1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "InputFiles.h" 46 #include "LinkerScript.h" 47 #include "OutputSections.h" 48 #include "SymbolTable.h" 49 #include "Symbols.h" 50 #include "SyntheticSections.h" 51 #include "Target.h" 52 #include "Thunks.h" 53 #include "lld/Common/ErrorHandler.h" 54 #include "lld/Common/Memory.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Demangle/Demangle.h" 58 #include "llvm/Support/Endian.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (SectionCommand *cmd : script->sectionCommands) 70 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 71 if (assign->sym == &sym) 72 return assign->location; 73 return std::nullopt; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 const char msg[] = "\n>>> defined in "; 78 if (sym.file) 79 return msg + toString(sym.file); 80 if (std::optional<std::string> loc = getLinkerScriptLocation(sym)) 81 return msg + *loc; 82 return ""; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym) { 104 if (!rel.sym->isSection()) 105 hint = "; references '" + lld::toString(*rel.sym) + '\''; 106 else if (auto *d = dyn_cast<Defined>(rel.sym)) 107 hint = ("; references section '" + d->section->name + "'").str(); 108 109 if (config->emachine == EM_X86_64 && rel.type == R_X86_64_PC32 && 110 rel.sym->getOutputSection() && 111 (rel.sym->getOutputSection()->flags & SHF_X86_64_LARGE)) { 112 hint += "; R_X86_64_PC32 should not reference a section marked " 113 "SHF_X86_64_LARGE"; 114 } 115 } 116 if (!errPlace.srcLoc.empty()) 117 hint += "\n>>> referenced by " + errPlace.srcLoc; 118 if (rel.sym && !rel.sym->isSection()) 119 hint += getDefinedLocation(*rel.sym); 120 121 if (errPlace.isec && errPlace.isec->name.starts_with(".debug")) 122 hint += "; consider recompiling with -fdebug-types-section to reduce size " 123 "of debug sections"; 124 125 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 126 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 127 ", " + Twine(max).str() + "]" + hint); 128 } 129 130 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 131 const Twine &msg) { 132 ErrorPlace errPlace = getErrorPlace(loc); 133 std::string hint; 134 if (!sym.getName().empty()) 135 hint = 136 "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym); 137 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 138 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 139 Twine(llvm::maxIntN(n)) + "]" + hint); 140 } 141 142 // Build a bitmask with one bit set for each 64 subset of RelExpr. 143 static constexpr uint64_t buildMask() { return 0; } 144 145 template <typename... Tails> 146 static constexpr uint64_t buildMask(int head, Tails... tails) { 147 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | 148 buildMask(tails...); 149 } 150 151 // Return true if `Expr` is one of `Exprs`. 152 // There are more than 64 but less than 128 RelExprs, so we divide the set of 153 // exprs into [0, 64) and [64, 128) and represent each range as a constant 154 // 64-bit mask. Then we decide which mask to test depending on the value of 155 // expr and use a simple shift and bitwise-and to test for membership. 156 template <RelExpr... Exprs> static bool oneof(RelExpr expr) { 157 assert(0 <= expr && (int)expr < 128 && 158 "RelExpr is too large for 128-bit mask!"); 159 160 if (expr >= 64) 161 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); 162 return (uint64_t(1) << expr) & buildMask(Exprs...); 163 } 164 165 static RelType getMipsPairType(RelType type, bool isLocal) { 166 switch (type) { 167 case R_MIPS_HI16: 168 return R_MIPS_LO16; 169 case R_MIPS_GOT16: 170 // In case of global symbol, the R_MIPS_GOT16 relocation does not 171 // have a pair. Each global symbol has a unique entry in the GOT 172 // and a corresponding instruction with help of the R_MIPS_GOT16 173 // relocation loads an address of the symbol. In case of local 174 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 175 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 176 // relocations handle low 16 bits of the address. That allows 177 // to allocate only one GOT entry for every 64 KBytes of local data. 178 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 179 case R_MICROMIPS_GOT16: 180 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 181 case R_MIPS_PCHI16: 182 return R_MIPS_PCLO16; 183 case R_MICROMIPS_HI16: 184 return R_MICROMIPS_LO16; 185 default: 186 return R_MIPS_NONE; 187 } 188 } 189 190 // True if non-preemptable symbol always has the same value regardless of where 191 // the DSO is loaded. 192 static bool isAbsolute(const Symbol &sym) { 193 if (sym.isUndefWeak()) 194 return true; 195 if (const auto *dr = dyn_cast<Defined>(&sym)) 196 return dr->section == nullptr; // Absolute symbol. 197 return false; 198 } 199 200 static bool isAbsoluteValue(const Symbol &sym) { 201 return isAbsolute(sym) || sym.isTls(); 202 } 203 204 // Returns true if Expr refers a PLT entry. 205 static bool needsPlt(RelExpr expr) { 206 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, 207 R_GOTPLT_PC, R_LOONGARCH_PLT_PAGE_PC, R_PPC32_PLTREL, 208 R_PPC64_CALL_PLT>(expr); 209 } 210 211 bool lld::elf::needsGot(RelExpr expr) { 212 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 213 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 214 R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>( 215 expr); 216 } 217 218 // True if this expression is of the form Sym - X, where X is a position in the 219 // file (PC, or GOT for example). 220 static bool isRelExpr(RelExpr expr) { 221 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_ARM_PCA, R_MIPS_GOTREL, 222 R_PPC64_CALL, R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, 223 R_RELAX_GOT_PC, R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC, 224 R_LOONGARCH_PAGE_PC>(expr); 225 } 226 227 static RelExpr toPlt(RelExpr expr) { 228 switch (expr) { 229 case R_LOONGARCH_PAGE_PC: 230 return R_LOONGARCH_PLT_PAGE_PC; 231 case R_PPC64_CALL: 232 return R_PPC64_CALL_PLT; 233 case R_PC: 234 return R_PLT_PC; 235 case R_ABS: 236 return R_PLT; 237 case R_GOTREL: 238 return R_PLT_GOTREL; 239 default: 240 return expr; 241 } 242 } 243 244 static RelExpr fromPlt(RelExpr expr) { 245 // We decided not to use a plt. Optimize a reference to the plt to a 246 // reference to the symbol itself. 247 switch (expr) { 248 case R_PLT_PC: 249 case R_PPC32_PLTREL: 250 return R_PC; 251 case R_LOONGARCH_PLT_PAGE_PC: 252 return R_LOONGARCH_PAGE_PC; 253 case R_PPC64_CALL_PLT: 254 return R_PPC64_CALL; 255 case R_PLT: 256 return R_ABS; 257 case R_PLT_GOTPLT: 258 return R_GOTPLTREL; 259 case R_PLT_GOTREL: 260 return R_GOTREL; 261 default: 262 return expr; 263 } 264 } 265 266 // Returns true if a given shared symbol is in a read-only segment in a DSO. 267 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 268 using Elf_Phdr = typename ELFT::Phdr; 269 270 // Determine if the symbol is read-only by scanning the DSO's program headers. 271 const auto &file = cast<SharedFile>(*ss.file); 272 for (const Elf_Phdr &phdr : 273 check(file.template getObj<ELFT>().program_headers())) 274 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 275 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 276 ss.value < phdr.p_vaddr + phdr.p_memsz) 277 return true; 278 return false; 279 } 280 281 // Returns symbols at the same offset as a given symbol, including SS itself. 282 // 283 // If two or more symbols are at the same offset, and at least one of 284 // them are copied by a copy relocation, all of them need to be copied. 285 // Otherwise, they would refer to different places at runtime. 286 template <class ELFT> 287 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 288 using Elf_Sym = typename ELFT::Sym; 289 290 const auto &file = cast<SharedFile>(*ss.file); 291 292 SmallSet<SharedSymbol *, 4> ret; 293 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 294 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 295 s.getType() == STT_TLS || s.st_value != ss.value) 296 continue; 297 StringRef name = check(s.getName(file.getStringTable())); 298 Symbol *sym = symtab.find(name); 299 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 300 ret.insert(alias); 301 } 302 303 // The loop does not check SHT_GNU_verneed, so ret does not contain 304 // non-default version symbols. If ss has a non-default version, ret won't 305 // contain ss. Just add ss unconditionally. If a non-default version alias is 306 // separately copy relocated, it and ss will have different addresses. 307 // Fortunately this case is impractical and fails with GNU ld as well. 308 ret.insert(&ss); 309 return ret; 310 } 311 312 // When a symbol is copy relocated or we create a canonical plt entry, it is 313 // effectively a defined symbol. In the case of copy relocation the symbol is 314 // in .bss and in the case of a canonical plt entry it is in .plt. This function 315 // replaces the existing symbol with a Defined pointing to the appropriate 316 // location. 317 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value, 318 uint64_t size) { 319 Symbol old = sym; 320 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value, 321 size, &sec) 322 .overwrite(sym); 323 324 sym.versionId = old.versionId; 325 sym.exportDynamic = true; 326 sym.isUsedInRegularObj = true; 327 // A copy relocated alias may need a GOT entry. 328 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT, 329 std::memory_order_relaxed); 330 } 331 332 // Reserve space in .bss or .bss.rel.ro for copy relocation. 333 // 334 // The copy relocation is pretty much a hack. If you use a copy relocation 335 // in your program, not only the symbol name but the symbol's size, RW/RO 336 // bit and alignment become part of the ABI. In addition to that, if the 337 // symbol has aliases, the aliases become part of the ABI. That's subtle, 338 // but if you violate that implicit ABI, that can cause very counter- 339 // intuitive consequences. 340 // 341 // So, what is the copy relocation? It's for linking non-position 342 // independent code to DSOs. In an ideal world, all references to data 343 // exported by DSOs should go indirectly through GOT. But if object files 344 // are compiled as non-PIC, all data references are direct. There is no 345 // way for the linker to transform the code to use GOT, as machine 346 // instructions are already set in stone in object files. This is where 347 // the copy relocation takes a role. 348 // 349 // A copy relocation instructs the dynamic linker to copy data from a DSO 350 // to a specified address (which is usually in .bss) at load-time. If the 351 // static linker (that's us) finds a direct data reference to a DSO 352 // symbol, it creates a copy relocation, so that the symbol can be 353 // resolved as if it were in .bss rather than in a DSO. 354 // 355 // As you can see in this function, we create a copy relocation for the 356 // dynamic linker, and the relocation contains not only symbol name but 357 // various other information about the symbol. So, such attributes become a 358 // part of the ABI. 359 // 360 // Note for application developers: I can give you a piece of advice if 361 // you are writing a shared library. You probably should export only 362 // functions from your library. You shouldn't export variables. 363 // 364 // As an example what can happen when you export variables without knowing 365 // the semantics of copy relocations, assume that you have an exported 366 // variable of type T. It is an ABI-breaking change to add new members at 367 // end of T even though doing that doesn't change the layout of the 368 // existing members. That's because the space for the new members are not 369 // reserved in .bss unless you recompile the main program. That means they 370 // are likely to overlap with other data that happens to be laid out next 371 // to the variable in .bss. This kind of issue is sometimes very hard to 372 // debug. What's a solution? Instead of exporting a variable V from a DSO, 373 // define an accessor getV(). 