1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/TimeProfiler.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::script; 51 52 static uint64_t getOutputSectionVA(SectionBase *sec) { 53 OutputSection *os = sec->getOutputSection(); 54 assert(os && "input section has no output section assigned"); 55 return os ? os->addr : 0; 56 } 57 58 uint64_t ExprValue::getValue() const { 59 if (sec) 60 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 61 alignment); 62 return alignTo(val, alignment); 63 } 64 65 uint64_t ExprValue::getSecAddr() const { 66 if (sec) 67 return sec->getOffset(0) + getOutputSectionVA(sec); 68 return 0; 69 } 70 71 uint64_t ExprValue::getSectionOffset() const { 72 // If the alignment is trivial, we don't have to compute the full 73 // value to know the offset. This allows this function to succeed in 74 // cases where the output section is not yet known. 75 if (alignment == 1 && !sec) 76 return val; 77 return getValue() - getSecAddr(); 78 } 79 80 OutputSection *LinkerScript::createOutputSection(StringRef name, 81 StringRef location) { 82 OutputSection *&secRef = nameToOutputSection[name]; 83 OutputSection *sec; 84 if (secRef && secRef->location.empty()) { 85 // There was a forward reference. 86 sec = secRef; 87 } else { 88 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 89 if (!secRef) 90 secRef = sec; 91 } 92 sec->location = std::string(location); 93 return sec; 94 } 95 96 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 97 OutputSection *&cmdRef = nameToOutputSection[name]; 98 if (!cmdRef) 99 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 100 return cmdRef; 101 } 102 103 // Expands the memory region by the specified size. 104 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 105 StringRef regionName, StringRef secName) { 106 memRegion->curPos += size; 107 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 108 uint64_t length = (memRegion->length)().getValue(); 109 if (newSize > length) 110 error("section '" + secName + "' will not fit in region '" + regionName + 111 "': overflowed by " + Twine(newSize - length) + " bytes"); 112 } 113 114 void LinkerScript::expandMemoryRegions(uint64_t size) { 115 if (ctx->memRegion) 116 expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, 117 ctx->outSec->name); 118 // Only expand the LMARegion if it is different from memRegion. 119 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 120 expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, 121 ctx->outSec->name); 122 } 123 124 void LinkerScript::expandOutputSection(uint64_t size) { 125 ctx->outSec->size += size; 126 expandMemoryRegions(size); 127 } 128 129 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 130 uint64_t val = e().getValue(); 131 if (val < dot && inSec) 132 error(loc + ": unable to move location counter backward for: " + 133 ctx->outSec->name); 134 135 // Update to location counter means update to section size. 136 if (inSec) 137 expandOutputSection(val - dot); 138 139 dot = val; 140 } 141 142 // Used for handling linker symbol assignments, for both finalizing 143 // their values and doing early declarations. Returns true if symbol 144 // should be defined from linker script. 145 static bool shouldDefineSym(SymbolAssignment *cmd) { 146 if (cmd->name == ".") 147 return false; 148 149 if (!cmd->provide) 150 return true; 151 152 // If a symbol was in PROVIDE(), we need to define it only 153 // when it is a referenced undefined symbol. 154 Symbol *b = symtab->find(cmd->name); 155 if (b && !b->isDefined()) 156 return true; 157 return false; 158 } 159 160 // Called by processSymbolAssignments() to assign definitions to 161 // linker-script-defined symbols. 162 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 163 if (!shouldDefineSym(cmd)) 164 return; 165 166 // Define a symbol. 167 ExprValue value = cmd->expression(); 168 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 169 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 170 171 // When this function is called, section addresses have not been 172 // fixed yet. So, we may or may not know the value of the RHS 173 // expression. 174 // 175 // For example, if an expression is `x = 42`, we know x is always 42. 176 // However, if an expression is `x = .`, there's no way to know its 177 // value at the moment. 178 // 179 // We want to set symbol values early if we can. This allows us to 180 // use symbols as variables in linker scripts. Doing so allows us to 181 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 182 uint64_t symValue = value.sec ? 0 : value.getValue(); 183 184 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 185 symValue, 0, sec); 186 187 Symbol *sym = symtab->insert(cmd->name); 188 sym->mergeProperties(newSym); 189 sym->replace(newSym); 190 cmd->sym = cast<Defined>(sym); 191 } 192 193 // This function is called from LinkerScript::declareSymbols. 194 // It creates a placeholder symbol if needed. 195 static void declareSymbol(SymbolAssignment *cmd) { 196 if (!shouldDefineSym(cmd)) 197 return; 198 199 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 200 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 201 nullptr); 202 203 // We can't calculate final value right now. 204 Symbol *sym = symtab->insert(cmd->name); 205 sym->mergeProperties(newSym); 206 sym->replace(newSym); 207 208 cmd->sym = cast<Defined>(sym); 209 cmd->provide = false; 210 sym->scriptDefined = true; 211 } 212 213 using SymbolAssignmentMap = 214 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 215 216 // Collect section/value pairs of linker-script-defined symbols. This is used to 217 // check whether symbol values converge. 