1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "LinkerScript.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "lld/Common/Arrays.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Parallel.h" 22 #include "llvm/Support/Path.h" 23 #include "llvm/Support/TimeProfiler.h" 24 #if LLVM_ENABLE_ZLIB 25 // Avoid introducing max as a macro from Windows headers. 26 #define NOMINMAX 27 #include <zlib.h> 28 #endif 29 #if LLVM_ENABLE_ZSTD 30 #include <zstd.h> 31 #endif 32 33 using namespace llvm; 34 using namespace llvm::dwarf; 35 using namespace llvm::object; 36 using namespace llvm::support::endian; 37 using namespace llvm::ELF; 38 using namespace lld; 39 using namespace lld::elf; 40 41 uint8_t *Out::bufferStart; 42 PhdrEntry *Out::tlsPhdr; 43 OutputSection *Out::elfHeader; 44 OutputSection *Out::programHeaders; 45 OutputSection *Out::preinitArray; 46 OutputSection *Out::initArray; 47 OutputSection *Out::finiArray; 48 49 SmallVector<OutputSection *, 0> elf::outputSections; 50 51 uint32_t OutputSection::getPhdrFlags() const { 52 uint32_t ret = 0; 53 if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) 54 ret |= PF_R; 55 if (flags & SHF_WRITE) 56 ret |= PF_W; 57 if (flags & SHF_EXECINSTR) 58 ret |= PF_X; 59 return ret; 60 } 61 62 template <class ELFT> 63 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { 64 shdr->sh_entsize = entsize; 65 shdr->sh_addralign = addralign; 66 shdr->sh_type = type; 67 shdr->sh_offset = offset; 68 shdr->sh_flags = flags; 69 shdr->sh_info = info; 70 shdr->sh_link = link; 71 shdr->sh_addr = addr; 72 shdr->sh_size = size; 73 shdr->sh_name = shName; 74 } 75 76 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) 77 : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, 78 /*Info*/ 0, /*Link*/ 0) {} 79 80 // We allow sections of types listed below to merged into a 81 // single progbits section. This is typically done by linker 82 // scripts. Merging nobits and progbits will force disk space 83 // to be allocated for nobits sections. Other ones don't require 84 // any special treatment on top of progbits, so there doesn't 85 // seem to be a harm in merging them. 86 // 87 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow 88 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). 89 static bool canMergeToProgbits(unsigned type) { 90 return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || 91 type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || 92 type == SHT_NOTE || 93 (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); 94 } 95 96 // Record that isec will be placed in the OutputSection. isec does not become 97 // permanent until finalizeInputSections() is called. The function should not be 98 // used after finalizeInputSections() is called. If you need to add an 99 // InputSection post finalizeInputSections(), then you must do the following: 100 // 101 // 1. Find or create an InputSectionDescription to hold InputSection. 102 // 2. Add the InputSection to the InputSectionDescription::sections. 103 // 3. Call commitSection(isec). 104 void OutputSection::recordSection(InputSectionBase *isec) { 105 partition = isec->partition; 106 isec->parent = this; 107 if (commands.empty() || !isa<InputSectionDescription>(commands.back())) 108 commands.push_back(make<InputSectionDescription>("")); 109 auto *isd = cast<InputSectionDescription>(commands.back()); 110 isd->sectionBases.push_back(isec); 111 } 112 113 // Update fields (type, flags, alignment, etc) according to the InputSection 114 // isec. Also check whether the InputSection flags and type are consistent with 115 // other InputSections. 116 void OutputSection::commitSection(InputSection *isec) { 117 if (LLVM_UNLIKELY(type != isec->type)) { 118 if (hasInputSections || typeIsSet) { 119 if (typeIsSet || !canMergeToProgbits(type) || 120 !canMergeToProgbits(isec->type)) { 121 // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is 122 // that the contents at that address is provided by some other means. 123 // Some projects (e.g. 124 // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the 125 // behavior. Other types get an error. 