374 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 375 // Copy relocation against zero-sized symbol doesn't make sense. 376 uint64_t symSize = ss.getSize(); 377 if (symSize == 0 || ss.alignment == 0) 378 fatal("cannot create a copy relocation for symbol " + toString(ss)); 379 380 // See if this symbol is in a read-only segment. If so, preserve the symbol's 381 // memory protection by reserving space in the .bss.rel.ro section. 382 bool isRO = isReadOnly<ELFT>(ss); 383 BssSection *sec = 384 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 385 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 386 387 // At this point, sectionBases has been migrated to sections. Append sec to 388 // sections. 389 if (osec->commands.empty() || 390 !isa<InputSectionDescription>(osec->commands.back())) 391 osec->commands.push_back(make<InputSectionDescription>("")); 392 auto *isd = cast<InputSectionDescription>(osec->commands.back()); 393 isd->sections.push_back(sec); 394 osec->commitSection(sec); 395 396 // Look through the DSO's dynamic symbol table for aliases and create a 397 // dynamic symbol for each one. This causes the copy relocation to correctly 398 // interpose any aliases. 399 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 400 replaceWithDefined(*sym, *sec, 0, sym->size); 401 402 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss); 403 } 404 405 // .eh_frame sections are mergeable input sections, so their input 406 // offsets are not linearly mapped to output section. For each input 407 // offset, we need to find a section piece containing the offset and 408 // add the piece's base address to the input offset to compute the 409 // output offset. That isn't cheap. 410 // 411 // This class is to speed up the offset computation. When we process 412 // relocations, we access offsets in the monotonically increasing 413 // order. So we can optimize for that access pattern. 414 // 415 // For sections other than .eh_frame, this class doesn't do anything. 416 namespace { 417 class OffsetGetter { 418 public: 419 OffsetGetter() = default; 420 explicit OffsetGetter(InputSectionBase &sec) { 421 if (auto *eh = dyn_cast<EhInputSection>(&sec)) { 422 cies = eh->cies; 423 fdes = eh->fdes; 424 i = cies.begin(); 425 j = fdes.begin(); 426 } 427 } 428 429 // Translates offsets in input sections to offsets in output sections. 430 // Given offset must increase monotonically. We assume that Piece is 431 // sorted by inputOff. 432 uint64_t get(uint64_t off) { 433 if (cies.empty()) 434 return off; 435 436 while (j != fdes.end() && j->inputOff <= off) 437 ++j; 438 auto it = j; 439 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) { 440 while (i != cies.end() && i->inputOff <= off) 441 ++i; 442 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off) 443 fatal(".eh_frame: relocation is not in any piece"); 444 it = i; 445 } 446 447 // Offset -1 means that the piece is dead (i.e. garbage collected). 448 if (it[-1].outputOff == -1) 449 return -1; 450 return it[-1].outputOff + (off - it[-1].inputOff); 451 } 452 453 private: 454 ArrayRef<EhSectionPiece> cies, fdes; 455 ArrayRef<EhSectionPiece>::iterator i, j; 456 }; 457 458 // This class encapsulates states needed to scan relocations for one 459 // InputSectionBase. 460 class RelocationScanner { 461 public: 462 template <class ELFT> 463 void scanSection(InputSectionBase &s, bool isEH = false); 464 465 private: 466 InputSectionBase *sec; 467 OffsetGetter getter; 468 469 // End of relocations, used by Mips/PPC64. 470 const void *end = nullptr; 471 472 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const; 473 template <class ELFT, class RelTy> 474 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; 475 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 476 uint64_t relOff) const; 477 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, 478 int64_t addend) const; 479 template <class ELFT, class RelTy> 480 void scanOne(typename Relocs<RelTy>::const_iterator &i); 481 template <class ELFT, class RelTy> void scan(Relocs<RelTy> rels); 482 }; 483 } // namespace 484 485 // MIPS has an odd notion of "paired" relocations to calculate addends. 486 // For example, if a relocation is of R_MIPS_HI16, there must be a 487 // R_MIPS_LO16 relocation after that, and an addend is calculated using 488 // the two relocations. 489 template <class ELFT, class RelTy> 490 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr, 491 bool isLocal) const { 492 if (expr == R_MIPS_GOTREL && isLocal) 493 return sec->getFile<ELFT>()->mipsGp0; 494 495 // The ABI says that the paired relocation is used only for REL. 496 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 497 // This generalises to relocation types with implicit addends. 498 if (RelTy::HasAddend) 499 return 0; 500 501 RelType type = rel.getType(config->isMips64EL); 502 uint32_t pairTy = getMipsPairType(type, isLocal); 503 if (pairTy == R_MIPS_NONE) 504 return 0; 505 506 const uint8_t *buf = sec->content().data(); 507 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 508 509 // To make things worse, paired relocations might not be contiguous in 510 // the relocation table, so we need to do linear search. *sigh* 511 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri) 512 if (ri->getType(config->isMips64EL) == pairTy && 513 ri->getSymbol(config->isMips64EL) == symIndex) 514 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 515 516 warn("can't find matching " + toString(pairTy) + " relocation for " + 517 toString(type)); 518 return 0; 519 } 520 521 // Custom error message if Sym is defined in a discarded section. 522 template <class ELFT> 523 static std::string maybeReportDiscarded(Undefined &sym) { 524 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 525 if (!file || !sym.discardedSecIdx) 526 return ""; 527 ArrayRef<typename ELFT::Shdr> objSections = 528 file->template getELFShdrs<ELFT>(); 529 530 std::string msg; 531 if (sym.type == ELF::STT_SECTION) { 532 msg = "relocation refers to a discarded section: "; 533 msg += CHECK( 534 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 535 } else { 536 msg = "relocation refers to a symbol in a discarded section: " + 537 toString(sym); 538 } 539 msg += "\n>>> defined in " + toString(file); 540 541 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 542 if (elfSec.sh_type != SHT_GROUP) 543 return msg; 544 545 // If the discarded section is a COMDAT. 546 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 547 if (const InputFile *prevailing = 548 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) { 549 msg += "\n>>> section group signature: " + signature.str() + 550 "\n>>> prevailing definition is in " + toString(prevailing); 551 if (sym.nonPrevailing) { 552 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK " 553 "binding and the symbol in a non-prevailing group had STB_GLOBAL " 554 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding " 555 "signature is not supported"; 556 } 557 } 558 return msg; 559 } 560 561 namespace { 562 // Undefined diagnostics are collected in a vector and emitted once all of 563 // them are known, so that some postprocessing on the list of undefined symbols 564 // can happen before lld emits diagnostics. 565 struct UndefinedDiag { 566 Undefined *sym; 567 struct Loc { 568 InputSectionBase *sec; 569 uint64_t offset; 570 }; 571 std::vector<Loc> locs; 572 bool isWarning; 573 }; 574 575 std::vector<UndefinedDiag> undefs; 576 std::mutex relocMutex; 577 } 578 579 // Check whether the definition name def is a mangled function name that matches 580 // the reference name ref. 581 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 582 llvm::ItaniumPartialDemangler d; 583 std::string name = def.str(); 584 if (d.partialDemangle(name.c_str())) 585 return false; 586 char *buf = d.getFunctionName(nullptr, nullptr); 587 if (!buf) 588 return false; 589 bool ret = ref == buf; 590 free(buf); 591 return ret; 592 } 593 594 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 595 // the suggested symbol, which is either in the symbol table, or in the same 596 // file of sym. 597 static const Symbol *getAlternativeSpelling(const Undefined &sym, 598 std::string &pre_hint, 599 std::string &post_hint) { 600 DenseMap<StringRef, const Symbol *> map; 601 if (sym.file && sym.file->kind() == InputFile::ObjKind) { 602 auto *file = cast<ELFFileBase>(sym.file); 603 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 604 // will give an error. Don't suggest an alternative spelling. 605 if (file && sym.discardedSecIdx != 0 && 606 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 607 return nullptr; 608 609 // Build a map of local defined symbols. 610 for (const Symbol *s : sym.file->getSymbols()) 611 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 612 map.try_emplace(s->getName(), s); 613 } 614 615 auto suggest = [&](StringRef newName) -> const Symbol * { 616 // If defined locally. 617 if (const Symbol *s = map.lookup(newName)) 618 return s; 619 620 // If in the symbol table and not undefined. 621 if (const Symbol *s = symtab.find(newName)) 622 if (!s->isUndefined()) 623 return s; 624 625 return nullptr; 626 }; 627 628 // This loop enumerates all strings of Levenshtein distance 1 as typo 629 // correction candidates and suggests the one that exists as a non-undefined 630 // symbol. 631 StringRef name = sym.getName(); 632 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 633 // Insert a character before name[i]. 634 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 635 for (char c = '0'; c <= 'z'; ++c) { 636 newName[i] = c; 637 if (const Symbol *s = suggest(newName)) 638 return s; 639 } 640 if (i == e) 641 break; 642 643 // Substitute name[i]. 644 newName = std::string(name); 645 for (char c = '0'; c <= 'z'; ++c) { 646 newName[i] = c; 647 if (const Symbol *s = suggest(newName)) 648 return s; 649 } 650 651 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 652 // common. 653 if (i + 1 < e) { 654 newName[i] = name[i + 1]; 655 newName[i + 1] = name[i]; 656 if (const Symbol *s = suggest(newName)) 657 return s; 658 } 659 660 // Delete name[i]. 661 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 662 if (const Symbol *s = suggest(newName)) 663 return s; 664 } 665 666 // Case mismatch, e.g. Foo vs FOO. 667 for (auto &it : map) 668 if (name.equals_insensitive(it.first)) 669 return it.second; 670 for (Symbol *sym : symtab.getSymbols()) 671 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 672 return sym; 673 674 // The reference may be a mangled name while the definition is not. Suggest a 675 // missing extern "C". 676 if (name.starts_with("_Z")) { 677 std::string buf = name.str(); 678 llvm::ItaniumPartialDemangler d; 679 if (!d.partialDemangle(buf.c_str())) 680 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 681 const Symbol *s = suggest(buf); 682 free(buf); 683 if (s) { 684 pre_hint = ": extern \"C\" "; 685 return s; 686 } 687 } 688 } else { 689 const Symbol *s = nullptr; 690 for (auto &it : map) 691 if (canSuggestExternCForCXX(name, it.first)) { 692 s = it.second; 693 break; 694 } 695 if (!s) 696 for (Symbol *sym : symtab.getSymbols()) 697 if (canSuggestExternCForCXX(name, sym->getName())) { 698 s = sym; 699 break; 700 } 701 if (s) { 702 pre_hint = " to declare "; 703 post_hint = " as extern \"C\"?"; 704 return s; 705 } 706 } 707 708 return nullptr; 709 } 710 711 static void reportUndefinedSymbol(const UndefinedDiag &undef, 712 bool correctSpelling) { 713 Undefined &sym = *undef.sym; 714 715 auto visibility = [&]() -> std::string { 716 switch (sym.visibility()) { 717 case STV_INTERNAL: 718 return "internal "; 719 case STV_HIDDEN: 720 return "hidden "; 721 case STV_PROTECTED: 722 return "protected "; 723 default: 724 return ""; 725 } 726 }; 727 728 std::string msg; 729 switch (config->ekind) { 730 case ELF32LEKind: 731 msg = maybeReportDiscarded<ELF32LE>(sym); 732 break; 733 case ELF32BEKind: 734 msg = maybeReportDiscarded<ELF32BE>(sym); 735 break; 736 case ELF64LEKind: 737 msg = maybeReportDiscarded<ELF64LE>(sym); 738 break; 739 case ELF64BEKind: 740 msg = maybeReportDiscarded<ELF64BE>(sym); 741 break; 742 default: 743 llvm_unreachable(""); 744 } 745 if (msg.empty()) 746 msg = "undefined " + visibility() + "symbol: " + toString(sym); 747 748 const size_t maxUndefReferences = 3; 749 size_t i = 0; 750 for (UndefinedDiag::Loc l : undef.locs) { 751 if (i >= maxUndefReferences) 752 break; 753 InputSectionBase &sec = *l.sec; 754 uint64_t offset = l.offset; 755 756 msg += "\n>>> referenced by "; 757 // In the absence of line number information, utilize DW_TAG_variable (if 758 // present) for the enclosing symbol (e.g. var in `int *a[] = {&undef};`). 