1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Config.h" 11 #include "LinkerScript.h" 12 #include "SymbolTable.h" 13 #include "SyntheticSections.h" 14 #include "Target.h" 15 #include "lld/Common/Arrays.h" 16 #include "lld/Common/Memory.h" 17 #include "lld/Common/Strings.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB 20 #include "llvm/Support/MD5.h" 21 #include "llvm/Support/MathExtras.h" 22 #include "llvm/Support/Parallel.h" 23 #include "llvm/Support/SHA1.h" 24 #include "llvm/Support/TimeProfiler.h" 25 #if LLVM_ENABLE_ZLIB 26 #include <zlib.h> 27 #endif 28 29 using namespace llvm; 30 using namespace llvm::dwarf; 31 using namespace llvm::object; 32 using namespace llvm::support::endian; 33 using namespace llvm::ELF; 34 using namespace lld; 35 using namespace lld::elf; 36 37 uint8_t *Out::bufferStart; 38 PhdrEntry *Out::tlsPhdr; 39 OutputSection *Out::elfHeader; 40 OutputSection *Out::programHeaders; 41 OutputSection *Out::preinitArray; 42 OutputSection *Out::initArray; 43 OutputSection *Out::finiArray; 44 45 SmallVector<OutputSection *, 0> elf::outputSections; 46 47 uint32_t OutputSection::getPhdrFlags() const { 48 uint32_t ret = 0; 49 if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) 50 ret |= PF_R; 51 if (flags & SHF_WRITE) 52 ret |= PF_W; 53 if (flags & SHF_EXECINSTR) 54 ret |= PF_X; 55 return ret; 56 } 57 58 template <class ELFT> 59 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { 60 shdr->sh_entsize = entsize; 61 shdr->sh_addralign = alignment; 62 shdr->sh_type = type; 63 shdr->sh_offset = offset; 64 shdr->sh_flags = flags; 65 shdr->sh_info = info; 66 shdr->sh_link = link; 67 shdr->sh_addr = addr; 68 shdr->sh_size = size; 69 shdr->sh_name = shName; 70 } 71 72 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) 73 : SectionCommand(OutputSectionKind), 74 SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, 75 /*Info*/ 0, /*Link*/ 0) {} 76 77 // We allow sections of types listed below to merged into a 78 // single progbits section. This is typically done by linker 79 // scripts. Merging nobits and progbits will force disk space 80 // to be allocated for nobits sections. Other ones don't require 81 // any special treatment on top of progbits, so there doesn't 82 // seem to be a harm in merging them. 83 // 84 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow 85 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). 86 static bool canMergeToProgbits(unsigned type) { 87 return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || 88 type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || 89 type == SHT_NOTE || 90 (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); 91 } 92 93 // Record that isec will be placed in the OutputSection. isec does not become 94 // permanent until finalizeInputSections() is called. The function should not be 95 // used after finalizeInputSections() is called. If you need to add an 96 // InputSection post finalizeInputSections(), then you must do the following: 97 // 98 // 1. Find or create an InputSectionDescription to hold InputSection. 99 // 2. Add the InputSection to the InputSectionDescription::sections. 100 // 3. Call commitSection(isec). 101 void OutputSection::recordSection(InputSectionBase *isec) { 102 partition = isec->partition; 103 isec->parent = this; 104 if (commands.empty() || !isa<InputSectionDescription>(commands.back())) 105 commands.push_back(make<InputSectionDescription>("")); 106 auto *isd = cast<InputSectionDescription>(commands.back()); 107 isd->sectionBases.push_back(isec); 108 } 109 110 // Update fields (type, flags, alignment, etc) according to the InputSection 111 // isec. Also check whether the InputSection flags and type are consistent with 112 // other InputSections. 