1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputFiles.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <limits> 37 #include <string> 38 #include <vector> 39 40 using namespace llvm; 41 using namespace llvm::ELF; 42 using namespace llvm::object; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::elf; 46 47 std::unique_ptr<LinkerScript> elf::script; 48 49 static bool isSectionPrefix(StringRef prefix, StringRef name) { 50 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 51 } 52 53 static StringRef getOutputSectionName(const InputSectionBase *s) { 54 if (config->relocatable) 55 return s->name; 56 57 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 58 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 59 // technically required, but not doing it is odd). This code guarantees that. 60 if (auto *isec = dyn_cast<InputSection>(s)) { 61 if (InputSectionBase *rel = isec->getRelocatedSection()) { 62 OutputSection *out = rel->getOutputSection(); 63 if (s->type == SHT_RELA) 64 return saver().save(".rela" + out->name); 65 return saver().save(".rel" + out->name); 66 } 67 } 68 69 // A BssSection created for a common symbol is identified as "COMMON" in 70 // linker scripts. It should go to .bss section. 71 if (s->name == "COMMON") 72 return ".bss"; 73 74 if (script->hasSectionsCommand) 75 return s->name; 76 77 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 78 // by grouping sections with certain prefixes. 79 80 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 81 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 82 // We provide an option -z keep-text-section-prefix to group such sections 83 // into separate output sections. This is more flexible. See also 84 // sortISDBySectionOrder(). 85 // ".text.unknown" means the hotness of the section is unknown. When 86 // SampleFDO is used, if a function doesn't have sample, it could be very 87 // cold or it could be a new function never being sampled. Those functions 88 // will be kept in the ".text.unknown" section. 89 // ".text.split." holds symbols which are split out from functions in other 90 // input sections. For example, with -fsplit-machine-functions, placing the 91 // cold parts in .text.split instead of .text.unlikely mitigates against poor 92 // profile inaccuracy. Techniques such as hugepage remapping can make 93 // conservative decisions at the section granularity. 94 if (isSectionPrefix(".text", s->name)) { 95 if (config->zKeepTextSectionPrefix) 96 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 97 ".text.startup", ".text.exit", ".text.split"}) 98 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 99 return v; 100 return ".text"; 101 } 102 103 for (StringRef v : 104 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata", 105 ".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array", 106 ".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"}) 107 if (isSectionPrefix(v, s->name)) 108 return v; 109 110 return s->name; 111 } 112 113 uint64_t ExprValue::getValue() const { 114 if (sec) 115 return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val), 116 alignment); 117 return alignToPowerOf2(val, alignment); 118 } 119 120 uint64_t ExprValue::getSecAddr() const { 121 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 122 } 123 124 uint64_t ExprValue::getSectionOffset() const { 125 // If the alignment is trivial, we don't have to compute the full 126 // value to know the offset. This allows this function to succeed in 127 // cases where the output section is not yet known. 128 if (alignment == 1 && !sec) 129 return val; 130 return getValue() - getSecAddr(); 131 } 132 133 OutputDesc *LinkerScript::createOutputSection(StringRef name, 134 StringRef location) { 135 OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 136 OutputDesc *sec; 137 if (secRef && secRef->osec.location.empty()) { 138 // There was a forward reference. 139 sec = secRef; 140 } else { 141 sec = make<OutputDesc>(name, SHT_PROGBITS, 0); 142 if (!secRef) 143 secRef = sec; 144 } 145 sec->osec.location = std::string(location); 146 return sec; 147 } 148 149 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) { 150 OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)]; 151 if (!cmdRef) 152 cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0); 153 return cmdRef; 154 } 155 156 // Expands the memory region by the specified size. 157 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 158 StringRef secName) { 159 memRegion->curPos += size; 160 } 161 162 void LinkerScript::expandMemoryRegions(uint64_t size) { 163 if (state->memRegion) 164 expandMemoryRegion(state->memRegion, size, state->outSec->name); 165 // Only expand the LMARegion if it is different from memRegion. 166 if (state->lmaRegion && state->memRegion != state->lmaRegion) 167 expandMemoryRegion(state->lmaRegion, size, state->outSec->name); 168 } 169 170 void LinkerScript::expandOutputSection(uint64_t size) { 171 state->outSec->size += size; 172 expandMemoryRegions(size); 173 } 174 175 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 176 uint64_t val = e().getValue(); 177 if (val < dot && inSec) 178 error(loc + ": unable to move location counter backward for: " + 179 state->outSec->name); 180 181 // Update to location counter means update to section size. 182 if (inSec) 183 expandOutputSection(val - dot); 184 185 dot = val; 186 } 187 188 // Used for handling linker symbol assignments, for both finalizing 189 // their values and doing early declarations. Returns true if symbol 190 // should be defined from linker script. 191 static bool shouldDefineSym(SymbolAssignment *cmd) { 192 if (cmd->name == ".") 193 return false; 194 195 if (!cmd->provide) 196 return true; 197 198 // If a symbol was in PROVIDE(), we need to define it only 199 // when it is a referenced undefined symbol. 200 Symbol *b = symtab.find(cmd->name); 201 if (b && !b->isDefined() && !b->isCommon()) 202 return true; 203 return false; 204 } 205 206 // Called by processSymbolAssignments() to assign definitions to 207 // linker-script-defined symbols. 208 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 209 if (!shouldDefineSym(cmd)) 210 return; 211 212 // Define a symbol. 213 ExprValue value = cmd->expression(); 214 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 215 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 216 217 // When this function is called, section addresses have not been 218 // fixed yet. So, we may or may not know the value of the RHS 219 // expression. 