1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/TimeProfiler.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::script; 51 52 static uint64_t getOutputSectionVA(SectionBase *sec) { 53 OutputSection *os = sec->getOutputSection(); 54 assert(os && "input section has no output section assigned"); 55 return os ? os->addr : 0; 56 } 57 58 uint64_t ExprValue::getValue() const { 59 if (sec) 60 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 61 alignment); 62 return alignTo(val, alignment); 63 } 64 65 uint64_t ExprValue::getSecAddr() const { 66 if (sec) 67 return sec->getOffset(0) + getOutputSectionVA(sec); 68 return 0; 69 } 70 71 uint64_t ExprValue::getSectionOffset() const { 72 // If the alignment is trivial, we don't have to compute the full 73 // value to know the offset. This allows this function to succeed in 74 // cases where the output section is not yet known. 75 if (alignment == 1 && !sec) 76 return val; 77 return getValue() - getSecAddr(); 78 } 79 80 OutputSection *LinkerScript::createOutputSection(StringRef name, 81 StringRef location) { 82 OutputSection *&secRef = nameToOutputSection[name]; 83 OutputSection *sec; 84 if (secRef && secRef->location.empty()) { 85 // There was a forward reference. 86 sec = secRef; 87 } else { 88 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 89 if (!secRef) 90 secRef = sec; 91 } 92 sec->location = std::string(location); 93 return sec; 94 } 95 96 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 97 OutputSection *&cmdRef = nameToOutputSection[name]; 98 if (!cmdRef) 99 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 100 return cmdRef; 101 } 102 103 // Expands the memory region by the specified size. 104 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 105 StringRef regionName, StringRef secName) { 106 memRegion->curPos += size; 107 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 108 uint64_t length = (memRegion->length)().getValue(); 109 if (newSize > length) 110 error("section '" + secName + "' will not fit in region '" + regionName + 111 "': overflowed by " + Twine(newSize - length) + " bytes"); 112 } 113 114 void LinkerScript::expandMemoryRegions(uint64_t size) { 115 if (ctx->memRegion) 116 expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, 117 ctx->outSec->name); 118 // Only expand the LMARegion if it is different from memRegion. 119 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 120 expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, 121 ctx->outSec->name); 122 } 123 124 void LinkerScript::expandOutputSection(uint64_t size) { 125 ctx->outSec->size += size; 126 expandMemoryRegions(size); 127 } 128 129 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 130 uint64_t val = e().getValue(); 131 if (val < dot && inSec) 132 error(loc + ": unable to move location counter backward for: " + 133 ctx->outSec->name); 134 135 // Update to location counter means update to section size. 136 if (inSec) 137 expandOutputSection(val - dot); 138 139 dot = val; 140 } 141 142 // Used for handling linker symbol assignments, for both finalizing 143 // their values and doing early declarations. Returns true if symbol 144 // should be defined from linker script. 145 static bool shouldDefineSym(SymbolAssignment *cmd) { 146 if (cmd->name == ".") 147 return false; 148 149 if (!cmd->provide) 150 return true; 151 152 // If a symbol was in PROVIDE(), we need to define it only 153 // when it is a referenced undefined symbol. 154 Symbol *b = symtab->find(cmd->name); 155 if (b && !b->isDefined()) 156 return true; 157 return false; 158 } 159 160 // Called by processSymbolAssignments() to assign definitions to 161 // linker-script-defined symbols. 162 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 163 if (!shouldDefineSym(cmd)) 164 return; 165 166 // Define a symbol. 167 ExprValue value = cmd->expression(); 168 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 169 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 170 171 // When this function is called, section addresses have not been 172 // fixed yet. So, we may or may not know the value of the RHS 173 // expression. 174 // 175 // For example, if an expression is `x = 42`, we know x is always 42. 176 // However, if an expression is `x = .`, there's no way to know its 177 // value at the moment. 178 // 179 // We want to set symbol values early if we can. This allows us to 180 // use symbols as variables in linker scripts. Doing so allows us to 181 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 182 uint64_t symValue = value.sec ? 0 : value.getValue(); 183 184 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 185 symValue, 0, sec); 186 187 Symbol *sym = symtab->insert(cmd->name); 188 sym->mergeProperties(newSym); 189 sym->replace(newSym); 190 cmd->sym = cast<Defined>(sym); 191 } 192 193 // This function is called from LinkerScript::declareSymbols. 194 // It creates a placeholder symbol if needed. 195 static void declareSymbol(SymbolAssignment *cmd) { 196 if (!shouldDefineSym(cmd)) 197 return; 198 199 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 200 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 201 nullptr); 202 203 // We can't calculate final value right now. 204 Symbol *sym = symtab->insert(cmd->name); 205 sym->mergeProperties(newSym); 206 sym->replace(newSym); 207 208 cmd->sym = cast<Defined>(sym); 209 cmd->provide = false; 210 sym->scriptDefined = true; 211 } 212 213 using SymbolAssignmentMap = 214 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 215 216 // Collect section/value pairs of linker-script-defined symbols. This is used to 217 // check whether symbol values converge. 218 static SymbolAssignmentMap 219 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 220 SymbolAssignmentMap ret; 221 for (BaseCommand *base : sectionCommands) { 222 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 223 if (cmd->sym) // sym is nullptr for dot. 224 ret.try_emplace(cmd->sym, 225 std::make_pair(cmd->sym->section, cmd->sym->value)); 226 continue; 227 } 228 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 229 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 230 if (cmd->sym) 231 ret.try_emplace(cmd->sym, 232 std::make_pair(cmd->sym->section, cmd->sym->value)); 233 } 234 return ret; 235 } 236 237 // Returns the lexicographical smallest (for determinism) Defined whose 238 // section/value has changed. 