113 void OutputSection::commitSection(InputSection *isec) { 114 if (!hasInputSections) { 115 // If IS is the first section to be added to this section, 116 // initialize type, entsize and flags from isec. 117 hasInputSections = true; 118 type = isec->type; 119 entsize = isec->entsize; 120 flags = isec->flags; 121 } else { 122 // Otherwise, check if new type or flags are compatible with existing ones. 123 if ((flags ^ isec->flags) & SHF_TLS) 124 error("incompatible section flags for " + name + "\n>>> " + toString(isec) + 125 ": 0x" + utohexstr(isec->flags) + "\n>>> output section " + name + 126 ": 0x" + utohexstr(flags)); 127 128 if (type != isec->type) { 129 if (!canMergeToProgbits(type) || !canMergeToProgbits(isec->type)) 130 error("section type mismatch for " + isec->name + "\n>>> " + 131 toString(isec) + ": " + 132 getELFSectionTypeName(config->emachine, isec->type) + 133 "\n>>> output section " + name + ": " + 134 getELFSectionTypeName(config->emachine, type)); 135 type = SHT_PROGBITS; 136 } 137 } 138 if (noload) 139 type = SHT_NOBITS; 140 141 isec->parent = this; 142 uint64_t andMask = 143 config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; 144 uint64_t orMask = ~andMask; 145 uint64_t andFlags = (flags & isec->flags) & andMask; 146 uint64_t orFlags = (flags | isec->flags) & orMask; 147 flags = andFlags | orFlags; 148 if (nonAlloc) 149 flags &= ~(uint64_t)SHF_ALLOC; 150 151 alignment = std::max(alignment, isec->alignment); 152 153 // If this section contains a table of fixed-size entries, sh_entsize 154 // holds the element size. If it contains elements of different size we 155 // set sh_entsize to 0. 156 if (entsize != isec->entsize) 157 entsize = 0; 158 } 159 160 static MergeSyntheticSection *createMergeSynthetic(StringRef name, 161 uint32_t type, 162 uint64_t flags, 163 uint32_t alignment) { 164 if ((flags & SHF_STRINGS) && config->optimize >= 2) 165 return make<MergeTailSection>(name, type, flags, alignment); 166 return make<MergeNoTailSection>(name, type, flags, alignment); 167 } 168 169 // This function scans over the InputSectionBase list sectionBases to create 170 // InputSectionDescription::sections. 171 // 172 // It removes MergeInputSections from the input section array and adds 173 // new synthetic sections at the location of the first input section 174 // that it replaces. It then finalizes each synthetic section in order 175 // to compute an output offset for each piece of each input section. 176 void OutputSection::finalizeInputSections() { 177 std::vector<MergeSyntheticSection *> mergeSections; 178 for (SectionCommand *cmd : commands) { 179 auto *isd = dyn_cast<InputSectionDescription>(cmd); 180 if (!isd) 181 continue; 182 isd->sections.reserve(isd->sectionBases.size()); 183 for (InputSectionBase *s : isd->sectionBases) { 184 MergeInputSection *ms = dyn_cast<MergeInputSection>(s); 185 if (!ms) { 186 isd->sections.push_back(cast<InputSection>(s)); 187 continue; 188 } 189 190 // We do not want to handle sections that are not alive, so just remove 191 // them instead of trying to merge. 192 if (!ms->isLive()) 193 continue; 194 195 auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { 196 // While we could create a single synthetic section for two different 197 // values of Entsize, it is better to take Entsize into consideration. 198 // 199 // With a single synthetic section no two pieces with different Entsize 200 // could be equal, so we may as well have two sections. 201 // 202 // Using Entsize in here also allows us to propagate it to the synthetic 203 // section. 204 // 205 // SHF_STRINGS section with different alignments should not be merged. 206 return sec->flags == ms->flags && sec->entsize == ms->entsize && 207 (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS)); 208 }); 209 if (i == mergeSections.end()) { 210 MergeSyntheticSection *syn = 211 createMergeSynthetic(name, ms->type, ms->flags, ms->alignment); 212 mergeSections.push_back(syn); 213 i = std::prev(mergeSections.end()); 214 syn->entsize = ms->entsize; 215 isd->sections.push_back(syn); 216 } 217 (*i)->addSection(ms); 218 } 219 220 // sectionBases should not be used from this point onwards. Clear it to 221 // catch misuses. 