220 // 221 // For example, if an expression is `x = 42`, we know x is always 42. 222 // However, if an expression is `x = .`, there's no way to know its 223 // value at the moment. 224 // 225 // We want to set symbol values early if we can. This allows us to 226 // use symbols as variables in linker scripts. Doing so allows us to 227 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 228 uint64_t symValue = value.sec ? 0 : value.getValue(); 229 230 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 231 symValue, 0, sec); 232 233 Symbol *sym = symtab.insert(cmd->name); 234 sym->mergeProperties(newSym); 235 newSym.overwrite(*sym); 236 sym->isUsedInRegularObj = true; 237 cmd->sym = cast<Defined>(sym); 238 } 239 240 // This function is called from LinkerScript::declareSymbols. 241 // It creates a placeholder symbol if needed. 242 static void declareSymbol(SymbolAssignment *cmd) { 243 if (!shouldDefineSym(cmd)) 244 return; 245 246 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 247 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 248 nullptr); 249 250 // We can't calculate final value right now. 251 Symbol *sym = symtab.insert(cmd->name); 252 sym->mergeProperties(newSym); 253 newSym.overwrite(*sym); 254 255 cmd->sym = cast<Defined>(sym); 256 cmd->provide = false; 257 sym->isUsedInRegularObj = true; 258 sym->scriptDefined = true; 259 } 260 261 using SymbolAssignmentMap = 262 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 263 264 // Collect section/value pairs of linker-script-defined symbols. This is used to 265 // check whether symbol values converge. 266 static SymbolAssignmentMap 267 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 268 SymbolAssignmentMap ret; 269 for (SectionCommand *cmd : sectionCommands) { 270 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 271 if (assign->sym) // sym is nullptr for dot. 272 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 273 assign->sym->value)); 274 continue; 275 } 276 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 277 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 278 if (assign->sym) 279 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 280 assign->sym->value)); 281 } 282 return ret; 283 } 284 285 // Returns the lexicographical smallest (for determinism) Defined whose 286 // section/value has changed. 287 static const Defined * 288 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 289 const Defined *changed = nullptr; 290 for (auto &it : oldValues) { 291 const Defined *sym = it.first; 292 if (std::make_pair(sym->section, sym->value) != it.second && 293 (!changed || sym->getName() < changed->getName())) 294 changed = sym; 295 } 296 return changed; 297 } 298 299 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 300 // specified output section to the designated place. 301 void LinkerScript::processInsertCommands() { 302 SmallVector<OutputDesc *, 0> moves; 303 for (const InsertCommand &cmd : insertCommands) { 304 for (StringRef name : cmd.names) { 305 // If base is empty, it may have been discarded by 306 // adjustOutputSections(). We do not handle such output sections. 307 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 308 return isa<OutputDesc>(subCmd) && 309 cast<OutputDesc>(subCmd)->osec.name == name; 310 }); 311 if (from == sectionCommands.end()) 312 continue; 313 moves.push_back(cast<OutputDesc>(*from)); 314 sectionCommands.erase(from); 315 } 316 317 auto insertPos = 318 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 319 auto *to = dyn_cast<OutputDesc>(subCmd); 320 return to != nullptr && to->osec.name == cmd.where; 321 }); 322 if (insertPos == sectionCommands.end()) { 323 error("unable to insert " + cmd.names[0] + 324 (cmd.isAfter ? " after " : " before ") + cmd.where); 325 } else { 326 if (cmd.isAfter) 327 ++insertPos; 328 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 329 } 330 moves.clear(); 331 } 332 } 333 334 // Symbols defined in script should not be inlined by LTO. At the same time 335 // we don't know their final values until late stages of link. Here we scan 336 // over symbol assignment commands and create placeholder symbols if needed. 337 void LinkerScript::declareSymbols() { 338 assert(!state); 339 for (SectionCommand *cmd : sectionCommands) { 340 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 341 declareSymbol(assign); 342 continue; 343 } 344 345 // If the output section directive has constraints, 346 // we can't say for sure if it is going to be included or not. 347 // Skip such sections for now. Improve the checks if we ever 348 // need symbols from that sections to be declared early. 349 const OutputSection &sec = cast<OutputDesc>(cmd)->osec; 350 if (sec.constraint != ConstraintKind::NoConstraint) 351 continue; 352 for (SectionCommand *cmd : sec.commands) 353 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 354 declareSymbol(assign); 355 } 356 } 357 358 // This function is called from assignAddresses, while we are 359 // fixing the output section addresses. This function is supposed 360 // to set the final value for a given symbol assignment. 361 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 362 if (cmd->name == ".") { 363 setDot(cmd->expression, cmd->location, inSec); 364 return; 365 } 366 367 if (!cmd->sym) 368 return; 369 370 ExprValue v = cmd->expression(); 371 if (v.isAbsolute()) { 372 cmd->sym->section = nullptr; 373 cmd->sym->value = v.getValue(); 374 } else { 375 cmd->sym->section = v.sec; 376 cmd->sym->value = v.getSectionOffset(); 377 } 378 cmd->sym->type = v.type; 379 } 380 381 static inline StringRef getFilename(const InputFile *file) { 382 return file ? file->getNameForScript() : StringRef(); 383 } 384 385 bool InputSectionDescription::matchesFile(const InputFile *file) const { 386 if (filePat.isTrivialMatchAll()) 387 return true; 388 389 if (!matchesFileCache || matchesFileCache->first != file) 390 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 391 392 return matchesFileCache->second; 393 } 394 395 bool SectionPattern::excludesFile(const InputFile *file) const { 396 if (excludedFilePat.empty()) 397 return false; 398 399 if (!excludesFileCache || excludesFileCache->first != file) 400 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 401 402 return excludesFileCache->second; 403 } 404 405 bool LinkerScript::shouldKeep(InputSectionBase *s) { 406 for (InputSectionDescription *id : keptSections) 407 if (id->matchesFile(s->file)) 408 for (SectionPattern &p : id->sectionPatterns) 409 if (p.sectionPat.match(s->name) && 410 (s->flags & id->withFlags) == id->withFlags && 411 (s->flags & id->withoutFlags) == 0) 412 return true; 413 return false; 414 } 415 416 // A helper function for the SORT() command. 