1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "InputFiles.h" 46 #include "LinkerScript.h" 47 #include "OutputSections.h" 48 #include "SymbolTable.h" 49 #include "Symbols.h" 50 #include "SyntheticSections.h" 51 #include "Target.h" 52 #include "Thunks.h" 53 #include "lld/Common/ErrorHandler.h" 54 #include "lld/Common/Memory.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include <algorithm> 59 60 using namespace llvm; 61 using namespace llvm::ELF; 62 using namespace llvm::object; 63 using namespace llvm::support::endian; 64 using namespace lld; 65 using namespace lld::elf; 66 67 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 68 for (SectionCommand *cmd : script->sectionCommands) 69 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 70 if (assign->sym == &sym) 71 return assign->location; 72 return std::nullopt; 73 } 74 75 static std::string getDefinedLocation(const Symbol &sym) { 76 const char msg[] = "\n>>> defined in "; 77 if (sym.file) 78 return msg + toString(sym.file); 79 if (std::optional<std::string> loc = getLinkerScriptLocation(sym)) 80 return msg + *loc; 81 return ""; 82 } 83 84 // Construct a message in the following format. 85 // 86 // >>> defined in /home/alice/src/foo.o 87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 88 // >>> /home/alice/src/bar.o:(.text+0x1) 89 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 90 uint64_t off) { 91 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 92 std::string src = s.getSrcMsg(sym, off); 93 if (!src.empty()) 94 msg += src + "\n>>> "; 95 return msg + s.getObjMsg(off); 96 } 97 98 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 99 int64_t min, uint64_t max) { 100 ErrorPlace errPlace = getErrorPlace(loc); 101 std::string hint; 102 if (rel.sym) { 103 if (!rel.sym->isSection()) 104 hint = "; references '" + lld::toString(*rel.sym) + '\''; 105 else if (auto *d = dyn_cast<Defined>(rel.sym)) 106 hint = ("; references section '" + d->section->name + "'").str(); 107 } 108 if (!errPlace.srcLoc.empty()) 109 hint += "\n>>> referenced by " + errPlace.srcLoc; 110 if (rel.sym && !rel.sym->isSection()) 111 hint += getDefinedLocation(*rel.sym); 112 113 if (errPlace.isec && errPlace.isec->name.starts_with(".debug")) 114 hint += "; consider recompiling with -fdebug-types-section to reduce size " 115 "of debug sections"; 116 117 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 118 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 119 ", " + Twine(max).str() + "]" + hint); 120 } 121 122 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 123 const Twine &msg) { 124 ErrorPlace errPlace = getErrorPlace(loc); 125 std::string hint; 126 if (!sym.getName().empty()) 127 hint = 128 "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym); 129 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 130 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 131 Twine(llvm::maxIntN(n)) + "]" + hint); 132 } 133 134 // Build a bitmask with one bit set for each 64 subset of RelExpr. 135 static constexpr uint64_t buildMask() { return 0; } 136 137 template <typename... Tails> 138 static constexpr uint64_t buildMask(int head, Tails... tails) { 139 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | 140 buildMask(tails...); 141 } 142 143 // Return true if `Expr` is one of `Exprs`. 144 // There are more than 64 but less than 128 RelExprs, so we divide the set of 145 // exprs into [0, 64) and [64, 128) and represent each range as a constant 146 // 64-bit mask. Then we decide which mask to test depending on the value of 147 // expr and use a simple shift and bitwise-and to test for membership. 148 template <RelExpr... Exprs> static bool oneof(RelExpr expr) { 149 assert(0 <= expr && (int)expr < 128 && 150 "RelExpr is too large for 128-bit mask!"); 151 152 if (expr >= 64) 153 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); 154 return (uint64_t(1) << expr) & buildMask(Exprs...); 155 } 156 157 static RelType getMipsPairType(RelType type, bool isLocal) { 158 switch (type) { 159 case R_MIPS_HI16: 160 return R_MIPS_LO16; 161 case R_MIPS_GOT16: 162 // In case of global symbol, the R_MIPS_GOT16 relocation does not 163 // have a pair. Each global symbol has a unique entry in the GOT 164 // and a corresponding instruction with help of the R_MIPS_GOT16 165 // relocation loads an address of the symbol. In case of local 166 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 167 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 168 // relocations handle low 16 bits of the address. That allows 169 // to allocate only one GOT entry for every 64 KBytes of local data. 170 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 171 case R_MICROMIPS_GOT16: 172 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 173 case R_MIPS_PCHI16: 174 return R_MIPS_PCLO16; 175 case R_MICROMIPS_HI16: 176 return R_MICROMIPS_LO16; 177 default: 178 return R_MIPS_NONE; 179 } 180 } 181 182 // True if non-preemptable symbol always has the same value regardless of where 183 // the DSO is loaded. 184 static bool isAbsolute(const Symbol &sym) { 185 if (sym.isUndefWeak()) 186 return true; 187 if (const auto *dr = dyn_cast<Defined>(&sym)) 188 return dr->section == nullptr; // Absolute symbol. 189 return false; 190 } 191 192 static bool isAbsoluteValue(const Symbol &sym) { 193 return isAbsolute(sym) || sym.isTls(); 194 } 195 196 // Returns true if Expr refers a PLT entry. 197 static bool needsPlt(RelExpr expr) { 198 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_LOONGARCH_PLT_PAGE_PC, 199 R_PPC32_PLTREL, R_PPC64_CALL_PLT>(expr); 200 } 201 202 // Returns true if Expr refers a GOT entry. Note that this function 203 // returns false for TLS variables even though they need GOT, because 204 // TLS variables uses GOT differently than the regular variables. 205 static bool needsGot(RelExpr expr) { 206 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 207 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 208 R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>( 209 expr); 210 } 211 212 // True if this expression is of the form Sym - X, where X is a position in the 213 // file (PC, or GOT for example). 214 static bool isRelExpr(RelExpr expr) { 215 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 216 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 217 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC, R_LOONGARCH_PAGE_PC>( 218 expr); 219 } 220 221 static RelExpr toPlt(RelExpr expr) { 222 switch (expr) { 223 case R_LOONGARCH_PAGE_PC: 224 return R_LOONGARCH_PLT_PAGE_PC; 225 case R_PPC64_CALL: 226 return R_PPC64_CALL_PLT; 227 case R_PC: 228 return R_PLT_PC; 229 case R_ABS: 230 return R_PLT; 231 default: 232 return expr; 233 } 234 } 235 236 static RelExpr fromPlt(RelExpr expr) { 237 // We decided not to use a plt. Optimize a reference to the plt to a 238 // reference to the symbol itself. 239 switch (expr) { 240 case R_PLT_PC: 241 case R_PPC32_PLTREL: 242 return R_PC; 243 case R_LOONGARCH_PLT_PAGE_PC: 244 return R_LOONGARCH_PAGE_PC; 245 case R_PPC64_CALL_PLT: 246 return R_PPC64_CALL; 247 case R_PLT: 248 return R_ABS; 249 case R_PLT_GOTPLT: 250 return R_GOTPLTREL; 251 default: 252 return expr; 253 } 254 } 255 256 // Returns true if a given shared symbol is in a read-only segment in a DSO. 257 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 258 using Elf_Phdr = typename ELFT::Phdr; 259 260 // Determine if the symbol is read-only by scanning the DSO's program headers. 261 const auto &file = cast<SharedFile>(*ss.file); 262 for (const Elf_Phdr &phdr : 263 check(file.template getObj<ELFT>().program_headers())) 264 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 265 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 266 ss.value < phdr.p_vaddr + phdr.p_memsz) 267 return true; 268 return false; 269 } 270 271 // Returns symbols at the same offset as a given symbol, including SS itself. 272 // 273 // If two or more symbols are at the same offset, and at least one of 274 // them are copied by a copy relocation, all of them need to be copied. 275 // Otherwise, they would refer to different places at runtime. 276 template <class ELFT> 277 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 278 using Elf_Sym = typename ELFT::Sym; 279 280 const auto &file = cast<SharedFile>(*ss.file); 281 282 SmallSet<SharedSymbol *, 4> ret; 283 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 284 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 285 s.getType() == STT_TLS || s.st_value != ss.value) 286 continue; 287 StringRef name = check(s.getName(file.getStringTable())); 288 Symbol *sym = symtab.find(name); 289 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 290 ret.insert(alias); 291 } 292 293 // The loop does not check SHT_GNU_verneed, so ret does not contain 294 // non-default version symbols. If ss has a non-default version, ret won't 295 // contain ss. Just add ss unconditionally. If a non-default version alias is 296 // separately copy relocated, it and ss will have different addresses. 297 // Fortunately this case is impractical and fails with GNU ld as well. 298 ret.insert(&ss); 299 return ret; 300 } 301 302 // When a symbol is copy relocated or we create a canonical plt entry, it is 303 // effectively a defined symbol. In the case of copy relocation the symbol is 304 // in .bss and in the case of a canonical plt entry it is in .plt. This function 305 // replaces the existing symbol with a Defined pointing to the appropriate 306 // location. 307 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value, 308 uint64_t size) { 309 Symbol old = sym; 310 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value, 311 size, &sec) 312 .overwrite(sym); 313 314 sym.verdefIndex = old.verdefIndex; 315 sym.exportDynamic = true; 316 sym.isUsedInRegularObj = true; 317 // A copy relocated alias may need a GOT entry. 318 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT, 319 std::memory_order_relaxed); 320 } 321 322 // Reserve space in .bss or .bss.rel.ro for copy relocation. 323 // 324 // The copy relocation is pretty much a hack. If you use a copy relocation 325 // in your program, not only the symbol name but the symbol's size, RW/RO 326 // bit and alignment become part of the ABI. In addition to that, if the 327 // symbol has aliases, the aliases become part of the ABI. That's subtle, 328 // but if you violate that implicit ABI, that can cause very counter- 329 // intuitive consequences. 