1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "InputFiles.h" 46 #include "LinkerScript.h" 47 #include "OutputSections.h" 48 #include "SymbolTable.h" 49 #include "Symbols.h" 50 #include "SyntheticSections.h" 51 #include "Target.h" 52 #include "Thunks.h" 53 #include "lld/Common/ErrorHandler.h" 54 #include "lld/Common/Memory.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Demangle/Demangle.h" 58 #include "llvm/Support/Endian.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (SectionCommand *cmd : script->sectionCommands) 70 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 71 if (assign->sym == &sym) 72 return assign->location; 73 return std::nullopt; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 const char msg[] = "\n>>> defined in "; 78 if (sym.file) 79 return msg + toString(sym.file); 80 if (std::optional<std::string> loc = getLinkerScriptLocation(sym)) 81 return msg + *loc; 82 return ""; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym) { 104 if (!rel.sym->isSection()) 105 hint = "; references '" + lld::toString(*rel.sym) + '\''; 106 else if (auto *d = dyn_cast<Defined>(rel.sym)) 107 hint = ("; references section '" + d->section->name + "'").str(); 108 } 109 if (!errPlace.srcLoc.empty()) 110 hint += "\n>>> referenced by " + errPlace.srcLoc; 111 if (rel.sym && !rel.sym->isSection()) 112 hint += getDefinedLocation(*rel.sym); 113 114 if (errPlace.isec && errPlace.isec->name.starts_with(".debug")) 115 hint += "; consider recompiling with -fdebug-types-section to reduce size " 116 "of debug sections"; 117 118 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 119 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 120 ", " + Twine(max).str() + "]" + hint); 121 } 122 123 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 124 const Twine &msg) { 125 ErrorPlace errPlace = getErrorPlace(loc); 126 std::string hint; 127 if (!sym.getName().empty()) 128 hint = 129 "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym); 130 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 131 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 132 Twine(llvm::maxIntN(n)) + "]" + hint); 133 } 134 135 // Build a bitmask with one bit set for each 64 subset of RelExpr. 136 static constexpr uint64_t buildMask() { return 0; } 137 138 template <typename... Tails> 139 static constexpr uint64_t buildMask(int head, Tails... tails) { 140 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | 141 buildMask(tails...); 142 } 143 144 // Return true if `Expr` is one of `Exprs`. 145 // There are more than 64 but less than 128 RelExprs, so we divide the set of 146 // exprs into [0, 64) and [64, 128) and represent each range as a constant 147 // 64-bit mask. Then we decide which mask to test depending on the value of 148 // expr and use a simple shift and bitwise-and to test for membership. 149 template <RelExpr... Exprs> static bool oneof(RelExpr expr) { 150 assert(0 <= expr && (int)expr < 128 && 151 "RelExpr is too large for 128-bit mask!"); 152 153 if (expr >= 64) 154 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); 155 return (uint64_t(1) << expr) & buildMask(Exprs...); 156 } 157 158 static RelType getMipsPairType(RelType type, bool isLocal) { 159 switch (type) { 160 case R_MIPS_HI16: 161 return R_MIPS_LO16; 162 case R_MIPS_GOT16: 163 // In case of global symbol, the R_MIPS_GOT16 relocation does not 164 // have a pair. Each global symbol has a unique entry in the GOT 165 // and a corresponding instruction with help of the R_MIPS_GOT16 166 // relocation loads an address of the symbol. In case of local 167 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 168 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 169 // relocations handle low 16 bits of the address. That allows 170 // to allocate only one GOT entry for every 64 KBytes of local data. 171 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 172 case R_MICROMIPS_GOT16: 173 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 174 case R_MIPS_PCHI16: 175 return R_MIPS_PCLO16; 176 case R_MICROMIPS_HI16: 177 return R_MICROMIPS_LO16; 178 default: 179 return R_MIPS_NONE; 180 } 181 } 182 183 // True if non-preemptable symbol always has the same value regardless of where 184 // the DSO is loaded. 185 static bool isAbsolute(const Symbol &sym) { 186 if (sym.isUndefWeak()) 187 return true; 188 if (const auto *dr = dyn_cast<Defined>(&sym)) 189 return dr->section == nullptr; // Absolute symbol. 190 return false; 191 } 192 193 static bool isAbsoluteValue(const Symbol &sym) { 194 return isAbsolute(sym) || sym.isTls(); 195 } 196 197 // Returns true if Expr refers a PLT entry. 198 static bool needsPlt(RelExpr expr) { 199 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_LOONGARCH_PLT_PAGE_PC, 200 R_PPC32_PLTREL, R_PPC64_CALL_PLT>(expr); 201 } 202 203 bool lld::elf::needsGot(RelExpr expr) { 204 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 205 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 206 R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>( 207 expr); 208 } 209 210 // True if this expression is of the form Sym - X, where X is a position in the 211 // file (PC, or GOT for example). 212 static bool isRelExpr(RelExpr expr) { 213 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 214 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 215 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC, R_LOONGARCH_PAGE_PC>( 216 expr); 217 } 218 219 static RelExpr toPlt(RelExpr expr) { 220 switch (expr) { 221 case R_LOONGARCH_PAGE_PC: 222 return R_LOONGARCH_PLT_PAGE_PC; 223 case R_PPC64_CALL: 224 return R_PPC64_CALL_PLT; 225 case R_PC: 226 return R_PLT_PC; 227 case R_ABS: 228 return R_PLT; 229 default: 230 return expr; 231 } 232 } 233 234 static RelExpr fromPlt(RelExpr expr) { 235 // We decided not to use a plt. Optimize a reference to the plt to a 236 // reference to the symbol itself. 237 switch (expr) { 238 case R_PLT_PC: 239 case R_PPC32_PLTREL: 240 return R_PC; 241 case R_LOONGARCH_PLT_PAGE_PC: 242 return R_LOONGARCH_PAGE_PC; 243 case R_PPC64_CALL_PLT: 244 return R_PPC64_CALL; 245 case R_PLT: 246 return R_ABS; 247 case R_PLT_GOTPLT: 248 return R_GOTPLTREL; 249 default: 250 return expr; 251 } 252 } 253 254 // Returns true if a given shared symbol is in a read-only segment in a DSO. 255 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 256 using Elf_Phdr = typename ELFT::Phdr; 257 258 // Determine if the symbol is read-only by scanning the DSO's program headers. 259 const auto &file = cast<SharedFile>(*ss.file); 260 for (const Elf_Phdr &phdr : 261 check(file.template getObj<ELFT>().program_headers())) 262 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 263 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 264 ss.value < phdr.p_vaddr + phdr.p_memsz) 265 return true; 266 return false; 267 } 268 269 // Returns symbols at the same offset as a given symbol, including SS itself. 270 // 271 // If two or more symbols are at the same offset, and at least one of 272 // them are copied by a copy relocation, all of them need to be copied. 273 // Otherwise, they would refer to different places at runtime. 274 template <class ELFT> 275 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 276 using Elf_Sym = typename ELFT::Sym; 277 278 const auto &file = cast<SharedFile>(*ss.file); 279 280 SmallSet<SharedSymbol *, 4> ret; 281 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 282 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 283 s.getType() == STT_TLS || s.st_value != ss.value) 284 continue; 285 StringRef name = check(s.getName(file.getStringTable())); 286 Symbol *sym = symtab.find(name); 287 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 288 ret.insert(alias); 289 } 290 291 // The loop does not check SHT_GNU_verneed, so ret does not contain 292 // non-default version symbols. If ss has a non-default version, ret won't 293 // contain ss. Just add ss unconditionally. If a non-default version alias is 294 // separately copy relocated, it and ss will have different addresses. 295 // Fortunately this case is impractical and fails with GNU ld as well. 296 ret.insert(&ss); 297 return ret; 298 } 299 300 // When a symbol is copy relocated or we create a canonical plt entry, it is 301 // effectively a defined symbol. In the case of copy relocation the symbol is 302 // in .bss and in the case of a canonical plt entry it is in .plt. This function 303 // replaces the existing symbol with a Defined pointing to the appropriate 304 // location. 305 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value, 306 uint64_t size) { 307 Symbol old = sym; 308 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value, 309 size, &sec) 310 .overwrite(sym); 311 312 sym.versionId = old.versionId; 313 sym.exportDynamic = true; 314 sym.isUsedInRegularObj = true; 315 // A copy relocated alias may need a GOT entry. 316 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT, 317 std::memory_order_relaxed); 318 } 319 320 // Reserve space in .bss or .bss.rel.ro for copy relocation. 321 // 322 // The copy relocation is pretty much a hack. If you use a copy relocation 323 // in your program, not only the symbol name but the symbol's size, RW/RO 324 // bit and alignment become part of the ABI. In addition to that, if the 325 // symbol has aliases, the aliases become part of the ABI. That's subtle, 326 // but if you violate that implicit ABI, that can cause very counter- 327 // intuitive consequences. 328 // 329 // So, what is the copy relocation? It's for linking non-position 330 // independent code to DSOs. In an ideal world, all references to data 331 // exported by DSOs should go indirectly through GOT. But if object files 332 // are compiled as non-PIC, all data references are direct. There is no 333 // way for the linker to transform the code to use GOT, as machine 334 // instructions are already set in stone in object files. This is where 335 // the copy relocation takes a role. 336 // 337 // A copy relocation instructs the dynamic linker to copy data from a DSO 338 // to a specified address (which is usually in .bss) at load-time. If the 339 // static linker (that's us) finds a direct data reference to a DSO 340 // symbol, it creates a copy relocation, so that the symbol can be 341 // resolved as if it were in .bss rather than in a DSO. 342 // 343 // As you can see in this function, we create a copy relocation for the 344 // dynamic linker, and the relocation contains not only symbol name but 345 // various other information about the symbol. So, such attributes become a 346 // part of the ABI. 347 // 348 // Note for application developers: I can give you a piece of advice if 349 // you are writing a shared library. You probably should export only 350 // functions from your library. You shouldn't export variables. 