417 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 418 ConstraintKind kind) { 419 if (kind == ConstraintKind::NoConstraint) 420 return true; 421 422 bool isRW = llvm::any_of( 423 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 424 425 return (isRW && kind == ConstraintKind::ReadWrite) || 426 (!isRW && kind == ConstraintKind::ReadOnly); 427 } 428 429 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 430 SortSectionPolicy k) { 431 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 432 // ">" is not a mistake. Sections with larger alignments are placed 433 // before sections with smaller alignments in order to reduce the 434 // amount of padding necessary. This is compatible with GNU. 435 return a->addralign > b->addralign; 436 }; 437 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 438 return a->name < b->name; 439 }; 440 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 441 return getPriority(a->name) < getPriority(b->name); 442 }; 443 444 switch (k) { 445 case SortSectionPolicy::Default: 446 case SortSectionPolicy::None: 447 return; 448 case SortSectionPolicy::Alignment: 449 return llvm::stable_sort(vec, alignmentComparator); 450 case SortSectionPolicy::Name: 451 return llvm::stable_sort(vec, nameComparator); 452 case SortSectionPolicy::Priority: 453 return llvm::stable_sort(vec, priorityComparator); 454 case SortSectionPolicy::Reverse: 455 return std::reverse(vec.begin(), vec.end()); 456 } 457 } 458 459 // Sort sections as instructed by SORT-family commands and --sort-section 460 // option. Because SORT-family commands can be nested at most two depth 461 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 462 // line option is respected even if a SORT command is given, the exact 463 // behavior we have here is a bit complicated. Here are the rules. 464 // 465 // 1. If two SORT commands are given, --sort-section is ignored. 466 // 2. If one SORT command is given, and if it is not SORT_NONE, 467 // --sort-section is handled as an inner SORT command. 468 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 469 // 4. If no SORT command is given, sort according to --sort-section. 470 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 471 SortSectionPolicy outer, 472 SortSectionPolicy inner) { 473 if (outer == SortSectionPolicy::None) 474 return; 475 476 if (inner == SortSectionPolicy::Default) 477 sortSections(vec, config->sortSection); 478 else 479 sortSections(vec, inner); 480 sortSections(vec, outer); 481 } 482 483 // Compute and remember which sections the InputSectionDescription matches. 484 SmallVector<InputSectionBase *, 0> 485 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 486 ArrayRef<InputSectionBase *> sections) { 487 SmallVector<InputSectionBase *, 0> ret; 488 SmallVector<size_t, 0> indexes; 489 DenseSet<size_t> seen; 490 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 491 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 492 for (size_t i = begin; i != end; ++i) 493 ret[i] = sections[indexes[i]]; 494 sortInputSections( 495 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 496 config->sortSection, SortSectionPolicy::None); 497 }; 498 499 // Collects all sections that satisfy constraints of Cmd. 500 size_t sizeAfterPrevSort = 0; 501 for (const SectionPattern &pat : cmd->sectionPatterns) { 502 size_t sizeBeforeCurrPat = ret.size(); 503 504 for (size_t i = 0, e = sections.size(); i != e; ++i) { 505 // Skip if the section is dead or has been matched by a previous input 506 // section description or a previous pattern. 507 InputSectionBase *sec = sections[i]; 508 if (!sec->isLive() || sec->parent || seen.contains(i)) 509 continue; 510 511 // For --emit-relocs we have to ignore entries like 512 // .rela.dyn : { *(.rela.data) } 513 // which are common because they are in the default bfd script. 514 // We do not ignore SHT_REL[A] linker-synthesized sections here because 515 // want to support scripts that do custom layout for them. 516 if (isa<InputSection>(sec) && 517 cast<InputSection>(sec)->getRelocatedSection()) 518 continue; 519 520 // Check the name early to improve performance in the common case. 521 if (!pat.sectionPat.match(sec->name)) 522 continue; 523 524 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 525 (sec->flags & cmd->withFlags) != cmd->withFlags || 526 (sec->flags & cmd->withoutFlags) != 0) 527 continue; 528 529 ret.push_back(sec); 530 indexes.push_back(i); 531 seen.insert(i); 532 } 533 534 if (pat.sortOuter == SortSectionPolicy::Default) 535 continue; 536 537 // Matched sections are ordered by radix sort with the keys being (SORT*, 538 // --sort-section, input order), where SORT* (if present) is most 539 // significant. 540 // 541 // Matched sections between the previous SORT* and this SORT* are sorted by 542 // (--sort-alignment, input order). 543 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 544 // Matched sections by this SORT* pattern are sorted using all 3 keys. 545 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 546 // just sort by sortOuter and sortInner. 547 sortInputSections( 548 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 549 pat.sortOuter, pat.sortInner); 550 sizeAfterPrevSort = ret.size(); 551 } 552 // Matched sections after the last SORT* are sorted by (--sort-alignment, 553 // input order). 554 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 555 return ret; 556 } 557 558 void LinkerScript::discard(InputSectionBase &s) { 559 if (&s == in.shStrTab.get()) 560 error("discarding " + s.name + " section is not allowed"); 561 562 s.markDead(); 563 s.parent = nullptr; 564 for (InputSection *sec : s.dependentSections) 565 discard(*sec); 566 } 567 568 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 569 for (Partition &part : partitions) { 570 if (!part.armExidx || !part.armExidx->isLive()) 571 continue; 572 SmallVector<InputSectionBase *, 0> secs( 573 part.armExidx->exidxSections.begin(), 574 part.armExidx->exidxSections.end()); 575 for (SectionCommand *cmd : outCmd.commands) 576 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 577 for (InputSectionBase *s : computeInputSections(isd, secs)) 578 discard(*s); 579 } 580 } 581 582 SmallVector<InputSectionBase *, 0> 583 LinkerScript::createInputSectionList(OutputSection &outCmd) { 584 SmallVector<InputSectionBase *, 0> ret; 585 586 for (SectionCommand *cmd : outCmd.commands) { 587 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 588 isd->sectionBases = computeInputSections(isd, ctx.inputSections); 589 for (InputSectionBase *s : isd->sectionBases) 590 s->parent = &outCmd; 591 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 592 } 593 } 594 return ret; 595 } 596 597 // Create output sections described by SECTIONS commands. 