1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <cstdint> 37 #include <iterator> 38 #include <limits> 39 #include <string> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace llvm::ELF; 44 using namespace llvm::object; 45 using namespace llvm::support::endian; 46 using namespace lld; 47 using namespace lld::elf; 48 49 LinkerScript *elf::script; 50 51 static uint64_t getOutputSectionVA(SectionBase *sec) { 52 OutputSection *os = sec->getOutputSection(); 53 assert(os && "input section has no output section assigned"); 54 return os ? os->addr : 0; 55 } 56 57 uint64_t ExprValue::getValue() const { 58 if (sec) 59 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 60 alignment); 61 return alignTo(val, alignment); 62 } 63 64 uint64_t ExprValue::getSecAddr() const { 65 if (sec) 66 return sec->getOffset(0) + getOutputSectionVA(sec); 67 return 0; 68 } 69 70 uint64_t ExprValue::getSectionOffset() const { 71 // If the alignment is trivial, we don't have to compute the full 72 // value to know the offset. This allows this function to succeed in 73 // cases where the output section is not yet known. 74 if (alignment == 1 && !sec) 75 return val; 76 return getValue() - getSecAddr(); 77 } 78 79 OutputSection *LinkerScript::createOutputSection(StringRef name, 80 StringRef location) { 81 OutputSection *&secRef = nameToOutputSection[name]; 82 OutputSection *sec; 83 if (secRef && secRef->location.empty()) { 84 // There was a forward reference. 85 sec = secRef; 86 } else { 87 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 88 if (!secRef) 89 secRef = sec; 90 } 91 sec->location = std::string(location); 92 return sec; 93 } 94 95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 96 OutputSection *&cmdRef = nameToOutputSection[name]; 97 if (!cmdRef) 98 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 99 return cmdRef; 100 } 101 102 // Expands the memory region by the specified size. 103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 104 StringRef regionName, StringRef secName) { 105 memRegion->curPos += size; 106 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 107 uint64_t length = (memRegion->length)().getValue(); 108 if (newSize > length) 109 error("section '" + secName + "' will not fit in region '" + regionName + 110 "': overflowed by " + Twine(newSize - length) + " bytes"); 111 } 112 113 void LinkerScript::expandMemoryRegions(uint64_t size) { 114 if (ctx->memRegion) 115 expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, 116 ctx->outSec->name); 117 // Only expand the LMARegion if it is different from memRegion. 118 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 119 expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, 120 ctx->outSec->name); 121 } 122 123 void LinkerScript::expandOutputSection(uint64_t size) { 124 ctx->outSec->size += size; 125 expandMemoryRegions(size); 126 } 127 128 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 129 uint64_t val = e().getValue(); 130 if (val < dot && inSec) 131 error(loc + ": unable to move location counter backward for: " + 132 ctx->outSec->name); 133 134 // Update to location counter means update to section size. 135 if (inSec) 136 expandOutputSection(val - dot); 137 138 dot = val; 139 } 140 141 // Used for handling linker symbol assignments, for both finalizing 142 // their values and doing early declarations. Returns true if symbol 143 // should be defined from linker script. 144 static bool shouldDefineSym(SymbolAssignment *cmd) { 145 if (cmd->name == ".") 146 return false; 147 148 if (!cmd->provide) 149 return true; 150 151 // If a symbol was in PROVIDE(), we need to define it only 152 // when it is a referenced undefined symbol. 153 Symbol *b = symtab->find(cmd->name); 154 if (b && !b->isDefined()) 155 return true; 156 return false; 157 } 158 159 // Called by processSymbolAssignments() to assign definitions to 160 // linker-script-defined symbols. 161 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 162 if (!shouldDefineSym(cmd)) 163 return; 164 165 // Define a symbol. 166 ExprValue value = cmd->expression(); 167 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 168 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 169 170 // When this function is called, section addresses have not been 171 // fixed yet. So, we may or may not know the value of the RHS 172 // expression. 173 // 174 // For example, if an expression is `x = 42`, we know x is always 42. 175 // However, if an expression is `x = .`, there's no way to know its 176 // value at the moment. 177 // 178 // We want to set symbol values early if we can. This allows us to 179 // use symbols as variables in linker scripts. Doing so allows us to 180 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 181 uint64_t symValue = value.sec ? 0 : value.getValue(); 182 183 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 184 symValue, 0, sec); 185 186 Symbol *sym = symtab->insert(cmd->name); 187 sym->mergeProperties(newSym); 188 sym->replace(newSym); 189 cmd->sym = cast<Defined>(sym); 190 } 191 192 // This function is called from LinkerScript::declareSymbols. 193 // It creates a placeholder symbol if needed. 