351 // 352 // As an example what can happen when you export variables without knowing 353 // the semantics of copy relocations, assume that you have an exported 354 // variable of type T. It is an ABI-breaking change to add new members at 355 // end of T even though doing that doesn't change the layout of the 356 // existing members. That's because the space for the new members are not 357 // reserved in .bss unless you recompile the main program. That means they 358 // are likely to overlap with other data that happens to be laid out next 359 // to the variable in .bss. This kind of issue is sometimes very hard to 360 // debug. What's a solution? Instead of exporting a variable V from a DSO, 361 // define an accessor getV(). 362 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 363 // Copy relocation against zero-sized symbol doesn't make sense. 364 uint64_t symSize = ss.getSize(); 365 if (symSize == 0 || ss.alignment == 0) 366 fatal("cannot create a copy relocation for symbol " + toString(ss)); 367 368 // See if this symbol is in a read-only segment. If so, preserve the symbol's 369 // memory protection by reserving space in the .bss.rel.ro section. 370 bool isRO = isReadOnly<ELFT>(ss); 371 BssSection *sec = 372 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 373 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 374 375 // At this point, sectionBases has been migrated to sections. Append sec to 376 // sections. 377 if (osec->commands.empty() || 378 !isa<InputSectionDescription>(osec->commands.back())) 379 osec->commands.push_back(make<InputSectionDescription>("")); 380 auto *isd = cast<InputSectionDescription>(osec->commands.back()); 381 isd->sections.push_back(sec); 382 osec->commitSection(sec); 383 384 // Look through the DSO's dynamic symbol table for aliases and create a 385 // dynamic symbol for each one. This causes the copy relocation to correctly 386 // interpose any aliases. 387 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 388 replaceWithDefined(*sym, *sec, 0, sym->size); 389 390 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss); 391 } 392 393 // .eh_frame sections are mergeable input sections, so their input 394 // offsets are not linearly mapped to output section. For each input 395 // offset, we need to find a section piece containing the offset and 396 // add the piece's base address to the input offset to compute the 397 // output offset. That isn't cheap. 398 // 399 // This class is to speed up the offset computation. When we process 400 // relocations, we access offsets in the monotonically increasing 401 // order. So we can optimize for that access pattern. 402 // 403 // For sections other than .eh_frame, this class doesn't do anything. 404 namespace { 405 class OffsetGetter { 406 public: 407 OffsetGetter() = default; 408 explicit OffsetGetter(InputSectionBase &sec) { 409 if (auto *eh = dyn_cast<EhInputSection>(&sec)) { 410 cies = eh->cies; 411 fdes = eh->fdes; 412 i = cies.begin(); 413 j = fdes.begin(); 414 } 415 } 416 417 // Translates offsets in input sections to offsets in output sections. 418 // Given offset must increase monotonically. We assume that Piece is 419 // sorted by inputOff. 420 uint64_t get(uint64_t off) { 421 if (cies.empty()) 422 return off; 423 424 while (j != fdes.end() && j->inputOff <= off) 425 ++j; 426 auto it = j; 427 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) { 428 while (i != cies.end() && i->inputOff <= off) 429 ++i; 430 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off) 431 fatal(".eh_frame: relocation is not in any piece"); 432 it = i; 433 } 434 435 // Offset -1 means that the piece is dead (i.e. garbage collected). 436 if (it[-1].outputOff == -1) 437 return -1; 438 return it[-1].outputOff + (off - it[-1].inputOff); 439 } 440 441 private: 442 ArrayRef<EhSectionPiece> cies, fdes; 443 ArrayRef<EhSectionPiece>::iterator i, j; 444 }; 445 446 // This class encapsulates states needed to scan relocations for one 447 // InputSectionBase. 448 class RelocationScanner { 449 public: 450 template <class ELFT> void scanSection(InputSectionBase &s); 451 452 private: 453 InputSectionBase *sec; 454 OffsetGetter getter; 455 456 // End of relocations, used by Mips/PPC64. 457 const void *end = nullptr; 458 459 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const; 460 template <class ELFT, class RelTy> 461 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; 462 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 463 uint64_t relOff) const; 464 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, 465 int64_t addend) const; 466 template <class ELFT, class RelTy> void scanOne(RelTy *&i); 467 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels); 468 }; 469 } // namespace 470 471 // MIPS has an odd notion of "paired" relocations to calculate addends. 472 // For example, if a relocation is of R_MIPS_HI16, there must be a 473 // R_MIPS_LO16 relocation after that, and an addend is calculated using 474 // the two relocations. 475 template <class ELFT, class RelTy> 476 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr, 477 bool isLocal) const { 478 if (expr == R_MIPS_GOTREL && isLocal) 479 return sec->getFile<ELFT>()->mipsGp0; 480 481 // The ABI says that the paired relocation is used only for REL. 482 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 483 if (RelTy::IsRela) 484 return 0; 485 486 RelType type = rel.getType(config->isMips64EL); 487 uint32_t pairTy = getMipsPairType(type, isLocal); 488 if (pairTy == R_MIPS_NONE) 489 return 0; 490 491 const uint8_t *buf = sec->content().data(); 492 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 493 494 // To make things worse, paired relocations might not be contiguous in 495 // the relocation table, so we need to do linear search. *sigh* 496 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri) 497 if (ri->getType(config->isMips64EL) == pairTy && 498 ri->getSymbol(config->isMips64EL) == symIndex) 499 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 500 501 warn("can't find matching " + toString(pairTy) + " relocation for " + 502 toString(type)); 503 return 0; 504 } 505 506 // Custom error message if Sym is defined in a discarded section. 507 template <class ELFT> 508 static std::string maybeReportDiscarded(Undefined &sym) { 509 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 510 if (!file || !sym.discardedSecIdx) 511 return ""; 512 ArrayRef<typename ELFT::Shdr> objSections = 513 file->template getELFShdrs<ELFT>(); 514 515 std::string msg; 516 if (sym.type == ELF::STT_SECTION) { 517 msg = "relocation refers to a discarded section: "; 518 msg += CHECK( 519 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 520 } else { 521 msg = "relocation refers to a symbol in a discarded section: " + 522 toString(sym); 523 } 524 msg += "\n>>> defined in " + toString(file); 525 526 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 527 if (elfSec.sh_type != SHT_GROUP) 528 return msg; 529 530 // If the discarded section is a COMDAT. 531 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 532 if (const InputFile *prevailing = 533 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) { 534 msg += "\n>>> section group signature: " + signature.str() + 535 "\n>>> prevailing definition is in " + toString(prevailing); 536 if (sym.nonPrevailing) { 537 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK " 538 "binding and the symbol in a non-prevailing group had STB_GLOBAL " 539 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding " 540 "signature is not supported"; 541 } 542 } 543 return msg; 544 } 545 546 namespace { 547 // Undefined diagnostics are collected in a vector and emitted once all of 548 // them are known, so that some postprocessing on the list of undefined symbols 549 // can happen before lld emits diagnostics. 550 struct UndefinedDiag { 551 Undefined *sym; 552 struct Loc { 553 InputSectionBase *sec; 554 uint64_t offset; 555 }; 556 std::vector<Loc> locs; 557 bool isWarning; 558 }; 559 560 std::vector<UndefinedDiag> undefs; 561 std::mutex relocMutex; 562 } 563 564 // Check whether the definition name def is a mangled function name that matches 565 // the reference name ref. 566 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 567 llvm::ItaniumPartialDemangler d; 568 std::string name = def.str(); 569 if (d.partialDemangle(name.c_str())) 570 return false; 571 char *buf = d.getFunctionName(nullptr, nullptr); 572 if (!buf) 573 return false; 574 bool ret = ref == buf; 575 free(buf); 576 return ret; 577 } 578 579 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 580 // the suggested symbol, which is either in the symbol table, or in the same 581 // file of sym. 582 static const Symbol *getAlternativeSpelling(const Undefined &sym, 583 std::string &pre_hint, 584 std::string &post_hint) { 585 DenseMap<StringRef, const Symbol *> map; 586 if (sym.file && sym.file->kind() == InputFile::ObjKind) { 587 auto *file = cast<ELFFileBase>(sym.file); 588 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 589 // will give an error. Don't suggest an alternative spelling. 590 if (file && sym.discardedSecIdx != 0 && 591 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 592 return nullptr; 593 594 // Build a map of local defined symbols. 595 for (const Symbol *s : sym.file->getSymbols()) 596 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 597 map.try_emplace(s->getName(), s); 598 } 599 600 auto suggest = [&](StringRef newName) -> const Symbol * { 601 // If defined locally. 602 if (const Symbol *s = map.lookup(newName)) 603 return s; 604 605 // If in the symbol table and not undefined. 606 if (const Symbol *s = symtab.find(newName)) 607 if (!s->isUndefined()) 608 return s; 609 610 return nullptr; 611 }; 612 613 // This loop enumerates all strings of Levenshtein distance 1 as typo 614 // correction candidates and suggests the one that exists as a non-undefined 615 // symbol. 616 StringRef name = sym.getName(); 617 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 618 // Insert a character before name[i]. 619 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 620 for (char c = '0'; c <= 'z'; ++c) { 621 newName[i] = c; 622 if (const Symbol *s = suggest(newName)) 623 return s; 624 } 625 if (i == e) 626 break; 627 628 // Substitute name[i]. 629 newName = std::string(name); 630 for (char c = '0'; c <= 'z'; ++c) { 631 newName[i] = c; 632 if (const Symbol *s = suggest(newName)) 633 return s; 634 } 635 636 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 637 // common. 638 if (i + 1 < e) { 639 newName[i] = name[i + 1]; 640 newName[i + 1] = name[i]; 641 if (const Symbol *s = suggest(newName)) 642 return s; 643 } 644 645 // Delete name[i]. 646 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 647 if (const Symbol *s = suggest(newName)) 648 return s; 649 } 650 651 // Case mismatch, e.g. Foo vs FOO. 652 for (auto &it : map) 653 if (name.equals_insensitive(it.first)) 654 return it.second; 655 for (Symbol *sym : symtab.getSymbols()) 656 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 657 return sym; 658 659 // The reference may be a mangled name while the definition is not. Suggest a 660 // missing extern "C". 