598 void LinkerScript::processSectionCommands() { 599 auto process = [this](OutputSection *osec) { 600 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 601 602 // The output section name `/DISCARD/' is special. 603 // Any input section assigned to it is discarded. 604 if (osec->name == "/DISCARD/") { 605 for (InputSectionBase *s : v) 606 discard(*s); 607 discardSynthetic(*osec); 608 osec->commands.clear(); 609 return false; 610 } 611 612 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 613 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 614 // sections satisfy a given constraint. If not, a directive is handled 615 // as if it wasn't present from the beginning. 616 // 617 // Because we'll iterate over SectionCommands many more times, the easy 618 // way to "make it as if it wasn't present" is to make it empty. 619 if (!matchConstraints(v, osec->constraint)) { 620 for (InputSectionBase *s : v) 621 s->parent = nullptr; 622 osec->commands.clear(); 623 return false; 624 } 625 626 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 627 // is given, input sections are aligned to that value, whether the 628 // given value is larger or smaller than the original section alignment. 629 if (osec->subalignExpr) { 630 uint32_t subalign = osec->subalignExpr().getValue(); 631 for (InputSectionBase *s : v) 632 s->addralign = subalign; 633 } 634 635 // Set the partition field the same way OutputSection::recordSection() 636 // does. Partitions cannot be used with the SECTIONS command, so this is 637 // always 1. 638 osec->partition = 1; 639 return true; 640 }; 641 642 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 643 // or orphans. 644 DenseMap<CachedHashStringRef, OutputDesc *> map; 645 size_t i = 0; 646 for (OutputDesc *osd : overwriteSections) { 647 OutputSection *osec = &osd->osec; 648 if (process(osec) && 649 !map.try_emplace(CachedHashStringRef(osec->name), osd).second) 650 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 651 } 652 for (SectionCommand *&base : sectionCommands) 653 if (auto *osd = dyn_cast<OutputDesc>(base)) { 654 OutputSection *osec = &osd->osec; 655 if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) { 656 log(overwrite->osec.location + " overwrites " + osec->name); 657 overwrite->osec.sectionIndex = i++; 658 base = overwrite; 659 } else if (process(osec)) { 660 osec->sectionIndex = i++; 661 } 662 } 663 664 // If an OVERWRITE_SECTIONS specified output section is not in 665 // sectionCommands, append it to the end. The section will be inserted by 666 // orphan placement. 667 for (OutputDesc *osd : overwriteSections) 668 if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX) 669 sectionCommands.push_back(osd); 670 } 671 672 void LinkerScript::processSymbolAssignments() { 673 // Dot outside an output section still represents a relative address, whose 674 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 675 // that fills the void outside a section. It has an index of one, which is 676 // indistinguishable from any other regular section index. 677 aether = make<OutputSection>("", 0, SHF_ALLOC); 678 aether->sectionIndex = 1; 679 680 // `st` captures the local AddressState and makes it accessible deliberately. 681 // This is needed as there are some cases where we cannot just thread the 682 // current state through to a lambda function created by the script parser. 683 AddressState st; 684 state = &st; 685 st.outSec = aether; 686 687 for (SectionCommand *cmd : sectionCommands) { 688 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 689 addSymbol(assign); 690 else 691 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 692 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 693 addSymbol(assign); 694 } 695 696 state = nullptr; 697 } 698 699 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 700 StringRef name) { 701 for (SectionCommand *cmd : vec) 702 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 703 if (osd->osec.name == name) 704 return &osd->osec; 705 return nullptr; 706 } 707 708 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) { 709 OutputDesc *osd = script->createOutputSection(outsecName, "<internal>"); 710 osd->osec.recordSection(isec); 711 return osd; 712 } 713 714 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 715 InputSectionBase *isec, StringRef outsecName) { 716 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 717 // option is given. A section with SHT_GROUP defines a "section group", and 718 // its members have SHF_GROUP attribute. Usually these flags have already been 719 // stripped by InputFiles.cpp as section groups are processed and uniquified. 720 // However, for the -r option, we want to pass through all section groups 721 // as-is because adding/removing members or merging them with other groups 722 // change their semantics. 723 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 724 return createSection(isec, outsecName); 725 726 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 727 // relocation sections .rela.foo and .rela.bar for example. Most tools do 728 // not allow multiple REL[A] sections for output section. Hence we 729 // should combine these relocation sections into single output. 730 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 731 // other REL[A] sections created by linker itself. 732 if (!isa<SyntheticSection>(isec) && 733 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 734 auto *sec = cast<InputSection>(isec); 735 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 736 737 if (out->relocationSection) { 738 out->relocationSection->recordSection(sec); 739 return nullptr; 740 } 741 742 OutputDesc *osd = createSection(isec, outsecName); 743 out->relocationSection = &osd->osec; 744 return osd; 745 } 746 747 // The ELF spec just says 748 // ---------------------------------------------------------------- 749 // In the first phase, input sections that match in name, type and 750 // attribute flags should be concatenated into single sections. 751 // ---------------------------------------------------------------- 752 // 753 // However, it is clear that at least some flags have to be ignored for 754 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 755 // ignored. We should not have two output .text sections just because one was 756 // in a group and another was not for example. 