330 // 331 // So, what is the copy relocation? It's for linking non-position 332 // independent code to DSOs. In an ideal world, all references to data 333 // exported by DSOs should go indirectly through GOT. But if object files 334 // are compiled as non-PIC, all data references are direct. There is no 335 // way for the linker to transform the code to use GOT, as machine 336 // instructions are already set in stone in object files. This is where 337 // the copy relocation takes a role. 338 // 339 // A copy relocation instructs the dynamic linker to copy data from a DSO 340 // to a specified address (which is usually in .bss) at load-time. If the 341 // static linker (that's us) finds a direct data reference to a DSO 342 // symbol, it creates a copy relocation, so that the symbol can be 343 // resolved as if it were in .bss rather than in a DSO. 344 // 345 // As you can see in this function, we create a copy relocation for the 346 // dynamic linker, and the relocation contains not only symbol name but 347 // various other information about the symbol. So, such attributes become a 348 // part of the ABI. 349 // 350 // Note for application developers: I can give you a piece of advice if 351 // you are writing a shared library. You probably should export only 352 // functions from your library. You shouldn't export variables. 353 // 354 // As an example what can happen when you export variables without knowing 355 // the semantics of copy relocations, assume that you have an exported 356 // variable of type T. It is an ABI-breaking change to add new members at 357 // end of T even though doing that doesn't change the layout of the 358 // existing members. That's because the space for the new members are not 359 // reserved in .bss unless you recompile the main program. That means they 360 // are likely to overlap with other data that happens to be laid out next 361 // to the variable in .bss. This kind of issue is sometimes very hard to 362 // debug. What's a solution? Instead of exporting a variable V from a DSO, 363 // define an accessor getV(). 364 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 365 // Copy relocation against zero-sized symbol doesn't make sense. 366 uint64_t symSize = ss.getSize(); 367 if (symSize == 0 || ss.alignment == 0) 368 fatal("cannot create a copy relocation for symbol " + toString(ss)); 369 370 // See if this symbol is in a read-only segment. If so, preserve the symbol's 371 // memory protection by reserving space in the .bss.rel.ro section. 372 bool isRO = isReadOnly<ELFT>(ss); 373 BssSection *sec = 374 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 375 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 376 377 // At this point, sectionBases has been migrated to sections. Append sec to 378 // sections. 379 if (osec->commands.empty() || 380 !isa<InputSectionDescription>(osec->commands.back())) 381 osec->commands.push_back(make<InputSectionDescription>("")); 382 auto *isd = cast<InputSectionDescription>(osec->commands.back()); 383 isd->sections.push_back(sec); 384 osec->commitSection(sec); 385 386 // Look through the DSO's dynamic symbol table for aliases and create a 387 // dynamic symbol for each one. This causes the copy relocation to correctly 388 // interpose any aliases. 389 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 390 replaceWithDefined(*sym, *sec, 0, sym->size); 391 392 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss); 393 } 394 395 // .eh_frame sections are mergeable input sections, so their input 396 // offsets are not linearly mapped to output section. For each input 397 // offset, we need to find a section piece containing the offset and 398 // add the piece's base address to the input offset to compute the 399 // output offset. That isn't cheap. 400 // 401 // This class is to speed up the offset computation. When we process 402 // relocations, we access offsets in the monotonically increasing 403 // order. So we can optimize for that access pattern. 404 // 405 // For sections other than .eh_frame, this class doesn't do anything. 406 namespace { 407 class OffsetGetter { 408 public: 409 OffsetGetter() = default; 410 explicit OffsetGetter(InputSectionBase &sec) { 411 if (auto *eh = dyn_cast<EhInputSection>(&sec)) { 412 cies = eh->cies; 413 fdes = eh->fdes; 414 i = cies.begin(); 415 j = fdes.begin(); 416 } 417 } 418 419 // Translates offsets in input sections to offsets in output sections. 420 // Given offset must increase monotonically. We assume that Piece is 421 // sorted by inputOff. 422 uint64_t get(uint64_t off) { 423 if (cies.empty()) 424 return off; 425 426 while (j != fdes.end() && j->inputOff <= off) 427 ++j; 428 auto it = j; 429 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) { 430 while (i != cies.end() && i->inputOff <= off) 431 ++i; 432 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off) 433 fatal(".eh_frame: relocation is not in any piece"); 434 it = i; 435 } 436 437 // Offset -1 means that the piece is dead (i.e. garbage collected). 438 if (it[-1].outputOff == -1) 439 return -1; 440 return it[-1].outputOff + (off - it[-1].inputOff); 441 } 442 443 private: 444 ArrayRef<EhSectionPiece> cies, fdes; 445 ArrayRef<EhSectionPiece>::iterator i, j; 446 }; 447 448 // This class encapsulates states needed to scan relocations for one 449 // InputSectionBase. 450 class RelocationScanner { 451 public: 452 template <class ELFT> void scanSection(InputSectionBase &s); 453 454 private: 455 InputSectionBase *sec; 456 OffsetGetter getter; 457 458 // End of relocations, used by Mips/PPC64. 459 const void *end = nullptr; 460 461 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const; 462 template <class ELFT, class RelTy> 463 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; 464 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 465 uint64_t relOff) const; 466 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, 467 int64_t addend) const; 468 template <class ELFT, class RelTy> void scanOne(RelTy *&i); 469 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels); 470 }; 471 } // namespace 472 473 // MIPS has an odd notion of "paired" relocations to calculate addends. 474 // For example, if a relocation is of R_MIPS_HI16, there must be a 475 // R_MIPS_LO16 relocation after that, and an addend is calculated using 476 // the two relocations. 477 template <class ELFT, class RelTy> 478 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr, 479 bool isLocal) const { 480 if (expr == R_MIPS_GOTREL && isLocal) 481 return sec->getFile<ELFT>()->mipsGp0; 482 483 // The ABI says that the paired relocation is used only for REL. 484 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 485 if (RelTy::IsRela) 486 return 0; 487 488 RelType type = rel.getType(config->isMips64EL); 489 uint32_t pairTy = getMipsPairType(type, isLocal); 490 if (pairTy == R_MIPS_NONE) 491 return 0; 492 493 const uint8_t *buf = sec->content().data(); 494 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 495 496 // To make things worse, paired relocations might not be contiguous in 497 // the relocation table, so we need to do linear search. *sigh* 498 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri) 499 if (ri->getType(config->isMips64EL) == pairTy && 500 ri->getSymbol(config->isMips64EL) == symIndex) 501 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 502 503 warn("can't find matching " + toString(pairTy) + " relocation for " + 504 toString(type)); 505 return 0; 506 } 507 508 // Custom error message if Sym is defined in a discarded section. 509 template <class ELFT> 510 static std::string maybeReportDiscarded(Undefined &sym) { 511 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 512 if (!file || !sym.discardedSecIdx || 513 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 514 return ""; 515 ArrayRef<typename ELFT::Shdr> objSections = 516 file->template getELFShdrs<ELFT>(); 517 518 std::string msg; 519 if (sym.type == ELF::STT_SECTION) { 520 msg = "relocation refers to a discarded section: "; 521 msg += CHECK( 522 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 523 } else { 524 msg = "relocation refers to a symbol in a discarded section: " + 525 toString(sym); 526 } 527 msg += "\n>>> defined in " + toString(file); 528 529 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 530 if (elfSec.sh_type != SHT_GROUP) 531 return msg; 532 533 // If the discarded section is a COMDAT. 534 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 535 if (const InputFile *prevailing = 536 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) { 537 msg += "\n>>> section group signature: " + signature.str() + 538 "\n>>> prevailing definition is in " + toString(prevailing); 539 if (sym.nonPrevailing) { 540 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK " 541 "binding and the symbol in a non-prevailing group had STB_GLOBAL " 542 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding " 543 "signature is not supported"; 544 } 545 } 546 return msg; 547 } 548 549 namespace { 550 // Undefined diagnostics are collected in a vector and emitted once all of 551 // them are known, so that some postprocessing on the list of undefined symbols 552 // can happen before lld emits diagnostics. 553 struct UndefinedDiag { 554 Undefined *sym; 555 struct Loc { 556 InputSectionBase *sec; 557 uint64_t offset; 558 }; 559 std::vector<Loc> locs; 560 bool isWarning; 561 }; 562 563 std::vector<UndefinedDiag> undefs; 564 std::mutex relocMutex; 565 } 566 567 // Check whether the definition name def is a mangled function name that matches 568 // the reference name ref. 569 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 570 llvm::ItaniumPartialDemangler d; 571 std::string name = def.str(); 572 if (d.partialDemangle(name.c_str())) 573 return false; 574 char *buf = d.getFunctionName(nullptr, nullptr); 575 if (!buf) 576 return false; 577 bool ret = ref == buf; 578 free(buf); 579 return ret; 580 } 581 582 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 583 // the suggested symbol, which is either in the symbol table, or in the same 584 // file of sym. 585 static const Symbol *getAlternativeSpelling(const Undefined &sym, 586 std::string &pre_hint, 587 std::string &post_hint) { 588 DenseMap<StringRef, const Symbol *> map; 589 if (sym.file && sym.file->kind() == InputFile::ObjKind) { 590 auto *file = cast<ELFFileBase>(sym.file); 591 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 592 // will give an error. Don't suggest an alternative spelling. 593 if (file && sym.discardedSecIdx != 0 && 594 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 595 return nullptr; 596 597 // Build a map of local defined symbols. 598 for (const Symbol *s : sym.file->getSymbols()) 599 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 600 map.try_emplace(s->getName(), s); 601 } 602 603 auto suggest = [&](StringRef newName) -> const Symbol * { 604 // If defined locally. 605 if (const Symbol *s = map.lookup(newName)) 606 return s; 607 608 // If in the symbol table and not undefined. 609 if (const Symbol *s = symtab.find(newName)) 610 if (!s->isUndefined()) 611 return s; 612 613 return nullptr; 614 }; 615 616 // This loop enumerates all strings of Levenshtein distance 1 as typo 617 // correction candidates and suggests the one that exists as a non-undefined 618 // symbol. 