239 static const Defined * 240 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 241 const Defined *changed = nullptr; 242 for (auto &it : oldValues) { 243 const Defined *sym = it.first; 244 if (std::make_pair(sym->section, sym->value) != it.second && 245 (!changed || sym->getName() < changed->getName())) 246 changed = sym; 247 } 248 return changed; 249 } 250 251 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 252 // specified output section to the designated place. 253 void LinkerScript::processInsertCommands() { 254 std::vector<OutputSection *> moves; 255 for (const InsertCommand &cmd : insertCommands) { 256 for (StringRef name : cmd.names) { 257 // If base is empty, it may have been discarded by 258 // adjustSectionsBeforeSorting(). We do not handle such output sections. 259 auto from = llvm::find_if(sectionCommands, [&](BaseCommand *base) { 260 return isa<OutputSection>(base) && 261 cast<OutputSection>(base)->name == name; 262 }); 263 if (from == sectionCommands.end()) 264 continue; 265 moves.push_back(cast<OutputSection>(*from)); 266 sectionCommands.erase(from); 267 } 268 269 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 270 auto *to = dyn_cast<OutputSection>(base); 271 return to != nullptr && to->name == cmd.where; 272 }); 273 if (insertPos == sectionCommands.end()) { 274 error("unable to insert " + cmd.names[0] + 275 (cmd.isAfter ? " after " : " before ") + cmd.where); 276 } else { 277 if (cmd.isAfter) 278 ++insertPos; 279 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 280 } 281 moves.clear(); 282 } 283 } 284 285 // Symbols defined in script should not be inlined by LTO. At the same time 286 // we don't know their final values until late stages of link. Here we scan 287 // over symbol assignment commands and create placeholder symbols if needed. 288 void LinkerScript::declareSymbols() { 289 assert(!ctx); 290 for (BaseCommand *base : sectionCommands) { 291 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 292 declareSymbol(cmd); 293 continue; 294 } 295 296 // If the output section directive has constraints, 297 // we can't say for sure if it is going to be included or not. 298 // Skip such sections for now. Improve the checks if we ever 299 // need symbols from that sections to be declared early. 300 auto *sec = cast<OutputSection>(base); 301 if (sec->constraint != ConstraintKind::NoConstraint) 302 continue; 303 for (BaseCommand *base2 : sec->sectionCommands) 304 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 305 declareSymbol(cmd); 306 } 307 } 308 309 // This function is called from assignAddresses, while we are 310 // fixing the output section addresses. This function is supposed 311 // to set the final value for a given symbol assignment. 312 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 313 if (cmd->name == ".") { 314 setDot(cmd->expression, cmd->location, inSec); 315 return; 316 } 317 318 if (!cmd->sym) 319 return; 320 321 ExprValue v = cmd->expression(); 322 if (v.isAbsolute()) { 323 cmd->sym->section = nullptr; 324 cmd->sym->value = v.getValue(); 325 } else { 326 cmd->sym->section = v.sec; 327 cmd->sym->value = v.getSectionOffset(); 328 } 329 cmd->sym->type = v.type; 330 } 331 332 static inline StringRef getFilename(const InputFile *file) { 333 return file ? file->getNameForScript() : StringRef(); 334 } 335 336 bool InputSectionDescription::matchesFile(const InputFile *file) const { 337 if (filePat.isTrivialMatchAll()) 338 return true; 339 340 if (!matchesFileCache || matchesFileCache->first != file) 341 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 342 343 return matchesFileCache->second; 344 } 345 346 bool SectionPattern::excludesFile(const InputFile *file) const { 347 if (excludedFilePat.empty()) 348 return false; 349 350 if (!excludesFileCache || excludesFileCache->first != file) 351 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 352 353 return excludesFileCache->second; 354 } 355 356 bool LinkerScript::shouldKeep(InputSectionBase *s) { 357 for (InputSectionDescription *id : keptSections) 358 if (id->matchesFile(s->file)) 359 for (SectionPattern &p : id->sectionPatterns) 360 if (p.sectionPat.match(s->name) && 361 (s->flags & id->withFlags) == id->withFlags && 362 (s->flags & id->withoutFlags) == 0) 363 return true; 364 return false; 365 } 366 367 // A helper function for the SORT() command. 368 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 369 ConstraintKind kind) { 370 if (kind == ConstraintKind::NoConstraint) 371 return true; 372 373 bool isRW = llvm::any_of( 374 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 375 376 return (isRW && kind == ConstraintKind::ReadWrite) || 377 (!isRW && kind == ConstraintKind::ReadOnly); 378 } 379 380 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 381 SortSectionPolicy k) { 382 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 383 // ">" is not a mistake. Sections with larger alignments are placed 384 // before sections with smaller alignments in order to reduce the 385 // amount of padding necessary. This is compatible with GNU. 386 return a->alignment > b->alignment; 387 }; 388 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 389 return a->name < b->name; 390 }; 391 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 392 return getPriority(a->name) < getPriority(b->name); 393 }; 394 395 switch (k) { 396 case SortSectionPolicy::Default: 397 case SortSectionPolicy::None: 398 return; 399 case SortSectionPolicy::Alignment: 400 return llvm::stable_sort(vec, alignmentComparator); 401 case SortSectionPolicy::Name: 402 return llvm::stable_sort(vec, nameComparator); 403 case SortSectionPolicy::Priority: 404 return llvm::stable_sort(vec, priorityComparator); 405 } 406 } 407 408 // Sort sections as instructed by SORT-family commands and --sort-section 409 // option. Because SORT-family commands can be nested at most two depth 410 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 411 // line option is respected even if a SORT command is given, the exact 412 // behavior we have here is a bit complicated. Here are the rules. 