218 static SymbolAssignmentMap 219 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 220 SymbolAssignmentMap ret; 221 for (BaseCommand *base : sectionCommands) { 222 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 223 if (cmd->sym) // sym is nullptr for dot. 224 ret.try_emplace(cmd->sym, 225 std::make_pair(cmd->sym->section, cmd->sym->value)); 226 continue; 227 } 228 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 229 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 230 if (cmd->sym) 231 ret.try_emplace(cmd->sym, 232 std::make_pair(cmd->sym->section, cmd->sym->value)); 233 } 234 return ret; 235 } 236 237 // Returns the lexicographical smallest (for determinism) Defined whose 238 // section/value has changed. 239 static const Defined * 240 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 241 const Defined *changed = nullptr; 242 for (auto &it : oldValues) { 243 const Defined *sym = it.first; 244 if (std::make_pair(sym->section, sym->value) != it.second && 245 (!changed || sym->getName() < changed->getName())) 246 changed = sym; 247 } 248 return changed; 249 } 250 251 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 252 // specified output section to the designated place. 253 void LinkerScript::processInsertCommands() { 254 for (const InsertCommand &cmd : insertCommands) { 255 // If cmd.os is empty, it may have been discarded by 256 // adjustSectionsBeforeSorting(). We do not handle such output sections. 257 auto from = llvm::find(sectionCommands, cmd.os); 258 if (from == sectionCommands.end()) 259 continue; 260 sectionCommands.erase(from); 261 262 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 263 auto *to = dyn_cast<OutputSection>(base); 264 return to != nullptr && to->name == cmd.where; 265 }); 266 if (insertPos == sectionCommands.end()) { 267 error("unable to insert " + cmd.os->name + 268 (cmd.isAfter ? " after " : " before ") + cmd.where); 269 } else { 270 if (cmd.isAfter) 271 ++insertPos; 272 sectionCommands.insert(insertPos, cmd.os); 273 } 274 } 275 } 276 277 // Symbols defined in script should not be inlined by LTO. At the same time 278 // we don't know their final values until late stages of link. Here we scan 279 // over symbol assignment commands and create placeholder symbols if needed. 280 void LinkerScript::declareSymbols() { 281 assert(!ctx); 282 for (BaseCommand *base : sectionCommands) { 283 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 284 declareSymbol(cmd); 285 continue; 286 } 287 288 // If the output section directive has constraints, 289 // we can't say for sure if it is going to be included or not. 290 // Skip such sections for now. Improve the checks if we ever 291 // need symbols from that sections to be declared early. 292 auto *sec = cast<OutputSection>(base); 293 if (sec->constraint != ConstraintKind::NoConstraint) 294 continue; 295 for (BaseCommand *base2 : sec->sectionCommands) 296 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 297 declareSymbol(cmd); 298 } 299 } 300 301 // This function is called from assignAddresses, while we are 302 // fixing the output section addresses. This function is supposed 303 // to set the final value for a given symbol assignment. 304 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 305 if (cmd->name == ".") { 306 setDot(cmd->expression, cmd->location, inSec); 307 return; 308 } 309 310 if (!cmd->sym) 311 return; 312 313 ExprValue v = cmd->expression(); 314 if (v.isAbsolute()) { 315 cmd->sym->section = nullptr; 316 cmd->sym->value = v.getValue(); 317 } else { 318 cmd->sym->section = v.sec; 319 cmd->sym->value = v.getSectionOffset(); 320 } 321 cmd->sym->type = v.type; 322 } 323 324 static inline StringRef getFilename(const InputFile *file) { 325 return file ? file->getNameForScript() : StringRef(); 326 } 327 328 bool InputSectionDescription::matchesFile(const InputFile *file) const { 329 if (filePat.isTrivialMatchAll()) 330 return true; 331 332 if (!matchesFileCache || matchesFileCache->first != file) 333 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 334 335 return matchesFileCache->second; 336 } 337 338 bool SectionPattern::excludesFile(const InputFile *file) const { 339 if (excludedFilePat.empty()) 340 return false; 341 342 if (!excludesFileCache || excludesFileCache->first != file) 343 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 344 345 return excludesFileCache->second; 346 } 347 348 bool LinkerScript::shouldKeep(InputSectionBase *s) { 349 for (InputSectionDescription *id : keptSections) 350 if (id->matchesFile(s->file)) 351 for (SectionPattern &p : id->sectionPatterns) 352 if (p.sectionPat.match(s->name) && 353 (s->flags & id->withFlags) == id->withFlags && 354 (s->flags & id->withoutFlags) == 0) 355 return true; 356 return false; 357 } 358 359 // A helper function for the SORT() command. 360 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 361 ConstraintKind kind) { 362 if (kind == ConstraintKind::NoConstraint) 363 return true; 364 365 bool isRW = llvm::any_of( 366 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 367 368 return (isRW && kind == ConstraintKind::ReadWrite) || 369 (!isRW && kind == ConstraintKind::ReadOnly); 370 } 371 372 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 373 SortSectionPolicy k) { 374 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 375 // ">" is not a mistake. Sections with larger alignments are placed 376 // before sections with smaller alignments in order to reduce the 377 // amount of padding necessary. This is compatible with GNU. 378 return a->alignment > b->alignment; 379 }; 380 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 381 return a->name < b->name; 382 }; 383 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 384 return getPriority(a->name) < getPriority(b->name); 385 }; 386 387 switch (k) { 388 case SortSectionPolicy::Default: 389 case SortSectionPolicy::None: 390 return; 391 case SortSectionPolicy::Alignment: 392 return llvm::stable_sort(vec, alignmentComparator); 393 case SortSectionPolicy::Name: 394 return llvm::stable_sort(vec, nameComparator); 395 case SortSectionPolicy::Priority: 396 return llvm::stable_sort(vec, priorityComparator); 397 } 398 } 399 400 // Sort sections as instructed by SORT-family commands and --sort-section 401 // option. Because SORT-family commands can be nested at most two depth 402 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 403 // line option is respected even if a SORT command is given, the exact 404 // behavior we have here is a bit complicated. Here are the rules. 