194 static void declareSymbol(SymbolAssignment *cmd) { 195 if (!shouldDefineSym(cmd)) 196 return; 197 198 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 199 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 200 nullptr); 201 202 // We can't calculate final value right now. 203 Symbol *sym = symtab->insert(cmd->name); 204 sym->mergeProperties(newSym); 205 sym->replace(newSym); 206 207 cmd->sym = cast<Defined>(sym); 208 cmd->provide = false; 209 sym->scriptDefined = true; 210 } 211 212 using SymbolAssignmentMap = 213 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 214 215 // Collect section/value pairs of linker-script-defined symbols. This is used to 216 // check whether symbol values converge. 217 static SymbolAssignmentMap 218 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 219 SymbolAssignmentMap ret; 220 for (BaseCommand *base : sectionCommands) { 221 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 222 if (cmd->sym) // sym is nullptr for dot. 223 ret.try_emplace(cmd->sym, 224 std::make_pair(cmd->sym->section, cmd->sym->value)); 225 continue; 226 } 227 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 228 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 229 if (cmd->sym) 230 ret.try_emplace(cmd->sym, 231 std::make_pair(cmd->sym->section, cmd->sym->value)); 232 } 233 return ret; 234 } 235 236 // Returns the lexicographical smallest (for determinism) Defined whose 237 // section/value has changed. 238 static const Defined * 239 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 240 const Defined *changed = nullptr; 241 for (auto &it : oldValues) { 242 const Defined *sym = it.first; 243 if (std::make_pair(sym->section, sym->value) != it.second && 244 (!changed || sym->getName() < changed->getName())) 245 changed = sym; 246 } 247 return changed; 248 } 249 250 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 251 // specified output section to the designated place. 252 void LinkerScript::processInsertCommands() { 253 for (const InsertCommand &cmd : insertCommands) { 254 // If cmd.os is empty, it may have been discarded by 255 // adjustSectionsBeforeSorting(). We do not handle such output sections. 256 auto from = llvm::find(sectionCommands, cmd.os); 257 if (from == sectionCommands.end()) 258 continue; 259 sectionCommands.erase(from); 260 261 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 262 auto *to = dyn_cast<OutputSection>(base); 263 return to != nullptr && to->name == cmd.where; 264 }); 265 if (insertPos == sectionCommands.end()) { 266 error("unable to insert " + cmd.os->name + 267 (cmd.isAfter ? " after " : " before ") + cmd.where); 268 } else { 269 if (cmd.isAfter) 270 ++insertPos; 271 sectionCommands.insert(insertPos, cmd.os); 272 } 273 } 274 } 275 276 // Symbols defined in script should not be inlined by LTO. At the same time 277 // we don't know their final values until late stages of link. Here we scan 278 // over symbol assignment commands and create placeholder symbols if needed. 279 void LinkerScript::declareSymbols() { 280 assert(!ctx); 281 for (BaseCommand *base : sectionCommands) { 282 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 283 declareSymbol(cmd); 284 continue; 285 } 286 287 // If the output section directive has constraints, 288 // we can't say for sure if it is going to be included or not. 289 // Skip such sections for now. Improve the checks if we ever 290 // need symbols from that sections to be declared early. 291 auto *sec = cast<OutputSection>(base); 292 if (sec->constraint != ConstraintKind::NoConstraint) 293 continue; 294 for (BaseCommand *base2 : sec->sectionCommands) 295 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 296 declareSymbol(cmd); 297 } 298 } 299 300 // This function is called from assignAddresses, while we are 301 // fixing the output section addresses. This function is supposed 302 // to set the final value for a given symbol assignment. 303 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 304 if (cmd->name == ".") { 305 setDot(cmd->expression, cmd->location, inSec); 306 return; 307 } 308 309 if (!cmd->sym) 310 return; 311 312 ExprValue v = cmd->expression(); 313 if (v.isAbsolute()) { 314 cmd->sym->section = nullptr; 315 cmd->sym->value = v.getValue(); 316 } else { 317 cmd->sym->section = v.sec; 318 cmd->sym->value = v.getSectionOffset(); 319 } 320 } 321 322 static std::string getFilename(InputFile *file) { 323 if (!file) 324 return ""; 325 if (file->archiveName.empty()) 326 return std::string(file->getName()); 327 return (file->archiveName + ':' + file->getName()).str(); 328 } 329 330 bool LinkerScript::shouldKeep(InputSectionBase *s) { 331 if (keptSections.empty()) 332 return false; 333 std::string filename = getFilename(s->file); 334 for (InputSectionDescription *id : keptSections) 335 if (id->filePat.match(filename)) 336 for (SectionPattern &p : id->sectionPatterns) 337 if (p.sectionPat.match(s->name) && 338 (s->flags & id->withFlags) == id->withFlags && 339 (s->flags & id->withoutFlags) == 0) 340 return true; 341 return false; 342 } 343 344 // A helper function for the SORT() command. 