661 if (name.starts_with("_Z")) { 662 std::string buf = name.str(); 663 llvm::ItaniumPartialDemangler d; 664 if (!d.partialDemangle(buf.c_str())) 665 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 666 const Symbol *s = suggest(buf); 667 free(buf); 668 if (s) { 669 pre_hint = ": extern \"C\" "; 670 return s; 671 } 672 } 673 } else { 674 const Symbol *s = nullptr; 675 for (auto &it : map) 676 if (canSuggestExternCForCXX(name, it.first)) { 677 s = it.second; 678 break; 679 } 680 if (!s) 681 for (Symbol *sym : symtab.getSymbols()) 682 if (canSuggestExternCForCXX(name, sym->getName())) { 683 s = sym; 684 break; 685 } 686 if (s) { 687 pre_hint = " to declare "; 688 post_hint = " as extern \"C\"?"; 689 return s; 690 } 691 } 692 693 return nullptr; 694 } 695 696 static void reportUndefinedSymbol(const UndefinedDiag &undef, 697 bool correctSpelling) { 698 Undefined &sym = *undef.sym; 699 700 auto visibility = [&]() -> std::string { 701 switch (sym.visibility()) { 702 case STV_INTERNAL: 703 return "internal "; 704 case STV_HIDDEN: 705 return "hidden "; 706 case STV_PROTECTED: 707 return "protected "; 708 default: 709 return ""; 710 } 711 }; 712 713 std::string msg; 714 switch (config->ekind) { 715 case ELF32LEKind: 716 msg = maybeReportDiscarded<ELF32LE>(sym); 717 break; 718 case ELF32BEKind: 719 msg = maybeReportDiscarded<ELF32BE>(sym); 720 break; 721 case ELF64LEKind: 722 msg = maybeReportDiscarded<ELF64LE>(sym); 723 break; 724 case ELF64BEKind: 725 msg = maybeReportDiscarded<ELF64BE>(sym); 726 break; 727 default: 728 llvm_unreachable(""); 729 } 730 if (msg.empty()) 731 msg = "undefined " + visibility() + "symbol: " + toString(sym); 732 733 const size_t maxUndefReferences = 3; 734 size_t i = 0; 735 for (UndefinedDiag::Loc l : undef.locs) { 736 if (i >= maxUndefReferences) 737 break; 738 InputSectionBase &sec = *l.sec; 739 uint64_t offset = l.offset; 740 741 msg += "\n>>> referenced by "; 742 // In the absence of line number information, utilize DW_TAG_variable (if 743 // present) for the enclosing symbol (e.g. var in `int *a[] = {&undef};`). 744 Symbol *enclosing = sec.getEnclosingSymbol(offset); 745 std::string src = sec.getSrcMsg(enclosing ? *enclosing : sym, offset); 746 if (!src.empty()) 747 msg += src + "\n>>> "; 748 msg += sec.getObjMsg(offset); 749 i++; 750 } 751 752 if (i < undef.locs.size()) 753 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 754 .str(); 755 756 if (correctSpelling) { 757 std::string pre_hint = ": ", post_hint; 758 if (const Symbol *corrected = 759 getAlternativeSpelling(sym, pre_hint, post_hint)) { 760 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 761 if (corrected->file) 762 msg += "\n>>> defined in: " + toString(corrected->file); 763 } 764 } 765 766 if (sym.getName().starts_with("_ZTV")) 767 msg += 768 "\n>>> the vtable symbol may be undefined because the class is missing " 769 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 770 if (config->gcSections && config->zStartStopGC && 771 sym.getName().starts_with("__start_")) { 772 msg += "\n>>> the encapsulation symbol needs to be retained under " 773 "--gc-sections properly; consider -z nostart-stop-gc " 774 "(see https://lld.llvm.org/ELF/start-stop-gc)"; 775 } 776 777 if (undef.isWarning) 778 warn(msg); 779 else 780 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 781 } 782 783 void elf::reportUndefinedSymbols() { 784 // Find the first "undefined symbol" diagnostic for each diagnostic, and 785 // collect all "referenced from" lines at the first diagnostic. 786 DenseMap<Symbol *, UndefinedDiag *> firstRef; 787 for (UndefinedDiag &undef : undefs) { 788 assert(undef.locs.size() == 1); 789 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 790 canon->locs.push_back(undef.locs[0]); 791 undef.locs.clear(); 792 } else 793 firstRef[undef.sym] = &undef; 794 } 795 796 // Enable spell corrector for the first 2 diagnostics. 797 for (const auto &[i, undef] : llvm::enumerate(undefs)) 798 if (!undef.locs.empty()) 799 reportUndefinedSymbol(undef, i < 2); 800 undefs.clear(); 801 } 802 803 // Report an undefined symbol if necessary. 804 // Returns true if the undefined symbol will produce an error message. 805 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec, 806 uint64_t offset) { 807 std::lock_guard<std::mutex> lock(relocMutex); 808 // If versioned, issue an error (even if the symbol is weak) because we don't 809 // know the defining filename which is required to construct a Verneed entry. 810 if (sym.hasVersionSuffix) { 811 undefs.push_back({&sym, {{&sec, offset}}, false}); 812 return true; 813 } 814 if (sym.isWeak()) 815 return false; 816 817 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT; 818 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 819 return false; 820 821 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 822 // which references a switch table in a discarded .rodata/.text section. The 823 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 824 // spec says references from outside the group to a STB_LOCAL symbol are not 825 // allowed. Work around the bug. 826 // 827 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 828 // because .LC0-.LTOC is not representable if the two labels are in different 829 // .got2 830 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc")) 831 return false; 832 833 bool isWarning = 834 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 835 config->noinhibitExec; 836 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 837 return !isWarning; 838 } 839 840 // MIPS N32 ABI treats series of successive relocations with the same offset 841 // as a single relocation. The similar approach used by N64 ABI, but this ABI 842 // packs all relocations into the single relocation record. Here we emulate 843 // this for the N32 ABI. Iterate over relocation with the same offset and put 844 // theirs types into the single bit-set. 845 template <class RelTy> 846 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const { 847 RelType type = 0; 848 uint64_t offset = rel->r_offset; 849 850 int n = 0; 851 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset) 852 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 853 return type; 854 } 855 856 template <bool shard = false> 857 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec, 858 Symbol &sym, int64_t addend, RelExpr expr, 859 RelType type) { 860 Partition &part = isec.getPartition(); 861 862 if (sym.isTagged()) { 863 std::lock_guard<std::mutex> lock(relocMutex); 864 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym, 865 addend, type, expr); 866 // With MTE globals, we always want to derive the address tag by `ldg`-ing 867 // the symbol. When we have a RELATIVE relocation though, we no longer have 868 // a reference to the symbol. Because of this, when we have an addend that 869 // puts the result of the RELATIVE relocation out-of-bounds of the symbol 870 // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI 871 // says we should store the offset to the start of the symbol in the target 872 // field. This is described in further detail in: 873 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative 874 if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize()) 875 isec.relocations.push_back({expr, type, offsetInSec, addend, &sym}); 876 return; 877 } 878 879 // Add a relative relocation. If relrDyn section is enabled, and the 880 // relocation offset is guaranteed to be even, add the relocation to 881 // the relrDyn section, otherwise add it to the relaDyn section. 882 // relrDyn sections don't support odd offsets. Also, relrDyn sections 883 // don't store the addend values, so we must write it to the relocated 884 // address. 885 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) { 886 isec.addReloc({expr, type, offsetInSec, addend, &sym}); 887 if (shard) 888 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back( 889 {&isec, offsetInSec}); 890 else 891 part.relrDyn->relocs.push_back({&isec, offsetInSec}); 892 return; 893 } 894 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec, 895 sym, addend, type, expr); 896 } 897 898 template <class PltSection, class GotPltSection> 899 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt, 900 RelocationBaseSection &rel, RelType type, Symbol &sym) { 901 plt.addEntry(sym); 902 gotPlt.addEntry(sym); 903 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(), 904 sym.isPreemptible ? DynamicReloc::AgainstSymbol 905 : DynamicReloc::AddendOnlyWithTargetVA, 906 sym, 0, R_ABS}); 907 } 908 909 void elf::addGotEntry(Symbol &sym) { 910 in.got->addEntry(sym); 911 uint64_t off = sym.getGotOffset(); 912 913 // If preemptible, emit a GLOB_DAT relocation. 914 if (sym.isPreemptible) { 915 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off, 916 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 917 return; 918 } 919 920 // Otherwise, the value is either a link-time constant or the load base 921 // plus a constant. 922 if (!config->isPic || isAbsolute(sym)) 923 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym}); 924 else 925 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel); 926 } 927 928 static void addTpOffsetGotEntry(Symbol &sym) { 929 in.got->addEntry(sym); 930 uint64_t off = sym.getGotOffset(); 931 if (!sym.isPreemptible && !config->isPic) { 932 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym}); 933 return; 934 } 935 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 936 target->tlsGotRel, *in.got, off, sym, target->symbolicRel); 937 } 938 939 // Return true if we can define a symbol in the executable that 940 // contains the value/function of a symbol defined in a shared 941 // library. 942 static bool canDefineSymbolInExecutable(Symbol &sym) { 943 // If the symbol has default visibility the symbol defined in the 944 // executable will preempt it. 945 // Note that we want the visibility of the shared symbol itself, not 946 // the visibility of the symbol in the output file we are producing. 947 if (!sym.dsoProtected) 948 return true; 949 950 // If we are allowed to break address equality of functions, defining 951 // a plt entry will allow the program to call the function in the 952 // .so, but the .so and the executable will no agree on the address 953 // of the function. Similar logic for objects. 954 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 955 (sym.isObject() && config->ignoreDataAddressEquality)); 956 } 957 958 // Returns true if a given relocation can be computed at link-time. 959 // This only handles relocation types expected in processAux. 960 // 961 // For instance, we know the offset from a relocation to its target at 962 // link-time if the relocation is PC-relative and refers a 963 // non-interposable function in the same executable. This function 964 // will return true for such relocation. 