -fPIC" + getLocation(*sec, sym, offset));
1264 }
1265 
1266 // This function is similar to the `handleTlsRelocation`. MIPS does not
1267 // support any relaxations for TLS relocations so by factoring out MIPS
1268 // handling in to the separate function we can simplify the code and do not
1269 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1270 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1271 // without dynamic relocations.
1272 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1273                                         InputSectionBase &c, uint64_t offset,
1274                                         int64_t addend, RelExpr expr) {
1275   if (expr == R_MIPS_TLSLD) {
1276     in.mipsGot->addTlsIndex(*c.file);
1277     c.addReloc({expr, type, offset, addend, &sym});
1278     return 1;
1279   }
1280   if (expr == R_MIPS_TLSGD) {
1281     in.mipsGot->addDynTlsEntry(*c.file, sym);
1282     c.addReloc({expr, type, offset, addend, &sym});
1283     return 1;
1284   }
1285   return 0;
1286 }
1287 
1288 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1289 // require the generation of a pair of GOT entries that have associated dynamic
1290 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1291 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1292 // symbol in TLS block.
1293 //
1294 // Returns the number of relocations processed.
1295 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1296                                     InputSectionBase &c, uint64_t offset,
1297                                     int64_t addend, RelExpr expr) {
1298   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1299     if (config->shared) {
1300       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1301                   " cannot be used with -shared" + getLocation(c, sym, offset));
1302       return 1;
1303     }
1304     return 0;
1305   }
1306 
1307   if (config->emachine == EM_MIPS)
1308     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1309 
1310   // LoongArch does not yet implement transition from TLSDESC to LE/IE, so
1311   // generate TLSDESC dynamic relocation for the dynamic linker to handle.
1312   if (config->emachine == EM_LOONGARCH &&
1313       oneof<R_LOONGARCH_TLSDESC_PAGE_PC, R_TLSDESC, R_TLSDESC_PC,
1314             R_TLSDESC_CALL>(expr)) {
1315     if (expr != R_TLSDESC_CALL) {
1316       sym.setFlags(NEEDS_TLSDESC);
1317       c.addReloc({expr, type, offset, addend, &sym});
1318     }
1319     return 1;
1320   }
1321 
1322   bool isRISCV = config->emachine == EM_RISCV;
1323 
1324   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1325             R_TLSDESC_GOTPLT>(expr) &&
1326       config->shared) {
1327     // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a label. Do not
1328     // set NEEDS_TLSDESC on the label.
1329     if (expr != R_TLSDESC_CALL) {
1330       if (!isRISCV || type == R_RISCV_TLSDESC_HI20)
1331         sym.setFlags(NEEDS_TLSDESC);
1332       c.addReloc({expr, type, offset, addend, &sym});
1333     }
1334     return 1;
1335   }
1336 
1337   // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE
1338   // optimizations.
1339   // RISC-V supports TLSDESC to IE/LE optimizations.
1340   // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1341   // optimization as well.
1342   bool execOptimize =
1343       !config->shared && config->emachine != EM_ARM &&
1344       config->emachine != EM_HEXAGON && config->emachine != EM_LOONGARCH &&
1345       !(isRISCV && expr != R_TLSDESC_PC && expr != R_TLSDESC_CALL) &&
1346       !c.file->ppc64DisableTLSRelax;
1347 
1348   // If we are producing an executable and the symbol is non-preemptable, it
1349   // must be defined and the code sequence can be optimized to use Local-Exec.
1350   //
1351   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1352   // we can omit the DTPMOD dynamic relocations and resolve them at link time
1353   // because them are always 1. This may be necessary for static linking as
1354   // DTPMOD may not be expected at load time.
1355   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1356 
1357   // Local Dynamic is for access to module local TLS variables, while still
1358   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1359   // module index, with a special value of 0 for the current module. GOT[e1] is
1360   // unused. There only needs to be one module index entry.
1361   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) {
1362     // Local-Dynamic relocs can be optimized to Local-Exec.
1363     if (execOptimize) {
1364       c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1365                   offset, addend, &sym});
1366       return target->getTlsGdRelaxSkip(type);
1367     }
1368     if (expr == R_TLSLD_HINT)
1369       return 1;
1370     ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1371     c.addReloc({expr, type, offset, addend, &sym});
1372     return 1;
1373   }
1374 
1375   // Local-Dynamic relocs can be optimized to Local-Exec.
1376   if (expr == R_DTPREL) {
1377     if (execOptimize)
1378       expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1379     c.addReloc({expr, type, offset, addend, &sym});
1380     return 1;
1381   }
1382 
1383   // Local-Dynamic sequence where offset of tls variable relative to dynamic
1384   // thread pointer is stored in the got. This cannot be optimized to
1385   // Local-Exec.
1386   if (expr == R_TLSLD_GOT_OFF) {
1387     sym.setFlags(NEEDS_GOT_DTPREL);
1388     c.addReloc({expr, type, offset, addend, &sym});
1389     return 1;
1390   }
1391 
1392   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1393             R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC,
1394             R_LOONGARCH_TLSGD_PAGE_PC>(expr)) {
1395     if (!execOptimize) {
1396       sym.setFlags(NEEDS_TLSGD);
1397       c.addReloc({expr, type, offset, addend, &sym});
1398       return 1;
1399     }
1400 
1401     // Global-Dynamic/TLSDESC can be optimized to Initial-Exec or Local-Exec
1402     // depending on the symbol being locally defined or not.
1403     //
1404     // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a non-preemptible
1405     // label, so TLSDESC=>IE will be categorized as R_RELAX_TLS_GD_TO_LE. We fix
1406     // the categorization in RISCV::relocateAlloc.