126 if (type != SHT_NOBITS) { 127 errorOrWarn("section type mismatch for " + isec->name + "\n>>> " + 128 toString(isec) + ": " + 129 getELFSectionTypeName(config->emachine, isec->type) + 130 "\n>>> output section " + name + ": " + 131 getELFSectionTypeName(config->emachine, type)); 132 } 133 } 134 if (!typeIsSet) 135 type = SHT_PROGBITS; 136 } else { 137 type = isec->type; 138 } 139 } 140 if (!hasInputSections) { 141 // If IS is the first section to be added to this section, 142 // initialize type, entsize and flags from isec. 143 hasInputSections = true; 144 entsize = isec->entsize; 145 flags = isec->flags; 146 } else { 147 // Otherwise, check if new type or flags are compatible with existing ones. 148 if ((flags ^ isec->flags) & SHF_TLS) 149 error("incompatible section flags for " + name + "\n>>> " + 150 toString(isec) + ": 0x" + utohexstr(isec->flags) + 151 "\n>>> output section " + name + ": 0x" + utohexstr(flags)); 152 } 153 154 isec->parent = this; 155 uint64_t andMask = 156 config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; 157 uint64_t orMask = ~andMask; 158 uint64_t andFlags = (flags & isec->flags) & andMask; 159 uint64_t orFlags = (flags | isec->flags) & orMask; 160 flags = andFlags | orFlags; 161 if (nonAlloc) 162 flags &= ~(uint64_t)SHF_ALLOC; 163 164 addralign = std::max(addralign, isec->addralign); 165 166 // If this section contains a table of fixed-size entries, sh_entsize 167 // holds the element size. If it contains elements of different size we 168 // set sh_entsize to 0. 169 if (entsize != isec->entsize) 170 entsize = 0; 171 } 172 173 static MergeSyntheticSection *createMergeSynthetic(StringRef name, 174 uint32_t type, 175 uint64_t flags, 176 uint32_t addralign) { 177 if ((flags & SHF_STRINGS) && config->optimize >= 2) 178 return make<MergeTailSection>(name, type, flags, addralign); 179 return make<MergeNoTailSection>(name, type, flags, addralign); 180 } 181 182 // This function scans over the InputSectionBase list sectionBases to create 183 // InputSectionDescription::sections. 184 // 185 // It removes MergeInputSections from the input section array and adds 186 // new synthetic sections at the location of the first input section 187 // that it replaces. It then finalizes each synthetic section in order 188 // to compute an output offset for each piece of each input section. 189 void OutputSection::finalizeInputSections() { 190 std::vector<MergeSyntheticSection *> mergeSections; 191 for (SectionCommand *cmd : commands) { 192 auto *isd = dyn_cast<InputSectionDescription>(cmd); 193 if (!isd) 194 continue; 195 isd->sections.reserve(isd->sectionBases.size()); 196 for (InputSectionBase *s : isd->sectionBases) { 197 MergeInputSection *ms = dyn_cast<MergeInputSection>(s); 198 if (!ms) { 199 isd->sections.push_back(cast<InputSection>(s)); 200 continue; 201 } 202 203 // We do not want to handle sections that are not alive, so just remove 204 // them instead of trying to merge. 205 if (!ms->isLive()) 206 continue; 207 208 auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { 209 // While we could create a single synthetic section for two different 210 // values of Entsize, it is better to take Entsize into consideration. 211 // 212 // With a single synthetic section no two pieces with different Entsize 213 // could be equal, so we may as well have two sections. 214 // 215 // Using Entsize in here also allows us to propagate it to the synthetic 216 // section. 217 // 218 // SHF_STRINGS section with different alignments should not be merged. 219 return sec->flags == ms->flags && sec->entsize == ms->entsize && 220 (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS)); 221 }); 222 if (i == mergeSections.end()) { 223 MergeSyntheticSection *syn = 224 createMergeSynthetic(s->name, ms->type, ms->flags, ms->addralign); 225 mergeSections.push_back(syn); 226 i = std::prev(mergeSections.end()); 227 syn->entsize = ms->entsize; 228 isd->sections.push_back(syn); 229 } 230 (*i)->addSection(ms); 231 } 232 233 // sectionBases should not be used from this point onwards. Clear it to 234 // catch misuses. 