345 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 346 ConstraintKind kind) { 347 if (kind == ConstraintKind::NoConstraint) 348 return true; 349 350 bool isRW = llvm::any_of( 351 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 352 353 return (isRW && kind == ConstraintKind::ReadWrite) || 354 (!isRW && kind == ConstraintKind::ReadOnly); 355 } 356 357 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 358 SortSectionPolicy k) { 359 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 360 // ">" is not a mistake. Sections with larger alignments are placed 361 // before sections with smaller alignments in order to reduce the 362 // amount of padding necessary. This is compatible with GNU. 363 return a->alignment > b->alignment; 364 }; 365 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 366 return a->name < b->name; 367 }; 368 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 369 return getPriority(a->name) < getPriority(b->name); 370 }; 371 372 switch (k) { 373 case SortSectionPolicy::Default: 374 case SortSectionPolicy::None: 375 return; 376 case SortSectionPolicy::Alignment: 377 return llvm::stable_sort(vec, alignmentComparator); 378 case SortSectionPolicy::Name: 379 return llvm::stable_sort(vec, nameComparator); 380 case SortSectionPolicy::Priority: 381 return llvm::stable_sort(vec, priorityComparator); 382 } 383 } 384 385 // Sort sections as instructed by SORT-family commands and --sort-section 386 // option. Because SORT-family commands can be nested at most two depth 387 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 388 // line option is respected even if a SORT command is given, the exact 389 // behavior we have here is a bit complicated. Here are the rules. 390 // 391 // 1. If two SORT commands are given, --sort-section is ignored. 392 // 2. If one SORT command is given, and if it is not SORT_NONE, 393 // --sort-section is handled as an inner SORT command. 394 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 395 // 4. If no SORT command is given, sort according to --sort-section. 396 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 397 const SectionPattern &pat) { 398 if (pat.sortOuter == SortSectionPolicy::None) 399 return; 400 401 if (pat.sortInner == SortSectionPolicy::Default) 402 sortSections(vec, config->sortSection); 403 else 404 sortSections(vec, pat.sortInner); 405 sortSections(vec, pat.sortOuter); 406 } 407 408 // Compute and remember which sections the InputSectionDescription matches. 409 std::vector<InputSectionBase *> 410 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 411 ArrayRef<InputSectionBase *> sections) { 412 std::vector<InputSectionBase *> ret; 413 414 // Collects all sections that satisfy constraints of Cmd. 415 for (const SectionPattern &pat : cmd->sectionPatterns) { 416 size_t sizeBefore = ret.size(); 417 418 for (InputSectionBase *sec : sections) { 419 if (!sec->isLive() || sec->parent) 420 continue; 421 422 // For -emit-relocs we have to ignore entries like 423 // .rela.dyn : { *(.rela.data) } 424 // which are common because they are in the default bfd script. 425 // We do not ignore SHT_REL[A] linker-synthesized sections here because 426 // want to support scripts that do custom layout for them. 427 if (isa<InputSection>(sec) && 428 cast<InputSection>(sec)->getRelocatedSection()) 429 continue; 430 431 // Check the name early to improve performance in the common case. 432 if (!pat.sectionPat.match(sec->name)) 433 continue; 434 435 std::string filename = getFilename(sec->file); 436 if (!cmd->filePat.match(filename) || 437 pat.excludedFilePat.match(filename) || 438 (sec->flags & cmd->withFlags) != cmd->withFlags || 439 (sec->flags & cmd->withoutFlags) != 0) 440 continue; 441 442 ret.push_back(sec); 443 } 444 445 sortInputSections( 446 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat); 447 } 448 return ret; 449 } 450 451 void LinkerScript::discard(InputSectionBase *s) { 452 if (s == in.shStrTab || s == mainPart->relrDyn) 453 error("discarding " + s->name + " section is not allowed"); 454 455 // You can discard .hash and .gnu.hash sections by linker scripts. Since 456 // they are synthesized sections, we need to handle them differently than 457 // other regular sections. 458 if (s == mainPart->gnuHashTab) 459 mainPart->gnuHashTab = nullptr; 460 if (s == mainPart->hashTab) 461 mainPart->hashTab = nullptr; 462 463 s->markDead(); 464 s->parent = nullptr; 465 for (InputSection *ds : s->dependentSections) 466 discard(ds); 467 } 468 469 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 470 for (Partition &part : partitions) { 471 if (!part.armExidx || !part.armExidx->isLive()) 472 continue; 473 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 474 part.armExidx->exidxSections.end()); 475 for (BaseCommand *base : outCmd.sectionCommands) 476 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 477 std::vector<InputSectionBase *> matches = 478 computeInputSections(cmd, secs); 479 for (InputSectionBase *s : matches) 480 discard(s); 481 } 482 } 483 } 484 485 std::vector<InputSectionBase *> 486 LinkerScript::createInputSectionList(OutputSection &outCmd) { 487 std::vector<InputSectionBase *> ret; 488 489 for (BaseCommand *base : outCmd.sectionCommands) { 490 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 491 cmd->sectionBases = computeInputSections(cmd, inputSections); 492 for (InputSectionBase *s : cmd->sectionBases) 493 s->parent = &outCmd; 494 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 495 } 496 } 497 return ret; 498 } 499 500 // Create output sections described by SECTIONS commands. 501 void LinkerScript::processSectionCommands() { 502 size_t i = 0; 503 for (BaseCommand *base : sectionCommands) { 504 if (auto *sec = dyn_cast<OutputSection>(base)) { 505 std::vector<InputSectionBase *> v = createInputSectionList(*sec); 506 507 // The output section name `/DISCARD/' is special. 508 // Any input section assigned to it is discarded. 509 if (sec->name == "/DISCARD/") { 510 for (InputSectionBase *s : v) 511 discard(s); 512 discardSynthetic(*sec); 513 sec->sectionCommands.clear(); 514 continue; 515 } 516 517 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 518 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 519 // sections satisfy a given constraint. If not, a directive is handled 520 // as if it wasn't present from the beginning. 