619 StringRef name = sym.getName(); 620 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 621 // Insert a character before name[i]. 622 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 623 for (char c = '0'; c <= 'z'; ++c) { 624 newName[i] = c; 625 if (const Symbol *s = suggest(newName)) 626 return s; 627 } 628 if (i == e) 629 break; 630 631 // Substitute name[i]. 632 newName = std::string(name); 633 for (char c = '0'; c <= 'z'; ++c) { 634 newName[i] = c; 635 if (const Symbol *s = suggest(newName)) 636 return s; 637 } 638 639 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 640 // common. 641 if (i + 1 < e) { 642 newName[i] = name[i + 1]; 643 newName[i + 1] = name[i]; 644 if (const Symbol *s = suggest(newName)) 645 return s; 646 } 647 648 // Delete name[i]. 649 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 650 if (const Symbol *s = suggest(newName)) 651 return s; 652 } 653 654 // Case mismatch, e.g. Foo vs FOO. 655 for (auto &it : map) 656 if (name.equals_insensitive(it.first)) 657 return it.second; 658 for (Symbol *sym : symtab.getSymbols()) 659 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 660 return sym; 661 662 // The reference may be a mangled name while the definition is not. Suggest a 663 // missing extern "C". 664 if (name.starts_with("_Z")) { 665 std::string buf = name.str(); 666 llvm::ItaniumPartialDemangler d; 667 if (!d.partialDemangle(buf.c_str())) 668 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 669 const Symbol *s = suggest(buf); 670 free(buf); 671 if (s) { 672 pre_hint = ": extern \"C\" "; 673 return s; 674 } 675 } 676 } else { 677 const Symbol *s = nullptr; 678 for (auto &it : map) 679 if (canSuggestExternCForCXX(name, it.first)) { 680 s = it.second; 681 break; 682 } 683 if (!s) 684 for (Symbol *sym : symtab.getSymbols()) 685 if (canSuggestExternCForCXX(name, sym->getName())) { 686 s = sym; 687 break; 688 } 689 if (s) { 690 pre_hint = " to declare "; 691 post_hint = " as extern \"C\"?"; 692 return s; 693 } 694 } 695 696 return nullptr; 697 } 698 699 static void reportUndefinedSymbol(const UndefinedDiag &undef, 700 bool correctSpelling) { 701 Undefined &sym = *undef.sym; 702 703 auto visibility = [&]() -> std::string { 704 switch (sym.visibility()) { 705 case STV_INTERNAL: 706 return "internal "; 707 case STV_HIDDEN: 708 return "hidden "; 709 case STV_PROTECTED: 710 return "protected "; 711 default: 712 return ""; 713 } 714 }; 715 716 std::string msg; 717 switch (config->ekind) { 718 case ELF32LEKind: 719 msg = maybeReportDiscarded<ELF32LE>(sym); 720 break; 721 case ELF32BEKind: 722 msg = maybeReportDiscarded<ELF32BE>(sym); 723 break; 724 case ELF64LEKind: 725 msg = maybeReportDiscarded<ELF64LE>(sym); 726 break; 727 case ELF64BEKind: 728 msg = maybeReportDiscarded<ELF64BE>(sym); 729 break; 730 default: 731 llvm_unreachable(""); 732 } 733 if (msg.empty()) 734 msg = "undefined " + visibility() + "symbol: " + toString(sym); 735 736 const size_t maxUndefReferences = 3; 737 size_t i = 0; 738 for (UndefinedDiag::Loc l : undef.locs) { 739 if (i >= maxUndefReferences) 740 break; 741 InputSectionBase &sec = *l.sec; 742 uint64_t offset = l.offset; 743 744 msg += "\n>>> referenced by "; 745 std::string src = sec.getSrcMsg(sym, offset); 746 if (!src.empty()) 747 msg += src + "\n>>> "; 748 msg += sec.getObjMsg(offset); 749 i++; 750 } 751 752 if (i < undef.locs.size()) 753 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 754 .str(); 755 756 if (correctSpelling) { 757 std::string pre_hint = ": ", post_hint; 758 if (const Symbol *corrected = 759 getAlternativeSpelling(sym, pre_hint, post_hint)) { 760 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 761 if (corrected->file) 762 msg += "\n>>> defined in: " + toString(corrected->file); 763 } 764 } 765 766 if (sym.getName().starts_with("_ZTV")) 767 msg += 768 "\n>>> the vtable symbol may be undefined because the class is missing " 769 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 770 if (config->gcSections && config->zStartStopGC && 771 sym.getName().starts_with("__start_")) { 772 msg += "\n>>> the encapsulation symbol needs to be retained under " 773 "--gc-sections properly; consider -z nostart-stop-gc " 774 "(see https://lld.llvm.org/ELF/start-stop-gc)"; 775 } 776 777 if (undef.isWarning) 778 warn(msg); 779 else 780 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 781 } 782 783 void elf::reportUndefinedSymbols() { 784 // Find the first "undefined symbol" diagnostic for each diagnostic, and 785 // collect all "referenced from" lines at the first diagnostic. 786 DenseMap<Symbol *, UndefinedDiag *> firstRef; 787 for (UndefinedDiag &undef : undefs) { 788 assert(undef.locs.size() == 1); 789 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 790 canon->locs.push_back(undef.locs[0]); 791 undef.locs.clear(); 792 } else 793 firstRef[undef.sym] = &undef; 794 } 795 796 // Enable spell corrector for the first 2 diagnostics. 797 for (const auto &[i, undef] : llvm::enumerate(undefs)) 798 if (!undef.locs.empty()) 799 reportUndefinedSymbol(undef, i < 2); 800 undefs.clear(); 801 } 802 803 // Report an undefined symbol if necessary. 804 // Returns true if the undefined symbol will produce an error message. 805 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec, 806 uint64_t offset) { 807 std::lock_guard<std::mutex> lock(relocMutex); 808 // If versioned, issue an error (even if the symbol is weak) because we don't 809 // know the defining filename which is required to construct a Verneed entry. 810 if (sym.hasVersionSuffix) { 811 undefs.push_back({&sym, {{&sec, offset}}, false}); 812 return true; 813 } 814 if (sym.isWeak()) 815 return false; 816 817 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT; 818 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 819 return false; 820 821 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 822 // which references a switch table in a discarded .rodata/.text section. The 823 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 824 // spec says references from outside the group to a STB_LOCAL symbol are not 825 // allowed. Work around the bug. 826 // 827 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 828 // because .LC0-.LTOC is not representable if the two labels are in different 829 // .got2 830 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc")) 831 return false; 832 833 bool isWarning = 834 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 835 config->noinhibitExec; 836 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 837 return !isWarning; 838 } 839 840 // MIPS N32 ABI treats series of successive relocations with the same offset 841 // as a single relocation. The similar approach used by N64 ABI, but this ABI 842 // packs all relocations into the single relocation record. Here we emulate 843 // this for the N32 ABI. Iterate over relocation with the same offset and put 844 // theirs types into the single bit-set. 845 template <class RelTy> 846 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const { 847 RelType type = 0; 848 uint64_t offset = rel->r_offset; 849 850 int n = 0; 851 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset) 852 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 853 return type; 854 } 855 856 template <bool shard = false> 857 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec, 858 Symbol &sym, int64_t addend, RelExpr expr, 859 RelType type) { 860 Partition &part = isec.getPartition(); 861 862 // Add a relative relocation. If relrDyn section is enabled, and the 863 // relocation offset is guaranteed to be even, add the relocation to 864 // the relrDyn section, otherwise add it to the relaDyn section. 865 // relrDyn sections don't support odd offsets. Also, relrDyn sections 866 // don't store the addend values, so we must write it to the relocated 867 // address. 868 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) { 869 isec.addReloc({expr, type, offsetInSec, addend, &sym}); 870 if (shard) 871 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back( 872 {&isec, offsetInSec}); 873 else 874 part.relrDyn->relocs.push_back({&isec, offsetInSec}); 875 return; 876 } 877 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec, 878 sym, addend, type, expr); 879 } 880 881 template <class PltSection, class GotPltSection> 882 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt, 883 RelocationBaseSection &rel, RelType type, Symbol &sym) { 884 plt.addEntry(sym); 885 gotPlt.addEntry(sym); 886 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(), 887 sym.isPreemptible ? DynamicReloc::AgainstSymbol 888 : DynamicReloc::AddendOnlyWithTargetVA, 889 sym, 0, R_ABS}); 890 } 891 892 static void addGotEntry(Symbol &sym) { 893 in.got->addEntry(sym); 894 uint64_t off = sym.getGotOffset(); 895 896 // If preemptible, emit a GLOB_DAT relocation. 897 if (sym.isPreemptible) { 898 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off, 899 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 900 return; 901 } 902 903 // Otherwise, the value is either a link-time constant or the load base 904 // plus a constant. 905 if (!config->isPic || isAbsolute(sym)) 906 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym}); 907 else 908 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel); 909 } 910 911 static void addTpOffsetGotEntry(Symbol &sym) { 912 in.got->addEntry(sym); 913 uint64_t off = sym.getGotOffset(); 914 if (!sym.isPreemptible && !config->isPic) { 915 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym}); 916 return; 917 } 918 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 919 target->tlsGotRel, *in.got, off, sym, target->symbolicRel); 920 } 921 922 // Return true if we can define a symbol in the executable that 923 // contains the value/function of a symbol defined in a shared 924 // library. 925 static bool canDefineSymbolInExecutable(Symbol &sym) { 926 // If the symbol has default visibility the symbol defined in the 927 // executable will preempt it. 928 // Note that we want the visibility of the shared symbol itself, not 929 // the visibility of the symbol in the output file we are producing. 930 if (!sym.dsoProtected) 931 return true; 932 933 // If we are allowed to break address equality of functions, defining 934 // a plt entry will allow the program to call the function in the 935 // .so, but the .so and the executable will no agree on the address 936 // of the function. Similar logic for objects. 937 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 938 (sym.isObject() && config->ignoreDataAddressEquality)); 939 } 940 941 // Returns true if a given relocation can be computed at link-time. 942 // This only handles relocation types expected in processAux. 943 // 944 // For instance, we know the offset from a relocation to its target at 945 // link-time if the relocation is PC-relative and refers a 946 // non-interposable function in the same executable. This function 947 // will return true for such relocation. 