759 Symbol *enclosing = sec.getEnclosingSymbol(offset); 760 std::string src = sec.getSrcMsg(enclosing ? *enclosing : sym, offset); 761 if (!src.empty()) 762 msg += src + "\n>>> "; 763 msg += sec.getObjMsg(offset); 764 i++; 765 } 766 767 if (i < undef.locs.size()) 768 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 769 .str(); 770 771 if (correctSpelling) { 772 std::string pre_hint = ": ", post_hint; 773 if (const Symbol *corrected = 774 getAlternativeSpelling(sym, pre_hint, post_hint)) { 775 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 776 if (corrected->file) 777 msg += "\n>>> defined in: " + toString(corrected->file); 778 } 779 } 780 781 if (sym.getName().starts_with("_ZTV")) 782 msg += 783 "\n>>> the vtable symbol may be undefined because the class is missing " 784 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 785 if (config->gcSections && config->zStartStopGC && 786 sym.getName().starts_with("__start_")) { 787 msg += "\n>>> the encapsulation symbol needs to be retained under " 788 "--gc-sections properly; consider -z nostart-stop-gc " 789 "(see https://lld.llvm.org/ELF/start-stop-gc)"; 790 } 791 792 if (undef.isWarning) 793 warn(msg); 794 else 795 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 796 } 797 798 void elf::reportUndefinedSymbols() { 799 // Find the first "undefined symbol" diagnostic for each diagnostic, and 800 // collect all "referenced from" lines at the first diagnostic. 801 DenseMap<Symbol *, UndefinedDiag *> firstRef; 802 for (UndefinedDiag &undef : undefs) { 803 assert(undef.locs.size() == 1); 804 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 805 canon->locs.push_back(undef.locs[0]); 806 undef.locs.clear(); 807 } else 808 firstRef[undef.sym] = &undef; 809 } 810 811 // Enable spell corrector for the first 2 diagnostics. 812 for (const auto &[i, undef] : llvm::enumerate(undefs)) 813 if (!undef.locs.empty()) 814 reportUndefinedSymbol(undef, i < 2); 815 undefs.clear(); 816 } 817 818 // Report an undefined symbol if necessary. 819 // Returns true if the undefined symbol will produce an error message. 820 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec, 821 uint64_t offset) { 822 std::lock_guard<std::mutex> lock(relocMutex); 823 // If versioned, issue an error (even if the symbol is weak) because we don't 824 // know the defining filename which is required to construct a Verneed entry. 825 if (sym.hasVersionSuffix) { 826 undefs.push_back({&sym, {{&sec, offset}}, false}); 827 return true; 828 } 829 if (sym.isWeak()) 830 return false; 831 832 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT; 833 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 834 return false; 835 836 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 837 // which references a switch table in a discarded .rodata/.text section. The 838 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 839 // spec says references from outside the group to a STB_LOCAL symbol are not 840 // allowed. Work around the bug. 841 // 842 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 843 // because .LC0-.LTOC is not representable if the two labels are in different 844 // .got2 845 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc")) 846 return false; 847 848 bool isWarning = 849 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 850 config->noinhibitExec; 851 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 852 return !isWarning; 853 } 854 855 // MIPS N32 ABI treats series of successive relocations with the same offset 856 // as a single relocation. The similar approach used by N64 ABI, but this ABI 857 // packs all relocations into the single relocation record. Here we emulate 858 // this for the N32 ABI. Iterate over relocation with the same offset and put 859 // theirs types into the single bit-set. 860 template <class RelTy> 861 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const { 862 RelType type = 0; 863 uint64_t offset = rel->r_offset; 864 865 int n = 0; 866 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset) 867 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 868 return type; 869 } 870 871 template <bool shard = false> 872 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec, 873 Symbol &sym, int64_t addend, RelExpr expr, 874 RelType type) { 875 Partition &part = isec.getPartition(); 876 877 if (sym.isTagged()) { 878 std::lock_guard<std::mutex> lock(relocMutex); 879 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym, 880 addend, type, expr); 881 // With MTE globals, we always want to derive the address tag by `ldg`-ing 882 // the symbol. When we have a RELATIVE relocation though, we no longer have 883 // a reference to the symbol. Because of this, when we have an addend that 884 // puts the result of the RELATIVE relocation out-of-bounds of the symbol 885 // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI 886 // says we should store the offset to the start of the symbol in the target 887 // field. This is described in further detail in: 888 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative 889 if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize()) 890 isec.relocations.push_back({expr, type, offsetInSec, addend, &sym}); 891 return; 892 } 893 894 // Add a relative relocation. If relrDyn section is enabled, and the 895 // relocation offset is guaranteed to be even, add the relocation to 896 // the relrDyn section, otherwise add it to the relaDyn section. 897 // relrDyn sections don't support odd offsets. Also, relrDyn sections 898 // don't store the addend values, so we must write it to the relocated 899 // address. 900 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) { 901 isec.addReloc({expr, type, offsetInSec, addend, &sym}); 902 if (shard) 903 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back( 904 {&isec, isec.relocs().size() - 1}); 905 else 906 part.relrDyn->relocs.push_back({&isec, isec.relocs().size() - 1}); 907 return; 908 } 909 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec, 910 sym, addend, type, expr); 911 } 912 913 template <class PltSection, class GotPltSection> 914 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt, 915 RelocationBaseSection &rel, RelType type, Symbol &sym) { 916 plt.addEntry(sym); 917 gotPlt.addEntry(sym); 918 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(), 919 sym.isPreemptible ? DynamicReloc::AgainstSymbol 920 : DynamicReloc::AddendOnlyWithTargetVA, 921 sym, 0, R_ABS}); 922 } 923 924 void elf::addGotEntry(Symbol &sym) { 925 in.got->addEntry(sym); 926 uint64_t off = sym.getGotOffset(); 927 928 // If preemptible, emit a GLOB_DAT relocation. 929 if (sym.isPreemptible) { 930 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off, 931 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 932 return; 933 } 934 935 // Otherwise, the value is either a link-time constant or the load base 936 // plus a constant. 937 if (!config->isPic || isAbsolute(sym)) 938 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym}); 939 else 940 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel); 941 } 942 943 static void addTpOffsetGotEntry(Symbol &sym) { 944 in.got->addEntry(sym); 945 uint64_t off = sym.getGotOffset(); 946 if (!sym.isPreemptible && !config->shared) { 947 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym}); 948 return; 949 } 950 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 951 target->tlsGotRel, *in.got, off, sym, target->symbolicRel); 952 } 953 954 // Return true if we can define a symbol in the executable that 955 // contains the value/function of a symbol defined in a shared 956 // library. 957 static bool canDefineSymbolInExecutable(Symbol &sym) { 958 // If the symbol has default visibility the symbol defined in the 959 // executable will preempt it. 960 // Note that we want the visibility of the shared symbol itself, not 961 // the visibility of the symbol in the output file we are producing. 962 if (!sym.dsoProtected) 963 return true; 964 965 // If we are allowed to break address equality of functions, defining 966 // a plt entry will allow the program to call the function in the 967 // .so, but the .so and the executable will no agree on the address 968 // of the function. Similar logic for objects. 969 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 970 (sym.isObject() && config->ignoreDataAddressEquality)); 971 } 972 973 // Returns true if a given relocation can be computed at link-time. 974 // This only handles relocation types expected in processAux. 975 // 976 // For instance, we know the offset from a relocation to its target at 977 // link-time if the relocation is PC-relative and refers a 978 // non-interposable function in the same executable. This function 979 // will return true for such relocation. 980 // 981 // If this function returns false, that means we need to emit a 982 // dynamic relocation so that the relocation will be fixed at load-time. 983 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type, 984 const Symbol &sym, 985 uint64_t relOff) const { 986 // These expressions always compute a constant 987 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE, 988 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, 989 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 990 R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, R_GOTPLT_PC, 991 R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, 992 R_AARCH64_GOT_PAGE, R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT, 993 R_LOONGARCH_GOT_PAGE_PC>(e)) 994 return true; 995 996 // These never do, except if the entire file is position dependent or if 997 // only the low bits are used. 998 if (e == R_GOT || e == R_PLT) 999 return target->usesOnlyLowPageBits(type) || !config->isPic; 1000 1001 // R_AARCH64_AUTH_ABS64 requires a dynamic relocation. 1002 if (sym.isPreemptible || e == R_AARCH64_AUTH) 1003 return false; 1004 if (!config->isPic) 1005 return true; 1006 1007 // Constant when referencing a non-preemptible symbol. 1008 if (e == R_SIZE || e == R_RISCV_LEB128) 1009 return true; 1010 1011 // For the target and the relocation, we want to know if they are 1012 // absolute or relative. 1013 bool absVal = isAbsoluteValue(sym); 1014 bool relE = isRelExpr(e); 1015 if (absVal && !relE) 1016 return true; 1017 if (!absVal && relE) 1018 return true; 1019 if (!absVal && !relE) 1020 return target->usesOnlyLowPageBits(type); 1021 1022 assert(absVal && relE); 1023 1024 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 1025 // in PIC mode. This is a little strange, but it allows us to link function 1026 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 1027 // Normally such a call will be guarded with a comparison, which will load a 1028 // zero from the GOT. 1029 if (sym.isUndefWeak()) 1030 return true; 1031 1032 // We set the final symbols values for linker script defined symbols later. 