1407     if (sym.isPreemptible) {
1408       sym.setFlags(NEEDS_TLSGD_TO_IE);
1409       c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1410                   offset, addend, &sym});
1411     } else {
1412       c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1413                   offset, addend, &sym});
1414     }
1415     return target->getTlsGdRelaxSkip(type);
1416   }
1417 
1418   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC,
1419             R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) {
1420     ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1421     // Initial-Exec relocs can be optimized to Local-Exec if the symbol is
1422     // locally defined.  This is not supported on SystemZ.
1423     if (execOptimize && isLocalInExecutable && config->emachine != EM_S390) {
1424       c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1425     } else if (expr != R_TLSIE_HINT) {
1426       sym.setFlags(NEEDS_TLSIE);
1427       // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1428       if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1429         addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1430       else
1431         c.addReloc({expr, type, offset, addend, &sym});
1432     }
1433     return 1;
1434   }
1435 
1436   return 0;
1437 }
1438 
1439 template <class ELFT, class RelTy>
1440 void RelocationScanner::scanOne(typename Relocs<RelTy>::const_iterator &i) {
1441   const RelTy &rel = *i;
1442   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1443   Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1444   RelType type;
1445   if constexpr (ELFT::Is64Bits || RelTy::IsCrel) {
1446     type = rel.getType(config->isMips64EL);
1447     ++i;
1448   } else {
1449     // CREL is unsupported for MIPS N32.
1450     if (config->mipsN32Abi) {
1451       type = getMipsN32RelType(i);
1452     } else {
1453       type = rel.getType(config->isMips64EL);
1454       ++i;
1455     }
1456   }
1457   // Get an offset in an output section this relocation is applied to.
1458   uint64_t offset = getter.get(rel.r_offset);
1459   if (offset == uint64_t(-1))
1460     return;
1461 
1462   RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1463   int64_t addend = RelTy::HasAddend
1464                        ? getAddend<ELFT>(rel)
1465                        : target->getImplicitAddend(
1466                              sec->content().data() + rel.r_offset, type);
1467   if (LLVM_UNLIKELY(config->emachine == EM_MIPS))
1468     addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1469   else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1470     addend += getPPC64TocBase();
1471 
1472   // Ignore R_*_NONE and other marker relocations.
1473   if (expr == R_NONE)
1474     return;
1475 
1476   // Error if the target symbol is undefined. Symbol index 0 may be used by
1477   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1478   if (sym.isUndefined() && symIndex != 0 &&
1479       maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1480     return;
1481 
1482   if (config->emachine == EM_PPC64) {
1483     // We can separate the small code model relocations into 2 categories:
1484     // 1) Those that access the compiler generated .toc sections.
1485     // 2) Those that access the linker allocated got entries.
1486     // lld allocates got entries to symbols on demand. Since we don't try to
1487     // sort the got entries in any way, we don't have to track which objects
1488     // have got-based small code model relocs. The .toc sections get placed
1489     // after the end of the linker allocated .got section and we do sort those
1490     // so sections addressed with small code model relocations come first.
1491     if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1492       sec->file->ppc64SmallCodeModelTocRelocs = true;
1493 
1494     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1495     // InputSectionBase::relocateAlloc().
1496     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1497         cast<Defined>(sym).section->name == ".toc")
1498       ppc64noTocRelax.insert({&sym, addend});
1499 
1500     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1501         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1502       // Skip the error check for CREL, which does not set `end`.
1503       if constexpr (!RelTy::IsCrel) {
1504         if (i == end) {
1505           errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1506                       "relocation" +
1507                       getLocation(*sec, sym, offset));
1508           return;
1509         }
1510       }
1511 
1512       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC
1513       // case, so we can discern it later from the toc-case.
1514       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1515         ++offset;
1516     }
1517   }
1518 
1519   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1520   // uses their addresses, we need GOT or GOTPLT to be created.
1521   //
1522   // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1523   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1524             R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1525     in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1526   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1527                    R_PPC64_RELAX_TOC>(expr)) {
1528     in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1529   }
1530 
1531   // Process TLS relocations, including TLS optimizations. Note that
1532   // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1533   //
1534   // Some RISCV TLSDESC relocations reference a local NOTYPE symbol,
1535   // but we need to process them in handleTlsRelocation.
1536   if (sym.isTls() || oneof<R_TLSDESC_PC, R_TLSDESC_CALL>(expr)) {
1537     if (unsigned processed =
1538             handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1539       i += processed - 1;
1540       return;
1541     }
1542   }
1543 
1544   processAux(expr, type, offset, sym, addend);
1545 }
1546 
1547 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1548 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1549 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1550 // instructions are generated by very old IBM XL compilers. Work around the
1551 // issue by disabling GD/LD to IE/LE relaxation.
1552 template <class RelTy>
1553 static void checkPPC64TLSRelax(InputSectionBase &sec, Relocs<RelTy> rels) {
1554   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1555   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1556     return;
1557   bool hasGDLD = false;
1558   for (const RelTy &rel : rels) {
1559     RelType type = rel.getType(false);
1560     switch (type) {
1561     case R_PPC64_TLSGD:
1562     case R_PPC64_TLSLD:
1563       return; // Found a marker
1564     case R_PPC64_GOT_TLSGD16:
1565     case R_PPC64_GOT_TLSGD16_HA:
1566     case R_PPC64_GOT_TLSGD16_HI:
1567     case R_PPC64_GOT_TLSGD16_LO:
1568     case R_PPC64_GOT_TLSLD16:
1569     case R_PPC64_GOT_TLSLD16_HA:
1570     case R_PPC64_GOT_TLSLD16_HI:
1571     case R_PPC64_GOT_TLSLD16_LO:
1572       hasGDLD = true;
1573       break;
1574     }
1575   }
1576   if (hasGDLD) {
1577     sec.file->ppc64DisableTLSRelax = true;
1578     warn(toString(sec.file) +
1579          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1580          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1581   }
1582 }
1583 
1584 template <class ELFT, class RelTy>
1585 void RelocationScanner::scan(Relocs<RelTy> rels) {
1586   // Not all relocations end up in Sec->Relocations, but a lot do.