948 // 949 // If this function returns false, that means we need to emit a 950 // dynamic relocation so that the relocation will be fixed at load-time. 951 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type, 952 const Symbol &sym, 953 uint64_t relOff) const { 954 // These expressions always compute a constant 955 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE, 956 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, 957 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 958 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT, 959 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE, 960 R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>( 961 e)) 962 return true; 963 964 // These never do, except if the entire file is position dependent or if 965 // only the low bits are used. 966 if (e == R_GOT || e == R_PLT) 967 return target->usesOnlyLowPageBits(type) || !config->isPic; 968 969 if (sym.isPreemptible) 970 return false; 971 if (!config->isPic) 972 return true; 973 974 // The size of a non preemptible symbol is a constant. 975 if (e == R_SIZE) 976 return true; 977 978 // For the target and the relocation, we want to know if they are 979 // absolute or relative. 980 bool absVal = isAbsoluteValue(sym); 981 bool relE = isRelExpr(e); 982 if (absVal && !relE) 983 return true; 984 if (!absVal && relE) 985 return true; 986 if (!absVal && !relE) 987 return target->usesOnlyLowPageBits(type); 988 989 assert(absVal && relE); 990 991 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 992 // in PIC mode. This is a little strange, but it allows us to link function 993 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 994 // Normally such a call will be guarded with a comparison, which will load a 995 // zero from the GOT. 996 if (sym.isUndefWeak()) 997 return true; 998 999 // We set the final symbols values for linker script defined symbols later. 1000 // They always can be computed as a link time constant. 1001 if (sym.scriptDefined) 1002 return true; 1003 1004 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 1005 toString(sym) + getLocation(*sec, sym, relOff)); 1006 return true; 1007 } 1008 1009 // The reason we have to do this early scan is as follows 1010 // * To mmap the output file, we need to know the size 1011 // * For that, we need to know how many dynamic relocs we will have. 1012 // It might be possible to avoid this by outputting the file with write: 1013 // * Write the allocated output sections, computing addresses. 1014 // * Apply relocations, recording which ones require a dynamic reloc. 1015 // * Write the dynamic relocations. 1016 // * Write the rest of the file. 1017 // This would have some drawbacks. For example, we would only know if .rela.dyn 1018 // is needed after applying relocations. If it is, it will go after rw and rx 1019 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1020 // complicates things for the dynamic linker and means we would have to reserve 1021 // space for the extra PT_LOAD even if we end up not using it. 1022 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset, 1023 Symbol &sym, int64_t addend) const { 1024 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT 1025 // indirection. 1026 const bool isIfunc = sym.isGnuIFunc(); 1027 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) { 1028 if (expr != R_GOT_PC) { 1029 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1030 // stub type. It should be ignored if optimized to R_PC. 1031 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1032 addend &= ~0x8000; 1033 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1034 // call __tls_get_addr even if the symbol is non-preemptible. 1035 if (!(config->emachine == EM_HEXAGON && 1036 (type == R_HEX_GD_PLT_B22_PCREL || 1037 type == R_HEX_GD_PLT_B22_PCREL_X || 1038 type == R_HEX_GD_PLT_B32_PCREL_X))) 1039 expr = fromPlt(expr); 1040 } else if (!isAbsoluteValue(sym)) { 1041 expr = 1042 target->adjustGotPcExpr(type, addend, sec->content().data() + offset); 1043 } 1044 } 1045 1046 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1047 // direct relocation on through. 1048 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) { 1049 std::lock_guard<std::mutex> lock(relocMutex); 1050 sym.exportDynamic = true; 1051 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type); 1052 return; 1053 } 1054 1055 if (needsGot(expr)) { 1056 if (config->emachine == EM_MIPS) { 1057 // MIPS ABI has special rules to process GOT entries and doesn't 1058 // require relocation entries for them. A special case is TLS 1059 // relocations. In that case dynamic loader applies dynamic 1060 // relocations to initialize TLS GOT entries. 1061 // See "Global Offset Table" in Chapter 5 in the following document 1062 // for detailed description: 1063 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1064 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1065 } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) { 1066 // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which 1067 // case the NEEDS_GOT flag shouldn't get set. 1068 sym.setFlags(NEEDS_GOT); 1069 } 1070 } else if (needsPlt(expr)) { 1071 sym.setFlags(NEEDS_PLT); 1072 } else if (LLVM_UNLIKELY(isIfunc)) { 1073 sym.setFlags(HAS_DIRECT_RELOC); 1074 } 1075 1076 // If the relocation is known to be a link-time constant, we know no dynamic 1077 // relocation will be created, pass the control to relocateAlloc() or 1078 // relocateNonAlloc() to resolve it. 1079 // 1080 // The behavior of an undefined weak reference is implementation defined. For 1081 // non-link-time constants, we resolve relocations statically (let 1082 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 1083 // relocations for -pie and -shared. 1084 // 1085 // The general expectation of -no-pie static linking is that there is no 1086 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 1087 // -shared matches the spirit of its -z undefs default. -pie has freedom on 1088 // choices, and we choose dynamic relocations to be consistent with the 1089 // handling of GOT-generating relocations. 1090 if (isStaticLinkTimeConstant(expr, type, sym, offset) || 1091 (!config->isPic && sym.isUndefWeak())) { 1092 sec->addReloc({expr, type, offset, addend, &sym}); 1093 return; 1094 } 1095 1096 // Use a simple -z notext rule that treats all sections except .eh_frame as 1097 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our 1098 // SectionBase::getOffset would incorrectly adjust the offset). 1099 // 1100 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel 1101 // conversion. We still emit a dynamic relocation. 1102 bool canWrite = (sec->flags & SHF_WRITE) || 1103 !(config->zText || 1104 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS)); 1105 if (canWrite) { 1106 RelType rel = target->getDynRel(type); 1107 if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) || 1108 (rel == target->symbolicRel && !sym.isPreemptible)) { 1109 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type); 1110 return; 1111 } else if (rel != 0) { 1112 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1113 rel = target->relativeRel; 1114 std::lock_guard<std::mutex> lock(relocMutex); 1115 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym, 1116 addend, type); 1117 1118 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1119 // While regular ABI uses dynamic relocations to fill up GOT entries 1120 // MIPS ABI requires dynamic linker to fills up GOT entries using 1121 // specially sorted dynamic symbol table. This affects even dynamic 1122 // relocations against symbols which do not require GOT entries 1123 // creation explicitly, i.e. do not have any GOT-relocations. So if 1124 // a preemptible symbol has a dynamic relocation we anyway have 1125 // to create a GOT entry for it. 1126 // If a non-preemptible symbol has a dynamic relocation against it, 1127 // dynamic linker takes it st_value, adds offset and writes down 1128 // result of the dynamic relocation. In case of preemptible symbol 1129 // dynamic linker performs symbol resolution, writes the symbol value 1130 // to the GOT entry and reads the GOT entry when it needs to perform 1131 // a dynamic relocation. 1132 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1133 if (config->emachine == EM_MIPS) 1134 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1135 return; 1136 } 1137 } 1138 1139 // When producing an executable, we can perform copy relocations (for 1140 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1141 if (!config->shared) { 1142 if (!canDefineSymbolInExecutable(sym)) { 1143 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1144 getLocation(*sec, sym, offset)); 1145 return; 1146 } 1147 1148 if (sym.isObject()) { 1149 // Produce a copy relocation. 1150 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1151 if (!config->zCopyreloc) 1152 error("unresolvable relocation " + toString(type) + 1153 " against symbol '" + toString(*ss) + 1154 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1155 getLocation(*sec, sym, offset)); 1156 sym.setFlags(NEEDS_COPY); 1157 } 1158 sec->addReloc({expr, type, offset, addend, &sym}); 1159 return; 1160 } 1161 1162 // This handles a non PIC program call to function in a shared library. In 1163 // an ideal world, we could just report an error saying the relocation can 1164 // overflow at runtime. In the real world with glibc, crt1.o has a 1165 // R_X86_64_PC32 pointing to libc.so. 1166 // 1167 // The general idea on how to handle such cases is to create a PLT entry and 1168 // use that as the function value. 1169 // 1170 // For the static linking part, we just return a plt expr and everything 1171 // else will use the PLT entry as the address. 1172 // 1173 // The remaining problem is making sure pointer equality still works. We 1174 // need the help of the dynamic linker for that. We let it know that we have 1175 // a direct reference to a so symbol by creating an undefined symbol with a 1176 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1177 // the value of the symbol we created. This is true even for got entries, so 1178 // pointer equality is maintained. To avoid an infinite loop, the only entry 1179 // that points to the real function is a dedicated got entry used by the 1180 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1181 // R_386_JMP_SLOT, etc). 1182 1183 // For position independent executable on i386, the plt entry requires ebx 1184 // to be set. This causes two problems: 1185 // * If some code has a direct reference to a function, it was probably 1186 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1187 // * If a library definition gets preempted to the executable, it will have 1188 // the wrong ebx value. 