1033 // They always can be computed as a link time constant. 1034 if (sym.scriptDefined) 1035 return true; 1036 1037 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 1038 toString(sym) + getLocation(*sec, sym, relOff)); 1039 return true; 1040 } 1041 1042 // The reason we have to do this early scan is as follows 1043 // * To mmap the output file, we need to know the size 1044 // * For that, we need to know how many dynamic relocs we will have. 1045 // It might be possible to avoid this by outputting the file with write: 1046 // * Write the allocated output sections, computing addresses. 1047 // * Apply relocations, recording which ones require a dynamic reloc. 1048 // * Write the dynamic relocations. 1049 // * Write the rest of the file. 1050 // This would have some drawbacks. For example, we would only know if .rela.dyn 1051 // is needed after applying relocations. If it is, it will go after rw and rx 1052 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1053 // complicates things for the dynamic linker and means we would have to reserve 1054 // space for the extra PT_LOAD even if we end up not using it. 1055 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset, 1056 Symbol &sym, int64_t addend) const { 1057 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT 1058 // indirection. 1059 const bool isIfunc = sym.isGnuIFunc(); 1060 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) { 1061 if (expr != R_GOT_PC) { 1062 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1063 // stub type. It should be ignored if optimized to R_PC. 1064 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1065 addend &= ~0x8000; 1066 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1067 // call __tls_get_addr even if the symbol is non-preemptible. 1068 if (!(config->emachine == EM_HEXAGON && 1069 (type == R_HEX_GD_PLT_B22_PCREL || 1070 type == R_HEX_GD_PLT_B22_PCREL_X || 1071 type == R_HEX_GD_PLT_B32_PCREL_X))) 1072 expr = fromPlt(expr); 1073 } else if (!isAbsoluteValue(sym)) { 1074 expr = 1075 target->adjustGotPcExpr(type, addend, sec->content().data() + offset); 1076 // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up 1077 // needing the GOT if we can't relax everything. 1078 if (expr == R_RELAX_GOT_PC) 1079 in.got->hasGotOffRel.store(true, std::memory_order_relaxed); 1080 } 1081 } 1082 1083 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1084 // direct relocation on through. 1085 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) { 1086 std::lock_guard<std::mutex> lock(relocMutex); 1087 sym.exportDynamic = true; 1088 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type); 1089 return; 1090 } 1091 1092 if (needsGot(expr)) { 1093 if (config->emachine == EM_MIPS) { 1094 // MIPS ABI has special rules to process GOT entries and doesn't 1095 // require relocation entries for them. A special case is TLS 1096 // relocations. In that case dynamic loader applies dynamic 1097 // relocations to initialize TLS GOT entries. 1098 // See "Global Offset Table" in Chapter 5 in the following document 1099 // for detailed description: 1100 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1101 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1102 } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) { 1103 // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which 1104 // case the NEEDS_GOT flag shouldn't get set. 1105 sym.setFlags(NEEDS_GOT); 1106 } 1107 } else if (needsPlt(expr)) { 1108 sym.setFlags(NEEDS_PLT); 1109 } else if (LLVM_UNLIKELY(isIfunc)) { 1110 sym.setFlags(HAS_DIRECT_RELOC); 1111 } 1112 1113 // If the relocation is known to be a link-time constant, we know no dynamic 1114 // relocation will be created, pass the control to relocateAlloc() or 1115 // relocateNonAlloc() to resolve it. 1116 // 1117 // The behavior of an undefined weak reference is implementation defined. For 1118 // non-link-time constants, we resolve relocations statically (let 1119 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 1120 // relocations for -pie and -shared. 1121 // 1122 // The general expectation of -no-pie static linking is that there is no 1123 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 1124 // -shared matches the spirit of its -z undefs default. -pie has freedom on 1125 // choices, and we choose dynamic relocations to be consistent with the 1126 // handling of GOT-generating relocations. 1127 if (isStaticLinkTimeConstant(expr, type, sym, offset) || 1128 (!config->isPic && sym.isUndefWeak())) { 1129 sec->addReloc({expr, type, offset, addend, &sym}); 1130 return; 1131 } 1132 1133 // Use a simple -z notext rule that treats all sections except .eh_frame as 1134 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our 1135 // SectionBase::getOffset would incorrectly adjust the offset). 1136 // 1137 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel 1138 // conversion. We still emit a dynamic relocation. 1139 bool canWrite = (sec->flags & SHF_WRITE) || 1140 !(config->zText || 1141 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS)); 1142 if (canWrite) { 1143 RelType rel = target->getDynRel(type); 1144 if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) || 1145 (rel == target->symbolicRel && !sym.isPreemptible)) { 1146 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type); 1147 return; 1148 } 1149 if (rel != 0) { 1150 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1151 rel = target->relativeRel; 1152 std::lock_guard<std::mutex> lock(relocMutex); 1153 Partition &part = sec->getPartition(); 1154 if (config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64) { 1155 // For a preemptible symbol, we can't use a relative relocation. For an 1156 // undefined symbol, we can't compute offset at link-time and use a 1157 // relative relocation. Use a symbolic relocation instead. 1158 if (sym.isPreemptible) { 1159 part.relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type); 1160 } else if (part.relrAuthDyn && sec->addralign >= 2 && offset % 2 == 0) { 1161 // When symbol values are determined in 1162 // finalizeAddressDependentContent, some .relr.auth.dyn relocations 1163 // may be moved to .rela.dyn. 1164 sec->addReloc({expr, type, offset, addend, &sym}); 1165 part.relrAuthDyn->relocs.push_back({sec, sec->relocs().size() - 1}); 1166 } else { 1167 part.relaDyn->addReloc({R_AARCH64_AUTH_RELATIVE, sec, offset, 1168 DynamicReloc::AddendOnlyWithTargetVA, sym, 1169 addend, R_ABS}); 1170 } 1171 return; 1172 } 1173 part.relaDyn->addSymbolReloc(rel, *sec, offset, sym, addend, type); 1174 1175 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1176 // While regular ABI uses dynamic relocations to fill up GOT entries 1177 // MIPS ABI requires dynamic linker to fills up GOT entries using 1178 // specially sorted dynamic symbol table. This affects even dynamic 1179 // relocations against symbols which do not require GOT entries 1180 // creation explicitly, i.e. do not have any GOT-relocations. So if 1181 // a preemptible symbol has a dynamic relocation we anyway have 1182 // to create a GOT entry for it. 1183 // If a non-preemptible symbol has a dynamic relocation against it, 1184 // dynamic linker takes it st_value, adds offset and writes down 1185 // result of the dynamic relocation. In case of preemptible symbol 1186 // dynamic linker performs symbol resolution, writes the symbol value 1187 // to the GOT entry and reads the GOT entry when it needs to perform 1188 // a dynamic relocation. 1189 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1190 if (config->emachine == EM_MIPS) 1191 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1192 return; 1193 } 1194 } 1195 1196 // When producing an executable, we can perform copy relocations (for 1197 // STT_OBJECT) and canonical PLT (for STT_FUNC) if sym is defined by a DSO. 1198 // Copy relocations/canonical PLT entries are unsupported for 1199 // R_AARCH64_AUTH_ABS64. 1200 if (!config->shared && sym.isShared() && 1201 !(config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64)) { 1202 if (!canDefineSymbolInExecutable(sym)) { 1203 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1204 getLocation(*sec, sym, offset)); 1205 return; 1206 } 1207 1208 if (sym.isObject()) { 1209 // Produce a copy relocation. 1210 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1211 if (!config->zCopyreloc) 1212 error("unresolvable relocation " + toString(type) + 1213 " against symbol '" + toString(*ss) + 1214 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1215 getLocation(*sec, sym, offset)); 1216 sym.setFlags(NEEDS_COPY); 1217 } 1218 sec->addReloc({expr, type, offset, addend, &sym}); 1219 return; 1220 } 1221 1222 // This handles a non PIC program call to function in a shared library. In 1223 // an ideal world, we could just report an error saying the relocation can 1224 // overflow at runtime. In the real world with glibc, crt1.o has a 1225 // R_X86_64_PC32 pointing to libc.so. 1226 // 1227 // The general idea on how to handle such cases is to create a PLT entry and 1228 // use that as the function value. 1229 // 1230 // For the static linking part, we just return a plt expr and everything 1231 // else will use the PLT entry as the address. 1232 // 1233 // The remaining problem is making sure pointer equality still works. We 1234 // need the help of the dynamic linker for that. We let it know that we have 1235 // a direct reference to a so symbol by creating an undefined symbol with a 1236 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1237 // the value of the symbol we created. This is true even for got entries, so 1238 // pointer equality is maintained. To avoid an infinite loop, the only entry 1239 // that points to the real function is a dedicated got entry used by the 1240 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1241 // R_386_JMP_SLOT, etc). 1242 1243 // For position independent executable on i386, the plt entry requires ebx 1244 // to be set. This causes two problems: 1245 // * If some code has a direct reference to a function, it was probably 1246 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1247 // * If a library definition gets preempted to the executable, it will have 1248 // the wrong ebx value. 1249 if (sym.isFunc()) { 1250 if (config->pie && config->emachine == EM_386) 1251 errorOrWarn("symbol '" + toString(sym) + 1252 "' cannot be preempted; recompile with -fPIE" + 1253 getLocation(*sec, sym, offset)); 1254 sym.setFlags(NEEDS_COPY | NEEDS_PLT); 1255 sec->addReloc({expr, type, offset, addend, &sym}); 1256 return; 1257 } 1258 } 1259 1260 errorOrWarn("relocation " + toString(type) + " cannot be used against " + 1261 (sym.getName().empty() ? "local symbol" 1262 : "symbol '" + toString(sym) + "'") + 1263 "; recompile with -fPIC" + getLocation(*sec, sym, offset)); 1264 } 1265 1266 // This function is similar to the `handleTlsRelocation`. MIPS does not 1267 // support any relaxations for TLS relocations so by factoring out MIPS 1268 // handling in to the separate function we can simplify the code and do not 1269 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1270 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1271 // without dynamic relocations. 1272 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1273 InputSectionBase &c, uint64_t offset, 1274 int64_t addend, RelExpr expr) { 1275 if (expr == R_MIPS_TLSLD) { 1276 in.mipsGot->addTlsIndex(*c.file); 1277 c.addReloc({expr, type, offset, addend, &sym}); 1278 return 1; 1279 } 1280 if (expr == R_MIPS_TLSGD) { 1281 in.mipsGot->addDynTlsEntry(*c.file, sym); 1282 c.addReloc({expr, type, offset, addend, &sym}); 1283 return 1; 1284 } 1285 return 0; 1286 } 1287 1288 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1289 // require the generation of a pair of GOT entries that have associated dynamic 1290 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1291 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1292 // symbol in TLS block. 