1587   sec->relocations.reserve(rels.size());
1588 
1589   if (config->emachine == EM_PPC64)
1590     checkPPC64TLSRelax<RelTy>(*sec, rels);
1591 
1592   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1593   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1594   // script), the relocations may be unordered.
1595   // On SystemZ, all sections need to be sorted by r_offset, to allow TLS
1596   // relaxation to be handled correctly - see SystemZ::getTlsGdRelaxSkip.
1597   SmallVector<RelTy, 0> storage;
1598   if (isa<EhInputSection>(sec) || config->emachine == EM_S390)
1599     rels = sortRels(rels, storage);
1600 
1601   if constexpr (RelTy::IsCrel) {
1602     for (auto i = rels.begin(); i != rels.end();)
1603       scanOne<ELFT, RelTy>(i);
1604   } else {
1605     // The non-CREL code path has additional check for PPC64 TLS.
1606     end = static_cast<const void *>(rels.end());
1607     for (auto i = rels.begin(); i != end;)
1608       scanOne<ELFT, RelTy>(i);
1609   }
1610 
1611   // Sort relocations by offset for more efficient searching for
1612   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1613   if (config->emachine == EM_RISCV ||
1614       (config->emachine == EM_PPC64 && sec->name == ".toc"))
1615     llvm::stable_sort(sec->relocs(),
1616                       [](const Relocation &lhs, const Relocation &rhs) {
1617                         return lhs.offset < rhs.offset;
1618                       });
1619 }
1620 
1621 template <class ELFT>
1622 void RelocationScanner::scanSection(InputSectionBase &s, bool isEH) {
1623   sec = &s;
1624   getter = OffsetGetter(s);
1625   const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(!isEH);
1626   if (rels.areRelocsCrel())
1627     scan<ELFT>(rels.crels);
1628   else if (rels.areRelocsRel())
1629     scan<ELFT>(rels.rels);
1630   else
1631     scan<ELFT>(rels.relas);
1632 }
1633 
1634 template <class ELFT> void elf::scanRelocations() {
1635   // Scan all relocations. Each relocation goes through a series of tests to
1636   // determine if it needs special treatment, such as creating GOT, PLT,
1637   // copy relocations, etc. Note that relocations for non-alloc sections are
1638   // directly processed by InputSection::relocateNonAlloc.
1639 
1640   // Deterministic parallellism needs sorting relocations which is unsuitable
1641   // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1642   // for parallelism.
1643   bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1644                 config->emachine == EM_PPC64;
1645   parallel::TaskGroup tg;
1646   auto outerFn = [&]() {
1647     for (ELFFileBase *f : ctx.objectFiles) {
1648       auto fn = [f]() {
1649         RelocationScanner scanner;
1650         for (InputSectionBase *s : f->getSections()) {
1651           if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1652               (s->flags & SHF_ALLOC) &&
1653               !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1654             scanner.template scanSection<ELFT>(*s);
1655         }
1656       };
1657       if (serial)
1658         fn();
1659       else
1660         tg.spawn(fn);
1661     }
1662     auto scanEH = [] {
1663       RelocationScanner scanner;
1664       for (Partition &part : partitions) {
1665         for (EhInputSection *sec : part.ehFrame->sections)
1666           scanner.template scanSection<ELFT>(*sec);
1667         if (part.armExidx && part.armExidx->isLive())
1668           for (InputSection *sec : part.armExidx->exidxSections)
1669             if (sec->isLive())
1670               scanner.template scanSection<ELFT>(*sec);
1671       }
1672     };
1673     if (serial)
1674       scanEH();
1675     else
1676       tg.spawn(scanEH);
1677   };
1678   // If `serial` is true, call `spawn` to ensure that `scanner` runs in a thread
1679   // with valid getThreadIndex().
1680   if (serial)
1681     tg.spawn(outerFn);
1682   else
1683     outerFn();
1684 }
1685 
1686 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1687   // Handle a reference to a non-preemptible ifunc. These are special in a
1688   // few ways:
1689   //
1690   // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1691   //   a fixed value. But assuming that all references to the ifunc are
1692   //   GOT-generating or PLT-generating, the handling of an ifunc is
1693   //   relatively straightforward. We create a PLT entry in Iplt, which is
1694   //   usually at the end of .plt, which makes an indirect call using a
1695   //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1696   //   The GOT entry is relocated using an IRELATIVE relocation in relaDyn,
1697   //   which is usually at the end of .rela.dyn.
1698   //
1699   // - Despite the fact that an ifunc does not have a fixed value, compilers
1700   //   that are not passed -fPIC will assume that they do, and will emit
1701   //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1702   //   symbol. This means that if a direct relocation to the symbol is
1703   //   seen, the linker must set a value for the symbol, and this value must
1704   //   be consistent no matter what type of reference is made to the symbol.
1705   //   This can be done by creating a PLT entry for the symbol in the way
1706   //   described above and making it canonical, that is, making all references
1707   //   point to the PLT entry instead of the resolver. In lld we also store
1708   //   the address of the PLT entry in the dynamic symbol table, which means
1709   //   that the symbol will also have the same value in other modules.
1710   //   Because the value loaded from the GOT needs to be consistent with
1711   //   the value computed using a direct relocation, a non-preemptible ifunc
1712   //   may end up with two GOT entries, one in .got.plt that points to the
1713   //   address returned by the resolver and is used only by the PLT entry,
1714   //   and another in .got that points to the PLT entry and is used by
1715   //   GOT-generating relocations.