235 isd->sectionBases.clear(); 236 237 // Some input sections may be removed from the list after ICF. 238 for (InputSection *s : isd->sections) 239 commitSection(s); 240 } 241 for (auto *ms : mergeSections) 242 ms->finalizeContents(); 243 } 244 245 static void sortByOrder(MutableArrayRef<InputSection *> in, 246 llvm::function_ref<int(InputSectionBase *s)> order) { 247 std::vector<std::pair<int, InputSection *>> v; 248 for (InputSection *s : in) 249 v.emplace_back(order(s), s); 250 llvm::stable_sort(v, less_first()); 251 252 for (size_t i = 0; i < v.size(); ++i) 253 in[i] = v[i].second; 254 } 255 256 uint64_t elf::getHeaderSize() { 257 if (config->oFormatBinary) 258 return 0; 259 return Out::elfHeader->size + Out::programHeaders->size; 260 } 261 262 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { 263 assert(isLive()); 264 for (SectionCommand *b : commands) 265 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 266 sortByOrder(isd->sections, order); 267 } 268 269 static void nopInstrFill(uint8_t *buf, size_t size) { 270 if (size == 0) 271 return; 272 unsigned i = 0; 273 if (size == 0) 274 return; 275 std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs; 276 unsigned num = size / nopFiller.back().size(); 277 for (unsigned c = 0; c < num; ++c) { 278 memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); 279 i += nopFiller.back().size(); 280 } 281 unsigned remaining = size - i; 282 if (!remaining) 283 return; 284 assert(nopFiller[remaining - 1].size() == remaining); 285 memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); 286 } 287 288 // Fill [Buf, Buf + Size) with Filler. 289 // This is used for linker script "=fillexp" command. 290 static void fill(uint8_t *buf, size_t size, 291 const std::array<uint8_t, 4> &filler) { 292 size_t i = 0; 293 for (; i + 4 < size; i += 4) 294 memcpy(buf + i, filler.data(), 4); 295 memcpy(buf + i, filler.data(), size - i); 296 } 297 298 #if LLVM_ENABLE_ZLIB 299 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level, 300 int flush) { 301 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate 302 // data with no zlib header or trailer. 303 z_stream s = {}; 304 deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); 305 s.next_in = const_cast<uint8_t *>(in.data()); 306 s.avail_in = in.size(); 307 308 // Allocate a buffer of half of the input size, and grow it by 1.5x if 309 // insufficient. 310 SmallVector<uint8_t, 0> out; 311 size_t pos = 0; 312 out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64)); 313 do { 314 if (pos == out.size()) 315 out.resize_for_overwrite(out.size() * 3 / 2); 316 s.next_out = out.data() + pos; 317 s.avail_out = out.size() - pos; 318 (void)deflate(&s, flush); 319 pos = s.next_out - out.data(); 320 } while (s.avail_out == 0); 321 assert(s.avail_in == 0); 322 323 out.truncate(pos); 324 deflateEnd(&s); 325 return out; 326 } 327 #endif 328 329 // Compress section contents if this section contains debug info. 330 template <class ELFT> void OutputSection::maybeCompress() { 331 using Elf_Chdr = typename ELFT::Chdr; 332 (void)sizeof(Elf_Chdr); 333 334 // Compress only DWARF debug sections. 335 if (config->compressDebugSections == DebugCompressionType::None || 336 (flags & SHF_ALLOC) || !name.starts_with(".debug_") || size == 0) 337 return; 338 339 llvm::TimeTraceScope timeScope("Compress debug sections"); 340 compressed.uncompressedSize = size; 341 auto buf = std::make_unique<uint8_t[]>(size); 342 // Write uncompressed data to a temporary zero-initialized buffer. 343 { 344 parallel::TaskGroup tg; 345 writeTo<ELFT>(buf.get(), tg); 346 } 347 348 #if LLVM_ENABLE_ZSTD 349 // Use ZSTD's streaming compression API which permits parallel workers working 350 // on the stream. See http://facebook.github.io/zstd/zstd_manual.html 351 // "Streaming compression - HowTo". 352 if (config->compressDebugSections == DebugCompressionType::Zstd) { 353 // Allocate a buffer of half of the input size, and grow it by 1.5x if 354 // insufficient. 355 compressed.shards = std::make_unique<SmallVector<uint8_t, 0>[]>(1); 356 SmallVector<uint8_t, 0> &out = compressed.shards[0]; 357 out.resize_for_overwrite(std::max<size_t>(size / 2, 32)); 358 size_t pos = 0; 359 360 ZSTD_CCtx *cctx = ZSTD_createCCtx(); 361 // Ignore error if zstd was not built with ZSTD_MULTITHREAD. 