965 // 966 // If this function returns false, that means we need to emit a 967 // dynamic relocation so that the relocation will be fixed at load-time. 968 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type, 969 const Symbol &sym, 970 uint64_t relOff) const { 971 // These expressions always compute a constant 972 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE, 973 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, 974 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 975 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT, 976 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE, 977 R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>( 978 e)) 979 return true; 980 981 // These never do, except if the entire file is position dependent or if 982 // only the low bits are used. 983 if (e == R_GOT || e == R_PLT) 984 return target->usesOnlyLowPageBits(type) || !config->isPic; 985 986 if (sym.isPreemptible) 987 return false; 988 if (!config->isPic) 989 return true; 990 991 // Constant when referencing a non-preemptible symbol. 992 if (e == R_SIZE || e == R_RISCV_LEB128) 993 return true; 994 995 // For the target and the relocation, we want to know if they are 996 // absolute or relative. 997 bool absVal = isAbsoluteValue(sym); 998 bool relE = isRelExpr(e); 999 if (absVal && !relE) 1000 return true; 1001 if (!absVal && relE) 1002 return true; 1003 if (!absVal && !relE) 1004 return target->usesOnlyLowPageBits(type); 1005 1006 assert(absVal && relE); 1007 1008 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 1009 // in PIC mode. This is a little strange, but it allows us to link function 1010 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 1011 // Normally such a call will be guarded with a comparison, which will load a 1012 // zero from the GOT. 1013 if (sym.isUndefWeak()) 1014 return true; 1015 1016 // We set the final symbols values for linker script defined symbols later. 1017 // They always can be computed as a link time constant. 1018 if (sym.scriptDefined) 1019 return true; 1020 1021 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 1022 toString(sym) + getLocation(*sec, sym, relOff)); 1023 return true; 1024 } 1025 1026 // The reason we have to do this early scan is as follows 1027 // * To mmap the output file, we need to know the size 1028 // * For that, we need to know how many dynamic relocs we will have. 1029 // It might be possible to avoid this by outputting the file with write: 1030 // * Write the allocated output sections, computing addresses. 1031 // * Apply relocations, recording which ones require a dynamic reloc. 1032 // * Write the dynamic relocations. 1033 // * Write the rest of the file. 1034 // This would have some drawbacks. For example, we would only know if .rela.dyn 1035 // is needed after applying relocations. If it is, it will go after rw and rx 1036 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1037 // complicates things for the dynamic linker and means we would have to reserve 1038 // space for the extra PT_LOAD even if we end up not using it. 1039 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset, 1040 Symbol &sym, int64_t addend) const { 1041 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT 1042 // indirection. 1043 const bool isIfunc = sym.isGnuIFunc(); 1044 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) { 1045 if (expr != R_GOT_PC) { 1046 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1047 // stub type. It should be ignored if optimized to R_PC. 1048 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1049 addend &= ~0x8000; 1050 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1051 // call __tls_get_addr even if the symbol is non-preemptible. 1052 if (!(config->emachine == EM_HEXAGON && 1053 (type == R_HEX_GD_PLT_B22_PCREL || 1054 type == R_HEX_GD_PLT_B22_PCREL_X || 1055 type == R_HEX_GD_PLT_B32_PCREL_X))) 1056 expr = fromPlt(expr); 1057 } else if (!isAbsoluteValue(sym)) { 1058 expr = 1059 target->adjustGotPcExpr(type, addend, sec->content().data() + offset); 1060 // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up 1061 // needing the GOT if we can't relax everything. 1062 if (expr == R_RELAX_GOT_PC) 1063 in.got->hasGotOffRel.store(true, std::memory_order_relaxed); 1064 } 1065 } 1066 1067 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1068 // direct relocation on through. 1069 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) { 1070 std::lock_guard<std::mutex> lock(relocMutex); 1071 sym.exportDynamic = true; 1072 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type); 1073 return; 1074 } 1075 1076 if (needsGot(expr)) { 1077 if (config->emachine == EM_MIPS) { 1078 // MIPS ABI has special rules to process GOT entries and doesn't 1079 // require relocation entries for them. A special case is TLS 1080 // relocations. In that case dynamic loader applies dynamic 1081 // relocations to initialize TLS GOT entries. 1082 // See "Global Offset Table" in Chapter 5 in the following document 1083 // for detailed description: 1084 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1085 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1086 } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) { 1087 // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which 1088 // case the NEEDS_GOT flag shouldn't get set. 1089 sym.setFlags(NEEDS_GOT); 1090 } 1091 } else if (needsPlt(expr)) { 1092 sym.setFlags(NEEDS_PLT); 1093 } else if (LLVM_UNLIKELY(isIfunc)) { 1094 sym.setFlags(HAS_DIRECT_RELOC); 1095 } 1096 1097 // If the relocation is known to be a link-time constant, we know no dynamic 1098 // relocation will be created, pass the control to relocateAlloc() or 1099 // relocateNonAlloc() to resolve it. 1100 // 1101 // The behavior of an undefined weak reference is implementation defined. For 1102 // non-link-time constants, we resolve relocations statically (let 1103 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 1104 // relocations for -pie and -shared. 1105 // 1106 // The general expectation of -no-pie static linking is that there is no 1107 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 1108 // -shared matches the spirit of its -z undefs default. -pie has freedom on 1109 // choices, and we choose dynamic relocations to be consistent with the 1110 // handling of GOT-generating relocations. 1111 if (isStaticLinkTimeConstant(expr, type, sym, offset) || 1112 (!config->isPic && sym.isUndefWeak())) { 1113 sec->addReloc({expr, type, offset, addend, &sym}); 1114 return; 1115 } 1116 1117 // Use a simple -z notext rule that treats all sections except .eh_frame as 1118 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our 1119 // SectionBase::getOffset would incorrectly adjust the offset). 1120 // 1121 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel 1122 // conversion. We still emit a dynamic relocation. 1123 bool canWrite = (sec->flags & SHF_WRITE) || 1124 !(config->zText || 1125 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS)); 1126 if (canWrite) { 1127 RelType rel = target->getDynRel(type); 1128 if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) || 1129 (rel == target->symbolicRel && !sym.isPreemptible)) { 1130 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type); 1131 return; 1132 } else if (rel != 0) { 1133 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1134 rel = target->relativeRel; 1135 std::lock_guard<std::mutex> lock(relocMutex); 1136 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym, 1137 addend, type); 1138 1139 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1140 // While regular ABI uses dynamic relocations to fill up GOT entries 1141 // MIPS ABI requires dynamic linker to fills up GOT entries using 1142 // specially sorted dynamic symbol table. This affects even dynamic 1143 // relocations against symbols which do not require GOT entries 1144 // creation explicitly, i.e. do not have any GOT-relocations. So if 1145 // a preemptible symbol has a dynamic relocation we anyway have 1146 // to create a GOT entry for it. 1147 // If a non-preemptible symbol has a dynamic relocation against it, 1148 // dynamic linker takes it st_value, adds offset and writes down 1149 // result of the dynamic relocation. In case of preemptible symbol 1150 // dynamic linker performs symbol resolution, writes the symbol value 1151 // to the GOT entry and reads the GOT entry when it needs to perform 1152 // a dynamic relocation. 1153 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1154 if (config->emachine == EM_MIPS) 1155 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1156 return; 1157 } 1158 } 1159 1160 // When producing an executable, we can perform copy relocations (for 1161 // STT_OBJECT) and canonical PLT (for STT_FUNC) if sym is defined by a DSO. 1162 if (!config->shared && sym.isShared()) { 1163 if (!canDefineSymbolInExecutable(sym)) { 1164 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1165 getLocation(*sec, sym, offset)); 1166 return; 1167 } 1168 1169 if (sym.isObject()) { 1170 // Produce a copy relocation. 1171 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1172 if (!config->zCopyreloc) 1173 error("unresolvable relocation " + toString(type) + 1174 " against symbol '" + toString(*ss) + 1175 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1176 getLocation(*sec, sym, offset)); 1177 sym.setFlags(NEEDS_COPY); 1178 } 1179 sec->addReloc({expr, type, offset, addend, &sym}); 1180 return; 1181 } 1182 1183 // This handles a non PIC program call to function in a shared library. In 1184 // an ideal world, we could just report an error saying the relocation can 1185 // overflow at runtime. In the real world with glibc, crt1.o has a 1186 // R_X86_64_PC32 pointing to libc.so. 1187 // 1188 // The general idea on how to handle such cases is to create a PLT entry and 1189 // use that as the function value. 1190 // 1191 // For the static linking part, we just return a plt expr and everything 1192 // else will use the PLT entry as the address. 1193 // 1194 // The remaining problem is making sure pointer equality still works. We 1195 // need the help of the dynamic linker for that. We let it know that we have 1196 // a direct reference to a so symbol by creating an undefined symbol with a 1197 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1198 // the value of the symbol we created. This is true even for got entries, so 1199 // pointer equality is maintained. To avoid an infinite loop, the only entry 1200 // that points to the real function is a dedicated got entry used by the 1201 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1202 // R_386_JMP_SLOT, etc). 1203 1204 // For position independent executable on i386, the plt entry requires ebx 1205 // to be set. This causes two problems: 1206 // * If some code has a direct reference to a function, it was probably 1207 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1208 // * If a library definition gets preempted to the executable, it will have 1209 // the wrong ebx value. 