1189 if (sym.isFunc()) { 1190 if (config->pie && config->emachine == EM_386) 1191 errorOrWarn("symbol '" + toString(sym) + 1192 "' cannot be preempted; recompile with -fPIE" + 1193 getLocation(*sec, sym, offset)); 1194 sym.setFlags(NEEDS_COPY | NEEDS_PLT); 1195 sec->addReloc({expr, type, offset, addend, &sym}); 1196 return; 1197 } 1198 } 1199 1200 errorOrWarn("relocation " + toString(type) + " cannot be used against " + 1201 (sym.getName().empty() ? "local symbol" 1202 : "symbol '" + toString(sym) + "'") + 1203 "; recompile with -fPIC" + getLocation(*sec, sym, offset)); 1204 } 1205 1206 // This function is similar to the `handleTlsRelocation`. MIPS does not 1207 // support any relaxations for TLS relocations so by factoring out MIPS 1208 // handling in to the separate function we can simplify the code and do not 1209 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1210 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1211 // without dynamic relocations. 1212 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1213 InputSectionBase &c, uint64_t offset, 1214 int64_t addend, RelExpr expr) { 1215 if (expr == R_MIPS_TLSLD) { 1216 in.mipsGot->addTlsIndex(*c.file); 1217 c.addReloc({expr, type, offset, addend, &sym}); 1218 return 1; 1219 } 1220 if (expr == R_MIPS_TLSGD) { 1221 in.mipsGot->addDynTlsEntry(*c.file, sym); 1222 c.addReloc({expr, type, offset, addend, &sym}); 1223 return 1; 1224 } 1225 return 0; 1226 } 1227 1228 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1229 // require the generation of a pair of GOT entries that have associated dynamic 1230 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1231 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1232 // symbol in TLS block. 1233 // 1234 // Returns the number of relocations processed. 1235 static unsigned handleTlsRelocation(RelType type, Symbol &sym, 1236 InputSectionBase &c, uint64_t offset, 1237 int64_t addend, RelExpr expr) { 1238 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1239 if (config->shared) { 1240 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1241 " cannot be used with -shared" + getLocation(c, sym, offset)); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 1247 if (config->emachine == EM_MIPS) 1248 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1249 1250 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1251 R_TLSDESC_GOTPLT>(expr) && 1252 config->shared) { 1253 if (expr != R_TLSDESC_CALL) { 1254 sym.setFlags(NEEDS_TLSDESC); 1255 c.addReloc({expr, type, offset, addend, &sym}); 1256 } 1257 return 1; 1258 } 1259 1260 // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE 1261 // relaxation. 1262 // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1263 // relaxation as well. 1264 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 1265 config->emachine != EM_HEXAGON && 1266 config->emachine != EM_LOONGARCH && 1267 config->emachine != EM_RISCV && 1268 !c.file->ppc64DisableTLSRelax; 1269 1270 // If we are producing an executable and the symbol is non-preemptable, it 1271 // must be defined and the code sequence can be relaxed to use Local-Exec. 1272 // 1273 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1274 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1275 // because them are always 1. This may be necessary for static linking as 1276 // DTPMOD may not be expected at load time. 1277 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1278 1279 // Local Dynamic is for access to module local TLS variables, while still 1280 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1281 // module index, with a special value of 0 for the current module. GOT[e1] is 1282 // unused. There only needs to be one module index entry. 1283 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) { 1284 // Local-Dynamic relocs can be relaxed to Local-Exec. 1285 if (toExecRelax) { 1286 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, 1287 offset, addend, &sym}); 1288 return target->getTlsGdRelaxSkip(type); 1289 } 1290 if (expr == R_TLSLD_HINT) 1291 return 1; 1292 ctx.needsTlsLd.store(true, std::memory_order_relaxed); 1293 c.addReloc({expr, type, offset, addend, &sym}); 1294 return 1; 1295 } 1296 1297 // Local-Dynamic relocs can be relaxed to Local-Exec. 1298 if (expr == R_DTPREL) { 1299 if (toExecRelax) 1300 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); 1301 c.addReloc({expr, type, offset, addend, &sym}); 1302 return 1; 1303 } 1304 1305 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1306 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 1307 if (expr == R_TLSLD_GOT_OFF) { 1308 sym.setFlags(NEEDS_GOT_DTPREL); 1309 c.addReloc({expr, type, offset, addend, &sym}); 1310 return 1; 1311 } 1312 1313 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1314 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, 1315 R_LOONGARCH_TLSGD_PAGE_PC>(expr)) { 1316 if (!toExecRelax) { 1317 sym.setFlags(NEEDS_TLSGD); 1318 c.addReloc({expr, type, offset, addend, &sym}); 1319 return 1; 1320 } 1321 1322 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 1323 // depending on the symbol being locally defined or not. 1324 if (sym.isPreemptible) { 1325 sym.setFlags(NEEDS_TLSGD_TO_IE); 1326 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, 1327 offset, addend, &sym}); 1328 } else { 1329 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, 1330 offset, addend, &sym}); 1331 } 1332 return target->getTlsGdRelaxSkip(type); 1333 } 1334 1335 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, 1336 R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) { 1337 ctx.hasTlsIe.store(true, std::memory_order_relaxed); 1338 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 1339 // defined. 1340 if (toExecRelax && isLocalInExecutable) { 1341 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1342 } else if (expr != R_TLSIE_HINT) { 1343 sym.setFlags(NEEDS_TLSIE); 1344 // R_GOT needs a relative relocation for PIC on i386 and Hexagon. 1345 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) 1346 addRelativeReloc<true>(c, offset, sym, addend, expr, type); 1347 else 1348 c.addReloc({expr, type, offset, addend, &sym}); 1349 } 1350 return 1; 1351 } 1352 1353 return 0; 1354 } 1355 1356 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) { 1357 const RelTy &rel = *i; 1358 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1359 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex); 1360 RelType type; 1361 if (config->mipsN32Abi) { 1362 type = getMipsN32RelType(i); 1363 } else { 1364 type = rel.getType(config->isMips64EL); 1365 ++i; 1366 } 1367 // Get an offset in an output section this relocation is applied to. 1368 uint64_t offset = getter.get(rel.r_offset); 1369 if (offset == uint64_t(-1)) 1370 return; 1371 1372 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset); 1373 int64_t addend = RelTy::IsRela 1374 ? getAddend<ELFT>(rel) 1375 : target->getImplicitAddend( 1376 sec->content().data() + rel.r_offset, type); 1377 if (LLVM_UNLIKELY(config->emachine == EM_MIPS)) 1378 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal()); 1379 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 1380 addend += getPPC64TocBase(); 1381 1382 // Ignore R_*_NONE and other marker relocations. 1383 if (expr == R_NONE) 1384 return; 1385 1386 // Error if the target symbol is undefined. Symbol index 0 may be used by 1387 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1388 if (sym.isUndefined() && symIndex != 0 && 1389 maybeReportUndefined(cast<Undefined>(sym), *sec, offset)) 1390 return; 1391 1392 if (config->emachine == EM_PPC64) { 1393 // We can separate the small code model relocations into 2 categories: 1394 // 1) Those that access the compiler generated .toc sections. 1395 // 2) Those that access the linker allocated got entries. 1396 // lld allocates got entries to symbols on demand. Since we don't try to 1397 // sort the got entries in any way, we don't have to track which objects 1398 // have got-based small code model relocs. The .toc sections get placed 1399 // after the end of the linker allocated .got section and we do sort those 1400 // so sections addressed with small code model relocations come first. 1401 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) 1402 sec->file->ppc64SmallCodeModelTocRelocs = true; 1403 1404 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1405 // InputSectionBase::relocateAlloc(). 1406 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1407 cast<Defined>(sym).section->name == ".toc") 1408 ppc64noTocRelax.insert({&sym, addend}); 1409 1410 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1411 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1412 if (i == end) { 1413 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1414 "relocation" + 1415 getLocation(*sec, sym, offset)); 1416 return; 1417 } 1418 1419 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1420 // so we can discern it later from the toc-case. 1421 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1422 ++offset; 1423 } 1424 } 1425 1426 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1427 // uses their addresses, we need GOT or GOTPLT to be created. 1428 // 1429 // The 5 types that relative GOTPLT are all x86 and x86-64 specific. 1430 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, 1431 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1432 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed); 1433 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE, 1434 R_PPC64_RELAX_TOC>(expr)) { 1435 in.got->hasGotOffRel.store(true, std::memory_order_relaxed); 1436 } 1437 1438 // Process TLS relocations, including relaxing TLS relocations. Note that 1439 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux. 1440 if (sym.isTls()) { 1441 if (unsigned processed = 1442 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) { 1443 i += processed - 1; 1444 return; 1445 } 1446 } 1447 1448 processAux(expr, type, offset, sym, addend); 1449 } 1450 1451 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1452 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1453 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1454 // instructions are generated by very old IBM XL compilers. Work around the 1455 // issue by disabling GD/LD to IE/LE relaxation. 1456 template <class RelTy> 1457 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1458 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1459 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1460 return; 1461 bool hasGDLD = false; 1462 for (const RelTy &rel : rels) { 1463 RelType type = rel.getType(false); 1464 switch (type) { 1465 case R_PPC64_TLSGD: 1466 case R_PPC64_TLSLD: 1467 return; // Found a marker 1468 case R_PPC64_GOT_TLSGD16: 1469 case R_PPC64_GOT_TLSGD16_HA: 1470 case R_PPC64_GOT_TLSGD16_HI: 1471 case R_PPC64_GOT_TLSGD16_LO: 1472 case R_PPC64_GOT_TLSLD16: 1473 case R_PPC64_GOT_TLSLD16_HA: 1474 case R_PPC64_GOT_TLSLD16_HI: 1475 case R_PPC64_GOT_TLSLD16_LO: 1476 hasGDLD = true; 1477 break; 1478 } 1479 } 1480 if (hasGDLD) { 1481 sec.file->ppc64DisableTLSRelax = true; 1482 warn(toString(sec.file) + 1483 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1484 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1485 } 1486 } 1487 1488 template <class ELFT, class RelTy> 1489 void RelocationScanner::scan(ArrayRef<RelTy> rels) { 1490 // Not all relocations end up in Sec->Relocations, but a lot do. 1491 sec->relocations.reserve(rels.size()); 1492 1493 if (config->emachine == EM_PPC64) 1494 checkPPC64TLSRelax<RelTy>(*sec, rels); 1495 1496 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1497 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1498 // script), the relocations may be unordered. 