1716   //
1717   // - The fact that these symbols do not have a fixed value makes them an
1718   //   exception to the general rule that a statically linked executable does
1719   //   not require any form of dynamic relocation. To handle these relocations
1720   //   correctly, the IRELATIVE relocations are stored in an array which a
1721   //   statically linked executable's startup code must enumerate using the
1722   //   linker-defined symbols __rela?_iplt_{start,end}.
1723   if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1724     return false;
1725   // Skip unreferenced non-preemptible ifunc.
1726   if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1727     return true;
1728 
1729   sym.isInIplt = true;
1730 
1731   // Create an Iplt and the associated IRELATIVE relocation pointing to the
1732   // original section/value pairs. For non-GOT non-PLT relocation case below, we
1733   // may alter section/value, so create a copy of the symbol to make
1734   // section/value fixed.
1735   //
1736   // Prior to Android V, there was a bug that caused RELR relocations to be
1737   // applied after packed relocations. This meant that resolvers referenced by
1738   // IRELATIVE relocations in the packed relocation section would read
1739   // unrelocated globals with RELR relocations when
1740   // --pack-relative-relocs=android+relr is enabled. Work around this by placing
1741   // IRELATIVE in .rela.plt.
1742   auto *directSym = makeDefined(cast<Defined>(sym));
1743   directSym->allocateAux();
1744   auto &dyn = config->androidPackDynRelocs ? *in.relaPlt : *mainPart->relaDyn;
1745   addPltEntry(*in.iplt, *in.igotPlt, dyn, target->iRelativeRel, *directSym);
1746   sym.allocateAux();
1747   symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1748 
1749   if (flags & HAS_DIRECT_RELOC) {
1750     // Change the value to the IPLT and redirect all references to it.
1751     auto &d = cast<Defined>(sym);
1752     d.section = in.iplt.get();
1753     d.value = d.getPltIdx() * target->ipltEntrySize;
1754     d.size = 0;
1755     // It's important to set the symbol type here so that dynamic loaders
1756     // don't try to call the PLT as if it were an ifunc resolver.
1757     d.type = STT_FUNC;
1758 
1759     if (flags & NEEDS_GOT)
1760       addGotEntry(sym);
1761   } else if (flags & NEEDS_GOT) {
1762     // Redirect GOT accesses to point to the Igot.
1763     sym.gotInIgot = true;
1764   }
1765   return true;
1766 }
1767 
1768 void elf::postScanRelocations() {
1769   auto fn = [](Symbol &sym) {
1770     auto flags = sym.flags.load(std::memory_order_relaxed);
1771     if (handleNonPreemptibleIfunc(sym, flags))
1772       return;
1773 
1774     if (sym.isTagged() && sym.isDefined())
1775       mainPart->memtagGlobalDescriptors->addSymbol(sym);
1776 
1777     if (!sym.needsDynReloc())
1778       return;
1779     sym.allocateAux();
1780 
1781     if (flags & NEEDS_GOT)
1782       addGotEntry(sym);
1783     if (flags & NEEDS_PLT)
1784       addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1785     if (flags & NEEDS_COPY) {
1786       if (sym.isObject()) {
1787         invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1788         // NEEDS_COPY is cleared for sym and its aliases so that in
1789         // later iterations aliases won't cause redundant copies.
1790         assert(!sym.hasFlag(NEEDS_COPY));
1791       } else {
1792         assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT));
1793         if (!sym.isDefined()) {
1794           replaceWithDefined(sym, *in.plt,
1795                              target->pltHeaderSize +
1796                                  target->pltEntrySize * sym.getPltIdx(),
1797                              0);
1798           sym.setFlags(NEEDS_COPY);
1799           if (config->emachine == EM_PPC) {
1800             // PPC32 canonical PLT entries are at the beginning of .glink
1801             cast<Defined>(sym).value = in.plt->headerSize;
1802             in.plt->headerSize += 16;
1803             cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1804           }
1805         }
1806       }
1807     }
1808 
1809     if (!sym.isTls())
1810       return;
1811     bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1812     GotSection *got = in.got.get();
1813 
1814     if (flags & NEEDS_TLSDESC) {
1815       got->addTlsDescEntry(sym);
1816       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1817           target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1818           target->tlsDescRel);
1819     }
1820     if (flags & NEEDS_TLSGD) {
1821       got->addDynTlsEntry(sym);
1822       uint64_t off = got->getGlobalDynOffset(sym);
1823       if (isLocalInExecutable)
1824         // Write one to the GOT slot.
1825         got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1826       else
1827         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1828                                           sym);
1829 
1830       // If the symbol is preemptible we need the dynamic linker to write
1831       // the offset too.
1832       uint64_t offsetOff = off + config->wordsize;
1833       if (sym.isPreemptible)
1834         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1835                                           sym);
1836       else
1837         got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1838     }
1839     if (flags & NEEDS_TLSGD_TO_IE) {
1840       got->addEntry(sym);
1841       mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1842                                         sym.getGotOffset(), sym);
1843     }
1844     if (flags & NEEDS_GOT_DTPREL) {
1845       got->addEntry(sym);
1846       got->addConstant(
1847           {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1848     }
1849 
1850     if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1851       addTpOffsetGotEntry(sym);
1852   };
1853 
1854   GotSection *got = in.got.get();
1855   if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1856     static Undefined dummy(ctx.internalFile, "", STB_LOCAL, 0, 0);
1857     if (config->shared)
1858       mainPart->relaDyn->addReloc(
1859           {target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1860     else
1861       got->addConstant(
1862           {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1863   }
1864 
1865   assert(symAux.size() == 1);
1866   for (Symbol *sym : symtab.getSymbols())
1867     fn(*sym);
1868 
1869   // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1870   // handling. They don't need regular PLT.
1871   for (ELFFileBase *file : ctx.objectFiles)
1872     for (Symbol *sym : file->getLocalSymbols())
1873       fn(*sym);
1874 }
1875 
1876 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1877   // std::merge requires a strict weak ordering.