413 // 414 // 1. If two SORT commands are given, --sort-section is ignored. 415 // 2. If one SORT command is given, and if it is not SORT_NONE, 416 // --sort-section is handled as an inner SORT command. 417 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 418 // 4. If no SORT command is given, sort according to --sort-section. 419 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 420 SortSectionPolicy outer, 421 SortSectionPolicy inner) { 422 if (outer == SortSectionPolicy::None) 423 return; 424 425 if (inner == SortSectionPolicy::Default) 426 sortSections(vec, config->sortSection); 427 else 428 sortSections(vec, inner); 429 sortSections(vec, outer); 430 } 431 432 // Compute and remember which sections the InputSectionDescription matches. 433 std::vector<InputSectionBase *> 434 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 435 ArrayRef<InputSectionBase *> sections) { 436 std::vector<InputSectionBase *> ret; 437 std::vector<size_t> indexes; 438 DenseSet<size_t> seen; 439 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 440 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 441 for (size_t i = begin; i != end; ++i) 442 ret[i] = sections[indexes[i]]; 443 sortInputSections( 444 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 445 config->sortSection, SortSectionPolicy::None); 446 }; 447 448 // Collects all sections that satisfy constraints of Cmd. 449 size_t sizeAfterPrevSort = 0; 450 for (const SectionPattern &pat : cmd->sectionPatterns) { 451 size_t sizeBeforeCurrPat = ret.size(); 452 453 for (size_t i = 0, e = sections.size(); i != e; ++i) { 454 // Skip if the section is dead or has been matched by a previous input 455 // section description or a previous pattern. 456 InputSectionBase *sec = sections[i]; 457 if (!sec->isLive() || sec->parent || seen.contains(i)) 458 continue; 459 460 // For -emit-relocs we have to ignore entries like 461 // .rela.dyn : { *(.rela.data) } 462 // which are common because they are in the default bfd script. 463 // We do not ignore SHT_REL[A] linker-synthesized sections here because 464 // want to support scripts that do custom layout for them. 465 if (isa<InputSection>(sec) && 466 cast<InputSection>(sec)->getRelocatedSection()) 467 continue; 468 469 // Check the name early to improve performance in the common case. 470 if (!pat.sectionPat.match(sec->name)) 471 continue; 472 473 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 474 (sec->flags & cmd->withFlags) != cmd->withFlags || 475 (sec->flags & cmd->withoutFlags) != 0) 476 continue; 477 478 ret.push_back(sec); 479 indexes.push_back(i); 480 seen.insert(i); 481 } 482 483 if (pat.sortOuter == SortSectionPolicy::Default) 484 continue; 485 486 // Matched sections are ordered by radix sort with the keys being (SORT*, 487 // --sort-section, input order), where SORT* (if present) is most 488 // significant. 489 // 490 // Matched sections between the previous SORT* and this SORT* are sorted by 491 // (--sort-alignment, input order). 492 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 493 // Matched sections by this SORT* pattern are sorted using all 3 keys. 494 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 495 // just sort by sortOuter and sortInner. 496 sortInputSections( 497 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 498 pat.sortOuter, pat.sortInner); 499 sizeAfterPrevSort = ret.size(); 500 } 501 // Matched sections after the last SORT* are sorted by (--sort-alignment, 502 // input order). 503 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 504 return ret; 505 } 506 507 void LinkerScript::discard(InputSectionBase *s) { 508 if (s == in.shStrTab || s == mainPart->relrDyn) 509 error("discarding " + s->name + " section is not allowed"); 510 511 // You can discard .hash and .gnu.hash sections by linker scripts. Since 512 // they are synthesized sections, we need to handle them differently than 513 // other regular sections. 514 if (s == mainPart->gnuHashTab) 515 mainPart->gnuHashTab = nullptr; 516 if (s == mainPart->hashTab) 517 mainPart->hashTab = nullptr; 518 519 s->markDead(); 520 s->parent = nullptr; 521 for (InputSection *ds : s->dependentSections) 522 discard(ds); 523 } 524 525 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 526 for (Partition &part : partitions) { 527 if (!part.armExidx || !part.armExidx->isLive()) 528 continue; 529 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 530 part.armExidx->exidxSections.end()); 531 for (BaseCommand *base : outCmd.sectionCommands) 532 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 533 std::vector<InputSectionBase *> matches = 534 computeInputSections(cmd, secs); 535 for (InputSectionBase *s : matches) 536 discard(s); 537 } 538 } 539 } 540 541 std::vector<InputSectionBase *> 542 LinkerScript::createInputSectionList(OutputSection &outCmd) { 543 std::vector<InputSectionBase *> ret; 544 545 for (BaseCommand *base : outCmd.sectionCommands) { 546 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 547 cmd->sectionBases = computeInputSections(cmd, inputSections); 548 for (InputSectionBase *s : cmd->sectionBases) 549 s->parent = &outCmd; 550 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 551 } 552 } 553 return ret; 554 } 555 556 // Create output sections described by SECTIONS commands. 557 void LinkerScript::processSectionCommands() { 558 auto process = [this](OutputSection *osec) { 559 std::vector<InputSectionBase *> v = createInputSectionList(*osec); 560 561 // The output section name `/DISCARD/' is special. 562 // Any input section assigned to it is discarded. 