1210 if (sym.isFunc()) { 1211 if (config->pie && config->emachine == EM_386) 1212 errorOrWarn("symbol '" + toString(sym) + 1213 "' cannot be preempted; recompile with -fPIE" + 1214 getLocation(*sec, sym, offset)); 1215 sym.setFlags(NEEDS_COPY | NEEDS_PLT); 1216 sec->addReloc({expr, type, offset, addend, &sym}); 1217 return; 1218 } 1219 } 1220 1221 errorOrWarn("relocation " + toString(type) + " cannot be used against " + 1222 (sym.getName().empty() ? "local symbol" 1223 : "symbol '" + toString(sym) + "'") + 1224 "; recompile with -fPIC" + getLocation(*sec, sym, offset)); 1225 } 1226 1227 // This function is similar to the `handleTlsRelocation`. MIPS does not 1228 // support any relaxations for TLS relocations so by factoring out MIPS 1229 // handling in to the separate function we can simplify the code and do not 1230 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1231 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1232 // without dynamic relocations. 1233 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1234 InputSectionBase &c, uint64_t offset, 1235 int64_t addend, RelExpr expr) { 1236 if (expr == R_MIPS_TLSLD) { 1237 in.mipsGot->addTlsIndex(*c.file); 1238 c.addReloc({expr, type, offset, addend, &sym}); 1239 return 1; 1240 } 1241 if (expr == R_MIPS_TLSGD) { 1242 in.mipsGot->addDynTlsEntry(*c.file, sym); 1243 c.addReloc({expr, type, offset, addend, &sym}); 1244 return 1; 1245 } 1246 return 0; 1247 } 1248 1249 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1250 // require the generation of a pair of GOT entries that have associated dynamic 1251 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1252 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1253 // symbol in TLS block. 1254 // 1255 // Returns the number of relocations processed. 1256 static unsigned handleTlsRelocation(RelType type, Symbol &sym, 1257 InputSectionBase &c, uint64_t offset, 1258 int64_t addend, RelExpr expr) { 1259 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1260 if (config->shared) { 1261 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1262 " cannot be used with -shared" + getLocation(c, sym, offset)); 1263 return 1; 1264 } 1265 return 0; 1266 } 1267 1268 if (config->emachine == EM_MIPS) 1269 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1270 1271 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1272 R_TLSDESC_GOTPLT>(expr) && 1273 config->shared) { 1274 if (expr != R_TLSDESC_CALL) { 1275 sym.setFlags(NEEDS_TLSDESC); 1276 c.addReloc({expr, type, offset, addend, &sym}); 1277 } 1278 return 1; 1279 } 1280 1281 // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE 1282 // relaxation. 1283 // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1284 // relaxation as well. 1285 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 1286 config->emachine != EM_HEXAGON && 1287 config->emachine != EM_LOONGARCH && 1288 config->emachine != EM_RISCV && 1289 !c.file->ppc64DisableTLSRelax; 1290 1291 // If we are producing an executable and the symbol is non-preemptable, it 1292 // must be defined and the code sequence can be relaxed to use Local-Exec. 1293 // 1294 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1295 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1296 // because them are always 1. This may be necessary for static linking as 1297 // DTPMOD may not be expected at load time. 1298 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1299 1300 // Local Dynamic is for access to module local TLS variables, while still 1301 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1302 // module index, with a special value of 0 for the current module. GOT[e1] is 1303 // unused. There only needs to be one module index entry. 1304 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) { 1305 // Local-Dynamic relocs can be relaxed to Local-Exec. 1306 if (toExecRelax) { 1307 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, 1308 offset, addend, &sym}); 1309 return target->getTlsGdRelaxSkip(type); 1310 } 1311 if (expr == R_TLSLD_HINT) 1312 return 1; 1313 ctx.needsTlsLd.store(true, std::memory_order_relaxed); 1314 c.addReloc({expr, type, offset, addend, &sym}); 1315 return 1; 1316 } 1317 1318 // Local-Dynamic relocs can be relaxed to Local-Exec. 1319 if (expr == R_DTPREL) { 1320 if (toExecRelax) 1321 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); 1322 c.addReloc({expr, type, offset, addend, &sym}); 1323 return 1; 1324 } 1325 1326 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1327 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 1328 if (expr == R_TLSLD_GOT_OFF) { 1329 sym.setFlags(NEEDS_GOT_DTPREL); 1330 c.addReloc({expr, type, offset, addend, &sym}); 1331 return 1; 1332 } 1333 1334 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1335 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, 1336 R_LOONGARCH_TLSGD_PAGE_PC>(expr)) { 1337 if (!toExecRelax) { 1338 sym.setFlags(NEEDS_TLSGD); 1339 c.addReloc({expr, type, offset, addend, &sym}); 1340 return 1; 1341 } 1342 1343 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 1344 // depending on the symbol being locally defined or not. 1345 if (sym.isPreemptible) { 1346 sym.setFlags(NEEDS_TLSGD_TO_IE); 1347 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, 1348 offset, addend, &sym}); 1349 } else { 1350 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, 1351 offset, addend, &sym}); 1352 } 1353 return target->getTlsGdRelaxSkip(type); 1354 } 1355 1356 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, 1357 R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) { 1358 ctx.hasTlsIe.store(true, std::memory_order_relaxed); 1359 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 1360 // defined. 1361 if (toExecRelax && isLocalInExecutable) { 1362 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1363 } else if (expr != R_TLSIE_HINT) { 1364 sym.setFlags(NEEDS_TLSIE); 1365 // R_GOT needs a relative relocation for PIC on i386 and Hexagon. 1366 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) 1367 addRelativeReloc<true>(c, offset, sym, addend, expr, type); 1368 else 1369 c.addReloc({expr, type, offset, addend, &sym}); 1370 } 1371 return 1; 1372 } 1373 1374 return 0; 1375 } 1376 1377 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) { 1378 const RelTy &rel = *i; 1379 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1380 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex); 1381 RelType type; 1382 if (config->mipsN32Abi) { 1383 type = getMipsN32RelType(i); 1384 } else { 1385 type = rel.getType(config->isMips64EL); 1386 ++i; 1387 } 1388 // Get an offset in an output section this relocation is applied to. 1389 uint64_t offset = getter.get(rel.r_offset); 1390 if (offset == uint64_t(-1)) 1391 return; 1392 1393 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset); 1394 int64_t addend = RelTy::IsRela 1395 ? getAddend<ELFT>(rel) 1396 : target->getImplicitAddend( 1397 sec->content().data() + rel.r_offset, type); 1398 if (LLVM_UNLIKELY(config->emachine == EM_MIPS)) 1399 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal()); 1400 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 1401 addend += getPPC64TocBase(); 1402 1403 // Ignore R_*_NONE and other marker relocations. 1404 if (expr == R_NONE) 1405 return; 1406 1407 // Error if the target symbol is undefined. Symbol index 0 may be used by 1408 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1409 if (sym.isUndefined() && symIndex != 0 && 1410 maybeReportUndefined(cast<Undefined>(sym), *sec, offset)) 1411 return; 1412 1413 if (config->emachine == EM_PPC64) { 1414 // We can separate the small code model relocations into 2 categories: 1415 // 1) Those that access the compiler generated .toc sections. 1416 // 2) Those that access the linker allocated got entries. 1417 // lld allocates got entries to symbols on demand. Since we don't try to 1418 // sort the got entries in any way, we don't have to track which objects 1419 // have got-based small code model relocs. The .toc sections get placed 1420 // after the end of the linker allocated .got section and we do sort those 1421 // so sections addressed with small code model relocations come first. 1422 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) 1423 sec->file->ppc64SmallCodeModelTocRelocs = true; 1424 1425 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1426 // InputSectionBase::relocateAlloc(). 1427 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1428 cast<Defined>(sym).section->name == ".toc") 1429 ppc64noTocRelax.insert({&sym, addend}); 1430 1431 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1432 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1433 if (i == end) { 1434 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1435 "relocation" + 1436 getLocation(*sec, sym, offset)); 1437 return; 1438 } 1439 1440 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1441 // so we can discern it later from the toc-case. 1442 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1443 ++offset; 1444 } 1445 } 1446 1447 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1448 // uses their addresses, we need GOT or GOTPLT to be created. 1449 // 1450 // The 5 types that relative GOTPLT are all x86 and x86-64 specific. 1451 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, 1452 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1453 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed); 1454 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE, 1455 R_PPC64_RELAX_TOC>(expr)) { 1456 in.got->hasGotOffRel.store(true, std::memory_order_relaxed); 1457 } 1458 1459 // Process TLS relocations, including relaxing TLS relocations. Note that 1460 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux. 1461 if (sym.isTls()) { 1462 if (unsigned processed = 1463 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) { 1464 i += processed - 1; 1465 return; 1466 } 1467 } 1468 1469 processAux(expr, type, offset, sym, addend); 1470 } 1471 1472 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1473 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1474 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1475 // instructions are generated by very old IBM XL compilers. Work around the 1476 // issue by disabling GD/LD to IE/LE relaxation. 