1878   if (a->outSecOff < b->outSecOff)
1879     return true;
1880 
1881   // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1882   if (a->outSecOff == b->outSecOff && a != b) {
1883     auto *ta = dyn_cast<ThunkSection>(a);
1884     auto *tb = dyn_cast<ThunkSection>(b);
1885 
1886     // Check if Thunk is immediately before any specific Target
1887     // InputSection for example Mips LA25 Thunks.
1888     if (ta && ta->getTargetInputSection() == b)
1889       return true;
1890 
1891     // Place Thunk Sections without specific targets before
1892     // non-Thunk Sections.
1893     if (ta && !tb && !ta->getTargetInputSection())
1894       return true;
1895   }
1896 
1897   return false;
1898 }
1899 
1900 // Call Fn on every executable InputSection accessed via the linker script
1901 // InputSectionDescription::Sections.
1902 static void forEachInputSectionDescription(
1903     ArrayRef<OutputSection *> outputSections,
1904     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1905   for (OutputSection *os : outputSections) {
1906     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1907       continue;
1908     for (SectionCommand *bc : os->commands)
1909       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1910         fn(os, isd);
1911   }
1912 }
1913 
1914 // Thunk Implementation
1915 //
1916 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1917 // of code that the linker inserts inbetween a caller and a callee. The thunks
1918 // are added at link time rather than compile time as the decision on whether
1919 // a thunk is needed, such as the caller and callee being out of range, can only
1920 // be made at link time.
1921 //
1922 // It is straightforward to tell given the current state of the program when a
1923 // thunk is needed for a particular call. The more difficult part is that
1924 // the thunk needs to be placed in the program such that the caller can reach
1925 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1926 // the program alters addresses, which can mean more thunks etc.
1927 //
1928 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1929 // The decision to have a ThunkSection act as a container means that we can
1930 // more easily handle the most common case of a single block of contiguous
1931 // Thunks by inserting just a single ThunkSection.
1932 //
1933 // The implementation of Thunks in lld is split across these areas
1934 // Relocations.cpp : Framework for creating and placing thunks
1935 // Thunks.cpp : The code generated for each supported thunk
1936 // Target.cpp : Target specific hooks that the framework uses to decide when
1937 //              a thunk is used
1938 // Synthetic.cpp : Implementation of ThunkSection
1939 // Writer.cpp : Iteratively call framework until no more Thunks added
1940 //
1941 // Thunk placement requirements:
1942 // Mips LA25 thunks. These must be placed immediately before the callee section
1943 // We can assume that the caller is in range of the Thunk. These are modelled
1944 // by Thunks that return the section they must precede with
1945 // getTargetInputSection().
1946 //
1947 // ARM interworking and range extension thunks. These thunks must be placed
1948 // within range of the caller. All implemented ARM thunks can always reach the
1949 // callee as they use an indirect jump via a register that has no range
1950 // restrictions.
1951 //
1952 // Thunk placement algorithm:
1953 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1954 // getTargetInputSection().
1955 //
1956 // For thunks that must be placed within range of the caller there are many
1957 // possible choices given that the maximum range from the caller is usually
1958 // much larger than the average InputSection size. Desirable properties include:
1959 // - Maximize reuse of thunks by multiple callers
1960 // - Minimize number of ThunkSections to simplify insertion
1961 // - Handle impact of already added Thunks on addresses
1962 // - Simple to understand and implement
1963 //
1964 // In lld for the first pass, we pre-create one or more ThunkSections per
1965 // InputSectionDescription at Target specific intervals. A ThunkSection is
1966 // placed so that the estimated end of the ThunkSection is within range of the
1967 // start of the InputSectionDescription or the previous ThunkSection. For
1968 // example:
1969 // InputSectionDescription
1970 // Section 0
1971 // ...
1972 // Section N
1973 // ThunkSection 0
1974 // Section N + 1
1975 // ...
1976 // Section N + K
1977 // Thunk Section 1
1978 //
1979 // The intention is that we can add a Thunk to a ThunkSection that is well
1980 // spaced enough to service a number of callers without having to do a lot
1981 // of work. An important principle is that it is not an error if a Thunk cannot
1982 // be placed in a pre-created ThunkSection; when this happens we create a new
1983 // ThunkSection placed next to the caller. This allows us to handle the vast
1984 // majority of thunks simply, but also handle rare cases where the branch range
1985 // is smaller than the target specific spacing.
1986 //
1987 // The algorithm is expected to create all the thunks that are needed in a
1988 // single pass, with a small number of programs needing a second pass due to
1989 // the insertion of thunks in the first pass increasing the offset between
1990 // callers and callees that were only just in range.
1991 //
1992 // A consequence of allowing new ThunkSections to be created outside of the
1993 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1994 // range in pass K, are out of range in some pass > K due to the insertion of
1995 // more Thunks in between the caller and callee. When this happens we retarget
1996 // the relocation back to the original target and create another Thunk.
1997 
1998 // Remove ThunkSections that are empty, this should only be the initial set
1999 // precreated on pass 0.
2000 
2001 // Insert the Thunks for OutputSection OS into their designated place
2002 // in the Sections vector, and recalculate the InputSection output section
2003 // offsets.
2004 // This may invalidate any output section offsets stored outside of InputSection
2005 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
2006   forEachInputSectionDescription(
2007       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2008         if (isd->thunkSections.empty())
2009           return;
2010 
2011         // Remove any zero sized precreated Thunks.
2012         llvm::erase_if(isd->thunkSections,
2013                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
2014                          return ts.first->getSize() == 0;
2015                        });
2016 
2017         // ISD->ThunkSections contains all created ThunkSections, including
2018         // those inserted in previous passes. Extract the Thunks created this
2019         // pass and order them in ascending outSecOff.