563 if (osec->name == "/DISCARD/") { 564 for (InputSectionBase *s : v) 565 discard(s); 566 discardSynthetic(*osec); 567 osec->sectionCommands.clear(); 568 return false; 569 } 570 571 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 572 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 573 // sections satisfy a given constraint. If not, a directive is handled 574 // as if it wasn't present from the beginning. 575 // 576 // Because we'll iterate over SectionCommands many more times, the easy 577 // way to "make it as if it wasn't present" is to make it empty. 578 if (!matchConstraints(v, osec->constraint)) { 579 for (InputSectionBase *s : v) 580 s->parent = nullptr; 581 osec->sectionCommands.clear(); 582 return false; 583 } 584 585 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 586 // is given, input sections are aligned to that value, whether the 587 // given value is larger or smaller than the original section alignment. 588 if (osec->subalignExpr) { 589 uint32_t subalign = osec->subalignExpr().getValue(); 590 for (InputSectionBase *s : v) 591 s->alignment = subalign; 592 } 593 594 // Set the partition field the same way OutputSection::recordSection() 595 // does. Partitions cannot be used with the SECTIONS command, so this is 596 // always 1. 597 osec->partition = 1; 598 return true; 599 }; 600 601 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 602 // or orphans. 603 DenseMap<StringRef, OutputSection *> map; 604 size_t i = 0; 605 for (OutputSection *osec : overwriteSections) 606 if (process(osec) && !map.try_emplace(osec->name, osec).second) 607 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 608 for (BaseCommand *&base : sectionCommands) 609 if (auto *osec = dyn_cast<OutputSection>(base)) { 610 if (OutputSection *overwrite = map.lookup(osec->name)) { 611 log(overwrite->location + " overwrites " + osec->name); 612 overwrite->sectionIndex = i++; 613 base = overwrite; 614 } else if (process(osec)) { 615 osec->sectionIndex = i++; 616 } 617 } 618 619 // If an OVERWRITE_SECTIONS specified output section is not in 620 // sectionCommands, append it to the end. The section will be inserted by 621 // orphan placement. 622 for (OutputSection *osec : overwriteSections) 623 if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) 624 sectionCommands.push_back(osec); 625 } 626 627 void LinkerScript::processSymbolAssignments() { 628 // Dot outside an output section still represents a relative address, whose 629 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 630 // that fills the void outside a section. It has an index of one, which is 631 // indistinguishable from any other regular section index. 632 aether = make<OutputSection>("", 0, SHF_ALLOC); 633 aether->sectionIndex = 1; 634 635 // ctx captures the local AddressState and makes it accessible deliberately. 636 // This is needed as there are some cases where we cannot just thread the 637 // current state through to a lambda function created by the script parser. 638 AddressState state; 639 ctx = &state; 640 ctx->outSec = aether; 641 642 for (BaseCommand *base : sectionCommands) { 643 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 644 addSymbol(cmd); 645 else 646 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 647 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 648 addSymbol(cmd); 649 } 650 651 ctx = nullptr; 652 } 653 654 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 655 StringRef name) { 656 for (BaseCommand *base : vec) 657 if (auto *sec = dyn_cast<OutputSection>(base)) 658 if (sec->name == name) 659 return sec; 660 return nullptr; 661 } 662 663 static OutputSection *createSection(InputSectionBase *isec, 664 StringRef outsecName) { 665 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 666 sec->recordSection(isec); 667 return sec; 668 } 669 670 static OutputSection * 671 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 672 InputSectionBase *isec, StringRef outsecName) { 673 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 674 // option is given. A section with SHT_GROUP defines a "section group", and 675 // its members have SHF_GROUP attribute. Usually these flags have already been 676 // stripped by InputFiles.cpp as section groups are processed and uniquified. 677 // However, for the -r option, we want to pass through all section groups 678 // as-is because adding/removing members or merging them with other groups 679 // change their semantics. 680 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 681 return createSection(isec, outsecName); 682 683 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 684 // relocation sections .rela.foo and .rela.bar for example. Most tools do 685 // not allow multiple REL[A] sections for output section. Hence we 686 // should combine these relocation sections into single output. 687 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 688 // other REL[A] sections created by linker itself. 689 if (!isa<SyntheticSection>(isec) && 690 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 691 auto *sec = cast<InputSection>(isec); 692 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 693 694 if (out->relocationSection) { 695 out->relocationSection->recordSection(sec); 696 return nullptr; 697 } 698 699 out->relocationSection = createSection(isec, outsecName); 700 return out->relocationSection; 701 } 702 703 // The ELF spec just says 704 // ---------------------------------------------------------------- 705 // In the first phase, input sections that match in name, type and 706 // attribute flags should be concatenated into single sections. 707 // ---------------------------------------------------------------- 708 // 709 // However, it is clear that at least some flags have to be ignored for 710 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 711 // ignored. We should not have two output .text sections just because one was 712 // in a group and another was not for example. 713 // 714 // It also seems that wording was a late addition and didn't get the 715 // necessary scrutiny. 