1293 // 1294 // Returns the number of relocations processed. 1295 static unsigned handleTlsRelocation(RelType type, Symbol &sym, 1296 InputSectionBase &c, uint64_t offset, 1297 int64_t addend, RelExpr expr) { 1298 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1299 if (config->shared) { 1300 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1301 " cannot be used with -shared" + getLocation(c, sym, offset)); 1302 return 1; 1303 } 1304 return 0; 1305 } 1306 1307 if (config->emachine == EM_MIPS) 1308 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1309 1310 // LoongArch does not yet implement transition from TLSDESC to LE/IE, so 1311 // generate TLSDESC dynamic relocation for the dynamic linker to handle. 1312 if (config->emachine == EM_LOONGARCH && 1313 oneof<R_LOONGARCH_TLSDESC_PAGE_PC, R_TLSDESC, R_TLSDESC_PC, 1314 R_TLSDESC_CALL>(expr)) { 1315 if (expr != R_TLSDESC_CALL) { 1316 sym.setFlags(NEEDS_TLSDESC); 1317 c.addReloc({expr, type, offset, addend, &sym}); 1318 } 1319 return 1; 1320 } 1321 1322 bool isRISCV = config->emachine == EM_RISCV; 1323 1324 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1325 R_TLSDESC_GOTPLT>(expr) && 1326 config->shared) { 1327 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a label. Do not 1328 // set NEEDS_TLSDESC on the label. 1329 if (expr != R_TLSDESC_CALL) { 1330 if (!isRISCV || type == R_RISCV_TLSDESC_HI20) 1331 sym.setFlags(NEEDS_TLSDESC); 1332 c.addReloc({expr, type, offset, addend, &sym}); 1333 } 1334 return 1; 1335 } 1336 1337 // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE 1338 // optimizations. 1339 // RISC-V supports TLSDESC to IE/LE optimizations. 1340 // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1341 // optimization as well. 1342 bool execOptimize = 1343 !config->shared && config->emachine != EM_ARM && 1344 config->emachine != EM_HEXAGON && config->emachine != EM_LOONGARCH && 1345 !(isRISCV && expr != R_TLSDESC_PC && expr != R_TLSDESC_CALL) && 1346 !c.file->ppc64DisableTLSRelax; 1347 1348 // If we are producing an executable and the symbol is non-preemptable, it 1349 // must be defined and the code sequence can be optimized to use Local-Exec. 1350 // 1351 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1352 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1353 // because them are always 1. This may be necessary for static linking as 1354 // DTPMOD may not be expected at load time. 1355 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1356 1357 // Local Dynamic is for access to module local TLS variables, while still 1358 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1359 // module index, with a special value of 0 for the current module. GOT[e1] is 1360 // unused. There only needs to be one module index entry. 1361 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) { 1362 // Local-Dynamic relocs can be optimized to Local-Exec. 1363 if (execOptimize) { 1364 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, 1365 offset, addend, &sym}); 1366 return target->getTlsGdRelaxSkip(type); 1367 } 1368 if (expr == R_TLSLD_HINT) 1369 return 1; 1370 ctx.needsTlsLd.store(true, std::memory_order_relaxed); 1371 c.addReloc({expr, type, offset, addend, &sym}); 1372 return 1; 1373 } 1374 1375 // Local-Dynamic relocs can be optimized to Local-Exec. 1376 if (expr == R_DTPREL) { 1377 if (execOptimize) 1378 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); 1379 c.addReloc({expr, type, offset, addend, &sym}); 1380 return 1; 1381 } 1382 1383 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1384 // thread pointer is stored in the got. This cannot be optimized to 1385 // Local-Exec. 1386 if (expr == R_TLSLD_GOT_OFF) { 1387 sym.setFlags(NEEDS_GOT_DTPREL); 1388 c.addReloc({expr, type, offset, addend, &sym}); 1389 return 1; 1390 } 1391 1392 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1393 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, 1394 R_LOONGARCH_TLSGD_PAGE_PC>(expr)) { 1395 if (!execOptimize) { 1396 sym.setFlags(NEEDS_TLSGD); 1397 c.addReloc({expr, type, offset, addend, &sym}); 1398 return 1; 1399 } 1400 1401 // Global-Dynamic/TLSDESC can be optimized to Initial-Exec or Local-Exec 1402 // depending on the symbol being locally defined or not. 1403 // 1404 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a non-preemptible 1405 // label, so TLSDESC=>IE will be categorized as R_RELAX_TLS_GD_TO_LE. We fix 1406 // the categorization in RISCV::relocateAlloc. 1407 if (sym.isPreemptible) { 1408 sym.setFlags(NEEDS_TLSGD_TO_IE); 1409 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, 1410 offset, addend, &sym}); 1411 } else { 1412 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, 1413 offset, addend, &sym}); 1414 } 1415 return target->getTlsGdRelaxSkip(type); 1416 } 1417 1418 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, 1419 R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) { 1420 ctx.hasTlsIe.store(true, std::memory_order_relaxed); 1421 // Initial-Exec relocs can be optimized to Local-Exec if the symbol is 1422 // locally defined. This is not supported on SystemZ. 1423 if (execOptimize && isLocalInExecutable && config->emachine != EM_S390) { 1424 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1425 } else if (expr != R_TLSIE_HINT) { 1426 sym.setFlags(NEEDS_TLSIE); 1427 // R_GOT needs a relative relocation for PIC on i386 and Hexagon. 1428 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) 1429 addRelativeReloc<true>(c, offset, sym, addend, expr, type); 1430 else 1431 c.addReloc({expr, type, offset, addend, &sym}); 1432 } 1433 return 1; 1434 } 1435 1436 return 0; 1437 } 1438 1439 template <class ELFT, class RelTy> 1440 void RelocationScanner::scanOne(typename Relocs<RelTy>::const_iterator &i) { 1441 const RelTy &rel = *i; 1442 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1443 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex); 1444 RelType type; 1445 if constexpr (ELFT::Is64Bits || RelTy::IsCrel) { 1446 type = rel.getType(config->isMips64EL); 1447 ++i; 1448 } else { 1449 // CREL is unsupported for MIPS N32. 1450 if (config->mipsN32Abi) { 1451 type = getMipsN32RelType(i); 1452 } else { 1453 type = rel.getType(config->isMips64EL); 1454 ++i; 1455 } 1456 } 1457 // Get an offset in an output section this relocation is applied to. 1458 uint64_t offset = getter.get(rel.r_offset); 1459 if (offset == uint64_t(-1)) 1460 return; 1461 1462 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset); 1463 int64_t addend = RelTy::HasAddend 1464 ? getAddend<ELFT>(rel) 1465 : target->getImplicitAddend( 1466 sec->content().data() + rel.r_offset, type); 1467 if (LLVM_UNLIKELY(config->emachine == EM_MIPS)) 1468 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal()); 1469 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 1470 addend += getPPC64TocBase(); 1471 1472 // Ignore R_*_NONE and other marker relocations. 1473 if (expr == R_NONE) 1474 return; 1475 1476 // Error if the target symbol is undefined. Symbol index 0 may be used by 1477 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1478 if (sym.isUndefined() && symIndex != 0 && 1479 maybeReportUndefined(cast<Undefined>(sym), *sec, offset)) 1480 return; 1481 1482 if (config->emachine == EM_PPC64) { 1483 // We can separate the small code model relocations into 2 categories: 1484 // 1) Those that access the compiler generated .toc sections. 1485 // 2) Those that access the linker allocated got entries. 1486 // lld allocates got entries to symbols on demand. Since we don't try to 1487 // sort the got entries in any way, we don't have to track which objects 1488 // have got-based small code model relocs. The .toc sections get placed 1489 // after the end of the linker allocated .got section and we do sort those 1490 // so sections addressed with small code model relocations come first. 1491 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) 1492 sec->file->ppc64SmallCodeModelTocRelocs = true; 1493 1494 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1495 // InputSectionBase::relocateAlloc(). 1496 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1497 cast<Defined>(sym).section->name == ".toc") 1498 ppc64noTocRelax.insert({&sym, addend}); 1499 1500 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1501 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1502 // Skip the error check for CREL, which does not set `end`. 1503 if constexpr (!RelTy::IsCrel) { 1504 if (i == end) { 1505 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1506 "relocation" + 1507 getLocation(*sec, sym, offset)); 1508 return; 1509 } 1510 } 1511 1512 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC 1513 // case, so we can discern it later from the toc-case. 1514 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1515 ++offset; 1516 } 1517 } 1518 1519 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1520 // uses their addresses, we need GOT or GOTPLT to be created. 1521 // 1522 // The 5 types that relative GOTPLT are all x86 and x86-64 specific. 1523 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, 1524 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1525 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed); 1526 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE, 1527 R_PPC64_RELAX_TOC>(expr)) { 1528 in.got->hasGotOffRel.store(true, std::memory_order_relaxed); 1529 } 1530 1531 // Process TLS relocations, including TLS optimizations. Note that 1532 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux. 1533 // 1534 // Some RISCV TLSDESC relocations reference a local NOTYPE symbol, 1535 // but we need to process them in handleTlsRelocation. 1536 if (sym.isTls() || oneof<R_TLSDESC_PC, R_TLSDESC_CALL>(expr)) { 1537 if (unsigned processed = 1538 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) { 1539 i += processed - 1; 1540 return; 1541 } 1542 } 1543 1544 processAux(expr, type, offset, sym, addend); 1545 } 1546 1547 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1548 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1549 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1550 // instructions are generated by very old IBM XL compilers. Work around the 1551 // issue by disabling GD/LD to IE/LE relaxation. 1552 template <class RelTy> 1553 static void checkPPC64TLSRelax(InputSectionBase &sec, Relocs<RelTy> rels) { 1554 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1555 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1556 return; 1557 bool hasGDLD = false; 1558 for (const RelTy &rel : rels) { 1559 RelType type = rel.getType(false); 1560 switch (type) { 1561 case R_PPC64_TLSGD: 1562 case R_PPC64_TLSLD: 1563 return; // Found a marker 1564 case R_PPC64_GOT_TLSGD16: 1565 case R_PPC64_GOT_TLSGD16_HA: 1566 case R_PPC64_GOT_TLSGD16_HI: 1567 case R_PPC64_GOT_TLSGD16_LO: 1568 case R_PPC64_GOT_TLSLD16: 1569 case R_PPC64_GOT_TLSLD16_HA: 1570 case R_PPC64_GOT_TLSLD16_HI: 1571 case R_PPC64_GOT_TLSLD16_LO: 1572 hasGDLD = true; 1573 break; 1574 } 1575 } 1576 if (hasGDLD) { 1577 sec.file->ppc64DisableTLSRelax = true; 1578 warn(toString(sec.file) + 1579 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1580 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1581 } 1582 } 1583 1584 template <class ELFT, class RelTy> 1585 void RelocationScanner::scan(Relocs<RelTy> rels) { 1586 // Not all relocations end up in Sec->Relocations, but a lot do. 1587 sec->relocations.reserve(rels.size()); 1588 1589 if (config->emachine == EM_PPC64) 1590 checkPPC64TLSRelax<RelTy>(*sec, rels); 1591 1592 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1593 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1594 // script), the relocations may be unordered. 