757 // 758 // It also seems that wording was a late addition and didn't get the 759 // necessary scrutiny. 760 // 761 // Merging sections with different flags is expected by some users. One 762 // reason is that if one file has 763 // 764 // int *const bar __attribute__((section(".foo"))) = (int *)0; 765 // 766 // gcc with -fPIC will produce a read only .foo section. But if another 767 // file has 768 // 769 // int zed; 770 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 771 // 772 // gcc with -fPIC will produce a read write section. 773 // 774 // Last but not least, when using linker script the merge rules are forced by 775 // the script. Unfortunately, linker scripts are name based. This means that 776 // expressions like *(.foo*) can refer to multiple input sections with 777 // different flags. We cannot put them in different output sections or we 778 // would produce wrong results for 779 // 780 // start = .; *(.foo.*) end = .; *(.bar) 781 // 782 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 783 // another. The problem is that there is no way to layout those output 784 // sections such that the .foo sections are the only thing between the start 785 // and end symbols. 786 // 787 // Given the above issues, we instead merge sections by name and error on 788 // incompatible types and flags. 789 TinyPtrVector<OutputSection *> &v = map[outsecName]; 790 for (OutputSection *sec : v) { 791 if (sec->partition != isec->partition) 792 continue; 793 794 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 795 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 796 // change their semantics, so we only merge them in -r links if they will 797 // end up being linked to the same output section. The casts are fine 798 // because everything in the map was created by the orphan placement code. 799 auto *firstIsec = cast<InputSectionBase>( 800 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 801 OutputSection *firstIsecOut = 802 firstIsec->flags & SHF_LINK_ORDER 803 ? firstIsec->getLinkOrderDep()->getOutputSection() 804 : nullptr; 805 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 806 continue; 807 } 808 809 sec->recordSection(isec); 810 return nullptr; 811 } 812 813 OutputDesc *osd = createSection(isec, outsecName); 814 v.push_back(&osd->osec); 815 return osd; 816 } 817 818 // Add sections that didn't match any sections command. 819 void LinkerScript::addOrphanSections() { 820 StringMap<TinyPtrVector<OutputSection *>> map; 821 SmallVector<OutputDesc *, 0> v; 822 823 auto add = [&](InputSectionBase *s) { 824 if (s->isLive() && !s->parent) { 825 orphanSections.push_back(s); 826 827 StringRef name = getOutputSectionName(s); 828 if (config->unique) { 829 v.push_back(createSection(s, name)); 830 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 831 sec->recordSection(s); 832 } else { 833 if (OutputDesc *osd = addInputSec(map, s, name)) 834 v.push_back(osd); 835 assert(isa<MergeInputSection>(s) || 836 s->getOutputSection()->sectionIndex == UINT32_MAX); 837 } 838 } 839 }; 840 841 // For further --emit-reloc handling code we need target output section 842 // to be created before we create relocation output section, so we want 843 // to create target sections first. We do not want priority handling 844 // for synthetic sections because them are special. 845 size_t n = 0; 846 for (InputSectionBase *isec : ctx.inputSections) { 847 // Process InputSection and MergeInputSection. 848 if (LLVM_LIKELY(isa<InputSection>(isec))) 849 ctx.inputSections[n++] = isec; 850 851 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 852 // sections because we need to know the parent's output section before we 853 // can select an output section for the SHF_LINK_ORDER section. 854 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 855 continue; 856 857 if (auto *sec = dyn_cast<InputSection>(isec)) 858 if (InputSectionBase *rel = sec->getRelocatedSection()) 859 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 860 add(relIS); 861 add(isec); 862 if (config->relocatable) 863 for (InputSectionBase *depSec : isec->dependentSections) 864 if (depSec->flags & SHF_LINK_ORDER) 865 add(depSec); 866 } 867 // Keep just InputSection. 868 ctx.inputSections.resize(n); 869 870 // If no SECTIONS command was given, we should insert sections commands 871 // before others, so that we can handle scripts which refers them, 872 // for example: "foo = ABSOLUTE(ADDR(.text)));". 873 // When SECTIONS command is present we just add all orphans to the end. 874 if (hasSectionsCommand) 875 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 876 else 877 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 878 } 879 880 void LinkerScript::diagnoseOrphanHandling() const { 881 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 882 if (config->orphanHandling == OrphanHandlingPolicy::Place) 883 return; 884 for (const InputSectionBase *sec : orphanSections) { 885 // Input SHT_REL[A] retained by --emit-relocs are ignored by 886 // computeInputSections(). Don't warn/error. 887 if (isa<InputSection>(sec) && 888 cast<InputSection>(sec)->getRelocatedSection()) 889 continue; 890 891 StringRef name = getOutputSectionName(sec); 892 if (config->orphanHandling == OrphanHandlingPolicy::Error) 893 error(toString(sec) + " is being placed in '" + name + "'"); 894 else 895 warn(toString(sec) + " is being placed in '" + name + "'"); 896 } 897 } 898 899 void LinkerScript::diagnoseMissingSGSectionAddress() const { 900 if (!config->cmseImplib || !in.armCmseSGSection->isNeeded()) 901 return; 902 903 OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs"); 904 if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs")) 905 error("no address assigned to the veneers output section " + sec->name); 906 } 907 908 // This function searches for a memory region to place the given output 909 // section in. If found, a pointer to the appropriate memory region is 910 // returned in the first member of the pair. Otherwise, a nullptr is returned. 911 // The second member of the pair is a hint that should be passed to the 912 // subsequent call of this method. 913 std::pair<MemoryRegion *, MemoryRegion *> 914 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 915 // Non-allocatable sections are not part of the process image. 916 if (!