716 // 717 // Merging sections with different flags is expected by some users. One 718 // reason is that if one file has 719 // 720 // int *const bar __attribute__((section(".foo"))) = (int *)0; 721 // 722 // gcc with -fPIC will produce a read only .foo section. But if another 723 // file has 724 // 725 // int zed; 726 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 727 // 728 // gcc with -fPIC will produce a read write section. 729 // 730 // Last but not least, when using linker script the merge rules are forced by 731 // the script. Unfortunately, linker scripts are name based. This means that 732 // expressions like *(.foo*) can refer to multiple input sections with 733 // different flags. We cannot put them in different output sections or we 734 // would produce wrong results for 735 // 736 // start = .; *(.foo.*) end = .; *(.bar) 737 // 738 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 739 // another. The problem is that there is no way to layout those output 740 // sections such that the .foo sections are the only thing between the start 741 // and end symbols. 742 // 743 // Given the above issues, we instead merge sections by name and error on 744 // incompatible types and flags. 745 TinyPtrVector<OutputSection *> &v = map[outsecName]; 746 for (OutputSection *sec : v) { 747 if (sec->partition != isec->partition) 748 continue; 749 750 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 751 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 752 // change their semantics, so we only merge them in -r links if they will 753 // end up being linked to the same output section. The casts are fine 754 // because everything in the map was created by the orphan placement code. 755 auto *firstIsec = cast<InputSectionBase>( 756 cast<InputSectionDescription>(sec->sectionCommands[0]) 757 ->sectionBases[0]); 758 OutputSection *firstIsecOut = 759 firstIsec->flags & SHF_LINK_ORDER 760 ? firstIsec->getLinkOrderDep()->getOutputSection() 761 : nullptr; 762 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 763 continue; 764 } 765 766 sec->recordSection(isec); 767 return nullptr; 768 } 769 770 OutputSection *sec = createSection(isec, outsecName); 771 v.push_back(sec); 772 return sec; 773 } 774 775 // Add sections that didn't match any sections command. 776 void LinkerScript::addOrphanSections() { 777 StringMap<TinyPtrVector<OutputSection *>> map; 778 std::vector<OutputSection *> v; 779 780 std::function<void(InputSectionBase *)> add; 781 add = [&](InputSectionBase *s) { 782 if (s->isLive() && !s->parent) { 783 orphanSections.push_back(s); 784 785 StringRef name = getOutputSectionName(s); 786 if (config->unique) { 787 v.push_back(createSection(s, name)); 788 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 789 sec->recordSection(s); 790 } else { 791 if (OutputSection *os = addInputSec(map, s, name)) 792 v.push_back(os); 793 assert(isa<MergeInputSection>(s) || 794 s->getOutputSection()->sectionIndex == UINT32_MAX); 795 } 796 } 797 798 if (config->relocatable) 799 for (InputSectionBase *depSec : s->dependentSections) 800 if (depSec->flags & SHF_LINK_ORDER) 801 add(depSec); 802 }; 803 804 // For further --emit-reloc handling code we need target output section 805 // to be created before we create relocation output section, so we want 806 // to create target sections first. We do not want priority handling 807 // for synthetic sections because them are special. 808 for (InputSectionBase *isec : inputSections) { 809 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 810 // sections because we need to know the parent's output section before we 811 // can select an output section for the SHF_LINK_ORDER section. 812 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 813 continue; 814 815 if (auto *sec = dyn_cast<InputSection>(isec)) 816 if (InputSectionBase *rel = sec->getRelocatedSection()) 817 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 818 add(relIS); 819 add(isec); 820 } 821 822 // If no SECTIONS command was given, we should insert sections commands 823 // before others, so that we can handle scripts which refers them, 824 // for example: "foo = ABSOLUTE(ADDR(.text)));". 825 // When SECTIONS command is present we just add all orphans to the end. 826 if (hasSectionsCommand) 827 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 828 else 829 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 830 } 831 832 void LinkerScript::diagnoseOrphanHandling() const { 833 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 834 if (config->orphanHandling == OrphanHandlingPolicy::Place) 835 return; 836 for (const InputSectionBase *sec : orphanSections) { 837 // Input SHT_REL[A] retained by --emit-relocs are ignored by 838 // computeInputSections(). Don't warn/error. 839 if (isa<InputSection>(sec) && 840 cast<InputSection>(sec)->getRelocatedSection()) 841 continue; 842 843 StringRef name = getOutputSectionName(sec); 844 if (config->orphanHandling == OrphanHandlingPolicy::Error) 845 error(toString(sec) + " is being placed in '" + name + "'"); 846 else 847 warn(toString(sec) + " is being placed in '" + name + "'"); 848 } 849 } 850 851 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 852 dot = alignTo(dot, alignment) + size; 853 return dot; 854 } 855 856 void LinkerScript::output(InputSection *s) { 857 assert(ctx->outSec == s->getParent()); 858 uint64_t before = advance(0, 1); 859 uint64_t pos = advance(s->getSize(), s->alignment); 860 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 861 862 // Update output section size after adding each section. This is so that 863 // SIZEOF works correctly in the case below: 864 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 865 expandOutputSection(pos - before); 866 } 867 868 void LinkerScript::switchTo(OutputSection *sec) { 869 ctx->outSec = sec; 870 871 uint64_t pos = advance(0, 1); 872 if (sec->addrExpr && script->hasSectionsCommand) { 873 // The alignment is ignored. 874 ctx->outSec->addr = pos; 875 } else { 876 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 877 // section alignments. 