1595 // On SystemZ, all sections need to be sorted by r_offset, to allow TLS 1596 // relaxation to be handled correctly - see SystemZ::getTlsGdRelaxSkip. 1597 SmallVector<RelTy, 0> storage; 1598 if (isa<EhInputSection>(sec) || config->emachine == EM_S390) 1599 rels = sortRels(rels, storage); 1600 1601 if constexpr (RelTy::IsCrel) { 1602 for (auto i = rels.begin(); i != rels.end();) 1603 scanOne<ELFT, RelTy>(i); 1604 } else { 1605 // The non-CREL code path has additional check for PPC64 TLS. 1606 end = static_cast<const void *>(rels.end()); 1607 for (auto i = rels.begin(); i != end;) 1608 scanOne<ELFT, RelTy>(i); 1609 } 1610 1611 // Sort relocations by offset for more efficient searching for 1612 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1613 if (config->emachine == EM_RISCV || 1614 (config->emachine == EM_PPC64 && sec->name == ".toc")) 1615 llvm::stable_sort(sec->relocs(), 1616 [](const Relocation &lhs, const Relocation &rhs) { 1617 return lhs.offset < rhs.offset; 1618 }); 1619 } 1620 1621 template <class ELFT> 1622 void RelocationScanner::scanSection(InputSectionBase &s, bool isEH) { 1623 sec = &s; 1624 getter = OffsetGetter(s); 1625 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(!isEH); 1626 if (rels.areRelocsCrel()) 1627 scan<ELFT>(rels.crels); 1628 else if (rels.areRelocsRel()) 1629 scan<ELFT>(rels.rels); 1630 else 1631 scan<ELFT>(rels.relas); 1632 } 1633 1634 template <class ELFT> void elf::scanRelocations() { 1635 // Scan all relocations. Each relocation goes through a series of tests to 1636 // determine if it needs special treatment, such as creating GOT, PLT, 1637 // copy relocations, etc. Note that relocations for non-alloc sections are 1638 // directly processed by InputSection::relocateNonAlloc. 1639 1640 // Deterministic parallellism needs sorting relocations which is unsuitable 1641 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable 1642 // for parallelism. 1643 bool serial = !config->zCombreloc || config->emachine == EM_MIPS || 1644 config->emachine == EM_PPC64; 1645 parallel::TaskGroup tg; 1646 auto outerFn = [&]() { 1647 for (ELFFileBase *f : ctx.objectFiles) { 1648 auto fn = [f]() { 1649 RelocationScanner scanner; 1650 for (InputSectionBase *s : f->getSections()) { 1651 if (s && s->kind() == SectionBase::Regular && s->isLive() && 1652 (s->flags & SHF_ALLOC) && 1653 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM)) 1654 scanner.template scanSection<ELFT>(*s); 1655 } 1656 }; 1657 if (serial) 1658 fn(); 1659 else 1660 tg.spawn(fn); 1661 } 1662 auto scanEH = [] { 1663 RelocationScanner scanner; 1664 for (Partition &part : partitions) { 1665 for (EhInputSection *sec : part.ehFrame->sections) 1666 scanner.template scanSection<ELFT>(*sec); 1667 if (part.armExidx && part.armExidx->isLive()) 1668 for (InputSection *sec : part.armExidx->exidxSections) 1669 if (sec->isLive()) 1670 scanner.template scanSection<ELFT>(*sec); 1671 } 1672 }; 1673 if (serial) 1674 scanEH(); 1675 else 1676 tg.spawn(scanEH); 1677 }; 1678 // If `serial` is true, call `spawn` to ensure that `scanner` runs in a thread 1679 // with valid getThreadIndex(). 1680 if (serial) 1681 tg.spawn(outerFn); 1682 else 1683 outerFn(); 1684 } 1685 1686 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) { 1687 // Handle a reference to a non-preemptible ifunc. These are special in a 1688 // few ways: 1689 // 1690 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1691 // a fixed value. But assuming that all references to the ifunc are 1692 // GOT-generating or PLT-generating, the handling of an ifunc is 1693 // relatively straightforward. We create a PLT entry in Iplt, which is 1694 // usually at the end of .plt, which makes an indirect call using a 1695 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1696 // The GOT entry is relocated using an IRELATIVE relocation in relaDyn, 1697 // which is usually at the end of .rela.dyn. 1698 // 1699 // - Despite the fact that an ifunc does not have a fixed value, compilers 1700 // that are not passed -fPIC will assume that they do, and will emit 1701 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1702 // symbol. This means that if a direct relocation to the symbol is 1703 // seen, the linker must set a value for the symbol, and this value must 1704 // be consistent no matter what type of reference is made to the symbol. 1705 // This can be done by creating a PLT entry for the symbol in the way 1706 // described above and making it canonical, that is, making all references 1707 // point to the PLT entry instead of the resolver. In lld we also store 1708 // the address of the PLT entry in the dynamic symbol table, which means 1709 // that the symbol will also have the same value in other modules. 1710 // Because the value loaded from the GOT needs to be consistent with 1711 // the value computed using a direct relocation, a non-preemptible ifunc 1712 // may end up with two GOT entries, one in .got.plt that points to the 1713 // address returned by the resolver and is used only by the PLT entry, 1714 // and another in .got that points to the PLT entry and is used by 1715 // GOT-generating relocations. 1716 // 1717 // - The fact that these symbols do not have a fixed value makes them an 1718 // exception to the general rule that a statically linked executable does 1719 // not require any form of dynamic relocation. To handle these relocations 1720 // correctly, the IRELATIVE relocations are stored in an array which a 1721 // statically linked executable's startup code must enumerate using the 1722 // linker-defined symbols __rela?_iplt_{start,end}. 1723 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt) 1724 return false; 1725 // Skip unreferenced non-preemptible ifunc. 1726 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC))) 1727 return true; 1728 1729 sym.isInIplt = true; 1730 1731 // Create an Iplt and the associated IRELATIVE relocation pointing to the 1732 // original section/value pairs. For non-GOT non-PLT relocation case below, we 1733 // may alter section/value, so create a copy of the symbol to make 1734 // section/value fixed. 1735 // 1736 // Prior to Android V, there was a bug that caused RELR relocations to be 1737 // applied after packed relocations. This meant that resolvers referenced by 1738 // IRELATIVE relocations in the packed relocation section would read 1739 // unrelocated globals with RELR relocations when 1740 // --pack-relative-relocs=android+relr is enabled. Work around this by placing 1741 // IRELATIVE in .rela.plt. 1742 auto *directSym = makeDefined(cast<Defined>(sym)); 1743 directSym->allocateAux(); 1744 auto &dyn = config->androidPackDynRelocs ? *in.relaPlt : *mainPart->relaDyn; 1745 addPltEntry(*in.iplt, *in.igotPlt, dyn, target->iRelativeRel, *directSym); 1746 sym.allocateAux(); 1747 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx; 1748 1749 if (flags & HAS_DIRECT_RELOC) { 1750 // Change the value to the IPLT and redirect all references to it. 1751 auto &d = cast<Defined>(sym); 1752 d.section = in.iplt.get(); 1753 d.value = d.getPltIdx() * target->ipltEntrySize; 1754 d.size = 0; 1755 // It's important to set the symbol type here so that dynamic loaders 1756 // don't try to call the PLT as if it were an ifunc resolver. 1757 d.type = STT_FUNC; 1758 1759 if (flags & NEEDS_GOT) 1760 addGotEntry(sym); 1761 } else if (flags & NEEDS_GOT) { 1762 // Redirect GOT accesses to point to the Igot. 1763 sym.gotInIgot = true; 1764 } 1765 return true; 1766 } 1767 1768 void elf::postScanRelocations() { 1769 auto fn = [](Symbol &sym) { 1770 auto flags = sym.flags.load(std::memory_order_relaxed); 1771 if (handleNonPreemptibleIfunc(sym, flags)) 1772 return; 1773 1774 if (sym.isTagged() && sym.isDefined()) 1775 mainPart->memtagGlobalDescriptors->addSymbol(sym); 1776 1777 if (!sym.needsDynReloc()) 1778 return; 1779 sym.allocateAux(); 1780 1781 if (flags & NEEDS_GOT) 1782 addGotEntry(sym); 1783 if (flags & NEEDS_PLT) 1784 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym); 1785 if (flags & NEEDS_COPY) { 1786 if (sym.isObject()) { 1787 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym)); 1788 // NEEDS_COPY is cleared for sym and its aliases so that in 1789 // later iterations aliases won't cause redundant copies. 1790 assert(!sym.hasFlag(NEEDS_COPY)); 1791 } else { 1792 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT)); 1793 if (!sym.isDefined()) { 1794 replaceWithDefined(sym, *in.plt, 1795 target->pltHeaderSize + 1796 target->pltEntrySize * sym.getPltIdx(), 1797 0); 1798 sym.setFlags(NEEDS_COPY); 1799 if (config->emachine == EM_PPC) { 1800 // PPC32 canonical PLT entries are at the beginning of .glink 1801 cast<Defined>(sym).value = in.plt->headerSize; 1802 in.plt->headerSize += 16; 1803 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym); 1804 } 1805 } 1806 } 1807 } 1808 1809 if (!sym.isTls()) 1810 return; 1811 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1812 GotSection *got = in.got.get(); 1813 1814 if (flags & NEEDS_TLSDESC) { 1815 got->addTlsDescEntry(sym); 1816 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1817 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym, 1818 target->tlsDescRel); 1819 } 1820 if (flags & NEEDS_TLSGD) { 1821 got->addDynTlsEntry(sym); 1822 uint64_t off = got->getGlobalDynOffset(sym); 1823 if (isLocalInExecutable) 1824 // Write one to the GOT slot. 1825 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym}); 1826 else 1827 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off, 1828 sym); 1829 1830 // If the symbol is preemptible we need the dynamic linker to write 1831 // the offset too. 1832 uint64_t offsetOff = off + config->wordsize; 1833 if (sym.isPreemptible) 1834 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff, 1835 sym); 1836 else 1837 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1838 } 1839 if (flags & NEEDS_TLSGD_TO_IE) { 1840 got->addEntry(sym); 1841 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got, 1842 sym.getGotOffset(), sym); 1843 } 1844 if (flags & NEEDS_GOT_DTPREL) { 1845 got->addEntry(sym); 1846 got->addConstant( 1847 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym}); 1848 } 1849 1850 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE)) 1851 addTpOffsetGotEntry(sym); 1852 }; 1853 1854 GotSection *got = in.got.get(); 1855 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) { 1856 static Undefined dummy(ctx.internalFile, "", STB_LOCAL, 0, 0); 1857 if (config->shared) 1858 mainPart->relaDyn->addReloc( 1859 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()}); 1860 else 1861 got->addConstant( 1862 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy}); 1863 } 1864 1865 assert(symAux.size() == 1); 1866 for (Symbol *sym : symtab.getSymbols()) 1867 fn(*sym); 1868 1869 // Local symbols may need the aforementioned non-preemptible ifunc and GOT 1870 // handling. They don't need regular PLT. 1871 for (ELFFileBase *file : ctx.objectFiles) 1872 for (Symbol *sym : file->getLocalSymbols()) 1873 fn(*sym); 1874 } 1875 1876 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1877 // std::merge requires a strict weak ordering. 1878 if (a->outSecOff < b->outSecOff) 1879 return true; 1880 1881 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection. 1882 if (a->outSecOff == b->outSecOff && a != b) { 1883 auto *ta = dyn_cast<ThunkSection>(a); 1884 auto *tb = dyn_cast<ThunkSection>(b); 1885 1886 // Check if Thunk is immediately before any specific Target 1887 // InputSection for example Mips LA25 Thunks. 1888 if (ta && ta->getTargetInputSection() == b) 1889 return true; 1890 1891 // Place Thunk Sections without specific targets before 1892 // non-Thunk Sections. 1893 if (ta && !tb && !ta->getTargetInputSection()) 1894 return true; 1895 } 1896 1897 return false; 1898 } 1899 1900 // Call Fn on every executable InputSection accessed via the linker script 1901 // InputSectionDescription::Sections. 