521 // 522 // Because we'll iterate over SectionCommands many more times, the easy 523 // way to "make it as if it wasn't present" is to make it empty. 524 if (!matchConstraints(v, sec->constraint)) { 525 for (InputSectionBase *s : v) 526 s->parent = nullptr; 527 sec->sectionCommands.clear(); 528 continue; 529 } 530 531 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 532 // is given, input sections are aligned to that value, whether the 533 // given value is larger or smaller than the original section alignment. 534 if (sec->subalignExpr) { 535 uint32_t subalign = sec->subalignExpr().getValue(); 536 for (InputSectionBase *s : v) 537 s->alignment = subalign; 538 } 539 540 // Set the partition field the same way OutputSection::recordSection() 541 // does. Partitions cannot be used with the SECTIONS command, so this is 542 // always 1. 543 sec->partition = 1; 544 545 sec->sectionIndex = i++; 546 } 547 } 548 } 549 550 void LinkerScript::processSymbolAssignments() { 551 // Dot outside an output section still represents a relative address, whose 552 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 553 // that fills the void outside a section. It has an index of one, which is 554 // indistinguishable from any other regular section index. 555 aether = make<OutputSection>("", 0, SHF_ALLOC); 556 aether->sectionIndex = 1; 557 558 // ctx captures the local AddressState and makes it accessible deliberately. 559 // This is needed as there are some cases where we cannot just thread the 560 // current state through to a lambda function created by the script parser. 561 AddressState state; 562 ctx = &state; 563 ctx->outSec = aether; 564 565 for (BaseCommand *base : sectionCommands) { 566 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 567 addSymbol(cmd); 568 else 569 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 570 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 571 addSymbol(cmd); 572 } 573 574 ctx = nullptr; 575 } 576 577 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 578 StringRef name) { 579 for (BaseCommand *base : vec) 580 if (auto *sec = dyn_cast<OutputSection>(base)) 581 if (sec->name == name) 582 return sec; 583 return nullptr; 584 } 585 586 static OutputSection *createSection(InputSectionBase *isec, 587 StringRef outsecName) { 588 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 589 sec->recordSection(isec); 590 return sec; 591 } 592 593 static OutputSection * 594 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 595 InputSectionBase *isec, StringRef outsecName) { 596 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 597 // option is given. A section with SHT_GROUP defines a "section group", and 598 // its members have SHF_GROUP attribute. Usually these flags have already been 599 // stripped by InputFiles.cpp as section groups are processed and uniquified. 600 // However, for the -r option, we want to pass through all section groups 601 // as-is because adding/removing members or merging them with other groups 602 // change their semantics. 603 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 604 return createSection(isec, outsecName); 605 606 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 607 // relocation sections .rela.foo and .rela.bar for example. Most tools do 608 // not allow multiple REL[A] sections for output section. Hence we 609 // should combine these relocation sections into single output. 610 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 611 // other REL[A] sections created by linker itself. 612 if (!isa<SyntheticSection>(isec) && 613 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 614 auto *sec = cast<InputSection>(isec); 615 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 616 617 if (out->relocationSection) { 618 out->relocationSection->recordSection(sec); 619 return nullptr; 620 } 621 622 out->relocationSection = createSection(isec, outsecName); 623 return out->relocationSection; 624 } 625 626 // The ELF spec just says 627 // ---------------------------------------------------------------- 628 // In the first phase, input sections that match in name, type and 629 // attribute flags should be concatenated into single sections. 630 // ---------------------------------------------------------------- 631 // 632 // However, it is clear that at least some flags have to be ignored for 633 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 634 // ignored. We should not have two output .text sections just because one was 635 // in a group and another was not for example. 636 // 637 // It also seems that wording was a late addition and didn't get the 638 // necessary scrutiny. 639 // 640 // Merging sections with different flags is expected by some users. One 641 // reason is that if one file has 642 // 643 // int *const bar __attribute__((section(".foo"))) = (int *)0; 644 // 645 // gcc with -fPIC will produce a read only .foo section. But if another 646 // file has 647 // 648 // int zed; 649 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 650 // 651 // gcc with -fPIC will produce a read write section. 652 // 653 // Last but not least, when using linker script the merge rules are forced by 654 // the script. Unfortunately, linker scripts are name based. This means that 655 // expressions like *(.foo*) can refer to multiple input sections with 656 // different flags. We cannot put them in different output sections or we 657 // would produce wrong results for 658 // 659 // start = .; *(.foo.