878 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 879 expandMemoryRegions(ctx->outSec->addr - pos); 880 } 881 } 882 883 // This function searches for a memory region to place the given output 884 // section in. If found, a pointer to the appropriate memory region is 885 // returned. Otherwise, a nullptr is returned. 886 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { 887 // If a memory region name was specified in the output section command, 888 // then try to find that region first. 889 if (!sec->memoryRegionName.empty()) { 890 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 891 return m; 892 error("memory region '" + sec->memoryRegionName + "' not declared"); 893 return nullptr; 894 } 895 896 // If at least one memory region is defined, all sections must 897 // belong to some memory region. Otherwise, we don't need to do 898 // anything for memory regions. 899 if (memoryRegions.empty()) 900 return nullptr; 901 902 // See if a region can be found by matching section flags. 903 for (auto &pair : memoryRegions) { 904 MemoryRegion *m = pair.second; 905 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 906 return m; 907 } 908 909 // Otherwise, no suitable region was found. 910 if (sec->flags & SHF_ALLOC) 911 error("no memory region specified for section '" + sec->name + "'"); 912 return nullptr; 913 } 914 915 static OutputSection *findFirstSection(PhdrEntry *load) { 916 for (OutputSection *sec : outputSections) 917 if (sec->ptLoad == load) 918 return sec; 919 return nullptr; 920 } 921 922 // This function assigns offsets to input sections and an output section 923 // for a single sections command (e.g. ".text { *(.text); }"). 924 void LinkerScript::assignOffsets(OutputSection *sec) { 925 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 926 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 927 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 928 const uint64_t savedDot = dot; 929 ctx->memRegion = sec->memRegion; 930 ctx->lmaRegion = sec->lmaRegion; 931 932 if (!(sec->flags & SHF_ALLOC)) { 933 // Non-SHF_ALLOC sections have zero addresses. 934 dot = 0; 935 } else if (isTbss) { 936 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 937 // starts from the end address of the previous tbss section. 938 if (ctx->tbssAddr == 0) 939 ctx->tbssAddr = dot; 940 else 941 dot = ctx->tbssAddr; 942 } else { 943 if (ctx->memRegion) 944 dot = ctx->memRegion->curPos; 945 if (sec->addrExpr) 946 setDot(sec->addrExpr, sec->location, false); 947 948 // If the address of the section has been moved forward by an explicit 949 // expression so that it now starts past the current curPos of the enclosing 950 // region, we need to expand the current region to account for the space 951 // between the previous section, if any, and the start of this section. 952 if (ctx->memRegion && ctx->memRegion->curPos < dot) 953 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 954 ctx->memRegion->name, sec->name); 955 } 956 957 switchTo(sec); 958 959 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 960 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 961 // region is the default, and the two sections are in the same memory region, 962 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 963 // heuristics described in 964 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 965 if (sec->lmaExpr) 966 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 967 else if (MemoryRegion *mr = sec->lmaRegion) 968 ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; 969 else if (!sameMemRegion || !prevLMARegionIsDefault) 970 ctx->lmaOffset = 0; 971 972 // Propagate ctx->lmaOffset to the first "non-header" section. 973 if (PhdrEntry *l = ctx->outSec->ptLoad) 974 if (sec == findFirstSection(l)) 975 l->lmaOffset = ctx->lmaOffset; 976 977 // We can call this method multiple times during the creation of 978 // thunks and want to start over calculation each time. 979 sec->size = 0; 980 981 // We visited SectionsCommands from processSectionCommands to 982 // layout sections. Now, we visit SectionsCommands again to fix 983 // section offsets. 984 for (BaseCommand *base : sec->sectionCommands) { 985 // This handles the assignments to symbol or to the dot. 986 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 987 cmd->addr = dot; 988 assignSymbol(cmd, true); 989 cmd->size = dot - cmd->addr; 990 continue; 991 } 992 993 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 994 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 995 cmd->offset = dot - ctx->outSec->addr; 996 dot += cmd->size; 997 expandOutputSection(cmd->size); 998 continue; 999 } 1000 1001 // Handle a single input section description command. 1002 // It calculates and assigns the offsets for each section and also 1003 // updates the output section size. 1004 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 1005 output(sec); 1006 } 1007 1008 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1009 // as they are not part of the process image. 1010 if (!(sec->flags & SHF_ALLOC)) { 1011 dot = savedDot; 1012 } else if (isTbss) { 1013 // NOBITS TLS sections are similar. Additionally save the end address. 1014 ctx->tbssAddr = dot; 1015 dot = savedDot; 1016 } 1017 } 1018 1019 static bool isDiscardable(OutputSection &sec) { 1020 if (sec.name == "/DISCARD/") 1021 return true; 1022 1023 // We do not want to remove OutputSections with expressions that reference 1024 // symbols even if the OutputSection is empty. We want to ensure that the 1025 // expressions can be evaluated and report an error if they cannot. 1026 if (sec.expressionsUseSymbols) 1027 return false; 1028 1029 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1030 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1031 // to maintain the integrity of the other Expression. 1032 if (sec.usedInExpression) 1033 return false; 1034 1035 for (BaseCommand *base : sec.sectionCommands) { 1036 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 1037 // Don't create empty output sections just for unreferenced PROVIDE 1038 // symbols. 