1477 template <class RelTy> 1478 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1479 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1480 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1481 return; 1482 bool hasGDLD = false; 1483 for (const RelTy &rel : rels) { 1484 RelType type = rel.getType(false); 1485 switch (type) { 1486 case R_PPC64_TLSGD: 1487 case R_PPC64_TLSLD: 1488 return; // Found a marker 1489 case R_PPC64_GOT_TLSGD16: 1490 case R_PPC64_GOT_TLSGD16_HA: 1491 case R_PPC64_GOT_TLSGD16_HI: 1492 case R_PPC64_GOT_TLSGD16_LO: 1493 case R_PPC64_GOT_TLSLD16: 1494 case R_PPC64_GOT_TLSLD16_HA: 1495 case R_PPC64_GOT_TLSLD16_HI: 1496 case R_PPC64_GOT_TLSLD16_LO: 1497 hasGDLD = true; 1498 break; 1499 } 1500 } 1501 if (hasGDLD) { 1502 sec.file->ppc64DisableTLSRelax = true; 1503 warn(toString(sec.file) + 1504 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1505 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1506 } 1507 } 1508 1509 template <class ELFT, class RelTy> 1510 void RelocationScanner::scan(ArrayRef<RelTy> rels) { 1511 // Not all relocations end up in Sec->Relocations, but a lot do. 1512 sec->relocations.reserve(rels.size()); 1513 1514 if (config->emachine == EM_PPC64) 1515 checkPPC64TLSRelax<RelTy>(*sec, rels); 1516 1517 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1518 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1519 // script), the relocations may be unordered. 1520 SmallVector<RelTy, 0> storage; 1521 if (isa<EhInputSection>(sec)) 1522 rels = sortRels(rels, storage); 1523 1524 end = static_cast<const void *>(rels.end()); 1525 for (auto i = rels.begin(); i != end;) 1526 scanOne<ELFT>(i); 1527 1528 // Sort relocations by offset for more efficient searching for 1529 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1530 if (config->emachine == EM_RISCV || 1531 (config->emachine == EM_PPC64 && sec->name == ".toc")) 1532 llvm::stable_sort(sec->relocs(), 1533 [](const Relocation &lhs, const Relocation &rhs) { 1534 return lhs.offset < rhs.offset; 1535 }); 1536 } 1537 1538 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) { 1539 sec = &s; 1540 getter = OffsetGetter(s); 1541 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(); 1542 if (rels.areRelocsRel()) 1543 scan<ELFT>(rels.rels); 1544 else 1545 scan<ELFT>(rels.relas); 1546 } 1547 1548 template <class ELFT> void elf::scanRelocations() { 1549 // Scan all relocations. Each relocation goes through a series of tests to 1550 // determine if it needs special treatment, such as creating GOT, PLT, 1551 // copy relocations, etc. Note that relocations for non-alloc sections are 1552 // directly processed by InputSection::relocateNonAlloc. 1553 1554 // Deterministic parallellism needs sorting relocations which is unsuitable 1555 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable 1556 // for parallelism. 1557 bool serial = !config->zCombreloc || config->emachine == EM_MIPS || 1558 config->emachine == EM_PPC64; 1559 parallel::TaskGroup tg; 1560 for (ELFFileBase *f : ctx.objectFiles) { 1561 auto fn = [f]() { 1562 RelocationScanner scanner; 1563 for (InputSectionBase *s : f->getSections()) { 1564 if (s && s->kind() == SectionBase::Regular && s->isLive() && 1565 (s->flags & SHF_ALLOC) && 1566 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM)) 1567 scanner.template scanSection<ELFT>(*s); 1568 } 1569 }; 1570 tg.spawn(fn, serial); 1571 } 1572 1573 tg.spawn([] { 1574 RelocationScanner scanner; 1575 for (Partition &part : partitions) { 1576 for (EhInputSection *sec : part.ehFrame->sections) 1577 scanner.template scanSection<ELFT>(*sec); 1578 if (part.armExidx && part.armExidx->isLive()) 1579 for (InputSection *sec : part.armExidx->exidxSections) 1580 if (sec->isLive()) 1581 scanner.template scanSection<ELFT>(*sec); 1582 } 1583 }); 1584 } 1585 1586 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) { 1587 // Handle a reference to a non-preemptible ifunc. These are special in a 1588 // few ways: 1589 // 1590 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1591 // a fixed value. But assuming that all references to the ifunc are 1592 // GOT-generating or PLT-generating, the handling of an ifunc is 1593 // relatively straightforward. We create a PLT entry in Iplt, which is 1594 // usually at the end of .plt, which makes an indirect call using a 1595 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1596 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1597 // which is usually at the end of .rela.plt. Unlike most relocations in 1598 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1599 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1600 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1601 // .got.plt without requiring a separate GOT entry. 1602 // 1603 // - Despite the fact that an ifunc does not have a fixed value, compilers 1604 // that are not passed -fPIC will assume that they do, and will emit 1605 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1606 // symbol. This means that if a direct relocation to the symbol is 1607 // seen, the linker must set a value for the symbol, and this value must 1608 // be consistent no matter what type of reference is made to the symbol. 1609 // This can be done by creating a PLT entry for the symbol in the way 1610 // described above and making it canonical, that is, making all references 1611 // point to the PLT entry instead of the resolver. In lld we also store 1612 // the address of the PLT entry in the dynamic symbol table, which means 1613 // that the symbol will also have the same value in other modules. 1614 // Because the value loaded from the GOT needs to be consistent with 1615 // the value computed using a direct relocation, a non-preemptible ifunc 1616 // may end up with two GOT entries, one in .got.plt that points to the 1617 // address returned by the resolver and is used only by the PLT entry, 1618 // and another in .got that points to the PLT entry and is used by 1619 // GOT-generating relocations. 1620 // 1621 // - The fact that these symbols do not have a fixed value makes them an 1622 // exception to the general rule that a statically linked executable does 1623 // not require any form of dynamic relocation. To handle these relocations 1624 // correctly, the IRELATIVE relocations are stored in an array which a 1625 // statically linked executable's startup code must enumerate using the 1626 // linker-defined symbols __rela?_iplt_{start,end}. 1627 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt) 1628 return false; 1629 // Skip unreferenced non-preemptible ifunc. 1630 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC))) 1631 return true; 1632 1633 sym.isInIplt = true; 1634 1635 // Create an Iplt and the associated IRELATIVE relocation pointing to the 1636 // original section/value pairs. For non-GOT non-PLT relocation case below, we 1637 // may alter section/value, so create a copy of the symbol to make 1638 // section/value fixed. 1639 auto *directSym = makeDefined(cast<Defined>(sym)); 1640 directSym->allocateAux(); 1641 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel, 1642 *directSym); 1643 sym.allocateAux(); 1644 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx; 1645 1646 if (flags & HAS_DIRECT_RELOC) { 1647 // Change the value to the IPLT and redirect all references to it. 1648 auto &d = cast<Defined>(sym); 1649 d.section = in.iplt.get(); 1650 d.value = d.getPltIdx() * target->ipltEntrySize; 1651 d.size = 0; 1652 // It's important to set the symbol type here so that dynamic loaders 1653 // don't try to call the PLT as if it were an ifunc resolver. 1654 d.type = STT_FUNC; 1655 1656 if (flags & NEEDS_GOT) 1657 addGotEntry(sym); 1658 } else if (flags & NEEDS_GOT) { 1659 // Redirect GOT accesses to point to the Igot. 1660 sym.gotInIgot = true; 1661 } 1662 return true; 1663 } 1664 1665 void elf::postScanRelocations() { 1666 auto fn = [](Symbol &sym) { 1667 auto flags = sym.flags.load(std::memory_order_relaxed); 1668 if (handleNonPreemptibleIfunc(sym, flags)) 1669 return; 1670 1671 if (sym.isTagged() && sym.isDefined()) 1672 mainPart->memtagGlobalDescriptors->addSymbol(sym); 1673 1674 if (!sym.needsDynReloc()) 1675 return; 1676 sym.allocateAux(); 1677 1678 if (flags & NEEDS_GOT) 1679 addGotEntry(sym); 1680 if (flags & NEEDS_PLT) 1681 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym); 1682 if (flags & NEEDS_COPY) { 1683 if (sym.isObject()) { 1684 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym)); 1685 // NEEDS_COPY is cleared for sym and its aliases so that in 1686 // later iterations aliases won't cause redundant copies. 1687 assert(!sym.hasFlag(NEEDS_COPY)); 1688 } else { 1689 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT)); 1690 if (!sym.isDefined()) { 1691 replaceWithDefined(sym, *in.plt, 1692 target->pltHeaderSize + 1693 target->pltEntrySize * sym.getPltIdx(), 1694 0); 1695 sym.setFlags(NEEDS_COPY); 1696 if (config->emachine == EM_PPC) { 1697 // PPC32 canonical PLT entries are at the beginning of .glink 1698 cast<Defined>(sym).value = in.plt->headerSize; 1699 in.plt->headerSize += 16; 1700 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym); 1701 } 1702 } 1703 } 1704 } 1705 1706 if (!sym.isTls()) 1707 return; 1708 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1709 GotSection *got = in.got.get(); 1710 1711 if (flags & NEEDS_TLSDESC) { 1712 got->addTlsDescEntry(sym); 1713 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1714 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym, 1715 target->tlsDescRel); 1716 } 1717 if (flags & NEEDS_TLSGD) { 1718 got->addDynTlsEntry(sym); 1719 uint64_t off = got->getGlobalDynOffset(sym); 1720 if (isLocalInExecutable) 1721 // Write one to the GOT slot. 1722 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym}); 1723 else 1724 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off, 1725 sym); 1726 1727 // If the symbol is preemptible we need the dynamic linker to write 1728 // the offset too. 1729 uint64_t offsetOff = off + config->wordsize; 1730 if (sym.isPreemptible) 1731 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff, 1732 sym); 1733 else 1734 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1735 } 1736 if (flags & NEEDS_TLSGD_TO_IE) { 1737 got->addEntry(sym); 1738 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got, 1739 sym.getGotOffset(), sym); 1740 } 1741 if (flags & NEEDS_GOT_DTPREL) { 1742 got->addEntry(sym); 1743 got->addConstant( 1744 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym}); 1745 } 1746 1747 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE)) 1748 addTpOffsetGotEntry(sym); 1749 }; 1750 1751 GotSection *got = in.got.get(); 1752 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) { 1753 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0); 1754 if (config->shared) 1755 mainPart->relaDyn->addReloc( 1756 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()}); 1757 else 1758 got->addConstant( 1759 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy}); 1760 } 1761 1762 assert(symAux.size() == 1); 1763 for (Symbol *sym : symtab.getSymbols()) 1764 fn(*sym); 1765 1766 // Local symbols may need the aforementioned non-preemptible ifunc and GOT 1767 // handling. They don't need regular PLT. 1768 for (ELFFileBase *file : ctx.objectFiles) 1769 for (Symbol *sym : file->getLocalSymbols()) 1770 fn(*sym); 1771 } 1772 1773 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1774 // std::merge requires a strict weak ordering. 1775 if (a->outSecOff < b->outSecOff) 1776 return true; 1777 1778 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection. 