362 (void)ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 363 parallel::strategy.compute_thread_count()); 364 ZSTD_outBuffer zob = {out.data(), out.size(), 0}; 365 ZSTD_EndDirective directive = ZSTD_e_continue; 366 const size_t blockSize = ZSTD_CStreamInSize(); 367 do { 368 const size_t n = std::min(static_cast<size_t>(size - pos), blockSize); 369 if (n == size - pos) 370 directive = ZSTD_e_end; 371 ZSTD_inBuffer zib = {buf.get() + pos, n, 0}; 372 size_t bytesRemaining = 0; 373 while (zib.pos != zib.size || 374 (directive == ZSTD_e_end && bytesRemaining != 0)) { 375 if (zob.pos == zob.size) { 376 out.resize_for_overwrite(out.size() * 3 / 2); 377 zob.dst = out.data(); 378 zob.size = out.size(); 379 } 380 bytesRemaining = ZSTD_compressStream2(cctx, &zob, &zib, directive); 381 assert(!ZSTD_isError(bytesRemaining)); 382 } 383 pos += n; 384 } while (directive != ZSTD_e_end); 385 out.resize(zob.pos); 386 ZSTD_freeCCtx(cctx); 387 388 size = sizeof(Elf_Chdr) + out.size(); 389 flags |= SHF_COMPRESSED; 390 return; 391 } 392 #endif 393 394 #if LLVM_ENABLE_ZLIB 395 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is 396 // the fastest. If -O2 is given, we use level 6 to compress debug info more by 397 // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more 398 // compression) while they take significant amount of time (~2x), so level 6 399 // seems enough. 400 const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED; 401 402 // Split input into 1-MiB shards. 403 constexpr size_t shardSize = 1 << 20; 404 auto shardsIn = split(ArrayRef<uint8_t>(buf.get(), size), shardSize); 405 const size_t numShards = shardsIn.size(); 406 407 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all 408 // shards but the last to flush the output to a byte boundary to be 409 // concatenated with the next shard. 410 auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards); 411 auto shardsAdler = std::make_unique<uint32_t[]>(numShards); 412 parallelFor(0, numShards, [&](size_t i) { 413 shardsOut[i] = deflateShard(shardsIn[i], level, 414 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); 415 shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); 416 }); 417 418 // Update section size and combine Alder-32 checksums. 419 uint32_t checksum = 1; // Initial Adler-32 value 420 size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header 421 for (size_t i = 0; i != numShards; ++i) { 422 size += shardsOut[i].size(); 423 checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); 424 } 425 size += 4; // checksum 426 427 compressed.shards = std::move(shardsOut); 428 compressed.numShards = numShards; 429 compressed.checksum = checksum; 430 flags |= SHF_COMPRESSED; 431 #endif 432 } 433 434 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { 435 if (size == 1) 436 *buf = data; 437 else if (size == 2) 438 write16(buf, data); 439 else if (size == 4) 440 write32(buf, data); 441 else if (size == 8) 442 write64(buf, data); 443 else 444 llvm_unreachable("unsupported Size argument"); 445 } 446 447 template <class ELFT> 448 void OutputSection::writeTo(uint8_t *buf, parallel::TaskGroup &tg) { 449 llvm::TimeTraceScope timeScope("Write sections", name); 450 if (type == SHT_NOBITS) 451 return; 452 453 // If --compress-debug-section is specified and if this is a debug section, 454 // we've already compressed section contents. If that's the case, 455 // just write it down. 456 if (compressed.shards) { 457 auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); 458 chdr->ch_size = compressed.uncompressedSize; 459 chdr->ch_addralign = addralign; 460 buf += sizeof(*chdr); 461 if (config->compressDebugSections == DebugCompressionType::Zstd) { 462 chdr->ch_type = ELFCOMPRESS_ZSTD; 463 memcpy(buf, compressed.shards[0].data(), compressed.shards[0].size()); 464 return; 465 } 466 chdr->ch_type = ELFCOMPRESS_ZLIB; 467 468 // Compute shard offsets. 469 auto offsets = std::make_unique<size_t[]>(compressed.numShards); 470 offsets[0] = 2; // zlib header 471 for (size_t i = 1; i != compressed.numShards; ++i) 472 offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); 473 474 buf[0] = 0x78; // CMF 475 buf[1] = 0x01; // FLG: best speed 476 parallelFor(0, compressed.numShards, [&](size_t i) { 477 memcpy(buf + offsets[i], compressed.shards[i].data(), 478 compressed.shards[i].size()); 479 }); 480 481 write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); 482 return; 483 } 484 485 // Write leading padding. 