1039 if (cmd->name != "." && !cmd->sym) 1040 continue; 1041 1042 if (!isa<InputSectionDescription>(*base)) 1043 return false; 1044 } 1045 return true; 1046 } 1047 1048 static void maybePropagatePhdrs(OutputSection &sec, 1049 std::vector<StringRef> &phdrs) { 1050 if (sec.phdrs.empty()) { 1051 // To match the bfd linker script behaviour, only propagate program 1052 // headers to sections that are allocated. 1053 if (sec.flags & SHF_ALLOC) 1054 sec.phdrs = phdrs; 1055 } else { 1056 phdrs = sec.phdrs; 1057 } 1058 } 1059 1060 void LinkerScript::adjustSectionsBeforeSorting() { 1061 // If the output section contains only symbol assignments, create a 1062 // corresponding output section. The issue is what to do with linker script 1063 // like ".foo : { symbol = 42; }". One option would be to convert it to 1064 // "symbol = 42;". That is, move the symbol out of the empty section 1065 // description. That seems to be what bfd does for this simple case. The 1066 // problem is that this is not completely general. bfd will give up and 1067 // create a dummy section too if there is a ". = . + 1" inside the section 1068 // for example. 1069 // Given that we want to create the section, we have to worry what impact 1070 // it will have on the link. For example, if we just create a section with 1071 // 0 for flags, it would change which PT_LOADs are created. 1072 // We could remember that particular section is dummy and ignore it in 1073 // other parts of the linker, but unfortunately there are quite a few places 1074 // that would need to change: 1075 // * The program header creation. 1076 // * The orphan section placement. 1077 // * The address assignment. 1078 // The other option is to pick flags that minimize the impact the section 1079 // will have on the rest of the linker. That is why we copy the flags from 1080 // the previous sections. Only a few flags are needed to keep the impact low. 1081 uint64_t flags = SHF_ALLOC; 1082 1083 std::vector<StringRef> defPhdrs; 1084 for (BaseCommand *&cmd : sectionCommands) { 1085 auto *sec = dyn_cast<OutputSection>(cmd); 1086 if (!sec) 1087 continue; 1088 1089 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1090 if (sec->alignExpr) 1091 sec->alignment = 1092 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1093 1094 // The input section might have been removed (if it was an empty synthetic 1095 // section), but we at least know the flags. 1096 if (sec->hasInputSections) 1097 flags = sec->flags; 1098 1099 // We do not want to keep any special flags for output section 1100 // in case it is empty. 1101 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1102 if (isEmpty) 1103 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1104 SHF_WRITE | SHF_EXECINSTR); 1105 1106 // The code below may remove empty output sections. We should save the 1107 // specified program headers (if exist) and propagate them to subsequent 1108 // sections which do not specify program headers. 1109 // An example of such a linker script is: 1110 // SECTIONS { .empty : { *(.empty) } :rw 1111 // .foo : { *(.foo) } } 1112 // Note: at this point the order of output sections has not been finalized, 1113 // because orphans have not been inserted into their expected positions. We 1114 // will handle them in adjustSectionsAfterSorting(). 1115 if (sec->sectionIndex != UINT32_MAX) 1116 maybePropagatePhdrs(*sec, defPhdrs); 1117 1118 if (isEmpty && isDiscardable(*sec)) { 1119 sec->markDead(); 1120 cmd = nullptr; 1121 } 1122 } 1123 1124 // It is common practice to use very generic linker scripts. So for any 1125 // given run some of the output sections in the script will be empty. 1126 // We could create corresponding empty output sections, but that would 1127 // clutter the output. 1128 // We instead remove trivially empty sections. The bfd linker seems even 1129 // more aggressive at removing them. 1130 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 1131 } 1132 1133 void LinkerScript::adjustSectionsAfterSorting() { 1134 // Try and find an appropriate memory region to assign offsets in. 1135 for (BaseCommand *base : sectionCommands) { 1136 if (auto *sec = dyn_cast<OutputSection>(base)) { 1137 if (!sec->lmaRegionName.empty()) { 1138 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1139 sec->lmaRegion = m; 1140 else 1141 error("memory region '" + sec->lmaRegionName + "' not declared"); 1142 } 1143 sec->memRegion = findMemoryRegion(sec); 1144 } 1145 } 1146 1147 // If output section command doesn't specify any segments, 1148 // and we haven't previously assigned any section to segment, 1149 // then we simply assign section to the very first load segment. 1150 // Below is an example of such linker script: 1151 // PHDRS { seg PT_LOAD; } 1152 // SECTIONS { .aaa : { *(.aaa) } } 1153 std::vector<StringRef> defPhdrs; 1154 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1155 return cmd.type == PT_LOAD; 1156 }); 1157 if (firstPtLoad != phdrsCommands.end()) 1158 defPhdrs.push_back(firstPtLoad->name); 1159 1160 // Walk the commands and propagate the program headers to commands that don't 1161 // explicitly specify them. 1162 for (BaseCommand *base : sectionCommands) 1163 if (auto *sec = dyn_cast<OutputSection>(base)) 1164 maybePropagatePhdrs(*sec, defPhdrs); 1165 } 1166 1167 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1168 // If there is no SECTIONS or if the linkerscript is explicit about program 1169 // headers, do our best to allocate them. 1170 if (!script->hasSectionsCommand || allocateHeaders) 1171 return 0; 1172 // Otherwise only allocate program headers if that would not add a page. 1173 return alignDown(min, config->maxPageSize); 1174 } 1175 1176 // When the SECTIONS command is used, try to find an address for the file and 1177 // program headers output sections, which can be added to the first PT_LOAD 1178 // segment when program headers are created. 1179 // 1180 // We check if the headers fit below the first allocated section. If there isn't 1181 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1182 // and we'll also remove the PT_PHDR segment. 