1499 SmallVector<RelTy, 0> storage; 1500 if (isa<EhInputSection>(sec)) 1501 rels = sortRels(rels, storage); 1502 1503 end = static_cast<const void *>(rels.end()); 1504 for (auto i = rels.begin(); i != end;) 1505 scanOne<ELFT>(i); 1506 1507 // Sort relocations by offset for more efficient searching for 1508 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1509 if (config->emachine == EM_RISCV || 1510 (config->emachine == EM_PPC64 && sec->name == ".toc")) 1511 llvm::stable_sort(sec->relocs(), 1512 [](const Relocation &lhs, const Relocation &rhs) { 1513 return lhs.offset < rhs.offset; 1514 }); 1515 } 1516 1517 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) { 1518 sec = &s; 1519 getter = OffsetGetter(s); 1520 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(); 1521 if (rels.areRelocsRel()) 1522 scan<ELFT>(rels.rels); 1523 else 1524 scan<ELFT>(rels.relas); 1525 } 1526 1527 template <class ELFT> void elf::scanRelocations() { 1528 // Scan all relocations. Each relocation goes through a series of tests to 1529 // determine if it needs special treatment, such as creating GOT, PLT, 1530 // copy relocations, etc. Note that relocations for non-alloc sections are 1531 // directly processed by InputSection::relocateNonAlloc. 1532 1533 // Deterministic parallellism needs sorting relocations which is unsuitable 1534 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable 1535 // for parallelism. 1536 bool serial = !config->zCombreloc || config->emachine == EM_MIPS || 1537 config->emachine == EM_PPC64; 1538 parallel::TaskGroup tg; 1539 for (ELFFileBase *f : ctx.objectFiles) { 1540 auto fn = [f]() { 1541 RelocationScanner scanner; 1542 for (InputSectionBase *s : f->getSections()) { 1543 if (s && s->kind() == SectionBase::Regular && s->isLive() && 1544 (s->flags & SHF_ALLOC) && 1545 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM)) 1546 scanner.template scanSection<ELFT>(*s); 1547 } 1548 }; 1549 tg.spawn(fn, serial); 1550 } 1551 1552 tg.spawn([] { 1553 RelocationScanner scanner; 1554 for (Partition &part : partitions) { 1555 for (EhInputSection *sec : part.ehFrame->sections) 1556 scanner.template scanSection<ELFT>(*sec); 1557 if (part.armExidx && part.armExidx->isLive()) 1558 for (InputSection *sec : part.armExidx->exidxSections) 1559 scanner.template scanSection<ELFT>(*sec); 1560 } 1561 }); 1562 } 1563 1564 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) { 1565 // Handle a reference to a non-preemptible ifunc. These are special in a 1566 // few ways: 1567 // 1568 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1569 // a fixed value. But assuming that all references to the ifunc are 1570 // GOT-generating or PLT-generating, the handling of an ifunc is 1571 // relatively straightforward. We create a PLT entry in Iplt, which is 1572 // usually at the end of .plt, which makes an indirect call using a 1573 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1574 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1575 // which is usually at the end of .rela.plt. Unlike most relocations in 1576 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1577 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1578 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1579 // .got.plt without requiring a separate GOT entry. 1580 // 1581 // - Despite the fact that an ifunc does not have a fixed value, compilers 1582 // that are not passed -fPIC will assume that they do, and will emit 1583 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1584 // symbol. This means that if a direct relocation to the symbol is 1585 // seen, the linker must set a value for the symbol, and this value must 1586 // be consistent no matter what type of reference is made to the symbol. 1587 // This can be done by creating a PLT entry for the symbol in the way 1588 // described above and making it canonical, that is, making all references 1589 // point to the PLT entry instead of the resolver. In lld we also store 1590 // the address of the PLT entry in the dynamic symbol table, which means 1591 // that the symbol will also have the same value in other modules. 1592 // Because the value loaded from the GOT needs to be consistent with 1593 // the value computed using a direct relocation, a non-preemptible ifunc 1594 // may end up with two GOT entries, one in .got.plt that points to the 1595 // address returned by the resolver and is used only by the PLT entry, 1596 // and another in .got that points to the PLT entry and is used by 1597 // GOT-generating relocations. 1598 // 1599 // - The fact that these symbols do not have a fixed value makes them an 1600 // exception to the general rule that a statically linked executable does 1601 // not require any form of dynamic relocation. To handle these relocations 1602 // correctly, the IRELATIVE relocations are stored in an array which a 1603 // statically linked executable's startup code must enumerate using the 1604 // linker-defined symbols __rela?_iplt_{start,end}. 1605 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt) 1606 return false; 1607 // Skip unreferenced non-preemptible ifunc. 1608 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC))) 1609 return true; 1610 1611 sym.isInIplt = true; 1612 1613 // Create an Iplt and the associated IRELATIVE relocation pointing to the 1614 // original section/value pairs. For non-GOT non-PLT relocation case below, we 1615 // may alter section/value, so create a copy of the symbol to make 1616 // section/value fixed. 1617 auto *directSym = makeDefined(cast<Defined>(sym)); 1618 directSym->allocateAux(); 1619 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel, 1620 *directSym); 1621 sym.allocateAux(); 1622 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx; 1623 1624 if (flags & HAS_DIRECT_RELOC) { 1625 // Change the value to the IPLT and redirect all references to it. 1626 auto &d = cast<Defined>(sym); 1627 d.section = in.iplt.get(); 1628 d.value = d.getPltIdx() * target->ipltEntrySize; 1629 d.size = 0; 1630 // It's important to set the symbol type here so that dynamic loaders 1631 // don't try to call the PLT as if it were an ifunc resolver. 1632 d.type = STT_FUNC; 1633 1634 if (flags & NEEDS_GOT) 1635 addGotEntry(sym); 1636 } else if (flags & NEEDS_GOT) { 1637 // Redirect GOT accesses to point to the Igot. 1638 sym.gotInIgot = true; 1639 } 1640 return true; 1641 } 1642 1643 void elf::postScanRelocations() { 1644 auto fn = [](Symbol &sym) { 1645 auto flags = sym.flags.load(std::memory_order_relaxed); 1646 if (handleNonPreemptibleIfunc(sym, flags)) 1647 return; 1648 if (!sym.needsDynReloc()) 1649 return; 1650 sym.allocateAux(); 1651 1652 if (flags & NEEDS_GOT) 1653 addGotEntry(sym); 1654 if (flags & NEEDS_PLT) 1655 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym); 1656 if (flags & NEEDS_COPY) { 1657 if (sym.isObject()) { 1658 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym)); 1659 // NEEDS_COPY is cleared for sym and its aliases so that in 1660 // later iterations aliases won't cause redundant copies. 1661 assert(!sym.hasFlag(NEEDS_COPY)); 1662 } else { 1663 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT)); 1664 if (!sym.isDefined()) { 1665 replaceWithDefined(sym, *in.plt, 1666 target->pltHeaderSize + 1667 target->pltEntrySize * sym.getPltIdx(), 1668 0); 1669 sym.setFlags(NEEDS_COPY); 1670 if (config->emachine == EM_PPC) { 1671 // PPC32 canonical PLT entries are at the beginning of .glink 1672 cast<Defined>(sym).value = in.plt->headerSize; 1673 in.plt->headerSize += 16; 1674 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym); 1675 } 1676 } 1677 } 1678 } 1679 1680 if (!sym.isTls()) 1681 return; 1682 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1683 GotSection *got = in.got.get(); 1684 1685 if (flags & NEEDS_TLSDESC) { 1686 got->addTlsDescEntry(sym); 1687 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1688 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym, 1689 target->tlsDescRel); 1690 } 1691 if (flags & NEEDS_TLSGD) { 1692 got->addDynTlsEntry(sym); 1693 uint64_t off = got->getGlobalDynOffset(sym); 1694 if (isLocalInExecutable) 1695 // Write one to the GOT slot. 1696 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym}); 1697 else 1698 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off, 1699 sym); 1700 1701 // If the symbol is preemptible we need the dynamic linker to write 1702 // the offset too. 1703 uint64_t offsetOff = off + config->wordsize; 1704 if (sym.isPreemptible) 1705 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff, 1706 sym); 1707 else 1708 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1709 } 1710 if (flags & NEEDS_TLSGD_TO_IE) { 1711 got->addEntry(sym); 1712 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got, 1713 sym.getGotOffset(), sym); 1714 } 1715 if (flags & NEEDS_GOT_DTPREL) { 1716 got->addEntry(sym); 1717 got->addConstant( 1718 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym}); 1719 } 1720 1721 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE)) 1722 addTpOffsetGotEntry(sym); 1723 }; 1724 1725 GotSection *got = in.got.get(); 1726 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) { 1727 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0); 1728 if (config->shared) 1729 mainPart->relaDyn->addReloc( 1730 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()}); 1731 else 1732 got->addConstant( 1733 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy}); 1734 } 1735 1736 assert(symAux.size() == 1); 1737 for (Symbol *sym : symtab.getSymbols()) 1738 fn(*sym); 1739 1740 // Local symbols may need the aforementioned non-preemptible ifunc and GOT 1741 // handling. They don't need regular PLT. 1742 for (ELFFileBase *file : ctx.objectFiles) 1743 for (Symbol *sym : file->getLocalSymbols()) 1744 fn(*sym); 1745 } 1746 1747 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1748 // std::merge requires a strict weak ordering. 1749 if (a->outSecOff < b->outSecOff) 1750 return true; 1751 1752 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection. 1753 if (a->outSecOff == b->outSecOff && a != b) { 1754 auto *ta = dyn_cast<ThunkSection>(a); 1755 auto *tb = dyn_cast<ThunkSection>(b); 1756 1757 // Check if Thunk is immediately before any specific Target 1758 // InputSection for example Mips LA25 Thunks. 