222 isd->sectionBases.clear(); 223 224 // Some input sections may be removed from the list after ICF. 225 for (InputSection *s : isd->sections) 226 commitSection(s); 227 } 228 for (auto *ms : mergeSections) 229 ms->finalizeContents(); 230 } 231 232 static void sortByOrder(MutableArrayRef<InputSection *> in, 233 llvm::function_ref<int(InputSectionBase *s)> order) { 234 std::vector<std::pair<int, InputSection *>> v; 235 for (InputSection *s : in) 236 v.push_back({order(s), s}); 237 llvm::stable_sort(v, less_first()); 238 239 for (size_t i = 0; i < v.size(); ++i) 240 in[i] = v[i].second; 241 } 242 243 uint64_t elf::getHeaderSize() { 244 if (config->oFormatBinary) 245 return 0; 246 return Out::elfHeader->size + Out::programHeaders->size; 247 } 248 249 bool OutputSection::classof(const SectionCommand *c) { 250 return c->kind == OutputSectionKind; 251 } 252 253 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { 254 assert(isLive()); 255 for (SectionCommand *b : commands) 256 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 257 sortByOrder(isd->sections, order); 258 } 259 260 static void nopInstrFill(uint8_t *buf, size_t size) { 261 if (size == 0) 262 return; 263 unsigned i = 0; 264 if (size == 0) 265 return; 266 std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs; 267 unsigned num = size / nopFiller.back().size(); 268 for (unsigned c = 0; c < num; ++c) { 269 memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); 270 i += nopFiller.back().size(); 271 } 272 unsigned remaining = size - i; 273 if (!remaining) 274 return; 275 assert(nopFiller[remaining - 1].size() == remaining); 276 memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); 277 } 278 279 // Fill [Buf, Buf + Size) with Filler. 280 // This is used for linker script "=fillexp" command. 281 static void fill(uint8_t *buf, size_t size, 282 const std::array<uint8_t, 4> &filler) { 283 size_t i = 0; 284 for (; i + 4 < size; i += 4) 285 memcpy(buf + i, filler.data(), 4); 286 memcpy(buf + i, filler.data(), size - i); 287 } 288 289 #if LLVM_ENABLE_ZLIB 290 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level, 291 int flush) { 292 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate 293 // data with no zlib header or trailer. 294 z_stream s = {}; 295 deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); 296 s.next_in = const_cast<uint8_t *>(in.data()); 297 s.avail_in = in.size(); 298 299 // Allocate a buffer of half of the input size, and grow it by 1.5x if 300 // insufficient. 301 SmallVector<uint8_t, 0> out; 302 size_t pos = 0; 303 out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64)); 304 do { 305 if (pos == out.size()) 306 out.resize_for_overwrite(out.size() * 3 / 2); 307 s.next_out = out.data() + pos; 308 s.avail_out = out.size() - pos; 309 (void)deflate(&s, flush); 310 pos = s.next_out - out.data(); 311 } while (s.avail_out == 0); 312 assert(s.avail_in == 0); 313 314 out.truncate(pos); 315 deflateEnd(&s); 316 return out; 317 } 318 #endif 319 320 // Compress section contents if this section contains debug info. 321 template <class ELFT> void OutputSection::maybeCompress() { 322 #if LLVM_ENABLE_ZLIB 323 using Elf_Chdr = typename ELFT::Chdr; 324 325 // Compress only DWARF debug sections. 326 if (!config->compressDebugSections || (flags & SHF_ALLOC) || 327 !name.startswith(".debug_") || size == 0) 328 return; 329 330 llvm::TimeTraceScope timeScope("Compress debug sections"); 331 332 // Write uncompressed data to a temporary zero-initialized buffer. 333 auto buf = std::make_unique<uint8_t[]>(size); 334 writeTo<ELFT>(buf.get()); 335 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is 336 // the fastest. If -O2 is given, we use level 6 to compress debug info more by 337 // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more 338 // compression) while they take significant amount of time (~2x), so level 6 339 // seems enough. 340 const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED; 341 342 // Split input into 1-MiB shards. 343 constexpr size_t shardSize = 1 << 20; 344 auto shardsIn = split(makeArrayRef<uint8_t>(buf.get(), size), shardSize); 345 const size_t numShards = shardsIn.size(); 346 347 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all 348 // shards but the last to flush the output to a byte boundary to be 349 // concatenated with the next shard. 