1902 static void forEachInputSectionDescription( 1903 ArrayRef<OutputSection *> outputSections, 1904 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1905 for (OutputSection *os : outputSections) { 1906 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1907 continue; 1908 for (SectionCommand *bc : os->commands) 1909 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1910 fn(os, isd); 1911 } 1912 } 1913 1914 // Thunk Implementation 1915 // 1916 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1917 // of code that the linker inserts inbetween a caller and a callee. The thunks 1918 // are added at link time rather than compile time as the decision on whether 1919 // a thunk is needed, such as the caller and callee being out of range, can only 1920 // be made at link time. 1921 // 1922 // It is straightforward to tell given the current state of the program when a 1923 // thunk is needed for a particular call. The more difficult part is that 1924 // the thunk needs to be placed in the program such that the caller can reach 1925 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1926 // the program alters addresses, which can mean more thunks etc. 1927 // 1928 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1929 // The decision to have a ThunkSection act as a container means that we can 1930 // more easily handle the most common case of a single block of contiguous 1931 // Thunks by inserting just a single ThunkSection. 1932 // 1933 // The implementation of Thunks in lld is split across these areas 1934 // Relocations.cpp : Framework for creating and placing thunks 1935 // Thunks.cpp : The code generated for each supported thunk 1936 // Target.cpp : Target specific hooks that the framework uses to decide when 1937 // a thunk is used 1938 // Synthetic.cpp : Implementation of ThunkSection 1939 // Writer.cpp : Iteratively call framework until no more Thunks added 1940 // 1941 // Thunk placement requirements: 1942 // Mips LA25 thunks. These must be placed immediately before the callee section 1943 // We can assume that the caller is in range of the Thunk. These are modelled 1944 // by Thunks that return the section they must precede with 1945 // getTargetInputSection(). 1946 // 1947 // ARM interworking and range extension thunks. These thunks must be placed 1948 // within range of the caller. All implemented ARM thunks can always reach the 1949 // callee as they use an indirect jump via a register that has no range 1950 // restrictions. 1951 // 1952 // Thunk placement algorithm: 1953 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1954 // getTargetInputSection(). 1955 // 1956 // For thunks that must be placed within range of the caller there are many 1957 // possible choices given that the maximum range from the caller is usually 1958 // much larger than the average InputSection size. Desirable properties include: 1959 // - Maximize reuse of thunks by multiple callers 1960 // - Minimize number of ThunkSections to simplify insertion 1961 // - Handle impact of already added Thunks on addresses 1962 // - Simple to understand and implement 1963 // 1964 // In lld for the first pass, we pre-create one or more ThunkSections per 1965 // InputSectionDescription at Target specific intervals. A ThunkSection is 1966 // placed so that the estimated end of the ThunkSection is within range of the 1967 // start of the InputSectionDescription or the previous ThunkSection. For 1968 // example: 1969 // InputSectionDescription 1970 // Section 0 1971 // ... 1972 // Section N 1973 // ThunkSection 0 1974 // Section N + 1 1975 // ... 1976 // Section N + K 1977 // Thunk Section 1 1978 // 1979 // The intention is that we can add a Thunk to a ThunkSection that is well 1980 // spaced enough to service a number of callers without having to do a lot 1981 // of work. An important principle is that it is not an error if a Thunk cannot 1982 // be placed in a pre-created ThunkSection; when this happens we create a new 1983 // ThunkSection placed next to the caller. This allows us to handle the vast 1984 // majority of thunks simply, but also handle rare cases where the branch range 1985 // is smaller than the target specific spacing. 1986 // 1987 // The algorithm is expected to create all the thunks that are needed in a 1988 // single pass, with a small number of programs needing a second pass due to 1989 // the insertion of thunks in the first pass increasing the offset between 1990 // callers and callees that were only just in range. 1991 // 1992 // A consequence of allowing new ThunkSections to be created outside of the 1993 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1994 // range in pass K, are out of range in some pass > K due to the insertion of 1995 // more Thunks in between the caller and callee. When this happens we retarget 1996 // the relocation back to the original target and create another Thunk. 1997 1998 // Remove ThunkSections that are empty, this should only be the initial set 1999 // precreated on pass 0. 2000 2001 // Insert the Thunks for OutputSection OS into their designated place 2002 // in the Sections vector, and recalculate the InputSection output section 2003 // offsets. 2004 // This may invalidate any output section offsets stored outside of InputSection 2005 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 2006 forEachInputSectionDescription( 2007 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2008 if (isd->thunkSections.empty()) 2009 return; 2010 2011 // Remove any zero sized precreated Thunks. 2012 llvm::erase_if(isd->thunkSections, 2013 [](const std::pair<ThunkSection *, uint32_t> &ts) { 2014 return ts.first->getSize() == 0; 2015 }); 2016 2017 // ISD->ThunkSections contains all created ThunkSections, including 2018 // those inserted in previous passes. Extract the Thunks created this 2019 // pass and order them in ascending outSecOff. 2020 std::vector<ThunkSection *> newThunks; 2021 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 2022 if (ts.second == pass) 2023 newThunks.push_back(ts.first); 2024 llvm::stable_sort(newThunks, 2025 [](const ThunkSection *a, const ThunkSection *b) { 2026 return a->outSecOff < b->outSecOff; 2027 }); 2028 2029 // Merge sorted vectors of Thunks and InputSections by outSecOff 2030 SmallVector<InputSection *, 0> tmp; 2031 tmp.reserve(isd->sections.size() + newThunks.size()); 2032 2033 std::merge(isd->sections.begin(), isd->sections.end(), 2034 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 2035 mergeCmp); 2036 2037 isd->sections = std::move(tmp); 2038 }); 2039 } 2040 2041 static int64_t getPCBias(RelType type) { 2042 if (config->emachine != EM_ARM) 2043 return 0; 2044 switch (type) { 2045 case R_ARM_THM_JUMP19: 2046 case R_ARM_THM_JUMP24: 2047 case R_ARM_THM_CALL: 2048 return 4; 2049 default: 2050 return 8; 2051 } 2052 } 2053 2054 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 2055 // is in range of Src. An ISD maps to a range of InputSections described by a 2056 // linker script section pattern such as { .text .text.* }. 2057 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 2058 InputSection *isec, 2059 InputSectionDescription *isd, 2060 const Relocation &rel, 2061 uint64_t src) { 2062 // See the comment in getThunk for -pcBias below. 2063 const int64_t pcBias = getPCBias(rel.type); 2064 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 2065 ThunkSection *ts = tp.first; 2066 uint64_t tsBase = os->addr + ts->outSecOff - pcBias; 2067 uint64_t tsLimit = tsBase + ts->getSize(); 2068 if (target->inBranchRange(rel.type, src, 2069 (src > tsLimit) ? tsBase : tsLimit)) 2070 return ts; 2071 } 2072 2073 // No suitable ThunkSection exists. This can happen when there is a branch 2074 // with lower range than the ThunkSection spacing or when there are too 2075 // many Thunks. Create a new ThunkSection as close to the InputSection as 2076 // possible. Error if InputSection is so large we cannot place ThunkSection 2077 // anywhere in Range. 2078 uint64_t thunkSecOff = isec->outSecOff; 2079 if (!target->inBranchRange(rel.type, src, 2080 os->addr + thunkSecOff + rel.addend)) { 2081 thunkSecOff = isec->outSecOff + isec->getSize(); 2082 if (!target->inBranchRange(rel.type, src, 2083 os->addr + thunkSecOff + rel.addend)) 2084 fatal("InputSection too large for range extension thunk " + 2085 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 2086 } 2087 return addThunkSection(os, isd, thunkSecOff); 2088 } 2089 2090 // Add a Thunk that needs to be placed in a ThunkSection that immediately 2091 // precedes its Target. 2092 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 2093 ThunkSection *ts = thunkedSections.lookup(isec); 2094 if (ts) 2095 return ts; 2096 2097 // Find InputSectionRange within Target Output Section (TOS) that the 2098 // InputSection (IS) that we need to precede is in. 2099 OutputSection *tos = isec->getParent(); 2100 for (SectionCommand *bc : tos->commands) { 2101 auto *isd = dyn_cast<InputSectionDescription>(bc); 2102 if (!isd || isd->sections.empty()) 2103 continue; 2104 2105 InputSection *first = isd->sections.front(); 2106 InputSection *last = isd->sections.back(); 2107 2108 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 2109 continue; 2110 2111 ts = addThunkSection(tos, isd, isec->outSecOff); 2112 thunkedSections[isec] = ts; 2113 return ts; 2114 } 2115 2116 return nullptr; 2117 } 2118 2119 // Create one or more ThunkSections per OS that can be used to place Thunks. 2120 // We attempt to place the ThunkSections using the following desirable 2121 // properties: 2122 // - Within range of the maximum number of callers 2123 // - Minimise the number of ThunkSections 2124 // 2125 // We follow a simple but conservative heuristic to place ThunkSections at 2126 // offsets that are multiples of a Target specific branch range. 2127 // For an InputSectionDescription that is smaller than the range, a single 2128 // ThunkSection at the end of the range will do. 2129 // 2130 // For an InputSectionDescription that is more than twice the size of the range, 2131 // we place the last ThunkSection at range bytes from the end of the 2132 // InputSectionDescription in order to increase the likelihood that the 2133 // distance from a thunk to its target will be sufficiently small to 2134 // allow for the creation of a short thunk. 2135 void ThunkCreator::createInitialThunkSections( 2136 ArrayRef<OutputSection *> outputSections) { 2137 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 2138 2139 forEachInputSectionDescription( 2140 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2141 if (isd->sections.empty()) 2142 return; 2143 2144 uint32_t isdBegin = isd->sections.front()->outSecOff; 2145 uint32_t isdEnd = 2146 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 2147 uint32_t lastThunkLowerBound = -1; 2148 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 2149 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 2150 2151 uint32_t isecLimit; 2152 uint32_t prevIsecLimit = isdBegin; 2153 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 2154 2155 for (const InputSection *isec : isd->sections) { 2156 isecLimit = isec->outSecOff + isec->getSize(); 2157 if (isecLimit > thunkUpperBound) { 2158 addThunkSection(os, isd, prevIsecLimit); 2159 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 2160 } 2161 if (isecLimit > lastThunkLowerBound) 2162 break; 2163 prevIsecLimit = isecLimit; 2164 } 2165 addThunkSection(os, isd, isecLimit); 2166 }); 2167 } 2168 2169 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 2170 InputSectionDescription *isd, 2171 uint64_t off) { 2172 auto *ts = make<ThunkSection>(os, off); 2173 ts->partition = os->partition; 2174 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 2175 !isd->sections.empty()) { 2176 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 2177 // thunks we disturb the base addresses of sections placed after the thunks 2178 // this makes patches we have generated redundant, and may cause us to 2179 // generate more patches as different instructions are now in sensitive 2180 // locations. When we generate more patches we may force more branches to 2181 // go out of range, causing more thunks to be generated. In pathological 2182 // cases this can cause the address dependent content pass not to converge. 