1759 if (ta && ta->getTargetInputSection() == b) 1760 return true; 1761 1762 // Place Thunk Sections without specific targets before 1763 // non-Thunk Sections. 1764 if (ta && !tb && !ta->getTargetInputSection()) 1765 return true; 1766 } 1767 1768 return false; 1769 } 1770 1771 // Call Fn on every executable InputSection accessed via the linker script 1772 // InputSectionDescription::Sections. 1773 static void forEachInputSectionDescription( 1774 ArrayRef<OutputSection *> outputSections, 1775 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1776 for (OutputSection *os : outputSections) { 1777 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1778 continue; 1779 for (SectionCommand *bc : os->commands) 1780 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1781 fn(os, isd); 1782 } 1783 } 1784 1785 // Thunk Implementation 1786 // 1787 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1788 // of code that the linker inserts inbetween a caller and a callee. The thunks 1789 // are added at link time rather than compile time as the decision on whether 1790 // a thunk is needed, such as the caller and callee being out of range, can only 1791 // be made at link time. 1792 // 1793 // It is straightforward to tell given the current state of the program when a 1794 // thunk is needed for a particular call. The more difficult part is that 1795 // the thunk needs to be placed in the program such that the caller can reach 1796 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1797 // the program alters addresses, which can mean more thunks etc. 1798 // 1799 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1800 // The decision to have a ThunkSection act as a container means that we can 1801 // more easily handle the most common case of a single block of contiguous 1802 // Thunks by inserting just a single ThunkSection. 1803 // 1804 // The implementation of Thunks in lld is split across these areas 1805 // Relocations.cpp : Framework for creating and placing thunks 1806 // Thunks.cpp : The code generated for each supported thunk 1807 // Target.cpp : Target specific hooks that the framework uses to decide when 1808 // a thunk is used 1809 // Synthetic.cpp : Implementation of ThunkSection 1810 // Writer.cpp : Iteratively call framework until no more Thunks added 1811 // 1812 // Thunk placement requirements: 1813 // Mips LA25 thunks. These must be placed immediately before the callee section 1814 // We can assume that the caller is in range of the Thunk. These are modelled 1815 // by Thunks that return the section they must precede with 1816 // getTargetInputSection(). 1817 // 1818 // ARM interworking and range extension thunks. These thunks must be placed 1819 // within range of the caller. All implemented ARM thunks can always reach the 1820 // callee as they use an indirect jump via a register that has no range 1821 // restrictions. 1822 // 1823 // Thunk placement algorithm: 1824 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1825 // getTargetInputSection(). 1826 // 1827 // For thunks that must be placed within range of the caller there are many 1828 // possible choices given that the maximum range from the caller is usually 1829 // much larger than the average InputSection size. Desirable properties include: 1830 // - Maximize reuse of thunks by multiple callers 1831 // - Minimize number of ThunkSections to simplify insertion 1832 // - Handle impact of already added Thunks on addresses 1833 // - Simple to understand and implement 1834 // 1835 // In lld for the first pass, we pre-create one or more ThunkSections per 1836 // InputSectionDescription at Target specific intervals. A ThunkSection is 1837 // placed so that the estimated end of the ThunkSection is within range of the 1838 // start of the InputSectionDescription or the previous ThunkSection. For 1839 // example: 1840 // InputSectionDescription 1841 // Section 0 1842 // ... 1843 // Section N 1844 // ThunkSection 0 1845 // Section N + 1 1846 // ... 1847 // Section N + K 1848 // Thunk Section 1 1849 // 1850 // The intention is that we can add a Thunk to a ThunkSection that is well 1851 // spaced enough to service a number of callers without having to do a lot 1852 // of work. An important principle is that it is not an error if a Thunk cannot 1853 // be placed in a pre-created ThunkSection; when this happens we create a new 1854 // ThunkSection placed next to the caller. This allows us to handle the vast 1855 // majority of thunks simply, but also handle rare cases where the branch range 1856 // is smaller than the target specific spacing. 1857 // 1858 // The algorithm is expected to create all the thunks that are needed in a 1859 // single pass, with a small number of programs needing a second pass due to 1860 // the insertion of thunks in the first pass increasing the offset between 1861 // callers and callees that were only just in range. 1862 // 1863 // A consequence of allowing new ThunkSections to be created outside of the 1864 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1865 // range in pass K, are out of range in some pass > K due to the insertion of 1866 // more Thunks in between the caller and callee. When this happens we retarget 1867 // the relocation back to the original target and create another Thunk. 1868 1869 // Remove ThunkSections that are empty, this should only be the initial set 1870 // precreated on pass 0. 1871 1872 // Insert the Thunks for OutputSection OS into their designated place 1873 // in the Sections vector, and recalculate the InputSection output section 1874 // offsets. 1875 // This may invalidate any output section offsets stored outside of InputSection 1876 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1877 forEachInputSectionDescription( 1878 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1879 if (isd->thunkSections.empty()) 1880 return; 1881 1882 // Remove any zero sized precreated Thunks. 1883 llvm::erase_if(isd->thunkSections, 1884 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1885 return ts.first->getSize() == 0; 1886 }); 1887 1888 // ISD->ThunkSections contains all created ThunkSections, including 1889 // those inserted in previous passes. Extract the Thunks created this 1890 // pass and order them in ascending outSecOff. 1891 std::vector<ThunkSection *> newThunks; 1892 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1893 if (ts.second == pass) 1894 newThunks.push_back(ts.first); 1895 llvm::stable_sort(newThunks, 1896 [](const ThunkSection *a, const ThunkSection *b) { 1897 return a->outSecOff < b->outSecOff; 1898 }); 1899 1900 // Merge sorted vectors of Thunks and InputSections by outSecOff 1901 SmallVector<InputSection *, 0> tmp; 1902 tmp.reserve(isd->sections.size() + newThunks.size()); 1903 1904 std::merge(isd->sections.begin(), isd->sections.end(), 1905 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1906 mergeCmp); 1907 1908 isd->sections = std::move(tmp); 1909 }); 1910 } 1911 1912 static int64_t getPCBias(RelType type) { 1913 if (config->emachine != EM_ARM) 1914 return 0; 1915 switch (type) { 1916 case R_ARM_THM_JUMP19: 1917 case R_ARM_THM_JUMP24: 1918 case R_ARM_THM_CALL: 1919 return 4; 1920 default: 1921 return 8; 1922 } 1923 } 1924 1925 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1926 // is in range of Src. An ISD maps to a range of InputSections described by a 1927 // linker script section pattern such as { .text .text.* }. 1928 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 1929 InputSection *isec, 1930 InputSectionDescription *isd, 1931 const Relocation &rel, 1932 uint64_t src) { 1933 // See the comment in getThunk for -pcBias below. 1934 const int64_t pcBias = getPCBias(rel.type); 1935 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1936 ThunkSection *ts = tp.first; 1937 uint64_t tsBase = os->addr + ts->outSecOff - pcBias; 1938 uint64_t tsLimit = tsBase + ts->getSize(); 1939 if (target->inBranchRange(rel.type, src, 1940 (src > tsLimit) ? tsBase : tsLimit)) 1941 return ts; 1942 } 1943 1944 // No suitable ThunkSection exists. This can happen when there is a branch 1945 // with lower range than the ThunkSection spacing or when there are too 1946 // many Thunks. Create a new ThunkSection as close to the InputSection as 1947 // possible. Error if InputSection is so large we cannot place ThunkSection 1948 // anywhere in Range. 1949 uint64_t thunkSecOff = isec->outSecOff; 1950 if (!target->inBranchRange(rel.type, src, 1951 os->addr + thunkSecOff + rel.addend)) { 1952 thunkSecOff = isec->outSecOff + isec->getSize(); 1953 if (!target->inBranchRange(rel.type, src, 1954 os->addr + thunkSecOff + rel.addend)) 1955 fatal("InputSection too large for range extension thunk " + 1956 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1957 } 1958 return addThunkSection(os, isd, thunkSecOff); 1959 } 1960 1961 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1962 // precedes its Target. 1963 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1964 ThunkSection *ts = thunkedSections.lookup(isec); 1965 if (ts) 1966 return ts; 1967 1968 // Find InputSectionRange within Target Output Section (TOS) that the 1969 // InputSection (IS) that we need to precede is in. 1970 OutputSection *tos = isec->getParent(); 1971 for (SectionCommand *bc : tos->commands) { 1972 auto *isd = dyn_cast<InputSectionDescription>(bc); 1973 if (!isd || isd->sections.empty()) 1974 continue; 1975 1976 InputSection *first = isd->sections.front(); 1977 InputSection *last = isd->sections.back(); 1978 1979 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1980 continue; 1981 1982 ts = addThunkSection(tos, isd, isec->outSecOff); 1983 thunkedSections[isec] = ts; 1984 return ts; 1985 } 1986 1987 return nullptr; 1988 } 1989 1990 // Create one or more ThunkSections per OS that can be used to place Thunks. 1991 // We attempt to place the ThunkSections using the following desirable 1992 // properties: 1993 // - Within range of the maximum number of callers 1994 // - Minimise the number of ThunkSections 1995 // 1996 // We follow a simple but conservative heuristic to place ThunkSections at 1997 // offsets that are multiples of a Target specific branch range. 1998 // For an InputSectionDescription that is smaller than the range, a single 1999 // ThunkSection at the end of the range will do. 2000 // 2001 // For an InputSectionDescription that is more than twice the size of the range, 2002 // we place the last ThunkSection at range bytes from the end of the 2003 // InputSectionDescription in order to increase the likelihood that the 2004 // distance from a thunk to its target will be sufficiently small to 2005 // allow for the creation of a short thunk. 