350 auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards); 351 auto shardsAdler = std::make_unique<uint32_t[]>(numShards); 352 parallelForEachN(0, numShards, [&](size_t i) { 353 shardsOut[i] = deflateShard(shardsIn[i], level, 354 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); 355 shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); 356 }); 357 358 // Update section size and combine Alder-32 checksums. 359 uint32_t checksum = 1; // Initial Adler-32 value 360 compressed.uncompressedSize = size; 361 size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header 362 for (size_t i = 0; i != numShards; ++i) { 363 size += shardsOut[i].size(); 364 checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); 365 } 366 size += 4; // checksum 367 368 compressed.shards = std::move(shardsOut); 369 compressed.numShards = numShards; 370 compressed.checksum = checksum; 371 flags |= SHF_COMPRESSED; 372 #endif 373 } 374 375 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { 376 if (size == 1) 377 *buf = data; 378 else if (size == 2) 379 write16(buf, data); 380 else if (size == 4) 381 write32(buf, data); 382 else if (size == 8) 383 write64(buf, data); 384 else 385 llvm_unreachable("unsupported Size argument"); 386 } 387 388 template <class ELFT> void OutputSection::writeTo(uint8_t *buf) { 389 llvm::TimeTraceScope timeScope("Write sections", name); 390 if (type == SHT_NOBITS) 391 return; 392 393 // If --compress-debug-section is specified and if this is a debug section, 394 // we've already compressed section contents. If that's the case, 395 // just write it down. 396 if (compressed.shards) { 397 auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); 398 chdr->ch_type = ELFCOMPRESS_ZLIB; 399 chdr->ch_size = compressed.uncompressedSize; 400 chdr->ch_addralign = alignment; 401 buf += sizeof(*chdr); 402 403 // Compute shard offsets. 404 auto offsets = std::make_unique<size_t[]>(compressed.numShards); 405 offsets[0] = 2; // zlib header 406 for (size_t i = 1; i != compressed.numShards; ++i) 407 offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); 408 409 buf[0] = 0x78; // CMF 410 buf[1] = 0x01; // FLG: best speed 411 parallelForEachN(0, compressed.numShards, [&](size_t i) { 412 memcpy(buf + offsets[i], compressed.shards[i].data(), 413 compressed.shards[i].size()); 414 }); 415 416 write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); 417 return; 418 } 419 420 // Write leading padding. 421 SmallVector<InputSection *, 0> sections = getInputSections(*this); 422 std::array<uint8_t, 4> filler = getFiller(); 423 bool nonZeroFiller = read32(filler.data()) != 0; 424 if (nonZeroFiller) 425 fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); 426 427 parallelForEachN(0, sections.size(), [&](size_t i) { 428 InputSection *isec = sections[i]; 429 isec->writeTo<ELFT>(buf + isec->outSecOff); 430 431 // Fill gaps between sections. 432 if (nonZeroFiller) { 433 uint8_t *start = buf + isec->outSecOff + isec->getSize(); 434 uint8_t *end; 435 if (i + 1 == sections.size()) 436 end = buf + size; 437 else 438 end = buf + sections[i + 1]->outSecOff; 439 if (isec->nopFiller) { 440 assert(target->nopInstrs); 441 nopInstrFill(start, end - start); 442 } else 443 fill(start, end - start, filler); 444 } 445 }); 446 447 // Linker scripts may have BYTE()-family commands with which you 448 // can write arbitrary bytes to the output. Process them if any. 449 for (SectionCommand *cmd : commands) 450 if (auto *data = dyn_cast<ByteCommand>(cmd)) 451 writeInt(buf + data->offset, data->expression().getValue(), data->size); 452 } 453 454 static void finalizeShtGroup(OutputSection *os, 455 InputSection *section) { 456 assert(config->relocatable); 457 458 // sh_link field for SHT_GROUP sections should contain the section index of 459 // the symbol table. 460 os->link = in.symTab->getParent()->sectionIndex; 461 462 // sh_info then contain index of an entry in symbol table section which 463 // provides signature of the section group. 464 ArrayRef<Symbol *> symbols = section->file->getSymbols(); 465 os->info = in.symTab->getSymbolIndex(symbols[section->info]); 466 467 // Some group members may be combined or discarded, so we need to compute the 468 // new size. The content will be rewritten in InputSection::copyShtGroup. 