*) end = .; *(.bar) 660 // 661 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 662 // another. The problem is that there is no way to layout those output 663 // sections such that the .foo sections are the only thing between the start 664 // and end symbols. 665 // 666 // Given the above issues, we instead merge sections by name and error on 667 // incompatible types and flags. 668 TinyPtrVector<OutputSection *> &v = map[outsecName]; 669 for (OutputSection *sec : v) { 670 if (sec->partition != isec->partition) 671 continue; 672 673 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 674 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 675 // change their semantics, so we only merge them in -r links if they will 676 // end up being linked to the same output section. The casts are fine 677 // because everything in the map was created by the orphan placement code. 678 auto *firstIsec = cast<InputSectionBase>( 679 cast<InputSectionDescription>(sec->sectionCommands[0]) 680 ->sectionBases[0]); 681 if (firstIsec->getLinkOrderDep()->getOutputSection() != 682 isec->getLinkOrderDep()->getOutputSection()) 683 continue; 684 } 685 686 sec->recordSection(isec); 687 return nullptr; 688 } 689 690 OutputSection *sec = createSection(isec, outsecName); 691 v.push_back(sec); 692 return sec; 693 } 694 695 // Add sections that didn't match any sections command. 696 void LinkerScript::addOrphanSections() { 697 StringMap<TinyPtrVector<OutputSection *>> map; 698 std::vector<OutputSection *> v; 699 700 std::function<void(InputSectionBase *)> add; 701 add = [&](InputSectionBase *s) { 702 if (s->isLive() && !s->parent) { 703 orphanSections.push_back(s); 704 705 StringRef name = getOutputSectionName(s); 706 if (config->unique) { 707 v.push_back(createSection(s, name)); 708 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 709 sec->recordSection(s); 710 } else { 711 if (OutputSection *os = addInputSec(map, s, name)) 712 v.push_back(os); 713 assert(isa<MergeInputSection>(s) || 714 s->getOutputSection()->sectionIndex == UINT32_MAX); 715 } 716 } 717 718 if (config->relocatable) 719 for (InputSectionBase *depSec : s->dependentSections) 720 if (depSec->flags & SHF_LINK_ORDER) 721 add(depSec); 722 }; 723 724 // For futher --emit-reloc handling code we need target output section 725 // to be created before we create relocation output section, so we want 726 // to create target sections first. We do not want priority handling 727 // for synthetic sections because them are special. 728 for (InputSectionBase *isec : inputSections) { 729 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 730 // sections because we need to know the parent's output section before we 731 // can select an output section for the SHF_LINK_ORDER section. 732 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 733 continue; 734 735 if (auto *sec = dyn_cast<InputSection>(isec)) 736 if (InputSectionBase *rel = sec->getRelocatedSection()) 737 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 738 add(relIS); 739 add(isec); 740 } 741 742 // If no SECTIONS command was given, we should insert sections commands 743 // before others, so that we can handle scripts which refers them, 744 // for example: "foo = ABSOLUTE(ADDR(.text)));". 745 // When SECTIONS command is present we just add all orphans to the end. 746 if (hasSectionsCommand) 747 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 748 else 749 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 750 } 751 752 void LinkerScript::diagnoseOrphanHandling() const { 753 for (const InputSectionBase *sec : orphanSections) { 754 // Input SHT_REL[A] retained by --emit-relocs are ignored by 755 // computeInputSections(). Don't warn/error. 756 if (isa<InputSection>(sec) && 757 cast<InputSection>(sec)->getRelocatedSection()) 758 continue; 759 760 StringRef name = getOutputSectionName(sec); 761 if (config->orphanHandling == OrphanHandlingPolicy::Error) 762 error(toString(sec) + " is being placed in '" + name + "'"); 763 else if (config->orphanHandling == OrphanHandlingPolicy::Warn) 764 warn(toString(sec) + " is being placed in '" + name + "'"); 765 } 766 } 767 768 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 769 bool isTbss = 770 (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; 771 uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; 772 start = alignTo(start, alignment); 773 uint64_t end = start + size; 774 775 if (isTbss) 776 ctx->threadBssOffset = end - dot; 777 else 778 dot = end; 779 return end; 780 } 781 782 void LinkerScript::output(InputSection *s) { 783 assert(ctx->outSec == s->getParent()); 784 uint64_t before = advance(0, 1); 785 uint64_t pos = advance(s->getSize(), s->alignment); 786 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 787 788 // Update output section size after adding each section. This is so that 789 // SIZEOF works correctly in the case below: 790 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 791 expandOutputSection(pos - before); 792 } 793 794 void LinkerScript::switchTo(OutputSection *sec) { 795 ctx->outSec = sec; 796 797 uint64_t pos = advance(0, 1); 798 if (sec->addrExpr && script->hasSectionsCommand) { 799 // The alignment is ignored. 800 ctx->outSec->addr = pos; 801 } else { 802 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 803 // section alignments. 