405 // 406 // 1. If two SORT commands are given, --sort-section is ignored. 407 // 2. If one SORT command is given, and if it is not SORT_NONE, 408 // --sort-section is handled as an inner SORT command. 409 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 410 // 4. If no SORT command is given, sort according to --sort-section. 411 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 412 SortSectionPolicy outer, 413 SortSectionPolicy inner) { 414 if (outer == SortSectionPolicy::None) 415 return; 416 417 if (inner == SortSectionPolicy::Default) 418 sortSections(vec, config->sortSection); 419 else 420 sortSections(vec, inner); 421 sortSections(vec, outer); 422 } 423 424 // Compute and remember which sections the InputSectionDescription matches. 425 std::vector<InputSectionBase *> 426 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 427 ArrayRef<InputSectionBase *> sections) { 428 std::vector<InputSectionBase *> ret; 429 std::vector<size_t> indexes; 430 DenseSet<size_t> seen; 431 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 432 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 433 for (size_t i = begin; i != end; ++i) 434 ret[i] = sections[indexes[i]]; 435 sortInputSections( 436 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 437 config->sortSection, SortSectionPolicy::None); 438 }; 439 440 // Collects all sections that satisfy constraints of Cmd. 441 size_t sizeAfterPrevSort = 0; 442 for (const SectionPattern &pat : cmd->sectionPatterns) { 443 size_t sizeBeforeCurrPat = ret.size(); 444 445 for (size_t i = 0, e = sections.size(); i != e; ++i) { 446 // Skip if the section is dead or has been matched by a previous input 447 // section description or a previous pattern. 448 InputSectionBase *sec = sections[i]; 449 if (!sec->isLive() || sec->parent || seen.contains(i)) 450 continue; 451 452 // For -emit-relocs we have to ignore entries like 453 // .rela.dyn : { *(.rela.data) } 454 // which are common because they are in the default bfd script. 455 // We do not ignore SHT_REL[A] linker-synthesized sections here because 456 // want to support scripts that do custom layout for them. 457 if (isa<InputSection>(sec) && 458 cast<InputSection>(sec)->getRelocatedSection()) 459 continue; 460 461 // Check the name early to improve performance in the common case. 462 if (!pat.sectionPat.match(sec->name)) 463 continue; 464 465 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 466 (sec->flags & cmd->withFlags) != cmd->withFlags || 467 (sec->flags & cmd->withoutFlags) != 0) 468 continue; 469 470 ret.push_back(sec); 471 indexes.push_back(i); 472 seen.insert(i); 473 } 474 475 if (pat.sortOuter == SortSectionPolicy::Default) 476 continue; 477 478 // Matched sections are ordered by radix sort with the keys being (SORT*, 479 // --sort-section, input order), where SORT* (if present) is most 480 // significant. 481 // 482 // Matched sections between the previous SORT* and this SORT* are sorted by 483 // (--sort-alignment, input order). 484 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 485 // Matched sections by this SORT* pattern are sorted using all 3 keys. 486 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 487 // just sort by sortOuter and sortInner. 488 sortInputSections( 489 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 490 pat.sortOuter, pat.sortInner); 491 sizeAfterPrevSort = ret.size(); 492 } 493 // Matched sections after the last SORT* are sorted by (--sort-alignment, 494 // input order). 495 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 496 return ret; 497 } 498 499 void LinkerScript::discard(InputSectionBase *s) { 500 if (s == in.shStrTab || s == mainPart->relrDyn) 501 error("discarding " + s->name + " section is not allowed"); 502 503 // You can discard .hash and .gnu.hash sections by linker scripts. Since 504 // they are synthesized sections, we need to handle them differently than 505 // other regular sections. 506 if (s == mainPart->gnuHashTab) 507 mainPart->gnuHashTab = nullptr; 508 if (s == mainPart->hashTab) 509 mainPart->hashTab = nullptr; 510 511 s->markDead(); 512 s->parent = nullptr; 513 for (InputSection *ds : s->dependentSections) 514 discard(ds); 515 } 516 517 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 518 for (Partition &part : partitions) { 519 if (!part.armExidx || !part.armExidx->isLive()) 520 continue; 521 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 522 part.armExidx->exidxSections.end()); 523 for (BaseCommand *base : outCmd.sectionCommands) 524 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 525 std::vector<InputSectionBase *> matches = 526 computeInputSections(cmd, secs); 527 for (InputSectionBase *s : matches) 528 discard(s); 529 } 530 } 531 } 532 533 std::vector<InputSectionBase *> 534 LinkerScript::createInputSectionList(OutputSection &outCmd) { 535 std::vector<InputSectionBase *> ret; 536 537 for (BaseCommand *base : outCmd.sectionCommands) { 538 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 539 cmd->sectionBases = computeInputSections(cmd, inputSections); 540 for (InputSectionBase *s : cmd->sectionBases) 541 s->parent = &outCmd; 542 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 543 } 544 } 545 return ret; 546 } 547 548 // Create output sections described by SECTIONS commands. 