469 DenseSet<uint32_t> seen; 470 ArrayRef<InputSectionBase *> sections = section->file->getSections(); 471 for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1)) 472 if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) 473 seen.insert(osec->sectionIndex); 474 os->size = (1 + seen.size()) * sizeof(uint32_t); 475 } 476 477 void OutputSection::finalize() { 478 InputSection *first = getFirstInputSection(this); 479 480 if (flags & SHF_LINK_ORDER) { 481 // We must preserve the link order dependency of sections with the 482 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We 483 // need to translate the InputSection sh_link to the OutputSection sh_link, 484 // all InputSections in the OutputSection have the same dependency. 485 if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first)) 486 link = ex->getLinkOrderDep()->getParent()->sectionIndex; 487 else if (first->flags & SHF_LINK_ORDER) 488 if (auto *d = first->getLinkOrderDep()) 489 link = d->getParent()->sectionIndex; 490 } 491 492 if (type == SHT_GROUP) { 493 finalizeShtGroup(this, first); 494 return; 495 } 496 497 if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL)) 498 return; 499 500 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. 501 // Normally 'type' was changed by 'first' so 'first' should be non-null. 502 // However, if the output section is .rela.dyn, 'type' can be set by the empty 503 // synthetic .rela.plt and first can be null. 504 if (!first || isa<SyntheticSection>(first)) 505 return; 506 507 link = in.symTab->getParent()->sectionIndex; 508 // sh_info for SHT_REL[A] sections should contain the section header index of 509 // the section to which the relocation applies. 510 InputSectionBase *s = first->getRelocatedSection(); 511 info = s->getOutputSection()->sectionIndex; 512 flags |= SHF_INFO_LINK; 513 } 514 515 // Returns true if S is in one of the many forms the compiler driver may pass 516 // crtbegin files. 517 // 518 // Gcc uses any of crtbegin[<empty>|S|T].o. 519 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. 520 521 static bool isCrt(StringRef s, StringRef beginEnd) { 522 s = sys::path::filename(s); 523 if (!s.consume_back(".o")) 524 return false; 525 if (s.consume_front("clang_rt.")) 526 return s.consume_front(beginEnd); 527 return s.consume_front(beginEnd) && s.size() <= 1; 528 } 529 530 // .ctors and .dtors are sorted by this order: 531 // 532 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). 533 // 2. The section is named ".ctors" or ".dtors" (priority: 65536). 534 // 3. The section has an optional priority value in the form of ".ctors.N" or 535 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). 536 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). 537 // 538 // For 2 and 3, the sections are sorted by priority from high to low, e.g. 539 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's 540 // internal linker scripts, the sorting is by string comparison which can 541 // achieve the same goal given the optional priority values are of the same 542 // length. 543 // 544 // In an ideal world, we don't need this function because .init_array and 545 // .ctors are duplicate features (and .init_array is newer.) However, there 546 // are too many real-world use cases of .ctors, so we had no choice to 547 // support that with this rather ad-hoc semantics. 548 static bool compCtors(const InputSection *a, const InputSection *b) { 549 bool beginA = isCrt(a->file->getName(), "crtbegin"); 550 bool beginB = isCrt(b->file->getName(), "crtbegin"); 551 if (beginA != beginB) 552 return beginA; 553 bool endA = isCrt(a->file->getName(), "crtend"); 554 bool endB = isCrt(b->file->getName(), "crtend"); 555 if (endA != endB) 556 return endB; 557 return getPriority(a->name) > getPriority(b->name); 558 } 559 560 // Sorts input sections by the special rules for .ctors and .dtors. 561 // Unfortunately, the rules are different from the one for .{init,fini}_array. 562 // Read the comment above. 563 void OutputSection::sortCtorsDtors() { 564 assert(commands.size() == 1); 565 auto *isd = cast<InputSectionDescription>(commands[0]); 566 llvm::stable_sort(isd->sections, compCtors); 567 } 568 569 // If an input string is in the form of "foo.N" where N is a number, return N 570 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one 571 // greater than the lowest priority. 