1779 if (a->outSecOff == b->outSecOff && a != b) { 1780 auto *ta = dyn_cast<ThunkSection>(a); 1781 auto *tb = dyn_cast<ThunkSection>(b); 1782 1783 // Check if Thunk is immediately before any specific Target 1784 // InputSection for example Mips LA25 Thunks. 1785 if (ta && ta->getTargetInputSection() == b) 1786 return true; 1787 1788 // Place Thunk Sections without specific targets before 1789 // non-Thunk Sections. 1790 if (ta && !tb && !ta->getTargetInputSection()) 1791 return true; 1792 } 1793 1794 return false; 1795 } 1796 1797 // Call Fn on every executable InputSection accessed via the linker script 1798 // InputSectionDescription::Sections. 1799 static void forEachInputSectionDescription( 1800 ArrayRef<OutputSection *> outputSections, 1801 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1802 for (OutputSection *os : outputSections) { 1803 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1804 continue; 1805 for (SectionCommand *bc : os->commands) 1806 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1807 fn(os, isd); 1808 } 1809 } 1810 1811 // Thunk Implementation 1812 // 1813 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1814 // of code that the linker inserts inbetween a caller and a callee. The thunks 1815 // are added at link time rather than compile time as the decision on whether 1816 // a thunk is needed, such as the caller and callee being out of range, can only 1817 // be made at link time. 1818 // 1819 // It is straightforward to tell given the current state of the program when a 1820 // thunk is needed for a particular call. The more difficult part is that 1821 // the thunk needs to be placed in the program such that the caller can reach 1822 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1823 // the program alters addresses, which can mean more thunks etc. 1824 // 1825 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1826 // The decision to have a ThunkSection act as a container means that we can 1827 // more easily handle the most common case of a single block of contiguous 1828 // Thunks by inserting just a single ThunkSection. 1829 // 1830 // The implementation of Thunks in lld is split across these areas 1831 // Relocations.cpp : Framework for creating and placing thunks 1832 // Thunks.cpp : The code generated for each supported thunk 1833 // Target.cpp : Target specific hooks that the framework uses to decide when 1834 // a thunk is used 1835 // Synthetic.cpp : Implementation of ThunkSection 1836 // Writer.cpp : Iteratively call framework until no more Thunks added 1837 // 1838 // Thunk placement requirements: 1839 // Mips LA25 thunks. These must be placed immediately before the callee section 1840 // We can assume that the caller is in range of the Thunk. These are modelled 1841 // by Thunks that return the section they must precede with 1842 // getTargetInputSection(). 1843 // 1844 // ARM interworking and range extension thunks. These thunks must be placed 1845 // within range of the caller. All implemented ARM thunks can always reach the 1846 // callee as they use an indirect jump via a register that has no range 1847 // restrictions. 1848 // 1849 // Thunk placement algorithm: 1850 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1851 // getTargetInputSection(). 1852 // 1853 // For thunks that must be placed within range of the caller there are many 1854 // possible choices given that the maximum range from the caller is usually 1855 // much larger than the average InputSection size. Desirable properties include: 1856 // - Maximize reuse of thunks by multiple callers 1857 // - Minimize number of ThunkSections to simplify insertion 1858 // - Handle impact of already added Thunks on addresses 1859 // - Simple to understand and implement 1860 // 1861 // In lld for the first pass, we pre-create one or more ThunkSections per 1862 // InputSectionDescription at Target specific intervals. A ThunkSection is 1863 // placed so that the estimated end of the ThunkSection is within range of the 1864 // start of the InputSectionDescription or the previous ThunkSection. For 1865 // example: 1866 // InputSectionDescription 1867 // Section 0 1868 // ... 1869 // Section N 1870 // ThunkSection 0 1871 // Section N + 1 1872 // ... 1873 // Section N + K 1874 // Thunk Section 1 1875 // 1876 // The intention is that we can add a Thunk to a ThunkSection that is well 1877 // spaced enough to service a number of callers without having to do a lot 1878 // of work. An important principle is that it is not an error if a Thunk cannot 1879 // be placed in a pre-created ThunkSection; when this happens we create a new 1880 // ThunkSection placed next to the caller. This allows us to handle the vast 1881 // majority of thunks simply, but also handle rare cases where the branch range 1882 // is smaller than the target specific spacing. 1883 // 1884 // The algorithm is expected to create all the thunks that are needed in a 1885 // single pass, with a small number of programs needing a second pass due to 1886 // the insertion of thunks in the first pass increasing the offset between 1887 // callers and callees that were only just in range. 1888 // 1889 // A consequence of allowing new ThunkSections to be created outside of the 1890 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1891 // range in pass K, are out of range in some pass > K due to the insertion of 1892 // more Thunks in between the caller and callee. When this happens we retarget 1893 // the relocation back to the original target and create another Thunk. 1894 1895 // Remove ThunkSections that are empty, this should only be the initial set 1896 // precreated on pass 0. 1897 1898 // Insert the Thunks for OutputSection OS into their designated place 1899 // in the Sections vector, and recalculate the InputSection output section 1900 // offsets. 1901 // This may invalidate any output section offsets stored outside of InputSection 1902 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1903 forEachInputSectionDescription( 1904 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1905 if (isd->thunkSections.empty()) 1906 return; 1907 1908 // Remove any zero sized precreated Thunks. 1909 llvm::erase_if(isd->thunkSections, 1910 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1911 return ts.first->getSize() == 0; 1912 }); 1913 1914 // ISD->ThunkSections contains all created ThunkSections, including 1915 // those inserted in previous passes. Extract the Thunks created this 1916 // pass and order them in ascending outSecOff. 1917 std::vector<ThunkSection *> newThunks; 1918 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1919 if (ts.second == pass) 1920 newThunks.push_back(ts.first); 1921 llvm::stable_sort(newThunks, 1922 [](const ThunkSection *a, const ThunkSection *b) { 1923 return a->outSecOff < b->outSecOff; 1924 }); 1925 1926 // Merge sorted vectors of Thunks and InputSections by outSecOff 1927 SmallVector<InputSection *, 0> tmp; 1928 tmp.reserve(isd->sections.size() + newThunks.size()); 1929 1930 std::merge(isd->sections.begin(), isd->sections.end(), 1931 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1932 mergeCmp); 1933 1934 isd->sections = std::move(tmp); 1935 }); 1936 } 1937 1938 static int64_t getPCBias(RelType type) { 1939 if (config->emachine != EM_ARM) 1940 return 0; 1941 switch (type) { 1942 case R_ARM_THM_JUMP19: 1943 case R_ARM_THM_JUMP24: 1944 case R_ARM_THM_CALL: 1945 return 4; 1946 default: 1947 return 8; 1948 } 1949 } 1950 1951 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1952 // is in range of Src. An ISD maps to a range of InputSections described by a 1953 // linker script section pattern such as { .text .text.* }. 1954 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 1955 InputSection *isec, 1956 InputSectionDescription *isd, 1957 const Relocation &rel, 1958 uint64_t src) { 1959 // See the comment in getThunk for -pcBias below. 1960 const int64_t pcBias = getPCBias(rel.type); 1961 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1962 ThunkSection *ts = tp.first; 1963 uint64_t tsBase = os->addr + ts->outSecOff - pcBias; 1964 uint64_t tsLimit = tsBase + ts->getSize(); 1965 if (target->inBranchRange(rel.type, src, 1966 (src > tsLimit) ? tsBase : tsLimit)) 1967 return ts; 1968 } 1969 1970 // No suitable ThunkSection exists. This can happen when there is a branch 1971 // with lower range than the ThunkSection spacing or when there are too 1972 // many Thunks. Create a new ThunkSection as close to the InputSection as 1973 // possible. Error if InputSection is so large we cannot place ThunkSection 1974 // anywhere in Range. 1975 uint64_t thunkSecOff = isec->outSecOff; 1976 if (!target->inBranchRange(rel.type, src, 1977 os->addr + thunkSecOff + rel.addend)) { 1978 thunkSecOff = isec->outSecOff + isec->getSize(); 1979 if (!target->inBranchRange(rel.type, src, 1980 os->addr + thunkSecOff + rel.addend)) 1981 fatal("InputSection too large for range extension thunk " + 1982 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1983 } 1984 return addThunkSection(os, isd, thunkSecOff); 1985 } 1986 1987 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1988 // precedes its Target. 1989 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1990 ThunkSection *ts = thunkedSections.lookup(isec); 1991 if (ts) 1992 return ts; 1993 1994 // Find InputSectionRange within Target Output Section (TOS) that the 1995 // InputSection (IS) that we need to precede is in. 1996 OutputSection *tos = isec->getParent(); 1997 for (SectionCommand *bc : tos->commands) { 1998 auto *isd = dyn_cast<InputSectionDescription>(bc); 1999 if (!isd || isd->sections.empty()) 2000 continue; 2001 2002 InputSection *first = isd->sections.front(); 2003 InputSection *last = isd->sections.back(); 2004 2005 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 2006 continue; 2007 2008 ts = addThunkSection(tos, isd, isec->outSecOff); 2009 thunkedSections[isec] = ts; 2010 return ts; 2011 } 2012 2013 return nullptr; 2014 } 2015 2016 // Create one or more ThunkSections per OS that can be used to place Thunks. 2017 // We attempt to place the ThunkSections using the following desirable 2018 // properties: 2019 // - Within range of the maximum number of callers 2020 // - Minimise the number of ThunkSections 2021 // 2022 // We follow a simple but conservative heuristic to place ThunkSections at 2023 // offsets that are multiples of a Target specific branch range. 2024 // For an InputSectionDescription that is smaller than the range, a single 2025 // ThunkSection at the end of the range will do. 2026 // 2027 // For an InputSectionDescription that is more than twice the size of the range, 2028 // we place the last ThunkSection at range bytes from the end of the 2029 // InputSectionDescription in order to increase the likelihood that the 2030 // distance from a thunk to its target will be sufficiently small to 2031 // allow for the creation of a short thunk. 