2020         std::vector<ThunkSection *> newThunks;
2021         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
2022           if (ts.second == pass)
2023             newThunks.push_back(ts.first);
2024         llvm::stable_sort(newThunks,
2025                           [](const ThunkSection *a, const ThunkSection *b) {
2026                             return a->outSecOff < b->outSecOff;
2027                           });
2028 
2029         // Merge sorted vectors of Thunks and InputSections by outSecOff
2030         SmallVector<InputSection *, 0> tmp;
2031         tmp.reserve(isd->sections.size() + newThunks.size());
2032 
2033         std::merge(isd->sections.begin(), isd->sections.end(),
2034                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
2035                    mergeCmp);
2036 
2037         isd->sections = std::move(tmp);
2038       });
2039 }
2040 
2041 static int64_t getPCBias(RelType type) {
2042   if (config->emachine != EM_ARM)
2043     return 0;
2044   switch (type) {
2045   case R_ARM_THM_JUMP19:
2046   case R_ARM_THM_JUMP24:
2047   case R_ARM_THM_CALL:
2048     return 4;
2049   default:
2050     return 8;
2051   }
2052 }
2053 
2054 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
2055 // is in range of Src. An ISD maps to a range of InputSections described by a
2056 // linker script section pattern such as { .text .text.* }.
2057 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
2058                                            InputSection *isec,
2059                                            InputSectionDescription *isd,
2060                                            const Relocation &rel,
2061                                            uint64_t src) {
2062   // See the comment in getThunk for -pcBias below.
2063   const int64_t pcBias = getPCBias(rel.type);
2064   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
2065     ThunkSection *ts = tp.first;
2066     uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
2067     uint64_t tsLimit = tsBase + ts->getSize();
2068     if (target->inBranchRange(rel.type, src,
2069                               (src > tsLimit) ? tsBase : tsLimit))
2070       return ts;
2071   }
2072 
2073   // No suitable ThunkSection exists. This can happen when there is a branch
2074   // with lower range than the ThunkSection spacing or when there are too
2075   // many Thunks. Create a new ThunkSection as close to the InputSection as
2076   // possible. Error if InputSection is so large we cannot place ThunkSection
2077   // anywhere in Range.
2078   uint64_t thunkSecOff = isec->outSecOff;
2079   if (!target->inBranchRange(rel.type, src,
2080                              os->addr + thunkSecOff + rel.addend)) {
2081     thunkSecOff = isec->outSecOff + isec->getSize();
2082     if (!target->inBranchRange(rel.type, src,
2083                                os->addr + thunkSecOff + rel.addend))
2084       fatal("InputSection too large for range extension thunk " +
2085             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
2086   }
2087   return addThunkSection(os, isd, thunkSecOff);
2088 }
2089 
2090 // Add a Thunk that needs to be placed in a ThunkSection that immediately
2091 // precedes its Target.
2092 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
2093   ThunkSection *ts = thunkedSections.lookup(isec);
2094   if (ts)
2095     return ts;
2096 
2097   // Find InputSectionRange within Target Output Section (TOS) that the
2098   // InputSection (IS) that we need to precede is in.
2099   OutputSection *tos = isec->getParent();
2100   for (SectionCommand *bc : tos->commands) {
2101     auto *isd = dyn_cast<InputSectionDescription>(bc);
2102     if (!isd || isd->sections.empty())
2103       continue;
2104 
2105     InputSection *first = isd->sections.front();
2106     InputSection *last = isd->sections.back();
2107 
2108     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
2109       continue;
2110 
2111     ts = addThunkSection(tos, isd, isec->outSecOff);
2112     thunkedSections[isec] = ts;
2113     return ts;
2114   }
2115 
2116   return nullptr;
2117 }
2118 
2119 // Create one or more ThunkSections per OS that can be used to place Thunks.
2120 // We attempt to place the ThunkSections using the following desirable
2121 // properties:
2122 // - Within range of the maximum number of callers
2123 // - Minimise the number of ThunkSections
2124 //
2125 // We follow a simple but conservative heuristic to place ThunkSections at
2126 // offsets that are multiples of a Target specific branch range.
2127 // For an InputSectionDescription that is smaller than the range, a single
2128 // ThunkSection at the end of the range will do.
2129 //
2130 // For an InputSectionDescription that is more than twice the size of the range,
2131 // we place the last ThunkSection at range bytes from the end of the
2132 // InputSectionDescription in order to increase the likelihood that the
2133 // distance from a thunk to its target will be sufficiently small to
2134 // allow for the creation of a short thunk.
2135 void ThunkCreator::createInitialThunkSections(
2136     ArrayRef<OutputSection *> outputSections) {
2137   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
2138 
2139   forEachInputSectionDescription(
2140       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2141         if (isd->sections.empty())
2142           return;
2143 
2144         uint32_t isdBegin = isd->sections.front()->outSecOff;
2145         uint32_t isdEnd =
2146             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
2147         uint32_t lastThunkLowerBound = -1;
2148         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2149           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2150 
2151         uint32_t isecLimit;
2152         uint32_t prevIsecLimit = isdBegin;
2153         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2154 
2155         for (const InputSection *isec : isd->sections) {
2156           isecLimit = isec->outSecOff + isec->getSize();
2157           if (isecLimit > thunkUpperBound) {
2158             addThunkSection(os, isd, prevIsecLimit);
2159             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2160           }
2161           if (isecLimit > lastThunkLowerBound)
2162             break;
2163           prevIsecLimit = isecLimit;
2164         }
2165         addThunkSection(os, isd, isecLimit);
2166       });
2167 }
2168 
2169 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2170                                             InputSectionDescription *isd,
2171                                             uint64_t off) {
2172   auto *ts = make<ThunkSection>(os, off);
2173   ts->partition = os->partition;
2174   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2175       !isd->sections.empty()) {
2176     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2177     // thunks we disturb the base addresses of sections placed after the thunks
2178     // this makes patches we have generated redundant, and may cause us to
2179     // generate more patches as different instructions are now in sensitive
2180     // locations. When we generate more patches we may force more branches to
2181     // go out of range, causing more thunks to be generated. In pathological
2182     // cases this can cause the address dependent content pass not to converge.