572 int elf::getPriority(StringRef s) { 573 size_t pos = s.rfind('.'); 574 if (pos == StringRef::npos) 575 return 65536; 576 int v = 65536; 577 if (to_integer(s.substr(pos + 1), v, 10) && 578 (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors")))) 579 v = 65535 - v; 580 return v; 581 } 582 583 InputSection *elf::getFirstInputSection(const OutputSection *os) { 584 for (SectionCommand *cmd : os->commands) 585 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 586 if (!isd->sections.empty()) 587 return isd->sections[0]; 588 return nullptr; 589 } 590 591 SmallVector<InputSection *, 0> elf::getInputSections(const OutputSection &os) { 592 SmallVector<InputSection *, 0> ret; 593 for (SectionCommand *cmd : os.commands) 594 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 595 ret.insert(ret.end(), isd->sections.begin(), isd->sections.end()); 596 return ret; 597 } 598 599 // Sorts input sections by section name suffixes, so that .foo.N comes 600 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 601 // We want to keep the original order if the priorities are the same 602 // because the compiler keeps the original initialization order in a 603 // translation unit and we need to respect that. 604 // For more detail, read the section of the GCC's manual about init_priority. 605 void OutputSection::sortInitFini() { 606 // Sort sections by priority. 607 sort([](InputSectionBase *s) { return getPriority(s->name); }); 608 } 609 610 std::array<uint8_t, 4> OutputSection::getFiller() { 611 if (filler) 612 return *filler; 613 if (flags & SHF_EXECINSTR) 614 return target->trapInstr; 615 return {0, 0, 0, 0}; 616 } 617 618 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { 619 assert(config->writeAddends && config->checkDynamicRelocs); 620 assert(type == SHT_REL || type == SHT_RELA); 621 SmallVector<InputSection *, 0> sections = getInputSections(*this); 622 parallelForEachN(0, sections.size(), [&](size_t i) { 623 // When linking with -r or --emit-relocs we might also call this function 624 // for input .rel[a].<sec> sections which we simply pass through to the 625 // output. We skip over those and only look at the synthetic relocation 626 // sections created during linking. 627 const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]); 628 if (!sec) 629 return; 630 for (const DynamicReloc &rel : sec->relocs) { 631 int64_t addend = rel.addend; 632 const OutputSection *relOsec = rel.inputSec->getOutputSection(); 633 assert(relOsec != nullptr && "missing output section for relocation"); 634 const uint8_t *relocTarget = 635 bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); 636 // For SHT_NOBITS the written addend is always zero. 637 int64_t writtenAddend = 638 relOsec->type == SHT_NOBITS 639 ? 0 640 : target->getImplicitAddend(relocTarget, rel.type); 641 if (addend != writtenAddend) 642 internalLinkerError( 643 getErrorLocation(relocTarget), 644 "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + 645 " instead of 0x" + utohexstr(addend) + 646 " for dynamic relocation " + toString(rel.type) + 647 " at offset 0x" + utohexstr(rel.getOffset()) + 648 (rel.sym ? " against symbol " + toString(*rel.sym) : "")); 649 } 650 }); 651 } 652 653 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); 654 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); 655 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); 656 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); 657 658 template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf); 659 template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf); 660 template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf); 661 template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf); 662 663 template void OutputSection::maybeCompress<ELF32LE>(); 664 template void OutputSection::maybeCompress<ELF32BE>(); 665 template void OutputSection::maybeCompress<ELF64LE>(); 666 template void OutputSection::maybeCompress<ELF64BE>(); 667