(sec->flags & SHF_ALLOC)) { 917 bool hasInputOrByteCommand = 918 sec->hasInputSections || 919 llvm::any_of(sec->commands, [](SectionCommand *comm) { 920 return ByteCommand::classof(comm); 921 }); 922 if (!sec->memoryRegionName.empty() && hasInputOrByteCommand) 923 warn("ignoring memory region assignment for non-allocatable section '" + 924 sec->name + "'"); 925 return {nullptr, nullptr}; 926 } 927 928 // If a memory region name was specified in the output section command, 929 // then try to find that region first. 930 if (!sec->memoryRegionName.empty()) { 931 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 932 return {m, m}; 933 error("memory region '" + sec->memoryRegionName + "' not declared"); 934 return {nullptr, nullptr}; 935 } 936 937 // If at least one memory region is defined, all sections must 938 // belong to some memory region. Otherwise, we don't need to do 939 // anything for memory regions. 940 if (memoryRegions.empty()) 941 return {nullptr, nullptr}; 942 943 // An orphan section should continue the previous memory region. 944 if (sec->sectionIndex == UINT32_MAX && hint) 945 return {hint, hint}; 946 947 // See if a region can be found by matching section flags. 948 for (auto &pair : memoryRegions) { 949 MemoryRegion *m = pair.second; 950 if (m->compatibleWith(sec->flags)) 951 return {m, nullptr}; 952 } 953 954 // Otherwise, no suitable region was found. 955 error("no memory region specified for section '" + sec->name + "'"); 956 return {nullptr, nullptr}; 957 } 958 959 static OutputSection *findFirstSection(PhdrEntry *load) { 960 for (OutputSection *sec : outputSections) 961 if (sec->ptLoad == load) 962 return sec; 963 return nullptr; 964 } 965 966 // This function assigns offsets to input sections and an output section 967 // for a single sections command (e.g. ".text { *(.text); }"). 968 void LinkerScript::assignOffsets(OutputSection *sec) { 969 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 970 const bool sameMemRegion = state->memRegion == sec->memRegion; 971 const bool prevLMARegionIsDefault = state->lmaRegion == nullptr; 972 const uint64_t savedDot = dot; 973 state->memRegion = sec->memRegion; 974 state->lmaRegion = sec->lmaRegion; 975 976 if (!(sec->flags & SHF_ALLOC)) { 977 // Non-SHF_ALLOC sections have zero addresses. 978 dot = 0; 979 } else if (isTbss) { 980 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 981 // starts from the end address of the previous tbss section. 982 if (state->tbssAddr == 0) 983 state->tbssAddr = dot; 984 else 985 dot = state->tbssAddr; 986 } else { 987 if (state->memRegion) 988 dot = state->memRegion->curPos; 989 if (sec->addrExpr) 990 setDot(sec->addrExpr, sec->location, false); 991 992 // If the address of the section has been moved forward by an explicit 993 // expression so that it now starts past the current curPos of the enclosing 994 // region, we need to expand the current region to account for the space 995 // between the previous section, if any, and the start of this section. 996 if (state->memRegion && state->memRegion->curPos < dot) 997 expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos, 998 sec->name); 999 } 1000 1001 state->outSec = sec; 1002 if (sec->addrExpr && script->hasSectionsCommand) { 1003 // The alignment is ignored. 1004 sec->addr = dot; 1005 } else { 1006 // sec->alignment is the max of ALIGN and the maximum of input 1007 // section alignments. 1008 const uint64_t pos = dot; 1009 dot = alignToPowerOf2(dot, sec->addralign); 1010 sec->addr = dot; 1011 expandMemoryRegions(dot - pos); 1012 } 1013 1014 // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() 1015 // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA 1016 // region is the default, and the two sections are in the same memory region, 1017 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1018 // heuristics described in 1019 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1020 if (sec->lmaExpr) { 1021 state->lmaOffset = sec->lmaExpr().getValue() - dot; 1022 } else if (MemoryRegion *mr = sec->lmaRegion) { 1023 uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign); 1024 if (mr->curPos < lmaStart) 1025 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1026 state->lmaOffset = lmaStart - dot; 1027 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1028 state->lmaOffset = 0; 1029 } 1030 1031 // Propagate state->lmaOffset to the first "non-header" section. 1032 if (PhdrEntry *l = sec->ptLoad) 1033 if (sec == findFirstSection(l)) 1034 l->lmaOffset = state->lmaOffset; 1035 1036 // We can call this method multiple times during the creation of 1037 // thunks and want to start over calculation each time. 1038 sec->size = 0; 1039 1040 // We visited SectionsCommands from processSectionCommands to 1041 // layout sections. Now, we visit SectionsCommands again to fix 1042 // section offsets. 1043 for (SectionCommand *cmd : sec->commands) { 1044 // This handles the assignments to symbol or to the dot. 1045 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1046 assign->addr = dot; 1047 assignSymbol(assign, true); 1048 assign->size = dot - assign->addr; 1049 continue; 1050 } 1051 1052 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1053 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1054 data->offset = dot - sec->addr; 1055 dot += data->size; 1056 expandOutputSection(data->size); 1057 continue; 1058 } 1059 1060 // Handle a single input section description command. 1061 // It calculates and assigns the offsets for each section and also 1062 // updates the output section size. 1063 for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { 1064 assert(isec->getParent() == sec); 1065 const uint64_t pos = dot; 1066 dot = alignToPowerOf2(dot, isec->addralign); 1067 isec->outSecOff = dot - sec->addr; 1068 dot += isec->getSize(); 1069 1070 // Update output section size after adding each section. This is so that 1071 // SIZEOF works correctly in the case below: 1072 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1073 expandOutputSection(dot - pos); 1074 } 1075 } 1076 1077 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1078 // as they are not part of the process image. 1079 if (!(sec->flags & SHF_ALLOC)) { 1080 dot = savedDot; 1081 } else if (isTbss) { 1082 // NOBITS TLS sections are similar. Additionally save the end address. 1083 state->tbssAddr = dot; 1084 dot = savedDot; 1085 } 1086 } 1087 1088 static bool isDiscardable(const OutputSection &sec) { 1089 if (sec.name == "/DISCARD/") 1090 return true; 1091 1092 // We do not want to remove OutputSections with expressions that reference 1093 // symbols even if the OutputSection is empty. We want to ensure that the 1094 // expressions can be evaluated and report an error if they cannot. 