804 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 805 expandMemoryRegions(ctx->outSec->addr - pos); 806 } 807 } 808 809 // This function searches for a memory region to place the given output 810 // section in. If found, a pointer to the appropriate memory region is 811 // returned. Otherwise, a nullptr is returned. 812 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { 813 // If a memory region name was specified in the output section command, 814 // then try to find that region first. 815 if (!sec->memoryRegionName.empty()) { 816 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 817 return m; 818 error("memory region '" + sec->memoryRegionName + "' not declared"); 819 return nullptr; 820 } 821 822 // If at least one memory region is defined, all sections must 823 // belong to some memory region. Otherwise, we don't need to do 824 // anything for memory regions. 825 if (memoryRegions.empty()) 826 return nullptr; 827 828 // See if a region can be found by matching section flags. 829 for (auto &pair : memoryRegions) { 830 MemoryRegion *m = pair.second; 831 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 832 return m; 833 } 834 835 // Otherwise, no suitable region was found. 836 if (sec->flags & SHF_ALLOC) 837 error("no memory region specified for section '" + sec->name + "'"); 838 return nullptr; 839 } 840 841 static OutputSection *findFirstSection(PhdrEntry *load) { 842 for (OutputSection *sec : outputSections) 843 if (sec->ptLoad == load) 844 return sec; 845 return nullptr; 846 } 847 848 // This function assigns offsets to input sections and an output section 849 // for a single sections command (e.g. ".text { *(.text); }"). 850 void LinkerScript::assignOffsets(OutputSection *sec) { 851 if (!(sec->flags & SHF_ALLOC)) 852 dot = 0; 853 854 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 855 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 856 ctx->memRegion = sec->memRegion; 857 ctx->lmaRegion = sec->lmaRegion; 858 if (ctx->memRegion) 859 dot = ctx->memRegion->curPos; 860 861 if ((sec->flags & SHF_ALLOC) && sec->addrExpr) 862 setDot(sec->addrExpr, sec->location, false); 863 864 // If the address of the section has been moved forward by an explicit 865 // expression so that it now starts past the current curPos of the enclosing 866 // region, we need to expand the current region to account for the space 867 // between the previous section, if any, and the start of this section. 868 if (ctx->memRegion && ctx->memRegion->curPos < dot) 869 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 870 ctx->memRegion->name, sec->name); 871 872 switchTo(sec); 873 874 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 875 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 876 // region is the default, and the two sections are in the same memory region, 877 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 878 // heuristics described in 879 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 880 if (sec->lmaExpr) 881 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 882 else if (MemoryRegion *mr = sec->lmaRegion) 883 ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; 884 else if (!sameMemRegion || !prevLMARegionIsDefault) 885 ctx->lmaOffset = 0; 886 887 // Propagate ctx->lmaOffset to the first "non-header" section. 888 if (PhdrEntry *l = ctx->outSec->ptLoad) 889 if (sec == findFirstSection(l)) 890 l->lmaOffset = ctx->lmaOffset; 891 892 // We can call this method multiple times during the creation of 893 // thunks and want to start over calculation each time. 894 sec->size = 0; 895 896 // We visited SectionsCommands from processSectionCommands to 897 // layout sections. Now, we visit SectionsCommands again to fix 898 // section offsets. 899 for (BaseCommand *base : sec->sectionCommands) { 900 // This handles the assignments to symbol or to the dot. 901 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 902 cmd->addr = dot; 903 assignSymbol(cmd, true); 904 cmd->size = dot - cmd->addr; 905 continue; 906 } 907 908 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 909 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 910 cmd->offset = dot - ctx->outSec->addr; 911 dot += cmd->size; 912 expandOutputSection(cmd->size); 913 continue; 914 } 915 916 // Handle a single input section description command. 917 // It calculates and assigns the offsets for each section and also 918 // updates the output section size. 919 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 920 output(sec); 921 } 922 } 923 924 static bool isDiscardable(OutputSection &sec) { 925 if (sec.name == "/DISCARD/") 926 return true; 927 928 // We do not remove empty sections that are explicitly 929 // assigned to any segment. 930 if (!sec.phdrs.empty()) 931 return false; 932 933 // We do not want to remove OutputSections with expressions that reference 934 // symbols even if the OutputSection is empty. We want to ensure that the 935 // expressions can be evaluated and report an error if they cannot. 936 if (sec.expressionsUseSymbols) 937 return false; 938 939 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 940 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 941 // to maintain the integrity of the other Expression. 942 if (sec.usedInExpression) 943 return false; 944 945 for (BaseCommand *base : sec.sectionCommands) { 946 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 947 // Don't create empty output sections just for unreferenced PROVIDE 948 // symbols. 