2006 void ThunkCreator::createInitialThunkSections( 2007 ArrayRef<OutputSection *> outputSections) { 2008 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 2009 2010 forEachInputSectionDescription( 2011 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2012 if (isd->sections.empty()) 2013 return; 2014 2015 uint32_t isdBegin = isd->sections.front()->outSecOff; 2016 uint32_t isdEnd = 2017 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 2018 uint32_t lastThunkLowerBound = -1; 2019 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 2020 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 2021 2022 uint32_t isecLimit; 2023 uint32_t prevIsecLimit = isdBegin; 2024 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 2025 2026 for (const InputSection *isec : isd->sections) { 2027 isecLimit = isec->outSecOff + isec->getSize(); 2028 if (isecLimit > thunkUpperBound) { 2029 addThunkSection(os, isd, prevIsecLimit); 2030 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 2031 } 2032 if (isecLimit > lastThunkLowerBound) 2033 break; 2034 prevIsecLimit = isecLimit; 2035 } 2036 addThunkSection(os, isd, isecLimit); 2037 }); 2038 } 2039 2040 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 2041 InputSectionDescription *isd, 2042 uint64_t off) { 2043 auto *ts = make<ThunkSection>(os, off); 2044 ts->partition = os->partition; 2045 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 2046 !isd->sections.empty()) { 2047 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 2048 // thunks we disturb the base addresses of sections placed after the thunks 2049 // this makes patches we have generated redundant, and may cause us to 2050 // generate more patches as different instructions are now in sensitive 2051 // locations. When we generate more patches we may force more branches to 2052 // go out of range, causing more thunks to be generated. In pathological 2053 // cases this can cause the address dependent content pass not to converge. 2054 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 2055 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 2056 // which means that adding Thunks to the section does not invalidate 2057 // errata patches for following code. 2058 // Rounding up the size to 4KiB has consequences for code-size and can 2059 // trip up linker script defined assertions. For example the linux kernel 2060 // has an assertion that what LLD represents as an InputSectionDescription 2061 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 2062 // We use the heuristic of rounding up the size when both of the following 2063 // conditions are true: 2064 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 2065 // accounts for the case where no single InputSectionDescription is 2066 // larger than the OutputSection size. This is conservative but simple. 2067 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 2068 // any assertion failures that an InputSectionDescription is < 4 KiB 2069 // in size. 2070 uint64_t isdSize = isd->sections.back()->outSecOff + 2071 isd->sections.back()->getSize() - 2072 isd->sections.front()->outSecOff; 2073 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 2074 ts->roundUpSizeForErrata = true; 2075 } 2076 isd->thunkSections.push_back({ts, pass}); 2077 return ts; 2078 } 2079 2080 static bool isThunkSectionCompatible(InputSection *source, 2081 SectionBase *target) { 2082 // We can't reuse thunks in different loadable partitions because they might 2083 // not be loaded. But partition 1 (the main partition) will always be loaded. 2084 if (source->partition != target->partition) 2085 return target->partition == 1; 2086 return true; 2087 } 2088 2089 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 2090 Relocation &rel, uint64_t src) { 2091 std::vector<Thunk *> *thunkVec = nullptr; 2092 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 2093 // out in the relocation addend. We compensate for the PC bias so that 2094 // an Arm and Thumb relocation to the same destination get the same keyAddend, 2095 // which is usually 0. 2096 const int64_t pcBias = getPCBias(rel.type); 2097 const int64_t keyAddend = rel.addend + pcBias; 2098 2099 // We use a ((section, offset), addend) pair to find the thunk position if 2100 // possible so that we create only one thunk for aliased symbols or ICFed 2101 // sections. There may be multiple relocations sharing the same (section, 2102 // offset + addend) pair. We may revert the relocation back to its original 2103 // non-Thunk target, so we cannot fold offset + addend. 2104 if (auto *d = dyn_cast<Defined>(rel.sym)) 2105 if (!d->isInPlt() && d->section) 2106 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value}, 2107 keyAddend}]; 2108 if (!thunkVec) 2109 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 2110 2111 // Check existing Thunks for Sym to see if they can be reused 2112 for (Thunk *t : *thunkVec) 2113 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 2114 t->isCompatibleWith(*isec, rel) && 2115 target->inBranchRange(rel.type, src, 2116 t->getThunkTargetSym()->getVA(-pcBias))) 2117 return std::make_pair(t, false); 2118 2119 // No existing compatible Thunk in range, create a new one 2120 Thunk *t = addThunk(*isec, rel); 2121 thunkVec->push_back(t); 2122 return std::make_pair(t, true); 2123 } 2124 2125 // Return true if the relocation target is an in range Thunk. 2126 // Return false if the relocation is not to a Thunk. If the relocation target 2127 // was originally to a Thunk, but is no longer in range we revert the 2128 // relocation back to its original non-Thunk target. 2129 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 2130 if (Thunk *t = thunks.lookup(rel.sym)) { 2131 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 2132 return true; 2133 rel.sym = &t->destination; 2134 rel.addend = t->addend; 2135 if (rel.sym->isInPlt()) 2136 rel.expr = toPlt(rel.expr); 2137 } 2138 return false; 2139 } 2140 2141 // Process all relocations from the InputSections that have been assigned 2142 // to InputSectionDescriptions and redirect through Thunks if needed. The 2143 // function should be called iteratively until it returns false. 2144 // 2145 // PreConditions: 2146 // All InputSections that may need a Thunk are reachable from 2147 // OutputSectionCommands. 2148 // 2149 // All OutputSections have an address and all InputSections have an offset 2150 // within the OutputSection. 2151 // 2152 // The offsets between caller (relocation place) and callee 2153 // (relocation target) will not be modified outside of createThunks(). 2154 // 2155 // PostConditions: 2156 // If return value is true then ThunkSections have been inserted into 2157 // OutputSections. All relocations that needed a Thunk based on the information 2158 // available to createThunks() on entry have been redirected to a Thunk. Note 2159 // that adding Thunks changes offsets between caller and callee so more Thunks 2160 // may be required. 2161 // 2162 // If return value is false then no more Thunks are needed, and createThunks has 2163 // made no changes. If the target requires range extension thunks, currently 2164 // ARM, then any future change in offset between caller and callee risks a 2165 // relocation out of range error. 2166 bool ThunkCreator::createThunks(uint32_t pass, 2167 ArrayRef<OutputSection *> outputSections) { 2168 this->pass = pass; 2169 bool addressesChanged = false; 2170 2171 if (pass == 0 && target->getThunkSectionSpacing()) 2172 createInitialThunkSections(outputSections); 2173 2174 // Create all the Thunks and insert them into synthetic ThunkSections. The 2175 // ThunkSections are later inserted back into InputSectionDescriptions. 2176 // We separate the creation of ThunkSections from the insertion of the 2177 // ThunkSections as ThunkSections are not always inserted into the same 2178 // InputSectionDescription as the caller. 2179 forEachInputSectionDescription( 2180 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2181 for (InputSection *isec : isd->sections) 2182 for (Relocation &rel : isec->relocs()) { 2183 uint64_t src = isec->getVA(rel.offset); 2184 2185 // If we are a relocation to an existing Thunk, check if it is 2186 // still in range. If not then Rel will be altered to point to its 2187 // original target so another Thunk can be generated. 2188 if (pass > 0 && normalizeExistingThunk(rel, src)) 2189 continue; 2190 2191 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2192 *rel.sym, rel.addend)) 2193 continue; 2194 2195 Thunk *t; 2196 bool isNew; 2197 std::tie(t, isNew) = getThunk(isec, rel, src); 2198 2199 if (isNew) { 2200 // Find or create a ThunkSection for the new Thunk 2201 ThunkSection *ts; 2202 if (auto *tis = t->getTargetInputSection()) 2203 ts = getISThunkSec(tis); 2204 else 2205 ts = getISDThunkSec(os, isec, isd, rel, src); 2206 ts->addThunk(t); 2207 thunks[t->getThunkTargetSym()] = t; 2208 } 2209 2210 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2211 rel.sym = t->getThunkTargetSym(); 2212 rel.expr = fromPlt(rel.expr); 2213 2214 // On AArch64 and PPC, a jump/call relocation may be encoded as 2215 // STT_SECTION + non-zero addend, clear the addend after 2216 // redirection. 2217 if (config->emachine != EM_MIPS) 2218 rel.addend = -getPCBias(rel.type); 2219 } 2220 2221 for (auto &p : isd->thunkSections) 2222 addressesChanged |= p.first->assignOffsets(); 2223 }); 2224 2225 for (auto &p : thunkedSections) 2226 addressesChanged |= p.second->assignOffsets(); 2227 2228 // Merge all created synthetic ThunkSections back into OutputSection 2229 mergeThunks(outputSections); 2230 return addressesChanged; 2231 } 2232 2233 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2234 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2235 // __tls_get_addr. 2236 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2237 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2238 bool needTlsSymbol = false; 2239 forEachInputSectionDescription( 2240 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2241 for (InputSection *isec : isd->sections) 2242 for (Relocation &rel : isec->relocs()) 2243 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2244 needTlsSymbol = true; 2245 return; 2246 } 2247 }); 2248 return needTlsSymbol; 2249 } 2250 2251 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2252 Symbol *sym = symtab.find("__tls_get_addr"); 2253 if (!sym) 2254 return; 2255 bool needEntry = true; 2256 forEachInputSectionDescription( 2257 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2258 for (InputSection *isec : isd->sections) 2259 for (Relocation &rel : isec->relocs()) 2260 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2261 if (needEntry) { 2262 sym->allocateAux(); 2263 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, 2264 *sym); 2265 needEntry = false; 2266 } 2267 rel.sym = sym; 2268 } 2269 }); 2270 } 2271 2272 template void elf::scanRelocations<ELF32LE>(); 2273 template void elf::scanRelocations<ELF32BE>(); 2274 template void elf::scanRelocations<ELF64LE>(); 2275 template void elf::scanRelocations<ELF64BE>(); 2276