549 void LinkerScript::processSectionCommands() { 550 size_t i = 0; 551 for (BaseCommand *base : sectionCommands) { 552 if (auto *sec = dyn_cast<OutputSection>(base)) { 553 std::vector<InputSectionBase *> v = createInputSectionList(*sec); 554 555 // The output section name `/DISCARD/' is special. 556 // Any input section assigned to it is discarded. 557 if (sec->name == "/DISCARD/") { 558 for (InputSectionBase *s : v) 559 discard(s); 560 discardSynthetic(*sec); 561 sec->sectionCommands.clear(); 562 continue; 563 } 564 565 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 566 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 567 // sections satisfy a given constraint. If not, a directive is handled 568 // as if it wasn't present from the beginning. 569 // 570 // Because we'll iterate over SectionCommands many more times, the easy 571 // way to "make it as if it wasn't present" is to make it empty. 572 if (!matchConstraints(v, sec->constraint)) { 573 for (InputSectionBase *s : v) 574 s->parent = nullptr; 575 sec->sectionCommands.clear(); 576 continue; 577 } 578 579 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 580 // is given, input sections are aligned to that value, whether the 581 // given value is larger or smaller than the original section alignment. 582 if (sec->subalignExpr) { 583 uint32_t subalign = sec->subalignExpr().getValue(); 584 for (InputSectionBase *s : v) 585 s->alignment = subalign; 586 } 587 588 // Set the partition field the same way OutputSection::recordSection() 589 // does. Partitions cannot be used with the SECTIONS command, so this is 590 // always 1. 591 sec->partition = 1; 592 593 sec->sectionIndex = i++; 594 } 595 } 596 } 597 598 void LinkerScript::processSymbolAssignments() { 599 // Dot outside an output section still represents a relative address, whose 600 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 601 // that fills the void outside a section. It has an index of one, which is 602 // indistinguishable from any other regular section index. 603 aether = make<OutputSection>("", 0, SHF_ALLOC); 604 aether->sectionIndex = 1; 605 606 // ctx captures the local AddressState and makes it accessible deliberately. 607 // This is needed as there are some cases where we cannot just thread the 608 // current state through to a lambda function created by the script parser. 609 AddressState state; 610 ctx = &state; 611 ctx->outSec = aether; 612 613 for (BaseCommand *base : sectionCommands) { 614 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 615 addSymbol(cmd); 616 else 617 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 618 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 619 addSymbol(cmd); 620 } 621 622 ctx = nullptr; 623 } 624 625 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 626 StringRef name) { 627 for (BaseCommand *base : vec) 628 if (auto *sec = dyn_cast<OutputSection>(base)) 629 if (sec->name == name) 630 return sec; 631 return nullptr; 632 } 633 634 static OutputSection *createSection(InputSectionBase *isec, 635 StringRef outsecName) { 636 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 637 sec->recordSection(isec); 638 return sec; 639 } 640 641 static OutputSection * 642 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 643 InputSectionBase *isec, StringRef outsecName) { 644 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 645 // option is given. A section with SHT_GROUP defines a "section group", and 646 // its members have SHF_GROUP attribute. Usually these flags have already been 647 // stripped by InputFiles.cpp as section groups are processed and uniquified. 648 // However, for the -r option, we want to pass through all section groups 649 // as-is because adding/removing members or merging them with other groups 650 // change their semantics. 651 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 652 return createSection(isec, outsecName); 653 654 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 655 // relocation sections .rela.foo and .rela.bar for example. Most tools do 656 // not allow multiple REL[A] sections for output section. Hence we 657 // should combine these relocation sections into single output. 658 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 659 // other REL[A] sections created by linker itself. 660 if (!isa<SyntheticSection>(isec) && 661 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 662 auto *sec = cast<InputSection>(isec); 663 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 664 665 if (out->relocationSection) { 666 out->relocationSection->recordSection(sec); 667 return nullptr; 668 } 669 670 out->relocationSection = createSection(isec, outsecName); 671 return out->relocationSection; 672 } 673 674 // The ELF spec just says 675 // ---------------------------------------------------------------- 676 // In the first phase, input sections that match in name, type and 677 // attribute flags should be concatenated into single sections. 678 // ---------------------------------------------------------------- 679 // 680 // However, it is clear that at least some flags have to be ignored for 681 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 682 // ignored. We should not have two output .text sections just because one was 683 // in a group and another was not for example. 684 // 685 // It also seems that wording was a late addition and didn't get the 686 // necessary scrutiny. 687 // 688 // Merging sections with different flags is expected by some users. One 689 // reason is that if one file has 690 // 691 // int *const bar __attribute__((section(".foo"))) = (int *)0; 692 // 693 // gcc with -fPIC will produce a read only .foo section. But if another 694 // file has 695 // 696 // int zed; 697 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 698 // 699 // gcc with -fPIC will produce a read write section. 