949 if (cmd->name != "." && !cmd->sym) 950 continue; 951 952 if (!isa<InputSectionDescription>(*base)) 953 return false; 954 } 955 return true; 956 } 957 958 void LinkerScript::adjustSectionsBeforeSorting() { 959 // If the output section contains only symbol assignments, create a 960 // corresponding output section. The issue is what to do with linker script 961 // like ".foo : { symbol = 42; }". One option would be to convert it to 962 // "symbol = 42;". That is, move the symbol out of the empty section 963 // description. That seems to be what bfd does for this simple case. The 964 // problem is that this is not completely general. bfd will give up and 965 // create a dummy section too if there is a ". = . + 1" inside the section 966 // for example. 967 // Given that we want to create the section, we have to worry what impact 968 // it will have on the link. For example, if we just create a section with 969 // 0 for flags, it would change which PT_LOADs are created. 970 // We could remember that particular section is dummy and ignore it in 971 // other parts of the linker, but unfortunately there are quite a few places 972 // that would need to change: 973 // * The program header creation. 974 // * The orphan section placement. 975 // * The address assignment. 976 // The other option is to pick flags that minimize the impact the section 977 // will have on the rest of the linker. That is why we copy the flags from 978 // the previous sections. Only a few flags are needed to keep the impact low. 979 uint64_t flags = SHF_ALLOC; 980 981 for (BaseCommand *&cmd : sectionCommands) { 982 auto *sec = dyn_cast<OutputSection>(cmd); 983 if (!sec) 984 continue; 985 986 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 987 if (sec->alignExpr) 988 sec->alignment = 989 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 990 991 // The input section might have been removed (if it was an empty synthetic 992 // section), but we at least know the flags. 993 if (sec->hasInputSections) 994 flags = sec->flags; 995 996 // We do not want to keep any special flags for output section 997 // in case it is empty. 998 bool isEmpty = (getFirstInputSection(sec) == nullptr); 999 if (isEmpty) 1000 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1001 SHF_WRITE | SHF_EXECINSTR); 1002 1003 if (isEmpty && isDiscardable(*sec)) { 1004 sec->markDead(); 1005 cmd = nullptr; 1006 } 1007 } 1008 1009 // It is common practice to use very generic linker scripts. So for any 1010 // given run some of the output sections in the script will be empty. 1011 // We could create corresponding empty output sections, but that would 1012 // clutter the output. 1013 // We instead remove trivially empty sections. The bfd linker seems even 1014 // more aggressive at removing them. 1015 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 1016 } 1017 1018 void LinkerScript::adjustSectionsAfterSorting() { 1019 // Try and find an appropriate memory region to assign offsets in. 1020 for (BaseCommand *base : sectionCommands) { 1021 if (auto *sec = dyn_cast<OutputSection>(base)) { 1022 if (!sec->lmaRegionName.empty()) { 1023 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1024 sec->lmaRegion = m; 1025 else 1026 error("memory region '" + sec->lmaRegionName + "' not declared"); 1027 } 1028 sec->memRegion = findMemoryRegion(sec); 1029 } 1030 } 1031 1032 // If output section command doesn't specify any segments, 1033 // and we haven't previously assigned any section to segment, 1034 // then we simply assign section to the very first load segment. 1035 // Below is an example of such linker script: 1036 // PHDRS { seg PT_LOAD; } 1037 // SECTIONS { .aaa : { *(.aaa) } } 1038 std::vector<StringRef> defPhdrs; 1039 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1040 return cmd.type == PT_LOAD; 1041 }); 1042 if (firstPtLoad != phdrsCommands.end()) 1043 defPhdrs.push_back(firstPtLoad->name); 1044 1045 // Walk the commands and propagate the program headers to commands that don't 1046 // explicitly specify them. 1047 for (BaseCommand *base : sectionCommands) { 1048 auto *sec = dyn_cast<OutputSection>(base); 1049 if (!sec) 1050 continue; 1051 1052 if (sec->phdrs.empty()) { 1053 // To match the bfd linker script behaviour, only propagate program 1054 // headers to sections that are allocated. 1055 if (sec->flags & SHF_ALLOC) 1056 sec->phdrs = defPhdrs; 1057 } else { 1058 defPhdrs = sec->phdrs; 1059 } 1060 } 1061 } 1062 1063 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1064 // If there is no SECTIONS or if the linkerscript is explicit about program 1065 // headers, do our best to allocate them. 1066 if (!script->hasSectionsCommand || allocateHeaders) 1067 return 0; 1068 // Otherwise only allocate program headers if that would not add a page. 1069 return alignDown(min, config->maxPageSize); 1070 } 1071 1072 // When the SECTIONS command is used, try to find an address for the file and 1073 // program headers output sections, which can be added to the first PT_LOAD 1074 // segment when program headers are created. 1075 // 1076 // We check if the headers fit below the first allocated section. If there isn't 1077 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1078 // and we'll also remove the PT_PHDR segment. 