2183 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 2184 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 2185 // which means that adding Thunks to the section does not invalidate 2186 // errata patches for following code. 2187 // Rounding up the size to 4KiB has consequences for code-size and can 2188 // trip up linker script defined assertions. For example the linux kernel 2189 // has an assertion that what LLD represents as an InputSectionDescription 2190 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 2191 // We use the heuristic of rounding up the size when both of the following 2192 // conditions are true: 2193 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 2194 // accounts for the case where no single InputSectionDescription is 2195 // larger than the OutputSection size. This is conservative but simple. 2196 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 2197 // any assertion failures that an InputSectionDescription is < 4 KiB 2198 // in size. 2199 uint64_t isdSize = isd->sections.back()->outSecOff + 2200 isd->sections.back()->getSize() - 2201 isd->sections.front()->outSecOff; 2202 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 2203 ts->roundUpSizeForErrata = true; 2204 } 2205 isd->thunkSections.push_back({ts, pass}); 2206 return ts; 2207 } 2208 2209 static bool isThunkSectionCompatible(InputSection *source, 2210 SectionBase *target) { 2211 // We can't reuse thunks in different loadable partitions because they might 2212 // not be loaded. But partition 1 (the main partition) will always be loaded. 2213 if (source->partition != target->partition) 2214 return target->partition == 1; 2215 return true; 2216 } 2217 2218 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 2219 Relocation &rel, uint64_t src) { 2220 std::vector<Thunk *> *thunkVec = nullptr; 2221 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 2222 // out in the relocation addend. We compensate for the PC bias so that 2223 // an Arm and Thumb relocation to the same destination get the same keyAddend, 2224 // which is usually 0. 2225 const int64_t pcBias = getPCBias(rel.type); 2226 const int64_t keyAddend = rel.addend + pcBias; 2227 2228 // We use a ((section, offset), addend) pair to find the thunk position if 2229 // possible so that we create only one thunk for aliased symbols or ICFed 2230 // sections. There may be multiple relocations sharing the same (section, 2231 // offset + addend) pair. We may revert the relocation back to its original 2232 // non-Thunk target, so we cannot fold offset + addend. 2233 if (auto *d = dyn_cast<Defined>(rel.sym)) 2234 if (!d->isInPlt() && d->section) 2235 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value}, 2236 keyAddend}]; 2237 if (!thunkVec) 2238 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 2239 2240 // Check existing Thunks for Sym to see if they can be reused 2241 for (Thunk *t : *thunkVec) 2242 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 2243 t->isCompatibleWith(*isec, rel) && 2244 target->inBranchRange(rel.type, src, 2245 t->getThunkTargetSym()->getVA(-pcBias))) 2246 return std::make_pair(t, false); 2247 2248 // No existing compatible Thunk in range, create a new one 2249 Thunk *t = addThunk(*isec, rel); 2250 thunkVec->push_back(t); 2251 return std::make_pair(t, true); 2252 } 2253 2254 // Return true if the relocation target is an in range Thunk. 2255 // Return false if the relocation is not to a Thunk. If the relocation target 2256 // was originally to a Thunk, but is no longer in range we revert the 2257 // relocation back to its original non-Thunk target. 2258 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 2259 if (Thunk *t = thunks.lookup(rel.sym)) { 2260 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 2261 return true; 2262 rel.sym = &t->destination; 2263 rel.addend = t->addend; 2264 if (rel.sym->isInPlt()) 2265 rel.expr = toPlt(rel.expr); 2266 } 2267 return false; 2268 } 2269 2270 // Process all relocations from the InputSections that have been assigned 2271 // to InputSectionDescriptions and redirect through Thunks if needed. The 2272 // function should be called iteratively until it returns false. 2273 // 2274 // PreConditions: 2275 // All InputSections that may need a Thunk are reachable from 2276 // OutputSectionCommands. 2277 // 2278 // All OutputSections have an address and all InputSections have an offset 2279 // within the OutputSection. 2280 // 2281 // The offsets between caller (relocation place) and callee 2282 // (relocation target) will not be modified outside of createThunks(). 2283 // 2284 // PostConditions: 2285 // If return value is true then ThunkSections have been inserted into 2286 // OutputSections. All relocations that needed a Thunk based on the information 2287 // available to createThunks() on entry have been redirected to a Thunk. Note 2288 // that adding Thunks changes offsets between caller and callee so more Thunks 2289 // may be required. 2290 // 2291 // If return value is false then no more Thunks are needed, and createThunks has 2292 // made no changes. If the target requires range extension thunks, currently 2293 // ARM, then any future change in offset between caller and callee risks a 2294 // relocation out of range error. 2295 bool ThunkCreator::createThunks(uint32_t pass, 2296 ArrayRef<OutputSection *> outputSections) { 2297 this->pass = pass; 2298 bool addressesChanged = false; 2299 2300 if (pass == 0 && target->getThunkSectionSpacing()) 2301 createInitialThunkSections(outputSections); 2302 2303 // Create all the Thunks and insert them into synthetic ThunkSections. The 2304 // ThunkSections are later inserted back into InputSectionDescriptions. 2305 // We separate the creation of ThunkSections from the insertion of the 2306 // ThunkSections as ThunkSections are not always inserted into the same 2307 // InputSectionDescription as the caller. 2308 forEachInputSectionDescription( 2309 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2310 for (InputSection *isec : isd->sections) 2311 for (Relocation &rel : isec->relocs()) { 2312 uint64_t src = isec->getVA(rel.offset); 2313 2314 // If we are a relocation to an existing Thunk, check if it is 2315 // still in range. If not then Rel will be altered to point to its 2316 // original target so another Thunk can be generated. 2317 if (pass > 0 && normalizeExistingThunk(rel, src)) 2318 continue; 2319 2320 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2321 *rel.sym, rel.addend)) 2322 continue; 2323 2324 Thunk *t; 2325 bool isNew; 2326 std::tie(t, isNew) = getThunk(isec, rel, src); 2327 2328 if (isNew) { 2329 // Find or create a ThunkSection for the new Thunk 2330 ThunkSection *ts; 2331 if (auto *tis = t->getTargetInputSection()) 2332 ts = getISThunkSec(tis); 2333 else 2334 ts = getISDThunkSec(os, isec, isd, rel, src); 2335 ts->addThunk(t); 2336 thunks[t->getThunkTargetSym()] = t; 2337 } 2338 2339 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2340 rel.sym = t->getThunkTargetSym(); 2341 rel.expr = fromPlt(rel.expr); 2342 2343 // On AArch64 and PPC, a jump/call relocation may be encoded as 2344 // STT_SECTION + non-zero addend, clear the addend after 2345 // redirection. 2346 if (config->emachine != EM_MIPS) 2347 rel.addend = -getPCBias(rel.type); 2348 } 2349 2350 for (auto &p : isd->thunkSections) 2351 addressesChanged |= p.first->assignOffsets(); 2352 }); 2353 2354 for (auto &p : thunkedSections) 2355 addressesChanged |= p.second->assignOffsets(); 2356 2357 // Merge all created synthetic ThunkSections back into OutputSection 2358 mergeThunks(outputSections); 2359 return addressesChanged; 2360 } 2361 2362 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2363 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2364 // __tls_get_addr. 2365 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2366 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2367 bool needTlsSymbol = false; 2368 forEachInputSectionDescription( 2369 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2370 for (InputSection *isec : isd->sections) 2371 for (Relocation &rel : isec->relocs()) 2372 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2373 needTlsSymbol = true; 2374 return; 2375 } 2376 }); 2377 return needTlsSymbol; 2378 } 2379 2380 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2381 Symbol *sym = symtab.find("__tls_get_addr"); 2382 if (!sym) 2383 return; 2384 bool needEntry = true; 2385 forEachInputSectionDescription( 2386 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2387 for (InputSection *isec : isd->sections) 2388 for (Relocation &rel : isec->relocs()) 2389 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2390 if (needEntry) { 2391 sym->allocateAux(); 2392 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, 2393 *sym); 2394 needEntry = false; 2395 } 2396 rel.sym = sym; 2397 } 2398 }); 2399 } 2400 2401 static bool matchesRefTo(const NoCrossRefCommand &cmd, StringRef osec) { 2402 if (cmd.toFirst) 2403 return cmd.outputSections[0] == osec; 2404 return llvm::is_contained(cmd.outputSections, osec); 2405 } 2406 2407 template <class ELFT, class Rels> 2408 static void scanCrossRefs(const NoCrossRefCommand &cmd, OutputSection *osec, 2409 InputSection *sec, Rels rels) { 2410 for (const auto &r : rels) { 2411 Symbol &sym = sec->file->getSymbol(r.getSymbol(config->isMips64EL)); 2412 // A legal cross-reference is when the destination output section is 2413 // nullptr, osec for a self-reference, or a section that is described by the 2414 // NOCROSSREFS/NOCROSSREFS_TO command. 2415 auto *dstOsec = sym.getOutputSection(); 2416 if (!dstOsec || dstOsec == osec || !matchesRefTo(cmd, dstOsec->name)) 2417 continue; 2418 2419 std::string toSymName; 2420 if (!sym.isSection()) 2421 toSymName = toString(sym); 2422 else if (auto *d = dyn_cast<Defined>(&sym)) 2423 toSymName = d->section->name; 2424 errorOrWarn(sec->getLocation(r.r_offset) + 2425 ": prohibited cross reference from '" + osec->name + "' to '" + 2426 toSymName + "' in '" + dstOsec->name + "'"); 2427 } 2428 } 2429 2430 // For each output section described by at least one NOCROSSREFS(_TO) command, 2431 // scan relocations from its input sections for prohibited cross references. 2432 template <class ELFT> void elf::checkNoCrossRefs() { 2433 for (OutputSection *osec : outputSections) { 2434 for (const NoCrossRefCommand &noxref : script->noCrossRefs) { 2435 if (!llvm::is_contained(noxref.outputSections, osec->name) || 2436 (noxref.toFirst && noxref.outputSections[0] == osec->name)) 2437 continue; 2438 for (SectionCommand *cmd : osec->commands) { 2439 auto *isd = dyn_cast<InputSectionDescription>(cmd); 2440 if (!isd) 2441 continue; 2442 parallelForEach(isd->sections, [&](InputSection *sec) { 2443 invokeOnRelocs(*sec, scanCrossRefs<ELFT>, noxref, osec, sec); 2444 }); 2445 } 2446 } 2447 } 2448 } 2449 2450 template void elf::scanRelocations<ELF32LE>(); 2451 template void elf::scanRelocations<ELF32BE>(); 2452 template void elf::scanRelocations<ELF64LE>(); 2453 template void elf::scanRelocations<ELF64BE>(); 2454 2455 template void elf::checkNoCrossRefs<ELF32LE>(); 2456 template void elf::checkNoCrossRefs<ELF32BE>(); 2457 template void elf::checkNoCrossRefs<ELF64LE>(); 2458 template void elf::checkNoCrossRefs<ELF64BE>(); 2459