700 // 701 // Last but not least, when using linker script the merge rules are forced by 702 // the script. Unfortunately, linker scripts are name based. This means that 703 // expressions like *(.foo*) can refer to multiple input sections with 704 // different flags. We cannot put them in different output sections or we 705 // would produce wrong results for 706 // 707 // start = .; *(.foo.*) end = .; *(.bar) 708 // 709 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 710 // another. The problem is that there is no way to layout those output 711 // sections such that the .foo sections are the only thing between the start 712 // and end symbols. 713 // 714 // Given the above issues, we instead merge sections by name and error on 715 // incompatible types and flags. 716 TinyPtrVector<OutputSection *> &v = map[outsecName]; 717 for (OutputSection *sec : v) { 718 if (sec->partition != isec->partition) 719 continue; 720 721 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 722 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 723 // change their semantics, so we only merge them in -r links if they will 724 // end up being linked to the same output section. The casts are fine 725 // because everything in the map was created by the orphan placement code. 726 auto *firstIsec = cast<InputSectionBase>( 727 cast<InputSectionDescription>(sec->sectionCommands[0]) 728 ->sectionBases[0]); 729 OutputSection *firstIsecOut = 730 firstIsec->flags & SHF_LINK_ORDER 731 ? firstIsec->getLinkOrderDep()->getOutputSection() 732 : nullptr; 733 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 734 continue; 735 } 736 737 sec->recordSection(isec); 738 return nullptr; 739 } 740 741 OutputSection *sec = createSection(isec, outsecName); 742 v.push_back(sec); 743 return sec; 744 } 745 746 // Add sections that didn't match any sections command. 747 void LinkerScript::addOrphanSections() { 748 StringMap<TinyPtrVector<OutputSection *>> map; 749 std::vector<OutputSection *> v; 750 751 std::function<void(InputSectionBase *)> add; 752 add = [&](InputSectionBase *s) { 753 if (s->isLive() && !s->parent) { 754 orphanSections.push_back(s); 755 756 StringRef name = getOutputSectionName(s); 757 if (config->unique) { 758 v.push_back(createSection(s, name)); 759 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 760 sec->recordSection(s); 761 } else { 762 if (OutputSection *os = addInputSec(map, s, name)) 763 v.push_back(os); 764 assert(isa<MergeInputSection>(s) || 765 s->getOutputSection()->sectionIndex == UINT32_MAX); 766 } 767 } 768 769 if (config->relocatable) 770 for (InputSectionBase *depSec : s->dependentSections) 771 if (depSec->flags & SHF_LINK_ORDER) 772 add(depSec); 773 }; 774 775 // For futher --emit-reloc handling code we need target output section 776 // to be created before we create relocation output section, so we want 777 // to create target sections first. We do not want priority handling 778 // for synthetic sections because them are special. 779 for (InputSectionBase *isec : inputSections) { 780 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 781 // sections because we need to know the parent's output section before we 782 // can select an output section for the SHF_LINK_ORDER section. 783 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 784 continue; 785 786 if (auto *sec = dyn_cast<InputSection>(isec)) 787 if (InputSectionBase *rel = sec->getRelocatedSection()) 788 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 789 add(relIS); 790 add(isec); 791 } 792 793 // If no SECTIONS command was given, we should insert sections commands 794 // before others, so that we can handle scripts which refers them, 795 // for example: "foo = ABSOLUTE(ADDR(.text)));". 796 // When SECTIONS command is present we just add all orphans to the end. 797 if (hasSectionsCommand) 798 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 799 else 800 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 801 } 802 803 void LinkerScript::diagnoseOrphanHandling() const { 804 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 805 if (config->orphanHandling == OrphanHandlingPolicy::Place) 806 return; 807 for (const InputSectionBase *sec : orphanSections) { 808 // Input SHT_REL[A] retained by --emit-relocs are ignored by 809 // computeInputSections(). Don't warn/error. 810 if (isa<InputSection>(sec) && 811 cast<InputSection>(sec)->getRelocatedSection()) 812 continue; 813 814 StringRef name = getOutputSectionName(sec); 815 if (config->orphanHandling == OrphanHandlingPolicy::Error) 816 error(toString(sec) + " is being placed in '" + name + "'"); 817 else 818 warn(toString(sec) + " is being placed in '" + name + "'"); 819 } 820 } 821 822 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 823 bool isTbss = 824 (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; 825 uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; 826 start = alignTo(start, alignment); 827 uint64_t end = start + size; 828 829 if (isTbss) 830 ctx->threadBssOffset = end - dot; 831 else 832 dot = end; 833 return end; 834 } 835 836 void LinkerScript::output(InputSection *s) { 837 assert(ctx->outSec == s->getParent()); 838 uint64_t before = advance(0, 1); 839 uint64_t pos = advance(s->getSize(), s->alignment); 840 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 841 842 // Update output section size after adding each section. This is so that 843 // SIZEOF works correctly in the case below: 844 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 845 expandOutputSection(pos - before); 846 } 847 848 void LinkerScript::switchTo(OutputSection *sec) { 849 ctx->outSec = sec; 850 851 uint64_t pos = advance(0, 1); 852 if (sec->addrExpr && script->hasSectionsCommand) { 853 // The alignment is ignored. 854 ctx->outSec->addr = pos; 855 } else { 856 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 857 // section alignments. 