1095 if (sec.expressionsUseSymbols) 1096 return false; 1097 1098 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1099 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1100 // to maintain the integrity of the other Expression. 1101 if (sec.usedInExpression) 1102 return false; 1103 1104 for (SectionCommand *cmd : sec.commands) { 1105 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1106 // Don't create empty output sections just for unreferenced PROVIDE 1107 // symbols. 1108 if (assign->name != "." && !assign->sym) 1109 continue; 1110 1111 if (!isa<InputSectionDescription>(*cmd)) 1112 return false; 1113 } 1114 return true; 1115 } 1116 1117 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1118 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1119 isDiscardable(*sec); 1120 } 1121 1122 static void maybePropagatePhdrs(OutputSection &sec, 1123 SmallVector<StringRef, 0> &phdrs) { 1124 if (sec.phdrs.empty()) { 1125 // To match the bfd linker script behaviour, only propagate program 1126 // headers to sections that are allocated. 1127 if (sec.flags & SHF_ALLOC) 1128 sec.phdrs = phdrs; 1129 } else { 1130 phdrs = sec.phdrs; 1131 } 1132 } 1133 1134 void LinkerScript::adjustOutputSections() { 1135 // If the output section contains only symbol assignments, create a 1136 // corresponding output section. The issue is what to do with linker script 1137 // like ".foo : { symbol = 42; }". One option would be to convert it to 1138 // "symbol = 42;". That is, move the symbol out of the empty section 1139 // description. That seems to be what bfd does for this simple case. The 1140 // problem is that this is not completely general. bfd will give up and 1141 // create a dummy section too if there is a ". = . + 1" inside the section 1142 // for example. 1143 // Given that we want to create the section, we have to worry what impact 1144 // it will have on the link. For example, if we just create a section with 1145 // 0 for flags, it would change which PT_LOADs are created. 1146 // We could remember that particular section is dummy and ignore it in 1147 // other parts of the linker, but unfortunately there are quite a few places 1148 // that would need to change: 1149 // * The program header creation. 1150 // * The orphan section placement. 1151 // * The address assignment. 1152 // The other option is to pick flags that minimize the impact the section 1153 // will have on the rest of the linker. That is why we copy the flags from 1154 // the previous sections. Only a few flags are needed to keep the impact low. 1155 uint64_t flags = SHF_ALLOC; 1156 1157 SmallVector<StringRef, 0> defPhdrs; 1158 for (SectionCommand *&cmd : sectionCommands) { 1159 if (!isa<OutputDesc>(cmd)) 1160 continue; 1161 auto *sec = &cast<OutputDesc>(cmd)->osec; 1162 1163 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1164 if (sec->alignExpr) 1165 sec->addralign = 1166 std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue()); 1167 1168 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1169 bool discardable = isEmpty && isDiscardable(*sec); 1170 // If sec has at least one input section and not discarded, remember its 1171 // flags to be inherited by subsequent output sections. (sec may contain 1172 // just one empty synthetic section.) 1173 if (sec->hasInputSections && !discardable) 1174 flags = sec->flags; 1175 1176 // We do not want to keep any special flags for output section 1177 // in case it is empty. 1178 if (isEmpty) 1179 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1180 SHF_WRITE | SHF_EXECINSTR); 1181 1182 // The code below may remove empty output sections. We should save the 1183 // specified program headers (if exist) and propagate them to subsequent 1184 // sections which do not specify program headers. 1185 // An example of such a linker script is: 1186 // SECTIONS { .empty : { *(.empty) } :rw 1187 // .foo : { *(.foo) } } 1188 // Note: at this point the order of output sections has not been finalized, 1189 // because orphans have not been inserted into their expected positions. We 1190 // will handle them in adjustSectionsAfterSorting(). 1191 if (sec->sectionIndex != UINT32_MAX) 1192 maybePropagatePhdrs(*sec, defPhdrs); 1193 1194 if (discardable) { 1195 sec->markDead(); 1196 cmd = nullptr; 1197 } 1198 } 1199 1200 // It is common practice to use very generic linker scripts. So for any 1201 // given run some of the output sections in the script will be empty. 1202 // We could create corresponding empty output sections, but that would 1203 // clutter the output. 1204 // We instead remove trivially empty sections. The bfd linker seems even 1205 // more aggressive at removing them. 1206 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1207 } 1208 1209 void LinkerScript::adjustSectionsAfterSorting() { 1210 // Try and find an appropriate memory region to assign offsets in. 1211 MemoryRegion *hint = nullptr; 1212 for (SectionCommand *cmd : sectionCommands) { 1213 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1214 OutputSection *sec = &osd->osec; 1215 if (!sec->lmaRegionName.empty()) { 1216 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1217 sec->lmaRegion = m; 1218 else 1219 error("memory region '" + sec->lmaRegionName + "' not declared"); 1220 } 1221 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1222 } 1223 } 1224 1225 // If output section command doesn't specify any segments, 1226 // and we haven't previously assigned any section to segment, 1227 // then we simply assign section to the very first load segment. 1228 // Below is an example of such linker script: 1229 // PHDRS { seg PT_LOAD; } 1230 // SECTIONS { .aaa : { *(.aaa) } } 1231 SmallVector<StringRef, 0> defPhdrs; 1232 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1233 return cmd.type == PT_LOAD; 1234 }); 1235 if (firstPtLoad != phdrsCommands.end()) 1236 defPhdrs.push_back(firstPtLoad->name); 1237 1238 // Walk the commands and propagate the program headers to commands that don't 1239 // explicitly specify them. 1240 for (SectionCommand *cmd : sectionCommands) 1241 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1242 maybePropagatePhdrs(osd->osec, defPhdrs); 1243 } 1244 1245 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1246 // If there is no SECTIONS or if the linkerscript is explicit about program 1247 // headers, do our best to allocate them. 1248 if (!script->hasSectionsCommand || allocateHeaders) 1249 return 0; 1250 // Otherwise only allocate program headers if that would not add a page. 1251 return alignDown(min, config->maxPageSize); 1252 } 1253 1254 // When the SECTIONS command is used, try to find an address for the file and 1255 // program headers output sections, which can be added to the first PT_LOAD 1256 // segment when program headers are created. 