1079 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1080 uint64_t min = std::numeric_limits<uint64_t>::max(); 1081 for (OutputSection *sec : outputSections) 1082 if (sec->flags & SHF_ALLOC) 1083 min = std::min<uint64_t>(min, sec->addr); 1084 1085 auto it = llvm::find_if( 1086 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1087 if (it == phdrs.end()) 1088 return; 1089 PhdrEntry *firstPTLoad = *it; 1090 1091 bool hasExplicitHeaders = 1092 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1093 return cmd.hasPhdrs || cmd.hasFilehdr; 1094 }); 1095 bool paged = !config->omagic && !config->nmagic; 1096 uint64_t headerSize = getHeaderSize(); 1097 if ((paged || hasExplicitHeaders) && 1098 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1099 min = alignDown(min - headerSize, config->maxPageSize); 1100 Out::elfHeader->addr = min; 1101 Out::programHeaders->addr = min + Out::elfHeader->size; 1102 return; 1103 } 1104 1105 // Error if we were explicitly asked to allocate headers. 1106 if (hasExplicitHeaders) 1107 error("could not allocate headers"); 1108 1109 Out::elfHeader->ptLoad = nullptr; 1110 Out::programHeaders->ptLoad = nullptr; 1111 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1112 1113 llvm::erase_if(phdrs, 1114 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1115 } 1116 1117 LinkerScript::AddressState::AddressState() { 1118 for (auto &mri : script->memoryRegions) { 1119 MemoryRegion *mr = mri.second; 1120 mr->curPos = (mr->origin)().getValue(); 1121 } 1122 } 1123 1124 // Here we assign addresses as instructed by linker script SECTIONS 1125 // sub-commands. Doing that allows us to use final VA values, so here 1126 // we also handle rest commands like symbol assignments and ASSERTs. 1127 // Returns a symbol that has changed its section or value, or nullptr if no 1128 // symbol has changed. 1129 const Defined *LinkerScript::assignAddresses() { 1130 if (script->hasSectionsCommand) { 1131 // With a linker script, assignment of addresses to headers is covered by 1132 // allocateHeaders(). 1133 dot = config->imageBase.getValueOr(0); 1134 } else { 1135 // Assign addresses to headers right now. 1136 dot = target->getImageBase(); 1137 Out::elfHeader->addr = dot; 1138 Out::programHeaders->addr = dot + Out::elfHeader->size; 1139 dot += getHeaderSize(); 1140 } 1141 1142 auto deleter = std::make_unique<AddressState>(); 1143 ctx = deleter.get(); 1144 errorOnMissingSection = true; 1145 switchTo(aether); 1146 1147 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1148 for (BaseCommand *base : sectionCommands) { 1149 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1150 cmd->addr = dot; 1151 assignSymbol(cmd, false); 1152 cmd->size = dot - cmd->addr; 1153 continue; 1154 } 1155 assignOffsets(cast<OutputSection>(base)); 1156 } 1157 1158 ctx = nullptr; 1159 return getChangedSymbolAssignment(oldValues); 1160 } 1161 1162 // Creates program headers as instructed by PHDRS linker script command. 1163 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1164 std::vector<PhdrEntry *> ret; 1165 1166 // Process PHDRS and FILEHDR keywords because they are not 1167 // real output sections and cannot be added in the following loop. 1168 for (const PhdrsCommand &cmd : phdrsCommands) { 1169 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1170 1171 if (cmd.hasFilehdr) 1172 phdr->add(Out::elfHeader); 1173 if (cmd.hasPhdrs) 1174 phdr->add(Out::programHeaders); 1175 1176 if (cmd.lmaExpr) { 1177 phdr->p_paddr = cmd.lmaExpr().getValue(); 1178 phdr->hasLMA = true; 1179 } 1180 ret.push_back(phdr); 1181 } 1182 1183 // Add output sections to program headers. 1184 for (OutputSection *sec : outputSections) { 1185 // Assign headers specified by linker script 1186 for (size_t id : getPhdrIndices(sec)) { 1187 ret[id]->add(sec); 1188 if (!phdrsCommands[id].flags.hasValue()) 1189 ret[id]->p_flags |= sec->getPhdrFlags(); 1190 } 1191 } 1192 return ret; 1193 } 1194 1195 // Returns true if we should emit an .interp section. 1196 // 1197 // We usually do. But if PHDRS commands are given, and 1198 // no PT_INTERP is there, there's no place to emit an 1199 // .interp, so we don't do that in that case. 1200 bool LinkerScript::needsInterpSection() { 1201 if (phdrsCommands.empty()) 1202 return true; 1203 for (PhdrsCommand &cmd : phdrsCommands) 1204 if (cmd.type == PT_INTERP) 1205 return true; 1206 return false; 1207 } 1208 1209 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1210 if (name == ".") { 1211 if (ctx) 1212 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1213 error(loc + ": unable to get location counter value"); 1214 return 0; 1215 } 1216 1217 if (Symbol *sym = symtab->find(name)) { 1218 if (auto *ds = dyn_cast<Defined>(sym)) 1219 return {ds->section, false, ds->value, loc}; 1220 if (isa<SharedSymbol>(sym)) 1221 if (!errorOnMissingSection) 1222 return {nullptr, false, 0, loc}; 1223 } 1224 1225 error(loc + ": symbol not found: " + name); 1226 return 0; 1227 } 1228 1229 // Returns the index of the segment named Name. 1230 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1231 StringRef name) { 1232 for (size_t i = 0; i < vec.size(); ++i) 1233 if (vec[i].name == name) 1234 return i; 1235 return None; 1236 } 1237 1238 // Returns indices of ELF headers containing specific section. Each index is a 1239 // zero based number of ELF header listed within PHDRS {} script block. 1240 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1241 std::vector<size_t> ret; 1242 1243 for (StringRef s : cmd->phdrs) { 1244 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1245 ret.push_back(*idx); 1246 else if (s != "NONE") 1247 error(cmd->location + ": program header '" + s + 1248 "' is not listed in PHDRS"); 1249 } 1250 return ret; 1251 } 1252