858 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 859 expandMemoryRegions(ctx->outSec->addr - pos); 860 } 861 } 862 863 // This function searches for a memory region to place the given output 864 // section in. If found, a pointer to the appropriate memory region is 865 // returned. Otherwise, a nullptr is returned. 866 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { 867 // If a memory region name was specified in the output section command, 868 // then try to find that region first. 869 if (!sec->memoryRegionName.empty()) { 870 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 871 return m; 872 error("memory region '" + sec->memoryRegionName + "' not declared"); 873 return nullptr; 874 } 875 876 // If at least one memory region is defined, all sections must 877 // belong to some memory region. Otherwise, we don't need to do 878 // anything for memory regions. 879 if (memoryRegions.empty()) 880 return nullptr; 881 882 // See if a region can be found by matching section flags. 883 for (auto &pair : memoryRegions) { 884 MemoryRegion *m = pair.second; 885 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 886 return m; 887 } 888 889 // Otherwise, no suitable region was found. 890 if (sec->flags & SHF_ALLOC) 891 error("no memory region specified for section '" + sec->name + "'"); 892 return nullptr; 893 } 894 895 static OutputSection *findFirstSection(PhdrEntry *load) { 896 for (OutputSection *sec : outputSections) 897 if (sec->ptLoad == load) 898 return sec; 899 return nullptr; 900 } 901 902 // This function assigns offsets to input sections and an output section 903 // for a single sections command (e.g. ".text { *(.text); }"). 904 void LinkerScript::assignOffsets(OutputSection *sec) { 905 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 906 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 907 const uint64_t savedDot = dot; 908 ctx->memRegion = sec->memRegion; 909 ctx->lmaRegion = sec->lmaRegion; 910 911 if (sec->flags & SHF_ALLOC) { 912 if (ctx->memRegion) 913 dot = ctx->memRegion->curPos; 914 if (sec->addrExpr) 915 setDot(sec->addrExpr, sec->location, false); 916 917 // If the address of the section has been moved forward by an explicit 918 // expression so that it now starts past the current curPos of the enclosing 919 // region, we need to expand the current region to account for the space 920 // between the previous section, if any, and the start of this section. 921 if (ctx->memRegion && ctx->memRegion->curPos < dot) 922 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 923 ctx->memRegion->name, sec->name); 924 } else { 925 // Non-SHF_ALLOC sections have zero addresses. 926 dot = 0; 927 } 928 929 switchTo(sec); 930 931 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 932 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 933 // region is the default, and the two sections are in the same memory region, 934 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 935 // heuristics described in 936 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 937 if (sec->lmaExpr) 938 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 939 else if (MemoryRegion *mr = sec->lmaRegion) 940 ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; 941 else if (!sameMemRegion || !prevLMARegionIsDefault) 942 ctx->lmaOffset = 0; 943 944 // Propagate ctx->lmaOffset to the first "non-header" section. 945 if (PhdrEntry *l = ctx->outSec->ptLoad) 946 if (sec == findFirstSection(l)) 947 l->lmaOffset = ctx->lmaOffset; 948 949 // We can call this method multiple times during the creation of 950 // thunks and want to start over calculation each time. 951 sec->size = 0; 952 953 // We visited SectionsCommands from processSectionCommands to 954 // layout sections. Now, we visit SectionsCommands again to fix 955 // section offsets. 956 for (BaseCommand *base : sec->sectionCommands) { 957 // This handles the assignments to symbol or to the dot. 958 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 959 cmd->addr = dot; 960 assignSymbol(cmd, true); 961 cmd->size = dot - cmd->addr; 962 continue; 963 } 964 965 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 966 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 967 cmd->offset = dot - ctx->outSec->addr; 968 dot += cmd->size; 969 expandOutputSection(cmd->size); 970 continue; 971 } 972 973 // Handle a single input section description command. 974 // It calculates and assigns the offsets for each section and also 975 // updates the output section size. 976 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 977 output(sec); 978 } 979 980 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 981 // as they are not part of the process image. 982 if (!(sec->flags & SHF_ALLOC)) 983 dot = savedDot; 984 } 985 986 static bool isDiscardable(OutputSection &sec) { 987 if (sec.name == "/DISCARD/") 988 return true; 989 990 // We do not want to remove OutputSections with expressions that reference 991 // symbols even if the OutputSection is empty. We want to ensure that the 992 // expressions can be evaluated and report an error if they cannot. 993 if (sec.expressionsUseSymbols) 994 return false; 995 996 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 997 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 998 // to maintain the integrity of the other Expression. 999 if (sec.usedInExpression) 1000 return false; 1001 1002 for (BaseCommand *base : sec.sectionCommands) { 1003 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 1004 // Don't create empty output sections just for unreferenced PROVIDE 1005 // symbols. 1006 if (cmd->name != "." && !cmd->sym) 1007 continue; 1008 1009 if (!isa<InputSectionDescription>(*base)) 1010 return false; 1011 } 1012 return true; 1013 } 1014 1015 static void maybePropagatePhdrs(OutputSection &sec, 1016 std::vector<StringRef> &phdrs) { 1017 if (sec.phdrs.empty()) { 1018 // To match the bfd linker script behaviour, only propagate program 1019 // headers to sections that are allocated. 