486 ArrayRef<InputSection *> sections = getInputSections(*this, storage); 487 std::array<uint8_t, 4> filler = getFiller(); 488 bool nonZeroFiller = read32(filler.data()) != 0; 489 if (nonZeroFiller) 490 fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); 491 492 auto fn = [=](size_t begin, size_t end) { 493 size_t numSections = sections.size(); 494 for (size_t i = begin; i != end; ++i) { 495 InputSection *isec = sections[i]; 496 if (auto *s = dyn_cast<SyntheticSection>(isec)) 497 s->writeTo(buf + isec->outSecOff); 498 else 499 isec->writeTo<ELFT>(buf + isec->outSecOff); 500 501 // When in Arm BE8 mode, the linker has to convert the big-endian 502 // instructions to little-endian, leaving the data big-endian. 503 if (config->emachine == EM_ARM && !config->isLE && config->armBe8 && 504 (flags & SHF_EXECINSTR)) 505 convertArmInstructionstoBE8(isec, buf + isec->outSecOff); 506 507 // Fill gaps between sections. 508 if (nonZeroFiller) { 509 uint8_t *start = buf + isec->outSecOff + isec->getSize(); 510 uint8_t *end; 511 if (i + 1 == numSections) 512 end = buf + size; 513 else 514 end = buf + sections[i + 1]->outSecOff; 515 if (isec->nopFiller) { 516 assert(target->nopInstrs); 517 nopInstrFill(start, end - start); 518 } else 519 fill(start, end - start, filler); 520 } 521 } 522 }; 523 524 // If there is any BYTE()-family command (rare), write the section content 525 // first then process BYTE to overwrite the filler content. The write is 526 // serial due to the limitation of llvm/Support/Parallel.h. 527 bool written = false; 528 size_t numSections = sections.size(); 529 for (SectionCommand *cmd : commands) 530 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 531 if (!std::exchange(written, true)) 532 fn(0, numSections); 533 writeInt(buf + data->offset, data->expression().getValue(), data->size); 534 } 535 if (written || !numSections) 536 return; 537 538 // There is no data command. Write content asynchronously to overlap the write 539 // time with other output sections. Note, if a linker script specifies 540 // overlapping output sections (needs --noinhibit-exec or --no-check-sections 541 // to supress the error), the output may be non-deterministic. 542 const size_t taskSizeLimit = 4 << 20; 543 for (size_t begin = 0, i = 0, taskSize = 0;;) { 544 taskSize += sections[i]->getSize(); 545 bool done = ++i == numSections; 546 if (done || taskSize >= taskSizeLimit) { 547 tg.spawn([=] { fn(begin, i); }); 548 if (done) 549 break; 550 begin = i; 551 taskSize = 0; 552 } 553 } 554 } 555 556 static void finalizeShtGroup(OutputSection *os, InputSection *section) { 557 // sh_link field for SHT_GROUP sections should contain the section index of 558 // the symbol table. 559 os->link = in.symTab->getParent()->sectionIndex; 560 561 if (!section) 562 return; 563 564 // sh_info then contain index of an entry in symbol table section which 565 // provides signature of the section group. 566 ArrayRef<Symbol *> symbols = section->file->getSymbols(); 567 os->info = in.symTab->getSymbolIndex(symbols[section->info]); 568 569 // Some group members may be combined or discarded, so we need to compute the 570 // new size. The content will be rewritten in InputSection::copyShtGroup. 571 DenseSet<uint32_t> seen; 572 ArrayRef<InputSectionBase *> sections = section->file->getSections(); 573 for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1)) 574 if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) 575 seen.insert(osec->sectionIndex); 576 os->size = (1 + seen.size()) * sizeof(uint32_t); 577 } 578 579 void OutputSection::finalize() { 580 InputSection *first = getFirstInputSection(this); 581 582 if (flags & SHF_LINK_ORDER) { 583 // We must preserve the link order dependency of sections with the 584 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We 585 // need to translate the InputSection sh_link to the OutputSection sh_link, 586 // all InputSections in the OutputSection have the same dependency. 