2183     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2184     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2185     // which means that adding Thunks to the section does not invalidate
2186     // errata patches for following code.
2187     // Rounding up the size to 4KiB has consequences for code-size and can
2188     // trip up linker script defined assertions. For example the linux kernel
2189     // has an assertion that what LLD represents as an InputSectionDescription
2190     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2191     // We use the heuristic of rounding up the size when both of the following
2192     // conditions are true:
2193     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2194     //     accounts for the case where no single InputSectionDescription is
2195     //     larger than the OutputSection size. This is conservative but simple.
2196     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2197     //     any assertion failures that an InputSectionDescription is < 4 KiB
2198     //     in size.
2199     uint64_t isdSize = isd->sections.back()->outSecOff +
2200                        isd->sections.back()->getSize() -
2201                        isd->sections.front()->outSecOff;
2202     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2203       ts->roundUpSizeForErrata = true;
2204   }
2205   isd->thunkSections.push_back({ts, pass});
2206   return ts;
2207 }
2208 
2209 static bool isThunkSectionCompatible(InputSection *source,
2210                                      SectionBase *target) {
2211   // We can't reuse thunks in different loadable partitions because they might
2212   // not be loaded. But partition 1 (the main partition) will always be loaded.
2213   if (source->partition != target->partition)
2214     return target->partition == 1;
2215   return true;
2216 }
2217 
2218 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2219                                                 Relocation &rel, uint64_t src) {
2220   std::vector<Thunk *> *thunkVec = nullptr;
2221   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2222   // out in the relocation addend. We compensate for the PC bias so that
2223   // an Arm and Thumb relocation to the same destination get the same keyAddend,
2224   // which is usually 0.
2225   const int64_t pcBias = getPCBias(rel.type);
2226   const int64_t keyAddend = rel.addend + pcBias;
2227 
2228   // We use a ((section, offset), addend) pair to find the thunk position if
2229   // possible so that we create only one thunk for aliased symbols or ICFed
2230   // sections. There may be multiple relocations sharing the same (section,
2231   // offset + addend) pair. We may revert the relocation back to its original
2232   // non-Thunk target, so we cannot fold offset + addend.
2233   if (auto *d = dyn_cast<Defined>(rel.sym))
2234     if (!d->isInPlt() && d->section)
2235       thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2236                                                     keyAddend}];
2237   if (!thunkVec)
2238     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2239 
2240   // Check existing Thunks for Sym to see if they can be reused
2241   for (Thunk *t : *thunkVec)
2242     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2243         t->isCompatibleWith(*isec, rel) &&
2244         target->inBranchRange(rel.type, src,
2245                               t->getThunkTargetSym()->getVA(-pcBias)))
2246       return std::make_pair(t, false);
2247 
2248   // No existing compatible Thunk in range, create a new one
2249   Thunk *t = addThunk(*isec, rel);
2250   thunkVec->push_back(t);
2251   return std::make_pair(t, true);
2252 }
2253 
2254 // Return true if the relocation target is an in range Thunk.
2255 // Return false if the relocation is not to a Thunk. If the relocation target
2256 // was originally to a Thunk, but is no longer in range we revert the
2257 // relocation back to its original non-Thunk target.
2258 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2259   if (Thunk *t = thunks.lookup(rel.sym)) {
2260     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2261       return true;
2262     rel.sym = &t->destination;
2263     rel.addend = t->addend;
2264     if (rel.sym->isInPlt())
2265       rel.expr = toPlt(rel.expr);
2266   }
2267   return false;
2268 }
2269 
2270 // Process all relocations from the InputSections that have been assigned
2271 // to InputSectionDescriptions and redirect through Thunks if needed. The
2272 // function should be called iteratively until it returns false.
2273 //
2274 // PreConditions:
2275 // All InputSections that may need a Thunk are reachable from
2276 // OutputSectionCommands.
2277 //
2278 // All OutputSections have an address and all InputSections have an offset
2279 // within the OutputSection.
2280 //
2281 // The offsets between caller (relocation place) and callee
2282 // (relocation target) will not be modified outside of createThunks().
2283 //
2284 // PostConditions:
2285 // If return value is true then ThunkSections have been inserted into
2286 // OutputSections. All relocations that needed a Thunk based on the information
2287 // available to createThunks() on entry have been redirected to a Thunk. Note
2288 // that adding Thunks changes offsets between caller and callee so more Thunks
2289 // may be required.
2290 //
2291 // If return value is false then no more Thunks are needed, and createThunks has
2292 // made no changes. If the target requires range extension thunks, currently
2293 // ARM, then any future change in offset between caller and callee risks a
2294 // relocation out of range error.
2295 bool ThunkCreator::createThunks(uint32_t pass,
2296                                 ArrayRef<OutputSection *> outputSections) {
2297   this->pass = pass;
2298   bool addressesChanged = false;
2299 
2300   if (pass == 0 && target->getThunkSectionSpacing())
2301     createInitialThunkSections(outputSections);
2302 
2303   // Create all the Thunks and insert them into synthetic ThunkSections. The
2304   // ThunkSections are later inserted back into InputSectionDescriptions.
2305   // We separate the creation of ThunkSections from the insertion of the
2306   // ThunkSections as ThunkSections are not always inserted into the same
2307   // InputSectionDescription as the caller.