1020 if (sec.flags & SHF_ALLOC) 1021 sec.phdrs = phdrs; 1022 } else { 1023 phdrs = sec.phdrs; 1024 } 1025 } 1026 1027 void LinkerScript::adjustSectionsBeforeSorting() { 1028 // If the output section contains only symbol assignments, create a 1029 // corresponding output section. The issue is what to do with linker script 1030 // like ".foo : { symbol = 42; }". One option would be to convert it to 1031 // "symbol = 42;". That is, move the symbol out of the empty section 1032 // description. That seems to be what bfd does for this simple case. The 1033 // problem is that this is not completely general. bfd will give up and 1034 // create a dummy section too if there is a ". = . + 1" inside the section 1035 // for example. 1036 // Given that we want to create the section, we have to worry what impact 1037 // it will have on the link. For example, if we just create a section with 1038 // 0 for flags, it would change which PT_LOADs are created. 1039 // We could remember that particular section is dummy and ignore it in 1040 // other parts of the linker, but unfortunately there are quite a few places 1041 // that would need to change: 1042 // * The program header creation. 1043 // * The orphan section placement. 1044 // * The address assignment. 1045 // The other option is to pick flags that minimize the impact the section 1046 // will have on the rest of the linker. That is why we copy the flags from 1047 // the previous sections. Only a few flags are needed to keep the impact low. 1048 uint64_t flags = SHF_ALLOC; 1049 1050 std::vector<StringRef> defPhdrs; 1051 for (BaseCommand *&cmd : sectionCommands) { 1052 auto *sec = dyn_cast<OutputSection>(cmd); 1053 if (!sec) 1054 continue; 1055 1056 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1057 if (sec->alignExpr) 1058 sec->alignment = 1059 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1060 1061 // The input section might have been removed (if it was an empty synthetic 1062 // section), but we at least know the flags. 1063 if (sec->hasInputSections) 1064 flags = sec->flags; 1065 1066 // We do not want to keep any special flags for output section 1067 // in case it is empty. 1068 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1069 if (isEmpty) 1070 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1071 SHF_WRITE | SHF_EXECINSTR); 1072 1073 // The code below may remove empty output sections. We should save the 1074 // specified program headers (if exist) and propagate them to subsequent 1075 // sections which do not specify program headers. 1076 // An example of such a linker script is: 1077 // SECTIONS { .empty : { *(.empty) } :rw 1078 // .foo : { *(.foo) } } 1079 // Note: at this point the order of output sections has not been finalized, 1080 // because orphans have not been inserted into their expected positions. We 1081 // will handle them in adjustSectionsAfterSorting(). 1082 if (sec->sectionIndex != UINT32_MAX) 1083 maybePropagatePhdrs(*sec, defPhdrs); 1084 1085 if (isEmpty && isDiscardable(*sec)) { 1086 sec->markDead(); 1087 cmd = nullptr; 1088 } 1089 } 1090 1091 // It is common practice to use very generic linker scripts. So for any 1092 // given run some of the output sections in the script will be empty. 1093 // We could create corresponding empty output sections, but that would 1094 // clutter the output. 1095 // We instead remove trivially empty sections. The bfd linker seems even 1096 // more aggressive at removing them. 1097 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 1098 } 1099 1100 void LinkerScript::adjustSectionsAfterSorting() { 1101 // Try and find an appropriate memory region to assign offsets in. 1102 for (BaseCommand *base : sectionCommands) { 1103 if (auto *sec = dyn_cast<OutputSection>(base)) { 1104 if (!sec->lmaRegionName.empty()) { 1105 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1106 sec->lmaRegion = m; 1107 else 1108 error("memory region '" + sec->lmaRegionName + "' not declared"); 1109 } 1110 sec->memRegion = findMemoryRegion(sec); 1111 } 1112 } 1113 1114 // If output section command doesn't specify any segments, 1115 // and we haven't previously assigned any section to segment, 1116 // then we simply assign section to the very first load segment. 1117 // Below is an example of such linker script: 1118 // PHDRS { seg PT_LOAD; } 1119 // SECTIONS { .aaa : { *(.aaa) } } 1120 std::vector<StringRef> defPhdrs; 1121 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1122 return cmd.type == PT_LOAD; 1123 }); 1124 if (firstPtLoad != phdrsCommands.end()) 1125 defPhdrs.push_back(firstPtLoad->name); 1126 1127 // Walk the commands and propagate the program headers to commands that don't 1128 // explicitly specify them. 1129 for (BaseCommand *base : sectionCommands) 1130 if (auto *sec = dyn_cast<OutputSection>(base)) 1131 maybePropagatePhdrs(*sec, defPhdrs); 1132 } 1133 1134 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1135 // If there is no SECTIONS or if the linkerscript is explicit about program 1136 // headers, do our best to allocate them. 1137 if (!script->hasSectionsCommand || allocateHeaders) 1138 return 0; 1139 // Otherwise only allocate program headers if that would not add a page. 1140 return alignDown(min, config->maxPageSize); 1141 } 1142 1143 // When the SECTIONS command is used, try to find an address for the file and 1144 // program headers output sections, which can be added to the first PT_LOAD 1145 // segment when program headers are created. 1146 // 1147 // We check if the headers fit below the first allocated section. If there isn't 1148 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1149 // and we'll also remove the PT_PHDR segment. 