587 if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first)) 588 link = ex->getLinkOrderDep()->getParent()->sectionIndex; 589 else if (first->flags & SHF_LINK_ORDER) 590 if (auto *d = first->getLinkOrderDep()) 591 link = d->getParent()->sectionIndex; 592 } 593 594 if (type == SHT_GROUP) { 595 finalizeShtGroup(this, first); 596 return; 597 } 598 599 if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL)) 600 return; 601 602 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. 603 // Normally 'type' was changed by 'first' so 'first' should be non-null. 604 // However, if the output section is .rela.dyn, 'type' can be set by the empty 605 // synthetic .rela.plt and first can be null. 606 if (!first || isa<SyntheticSection>(first)) 607 return; 608 609 link = in.symTab->getParent()->sectionIndex; 610 // sh_info for SHT_REL[A] sections should contain the section header index of 611 // the section to which the relocation applies. 612 InputSectionBase *s = first->getRelocatedSection(); 613 info = s->getOutputSection()->sectionIndex; 614 flags |= SHF_INFO_LINK; 615 } 616 617 // Returns true if S is in one of the many forms the compiler driver may pass 618 // crtbegin files. 619 // 620 // Gcc uses any of crtbegin[<empty>|S|T].o. 621 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. 622 623 static bool isCrt(StringRef s, StringRef beginEnd) { 624 s = sys::path::filename(s); 625 if (!s.consume_back(".o")) 626 return false; 627 if (s.consume_front("clang_rt.")) 628 return s.consume_front(beginEnd); 629 return s.consume_front(beginEnd) && s.size() <= 1; 630 } 631 632 // .ctors and .dtors are sorted by this order: 633 // 634 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). 635 // 2. The section is named ".ctors" or ".dtors" (priority: 65536). 636 // 3. The section has an optional priority value in the form of ".ctors.N" or 637 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). 638 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). 639 // 640 // For 2 and 3, the sections are sorted by priority from high to low, e.g. 641 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's 642 // internal linker scripts, the sorting is by string comparison which can 643 // achieve the same goal given the optional priority values are of the same 644 // length. 645 // 646 // In an ideal world, we don't need this function because .init_array and 647 // .ctors are duplicate features (and .init_array is newer.) However, there 648 // are too many real-world use cases of .ctors, so we had no choice to 649 // support that with this rather ad-hoc semantics. 650 static bool compCtors(const InputSection *a, const InputSection *b) { 651 bool beginA = isCrt(a->file->getName(), "crtbegin"); 652 bool beginB = isCrt(b->file->getName(), "crtbegin"); 653 if (beginA != beginB) 654 return beginA; 655 bool endA = isCrt(a->file->getName(), "crtend"); 656 bool endB = isCrt(b->file->getName(), "crtend"); 657 if (endA != endB) 658 return endB; 659 return getPriority(a->name) > getPriority(b->name); 660 } 661 662 // Sorts input sections by the special rules for .ctors and .dtors. 663 // Unfortunately, the rules are different from the one for .{init,fini}_array. 664 // Read the comment above. 665 void OutputSection::sortCtorsDtors() { 666 assert(commands.size() == 1); 667 auto *isd = cast<InputSectionDescription>(commands[0]); 668 llvm::stable_sort(isd->sections, compCtors); 669 } 670 671 // If an input string is in the form of "foo.N" where N is a number, return N 672 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one 673 // greater than the lowest priority. 