2308   forEachInputSectionDescription(
2309       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2310         for (InputSection *isec : isd->sections)
2311           for (Relocation &rel : isec->relocs()) {
2312             uint64_t src = isec->getVA(rel.offset);
2313 
2314             // If we are a relocation to an existing Thunk, check if it is
2315             // still in range. If not then Rel will be altered to point to its
2316             // original target so another Thunk can be generated.
2317             if (pass > 0 && normalizeExistingThunk(rel, src))
2318               continue;
2319 
2320             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2321                                     *rel.sym, rel.addend))
2322               continue;
2323 
2324             Thunk *t;
2325             bool isNew;
2326             std::tie(t, isNew) = getThunk(isec, rel, src);
2327 
2328             if (isNew) {
2329               // Find or create a ThunkSection for the new Thunk
2330               ThunkSection *ts;
2331               if (auto *tis = t->getTargetInputSection())
2332                 ts = getISThunkSec(tis);
2333               else
2334                 ts = getISDThunkSec(os, isec, isd, rel, src);
2335               ts->addThunk(t);
2336               thunks[t->getThunkTargetSym()] = t;
2337             }
2338 
2339             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2340             rel.sym = t->getThunkTargetSym();
2341             rel.expr = fromPlt(rel.expr);
2342 
2343             // On AArch64 and PPC, a jump/call relocation may be encoded as
2344             // STT_SECTION + non-zero addend, clear the addend after
2345             // redirection.
2346             if (config->emachine != EM_MIPS)
2347               rel.addend = -getPCBias(rel.type);
2348           }
2349 
2350         for (auto &p : isd->thunkSections)
2351           addressesChanged |= p.first->assignOffsets();
2352       });
2353 
2354   for (auto &p : thunkedSections)
2355     addressesChanged |= p.second->assignOffsets();
2356 
2357   // Merge all created synthetic ThunkSections back into OutputSection
2358   mergeThunks(outputSections);
2359   return addressesChanged;
2360 }
2361 
2362 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2363 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2364 // __tls_get_addr.
2365 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2366 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2367   bool needTlsSymbol = false;
2368   forEachInputSectionDescription(
2369       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2370         for (InputSection *isec : isd->sections)
2371           for (Relocation &rel : isec->relocs())
2372             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2373               needTlsSymbol = true;
2374               return;
2375             }
2376       });
2377   return needTlsSymbol;
2378 }
2379 
2380 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2381   Symbol *sym = symtab.find("__tls_get_addr");
2382   if (!sym)
2383     return;
2384   bool needEntry = true;
2385   forEachInputSectionDescription(
2386       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2387         for (InputSection *isec : isd->sections)
2388           for (Relocation &rel : isec->relocs())
2389             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2390               if (needEntry) {
2391                 sym->allocateAux();
2392                 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2393                             *sym);
2394                 needEntry = false;
2395               }
2396               rel.sym = sym;
2397             }
2398       });
2399 }
2400 
2401 static bool matchesRefTo(const NoCrossRefCommand &cmd, StringRef osec) {
2402   if (cmd.toFirst)
2403     return cmd.outputSections[0] == osec;
2404   return llvm::is_contained(cmd.outputSections, osec);
2405 }
2406 
2407 template <class ELFT, class Rels>
2408 static void scanCrossRefs(const NoCrossRefCommand &cmd, OutputSection *osec,
2409                           InputSection *sec, Rels rels) {
2410   for (const auto &r : rels) {
2411     Symbol &sym = sec->file->getSymbol(r.getSymbol(config->isMips64EL));
2412     // A legal cross-reference is when the destination output section is
2413     // nullptr, osec for a self-reference, or a section that is described by the
2414     // NOCROSSREFS/NOCROSSREFS_TO command.
2415     auto *dstOsec = sym.getOutputSection();
2416     if (!dstOsec || dstOsec == osec || !matchesRefTo(cmd, dstOsec->name))
2417       continue;
2418 
2419     std::string toSymName;
2420     if (!sym.isSection())
2421       toSymName = toString(sym);
2422     else if (auto *d = dyn_cast<Defined>(&sym))
2423       toSymName = d->section->name;
2424     errorOrWarn(sec->getLocation(r.r_offset) +
2425                 ": prohibited cross reference from '" + osec->name + "' to '" +
2426                 toSymName + "' in '" + dstOsec->name + "'");
2427   }
2428 }
2429 
2430 // For each output section described by at least one NOCROSSREFS(_TO) command,
2431 // scan relocations from its input sections for prohibited cross references.
2432 template <class ELFT> void elf::checkNoCrossRefs() {
2433   for (OutputSection *osec : outputSections) {
2434     for (const NoCrossRefCommand &noxref : script->noCrossRefs) {
2435       if (!llvm::is_contained(noxref.outputSections, osec->name) ||
2436           (noxref.toFirst && noxref.outputSections[0] == osec->name))
2437         continue;
2438       for (SectionCommand *cmd : osec->commands) {
2439         auto *isd = dyn_cast<InputSectionDescription>(cmd);
2440         if (!isd)
2441           continue;
2442         parallelForEach(isd->sections, [&](InputSection *sec) {
2443           invokeOnRelocs(*sec, scanCrossRefs<ELFT>, noxref, osec, sec);
2444         });
2445       }
2446     }
2447   }
2448 }
2449 
2450 template void elf::scanRelocations<ELF32LE>();
2451 template void elf::scanRelocations<ELF32BE>();
2452 template void elf::scanRelocations<ELF64LE>();
2453 template void elf::scanRelocations<ELF64BE>();
2454 
2455 template void elf::checkNoCrossRefs<ELF32LE>();
2456 template void elf::checkNoCrossRefs<ELF32BE>();
2457 template void elf::checkNoCrossRefs<ELF64LE>();
2458 template void elf::checkNoCrossRefs<ELF64BE>();
2459