1183 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1184 uint64_t min = std::numeric_limits<uint64_t>::max(); 1185 for (OutputSection *sec : outputSections) 1186 if (sec->flags & SHF_ALLOC) 1187 min = std::min<uint64_t>(min, sec->addr); 1188 1189 auto it = llvm::find_if( 1190 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1191 if (it == phdrs.end()) 1192 return; 1193 PhdrEntry *firstPTLoad = *it; 1194 1195 bool hasExplicitHeaders = 1196 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1197 return cmd.hasPhdrs || cmd.hasFilehdr; 1198 }); 1199 bool paged = !config->omagic && !config->nmagic; 1200 uint64_t headerSize = getHeaderSize(); 1201 if ((paged || hasExplicitHeaders) && 1202 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1203 min = alignDown(min - headerSize, config->maxPageSize); 1204 Out::elfHeader->addr = min; 1205 Out::programHeaders->addr = min + Out::elfHeader->size; 1206 return; 1207 } 1208 1209 // Error if we were explicitly asked to allocate headers. 1210 if (hasExplicitHeaders) 1211 error("could not allocate headers"); 1212 1213 Out::elfHeader->ptLoad = nullptr; 1214 Out::programHeaders->ptLoad = nullptr; 1215 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1216 1217 llvm::erase_if(phdrs, 1218 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1219 } 1220 1221 LinkerScript::AddressState::AddressState() { 1222 for (auto &mri : script->memoryRegions) { 1223 MemoryRegion *mr = mri.second; 1224 mr->curPos = (mr->origin)().getValue(); 1225 } 1226 } 1227 1228 // Here we assign addresses as instructed by linker script SECTIONS 1229 // sub-commands. Doing that allows us to use final VA values, so here 1230 // we also handle rest commands like symbol assignments and ASSERTs. 1231 // Returns a symbol that has changed its section or value, or nullptr if no 1232 // symbol has changed. 1233 const Defined *LinkerScript::assignAddresses() { 1234 if (script->hasSectionsCommand) { 1235 // With a linker script, assignment of addresses to headers is covered by 1236 // allocateHeaders(). 1237 dot = config->imageBase.getValueOr(0); 1238 } else { 1239 // Assign addresses to headers right now. 1240 dot = target->getImageBase(); 1241 Out::elfHeader->addr = dot; 1242 Out::programHeaders->addr = dot + Out::elfHeader->size; 1243 dot += getHeaderSize(); 1244 } 1245 1246 auto deleter = std::make_unique<AddressState>(); 1247 ctx = deleter.get(); 1248 errorOnMissingSection = true; 1249 switchTo(aether); 1250 1251 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1252 for (BaseCommand *base : sectionCommands) { 1253 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1254 cmd->addr = dot; 1255 assignSymbol(cmd, false); 1256 cmd->size = dot - cmd->addr; 1257 continue; 1258 } 1259 assignOffsets(cast<OutputSection>(base)); 1260 } 1261 1262 ctx = nullptr; 1263 return getChangedSymbolAssignment(oldValues); 1264 } 1265 1266 // Creates program headers as instructed by PHDRS linker script command. 1267 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1268 std::vector<PhdrEntry *> ret; 1269 1270 // Process PHDRS and FILEHDR keywords because they are not 1271 // real output sections and cannot be added in the following loop. 1272 for (const PhdrsCommand &cmd : phdrsCommands) { 1273 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1274 1275 if (cmd.hasFilehdr) 1276 phdr->add(Out::elfHeader); 1277 if (cmd.hasPhdrs) 1278 phdr->add(Out::programHeaders); 1279 1280 if (cmd.lmaExpr) { 1281 phdr->p_paddr = cmd.lmaExpr().getValue(); 1282 phdr->hasLMA = true; 1283 } 1284 ret.push_back(phdr); 1285 } 1286 1287 // Add output sections to program headers. 1288 for (OutputSection *sec : outputSections) { 1289 // Assign headers specified by linker script 1290 for (size_t id : getPhdrIndices(sec)) { 1291 ret[id]->add(sec); 1292 if (!phdrsCommands[id].flags.hasValue()) 1293 ret[id]->p_flags |= sec->getPhdrFlags(); 1294 } 1295 } 1296 return ret; 1297 } 1298 1299 // Returns true if we should emit an .interp section. 1300 // 1301 // We usually do. But if PHDRS commands are given, and 1302 // no PT_INTERP is there, there's no place to emit an 1303 // .interp, so we don't do that in that case. 1304 bool LinkerScript::needsInterpSection() { 1305 if (phdrsCommands.empty()) 1306 return true; 1307 for (PhdrsCommand &cmd : phdrsCommands) 1308 if (cmd.type == PT_INTERP) 1309 return true; 1310 return false; 1311 } 1312 1313 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1314 if (name == ".") { 1315 if (ctx) 1316 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1317 error(loc + ": unable to get location counter value"); 1318 return 0; 1319 } 1320 1321 if (Symbol *sym = symtab->find(name)) { 1322 if (auto *ds = dyn_cast<Defined>(sym)) { 1323 ExprValue v{ds->section, false, ds->value, loc}; 1324 // Retain the original st_type, so that the alias will get the same 1325 // behavior in relocation processing. Any operation will reset st_type to 1326 // STT_NOTYPE. 1327 v.type = ds->type; 1328 return v; 1329 } 1330 if (isa<SharedSymbol>(sym)) 1331 if (!errorOnMissingSection) 1332 return {nullptr, false, 0, loc}; 1333 } 1334 1335 error(loc + ": symbol not found: " + name); 1336 return 0; 1337 } 1338 1339 // Returns the index of the segment named Name. 1340 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1341 StringRef name) { 1342 for (size_t i = 0; i < vec.size(); ++i) 1343 if (vec[i].name == name) 1344 return i; 1345 return None; 1346 } 1347 1348 // Returns indices of ELF headers containing specific section. Each index is a 1349 // zero based number of ELF header listed within PHDRS {} script block. 1350 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1351 std::vector<size_t> ret; 1352 1353 for (StringRef s : cmd->phdrs) { 1354 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1355 ret.push_back(*idx); 1356 else if (s != "NONE") 1357 error(cmd->location + ": program header '" + s + 1358 "' is not listed in PHDRS"); 1359 } 1360 return ret; 1361 } 1362