674 int elf::getPriority(StringRef s) { 675 size_t pos = s.rfind('.'); 676 if (pos == StringRef::npos) 677 return 65536; 678 int v = 65536; 679 if (to_integer(s.substr(pos + 1), v, 10) && 680 (pos == 6 && (s.starts_with(".ctors") || s.starts_with(".dtors")))) 681 v = 65535 - v; 682 return v; 683 } 684 685 InputSection *elf::getFirstInputSection(const OutputSection *os) { 686 for (SectionCommand *cmd : os->commands) 687 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 688 if (!isd->sections.empty()) 689 return isd->sections[0]; 690 return nullptr; 691 } 692 693 ArrayRef<InputSection *> 694 elf::getInputSections(const OutputSection &os, 695 SmallVector<InputSection *, 0> &storage) { 696 ArrayRef<InputSection *> ret; 697 storage.clear(); 698 for (SectionCommand *cmd : os.commands) { 699 auto *isd = dyn_cast<InputSectionDescription>(cmd); 700 if (!isd) 701 continue; 702 if (ret.empty()) { 703 ret = isd->sections; 704 } else { 705 if (storage.empty()) 706 storage.assign(ret.begin(), ret.end()); 707 storage.insert(storage.end(), isd->sections.begin(), isd->sections.end()); 708 } 709 } 710 return storage.empty() ? ret : ArrayRef(storage); 711 } 712 713 // Sorts input sections by section name suffixes, so that .foo.N comes 714 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 715 // We want to keep the original order if the priorities are the same 716 // because the compiler keeps the original initialization order in a 717 // translation unit and we need to respect that. 718 // For more detail, read the section of the GCC's manual about init_priority. 719 void OutputSection::sortInitFini() { 720 // Sort sections by priority. 721 sort([](InputSectionBase *s) { return getPriority(s->name); }); 722 } 723 724 std::array<uint8_t, 4> OutputSection::getFiller() { 725 if (filler) 726 return *filler; 727 if (flags & SHF_EXECINSTR) 728 return target->trapInstr; 729 return {0, 0, 0, 0}; 730 } 731 732 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { 733 assert(config->writeAddends && config->checkDynamicRelocs); 734 assert(type == SHT_REL || type == SHT_RELA); 735 SmallVector<InputSection *, 0> storage; 736 ArrayRef<InputSection *> sections = getInputSections(*this, storage); 737 parallelFor(0, sections.size(), [&](size_t i) { 738 // When linking with -r or --emit-relocs we might also call this function 739 // for input .rel[a].<sec> sections which we simply pass through to the 740 // output. We skip over those and only look at the synthetic relocation 741 // sections created during linking. 742 const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]); 743 if (!sec) 744 return; 745 for (const DynamicReloc &rel : sec->relocs) { 746 int64_t addend = rel.addend; 747 const OutputSection *relOsec = rel.inputSec->getOutputSection(); 748 assert(relOsec != nullptr && "missing output section for relocation"); 749 // Some targets have NOBITS synthetic sections with dynamic relocations 750 // with non-zero addends. Skip such sections. 751 if (is_contained({EM_PPC, EM_PPC64}, config->emachine) && 752 (rel.inputSec == in.ppc64LongBranchTarget.get() || 753 rel.inputSec == in.igotPlt.get())) 754 continue; 755 const uint8_t *relocTarget = 756 bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); 757 // For SHT_NOBITS the written addend is always zero. 758 int64_t writtenAddend = 759 relOsec->type == SHT_NOBITS 760 ? 0 761 : target->getImplicitAddend(relocTarget, rel.type); 762 if (addend != writtenAddend) 763 internalLinkerError( 764 getErrorLocation(relocTarget), 765 "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + 766 " instead of 0x" + utohexstr(addend) + 767 " for dynamic relocation " + toString(rel.type) + 768 " at offset 0x" + utohexstr(rel.getOffset()) + 769 (rel.sym ? " against symbol " + toString(*rel.sym) : "")); 770 } 771 }); 772 } 773 774 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); 775 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); 776 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); 777 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); 778 779 template void OutputSection::writeTo<ELF32LE>(uint8_t *, 780 llvm::parallel::TaskGroup &); 781 template void OutputSection::writeTo<ELF32BE>(uint8_t *, 782 llvm::parallel::TaskGroup &); 783 template void OutputSection::writeTo<ELF64LE>(uint8_t *, 784 llvm::parallel::TaskGroup &); 785 template void OutputSection::writeTo<ELF64BE>(uint8_t *, 786 llvm::parallel::TaskGroup &); 787 788 template void OutputSection::maybeCompress<ELF32LE>(); 789 template void OutputSection::maybeCompress<ELF32BE>(); 790 template void OutputSection::maybeCompress<ELF64LE>(); 791 template void OutputSection::maybeCompress<ELF64BE>(); 792