1150 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1151 uint64_t min = std::numeric_limits<uint64_t>::max(); 1152 for (OutputSection *sec : outputSections) 1153 if (sec->flags & SHF_ALLOC) 1154 min = std::min<uint64_t>(min, sec->addr); 1155 1156 auto it = llvm::find_if( 1157 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1158 if (it == phdrs.end()) 1159 return; 1160 PhdrEntry *firstPTLoad = *it; 1161 1162 bool hasExplicitHeaders = 1163 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1164 return cmd.hasPhdrs || cmd.hasFilehdr; 1165 }); 1166 bool paged = !config->omagic && !config->nmagic; 1167 uint64_t headerSize = getHeaderSize(); 1168 if ((paged || hasExplicitHeaders) && 1169 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1170 min = alignDown(min - headerSize, config->maxPageSize); 1171 Out::elfHeader->addr = min; 1172 Out::programHeaders->addr = min + Out::elfHeader->size; 1173 return; 1174 } 1175 1176 // Error if we were explicitly asked to allocate headers. 1177 if (hasExplicitHeaders) 1178 error("could not allocate headers"); 1179 1180 Out::elfHeader->ptLoad = nullptr; 1181 Out::programHeaders->ptLoad = nullptr; 1182 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1183 1184 llvm::erase_if(phdrs, 1185 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1186 } 1187 1188 LinkerScript::AddressState::AddressState() { 1189 for (auto &mri : script->memoryRegions) { 1190 MemoryRegion *mr = mri.second; 1191 mr->curPos = (mr->origin)().getValue(); 1192 } 1193 } 1194 1195 // Here we assign addresses as instructed by linker script SECTIONS 1196 // sub-commands. Doing that allows us to use final VA values, so here 1197 // we also handle rest commands like symbol assignments and ASSERTs. 1198 // Returns a symbol that has changed its section or value, or nullptr if no 1199 // symbol has changed. 1200 const Defined *LinkerScript::assignAddresses() { 1201 if (script->hasSectionsCommand) { 1202 // With a linker script, assignment of addresses to headers is covered by 1203 // allocateHeaders(). 1204 dot = config->imageBase.getValueOr(0); 1205 } else { 1206 // Assign addresses to headers right now. 1207 dot = target->getImageBase(); 1208 Out::elfHeader->addr = dot; 1209 Out::programHeaders->addr = dot + Out::elfHeader->size; 1210 dot += getHeaderSize(); 1211 } 1212 1213 auto deleter = std::make_unique<AddressState>(); 1214 ctx = deleter.get(); 1215 errorOnMissingSection = true; 1216 switchTo(aether); 1217 1218 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1219 for (BaseCommand *base : sectionCommands) { 1220 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1221 cmd->addr = dot; 1222 assignSymbol(cmd, false); 1223 cmd->size = dot - cmd->addr; 1224 continue; 1225 } 1226 assignOffsets(cast<OutputSection>(base)); 1227 } 1228 1229 ctx = nullptr; 1230 return getChangedSymbolAssignment(oldValues); 1231 } 1232 1233 // Creates program headers as instructed by PHDRS linker script command. 1234 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1235 std::vector<PhdrEntry *> ret; 1236 1237 // Process PHDRS and FILEHDR keywords because they are not 1238 // real output sections and cannot be added in the following loop. 1239 for (const PhdrsCommand &cmd : phdrsCommands) { 1240 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1241 1242 if (cmd.hasFilehdr) 1243 phdr->add(Out::elfHeader); 1244 if (cmd.hasPhdrs) 1245 phdr->add(Out::programHeaders); 1246 1247 if (cmd.lmaExpr) { 1248 phdr->p_paddr = cmd.lmaExpr().getValue(); 1249 phdr->hasLMA = true; 1250 } 1251 ret.push_back(phdr); 1252 } 1253 1254 // Add output sections to program headers. 1255 for (OutputSection *sec : outputSections) { 1256 // Assign headers specified by linker script 1257 for (size_t id : getPhdrIndices(sec)) { 1258 ret[id]->add(sec); 1259 if (!phdrsCommands[id].flags.hasValue()) 1260 ret[id]->p_flags |= sec->getPhdrFlags(); 1261 } 1262 } 1263 return ret; 1264 } 1265 1266 // Returns true if we should emit an .interp section. 1267 // 1268 // We usually do. But if PHDRS commands are given, and 1269 // no PT_INTERP is there, there's no place to emit an 1270 // .interp, so we don't do that in that case. 1271 bool LinkerScript::needsInterpSection() { 1272 if (phdrsCommands.empty()) 1273 return true; 1274 for (PhdrsCommand &cmd : phdrsCommands) 1275 if (cmd.type == PT_INTERP) 1276 return true; 1277 return false; 1278 } 1279 1280 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1281 if (name == ".") { 1282 if (ctx) 1283 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1284 error(loc + ": unable to get location counter value"); 1285 return 0; 1286 } 1287 1288 if (Symbol *sym = symtab->find(name)) { 1289 if (auto *ds = dyn_cast<Defined>(sym)) { 1290 ExprValue v{ds->section, false, ds->value, loc}; 1291 // Retain the original st_type, so that the alias will get the same 1292 // behavior in relocation processing. Any operation will reset st_type to 1293 // STT_NOTYPE. 1294 v.type = ds->type; 1295 return v; 1296 } 1297 if (isa<SharedSymbol>(sym)) 1298 if (!errorOnMissingSection) 1299 return {nullptr, false, 0, loc}; 1300 } 1301 1302 error(loc + ": symbol not found: " + name); 1303 return 0; 1304 } 1305 1306 // Returns the index of the segment named Name. 1307 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1308 StringRef name) { 1309 for (size_t i = 0; i < vec.size(); ++i) 1310 if (vec[i].name == name) 1311 return i; 1312 return None; 1313 } 1314 1315 // Returns indices of ELF headers containing specific section. Each index is a 1316 // zero based number of ELF header listed within PHDRS {} script block. 1317 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1318 std::vector<size_t> ret; 1319 1320 for (StringRef s : cmd->phdrs) { 1321 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1322 ret.push_back(*idx); 1323 else if (s != "NONE") 1324 error(cmd->location + ": program header '" + s + 1325 "' is not listed in PHDRS"); 1326 } 1327 return ret; 1328 } 1329