2032 void ThunkCreator::createInitialThunkSections( 2033 ArrayRef<OutputSection *> outputSections) { 2034 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 2035 2036 forEachInputSectionDescription( 2037 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2038 if (isd->sections.empty()) 2039 return; 2040 2041 uint32_t isdBegin = isd->sections.front()->outSecOff; 2042 uint32_t isdEnd = 2043 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 2044 uint32_t lastThunkLowerBound = -1; 2045 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 2046 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 2047 2048 uint32_t isecLimit; 2049 uint32_t prevIsecLimit = isdBegin; 2050 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 2051 2052 for (const InputSection *isec : isd->sections) { 2053 isecLimit = isec->outSecOff + isec->getSize(); 2054 if (isecLimit > thunkUpperBound) { 2055 addThunkSection(os, isd, prevIsecLimit); 2056 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 2057 } 2058 if (isecLimit > lastThunkLowerBound) 2059 break; 2060 prevIsecLimit = isecLimit; 2061 } 2062 addThunkSection(os, isd, isecLimit); 2063 }); 2064 } 2065 2066 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 2067 InputSectionDescription *isd, 2068 uint64_t off) { 2069 auto *ts = make<ThunkSection>(os, off); 2070 ts->partition = os->partition; 2071 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 2072 !isd->sections.empty()) { 2073 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 2074 // thunks we disturb the base addresses of sections placed after the thunks 2075 // this makes patches we have generated redundant, and may cause us to 2076 // generate more patches as different instructions are now in sensitive 2077 // locations. When we generate more patches we may force more branches to 2078 // go out of range, causing more thunks to be generated. In pathological 2079 // cases this can cause the address dependent content pass not to converge. 2080 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 2081 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 2082 // which means that adding Thunks to the section does not invalidate 2083 // errata patches for following code. 2084 // Rounding up the size to 4KiB has consequences for code-size and can 2085 // trip up linker script defined assertions. For example the linux kernel 2086 // has an assertion that what LLD represents as an InputSectionDescription 2087 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 2088 // We use the heuristic of rounding up the size when both of the following 2089 // conditions are true: 2090 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 2091 // accounts for the case where no single InputSectionDescription is 2092 // larger than the OutputSection size. This is conservative but simple. 2093 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 2094 // any assertion failures that an InputSectionDescription is < 4 KiB 2095 // in size. 2096 uint64_t isdSize = isd->sections.back()->outSecOff + 2097 isd->sections.back()->getSize() - 2098 isd->sections.front()->outSecOff; 2099 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 2100 ts->roundUpSizeForErrata = true; 2101 } 2102 isd->thunkSections.push_back({ts, pass}); 2103 return ts; 2104 } 2105 2106 static bool isThunkSectionCompatible(InputSection *source, 2107 SectionBase *target) { 2108 // We can't reuse thunks in different loadable partitions because they might 2109 // not be loaded. But partition 1 (the main partition) will always be loaded. 2110 if (source->partition != target->partition) 2111 return target->partition == 1; 2112 return true; 2113 } 2114 2115 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 2116 Relocation &rel, uint64_t src) { 2117 std::vector<Thunk *> *thunkVec = nullptr; 2118 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 2119 // out in the relocation addend. We compensate for the PC bias so that 2120 // an Arm and Thumb relocation to the same destination get the same keyAddend, 2121 // which is usually 0. 2122 const int64_t pcBias = getPCBias(rel.type); 2123 const int64_t keyAddend = rel.addend + pcBias; 2124 2125 // We use a ((section, offset), addend) pair to find the thunk position if 2126 // possible so that we create only one thunk for aliased symbols or ICFed 2127 // sections. There may be multiple relocations sharing the same (section, 2128 // offset + addend) pair. We may revert the relocation back to its original 2129 // non-Thunk target, so we cannot fold offset + addend. 2130 if (auto *d = dyn_cast<Defined>(rel.sym)) 2131 if (!d->isInPlt() && d->section) 2132 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value}, 2133 keyAddend}]; 2134 if (!thunkVec) 2135 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 2136 2137 // Check existing Thunks for Sym to see if they can be reused 2138 for (Thunk *t : *thunkVec) 2139 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 2140 t->isCompatibleWith(*isec, rel) && 2141 target->inBranchRange(rel.type, src, 2142 t->getThunkTargetSym()->getVA(-pcBias))) 2143 return std::make_pair(t, false); 2144 2145 // No existing compatible Thunk in range, create a new one 2146 Thunk *t = addThunk(*isec, rel); 2147 thunkVec->push_back(t); 2148 return std::make_pair(t, true); 2149 } 2150 2151 // Return true if the relocation target is an in range Thunk. 2152 // Return false if the relocation is not to a Thunk. If the relocation target 2153 // was originally to a Thunk, but is no longer in range we revert the 2154 // relocation back to its original non-Thunk target. 2155 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 2156 if (Thunk *t = thunks.lookup(rel.sym)) { 2157 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 2158 return true; 2159 rel.sym = &t->destination; 2160 rel.addend = t->addend; 2161 if (rel.sym->isInPlt()) 2162 rel.expr = toPlt(rel.expr); 2163 } 2164 return false; 2165 } 2166 2167 // Process all relocations from the InputSections that have been assigned 2168 // to InputSectionDescriptions and redirect through Thunks if needed. The 2169 // function should be called iteratively until it returns false. 2170 // 2171 // PreConditions: 2172 // All InputSections that may need a Thunk are reachable from 2173 // OutputSectionCommands. 2174 // 2175 // All OutputSections have an address and all InputSections have an offset 2176 // within the OutputSection. 2177 // 2178 // The offsets between caller (relocation place) and callee 2179 // (relocation target) will not be modified outside of createThunks(). 2180 // 2181 // PostConditions: 2182 // If return value is true then ThunkSections have been inserted into 2183 // OutputSections. All relocations that needed a Thunk based on the information 2184 // available to createThunks() on entry have been redirected to a Thunk. Note 2185 // that adding Thunks changes offsets between caller and callee so more Thunks 2186 // may be required. 2187 // 2188 // If return value is false then no more Thunks are needed, and createThunks has 2189 // made no changes. If the target requires range extension thunks, currently 2190 // ARM, then any future change in offset between caller and callee risks a 2191 // relocation out of range error. 2192 bool ThunkCreator::createThunks(uint32_t pass, 2193 ArrayRef<OutputSection *> outputSections) { 2194 this->pass = pass; 2195 bool addressesChanged = false; 2196 2197 if (pass == 0 && target->getThunkSectionSpacing()) 2198 createInitialThunkSections(outputSections); 2199 2200 // Create all the Thunks and insert them into synthetic ThunkSections. The 2201 // ThunkSections are later inserted back into InputSectionDescriptions. 2202 // We separate the creation of ThunkSections from the insertion of the 2203 // ThunkSections as ThunkSections are not always inserted into the same 2204 // InputSectionDescription as the caller. 2205 forEachInputSectionDescription( 2206 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2207 for (InputSection *isec : isd->sections) 2208 for (Relocation &rel : isec->relocs()) { 2209 uint64_t src = isec->getVA(rel.offset); 2210 2211 // If we are a relocation to an existing Thunk, check if it is 2212 // still in range. If not then Rel will be altered to point to its 2213 // original target so another Thunk can be generated. 2214 if (pass > 0 && normalizeExistingThunk(rel, src)) 2215 continue; 2216 2217 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2218 *rel.sym, rel.addend)) 2219 continue; 2220 2221 Thunk *t; 2222 bool isNew; 2223 std::tie(t, isNew) = getThunk(isec, rel, src); 2224 2225 if (isNew) { 2226 // Find or create a ThunkSection for the new Thunk 2227 ThunkSection *ts; 2228 if (auto *tis = t->getTargetInputSection()) 2229 ts = getISThunkSec(tis); 2230 else 2231 ts = getISDThunkSec(os, isec, isd, rel, src); 2232 ts->addThunk(t); 2233 thunks[t->getThunkTargetSym()] = t; 2234 } 2235 2236 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2237 rel.sym = t->getThunkTargetSym(); 2238 rel.expr = fromPlt(rel.expr); 2239 2240 // On AArch64 and PPC, a jump/call relocation may be encoded as 2241 // STT_SECTION + non-zero addend, clear the addend after 2242 // redirection. 2243 if (config->emachine != EM_MIPS) 2244 rel.addend = -getPCBias(rel.type); 2245 } 2246 2247 for (auto &p : isd->thunkSections) 2248 addressesChanged |= p.first->assignOffsets(); 2249 }); 2250 2251 for (auto &p : thunkedSections) 2252 addressesChanged |= p.second->assignOffsets(); 2253 2254 // Merge all created synthetic ThunkSections back into OutputSection 2255 mergeThunks(outputSections); 2256 return addressesChanged; 2257 } 2258 2259 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2260 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2261 // __tls_get_addr. 2262 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2263 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2264 bool needTlsSymbol = false; 2265 forEachInputSectionDescription( 2266 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2267 for (InputSection *isec : isd->sections) 2268 for (Relocation &rel : isec->relocs()) 2269 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2270 needTlsSymbol = true; 2271 return; 2272 } 2273 }); 2274 return needTlsSymbol; 2275 } 2276 2277 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2278 Symbol *sym = symtab.find("__tls_get_addr"); 2279 if (!sym) 2280 return; 2281 bool needEntry = true; 2282 forEachInputSectionDescription( 2283 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2284 for (InputSection *isec : isd->sections) 2285 for (Relocation &rel : isec->relocs()) 2286 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2287 if (needEntry) { 2288 sym->allocateAux(); 2289 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, 2290 *sym); 2291 needEntry = false; 2292 } 2293 rel.sym = sym; 2294 } 2295 }); 2296 } 2297 2298 template void elf::scanRelocations<ELF32LE>(); 2299 template void elf::scanRelocations<ELF32BE>(); 2300 template void elf::scanRelocations<ELF64LE>(); 2301 template void elf::scanRelocations<ELF64BE>(); 2302