1257 // 1258 // We check if the headers fit below the first allocated section. If there isn't 1259 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1260 // and we'll also remove the PT_PHDR segment. 1261 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) { 1262 uint64_t min = std::numeric_limits<uint64_t>::max(); 1263 for (OutputSection *sec : outputSections) 1264 if (sec->flags & SHF_ALLOC) 1265 min = std::min<uint64_t>(min, sec->addr); 1266 1267 auto it = llvm::find_if( 1268 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1269 if (it == phdrs.end()) 1270 return; 1271 PhdrEntry *firstPTLoad = *it; 1272 1273 bool hasExplicitHeaders = 1274 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1275 return cmd.hasPhdrs || cmd.hasFilehdr; 1276 }); 1277 bool paged = !config->omagic && !config->nmagic; 1278 uint64_t headerSize = getHeaderSize(); 1279 if ((paged || hasExplicitHeaders) && 1280 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1281 min = alignDown(min - headerSize, config->maxPageSize); 1282 Out::elfHeader->addr = min; 1283 Out::programHeaders->addr = min + Out::elfHeader->size; 1284 return; 1285 } 1286 1287 // Error if we were explicitly asked to allocate headers. 1288 if (hasExplicitHeaders) 1289 error("could not allocate headers"); 1290 1291 Out::elfHeader->ptLoad = nullptr; 1292 Out::programHeaders->ptLoad = nullptr; 1293 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1294 1295 llvm::erase_if(phdrs, 1296 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1297 } 1298 1299 LinkerScript::AddressState::AddressState() { 1300 for (auto &mri : script->memoryRegions) { 1301 MemoryRegion *mr = mri.second; 1302 mr->curPos = (mr->origin)().getValue(); 1303 } 1304 } 1305 1306 // Here we assign addresses as instructed by linker script SECTIONS 1307 // sub-commands. Doing that allows us to use final VA values, so here 1308 // we also handle rest commands like symbol assignments and ASSERTs. 1309 // Returns a symbol that has changed its section or value, or nullptr if no 1310 // symbol has changed. 1311 const Defined *LinkerScript::assignAddresses() { 1312 if (script->hasSectionsCommand) { 1313 // With a linker script, assignment of addresses to headers is covered by 1314 // allocateHeaders(). 1315 dot = config->imageBase.value_or(0); 1316 } else { 1317 // Assign addresses to headers right now. 1318 dot = target->getImageBase(); 1319 Out::elfHeader->addr = dot; 1320 Out::programHeaders->addr = dot + Out::elfHeader->size; 1321 dot += getHeaderSize(); 1322 } 1323 1324 AddressState st; 1325 state = &st; 1326 errorOnMissingSection = true; 1327 st.outSec = aether; 1328 1329 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1330 for (SectionCommand *cmd : sectionCommands) { 1331 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1332 assign->addr = dot; 1333 assignSymbol(assign, false); 1334 assign->size = dot - assign->addr; 1335 continue; 1336 } 1337 assignOffsets(&cast<OutputDesc>(cmd)->osec); 1338 } 1339 1340 state = nullptr; 1341 return getChangedSymbolAssignment(oldValues); 1342 } 1343 1344 // Creates program headers as instructed by PHDRS linker script command. 1345 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() { 1346 SmallVector<PhdrEntry *, 0> ret; 1347 1348 // Process PHDRS and FILEHDR keywords because they are not 1349 // real output sections and cannot be added in the following loop. 1350 for (const PhdrsCommand &cmd : phdrsCommands) { 1351 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R)); 1352 1353 if (cmd.hasFilehdr) 1354 phdr->add(Out::elfHeader); 1355 if (cmd.hasPhdrs) 1356 phdr->add(Out::programHeaders); 1357 1358 if (cmd.lmaExpr) { 1359 phdr->p_paddr = cmd.lmaExpr().getValue(); 1360 phdr->hasLMA = true; 1361 } 1362 ret.push_back(phdr); 1363 } 1364 1365 // Add output sections to program headers. 1366 for (OutputSection *sec : outputSections) { 1367 // Assign headers specified by linker script 1368 for (size_t id : getPhdrIndices(sec)) { 1369 ret[id]->add(sec); 1370 if (!phdrsCommands[id].flags) 1371 ret[id]->p_flags |= sec->getPhdrFlags(); 1372 } 1373 } 1374 return ret; 1375 } 1376 1377 // Returns true if we should emit an .interp section. 1378 // 1379 // We usually do. But if PHDRS commands are given, and 1380 // no PT_INTERP is there, there's no place to emit an 1381 // .interp, so we don't do that in that case. 1382 bool LinkerScript::needsInterpSection() { 1383 if (phdrsCommands.empty()) 1384 return true; 1385 for (PhdrsCommand &cmd : phdrsCommands) 1386 if (cmd.type == PT_INTERP) 1387 return true; 1388 return false; 1389 } 1390 1391 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1392 if (name == ".") { 1393 if (state) 1394 return {state->outSec, false, dot - state->outSec->addr, loc}; 1395 error(loc + ": unable to get location counter value"); 1396 return 0; 1397 } 1398 1399 if (Symbol *sym = symtab.find(name)) { 1400 if (auto *ds = dyn_cast<Defined>(sym)) { 1401 ExprValue v{ds->section, false, ds->value, loc}; 1402 // Retain the original st_type, so that the alias will get the same 1403 // behavior in relocation processing. Any operation will reset st_type to 1404 // STT_NOTYPE. 1405 v.type = ds->type; 1406 return v; 1407 } 1408 if (isa<SharedSymbol>(sym)) 1409 if (!errorOnMissingSection) 1410 return {nullptr, false, 0, loc}; 1411 } 1412 1413 error(loc + ": symbol not found: " + name); 1414 return 0; 1415 } 1416 1417 // Returns the index of the segment named Name. 1418 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1419 StringRef name) { 1420 for (size_t i = 0; i < vec.size(); ++i) 1421 if (vec[i].name == name) 1422 return i; 1423 return std::nullopt; 1424 } 1425 1426 // Returns indices of ELF headers containing specific section. Each index is a 1427 // zero based number of ELF header listed within PHDRS {} script block. 1428 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1429 SmallVector<size_t, 0> ret; 1430 1431 for (StringRef s : cmd->phdrs) { 1432 if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1433 ret.push_back(*idx); 1434 else if (s != "NONE") 1435 error(cmd->location + ": program header '" + s + 1436 "' is not listed in PHDRS"); 1437 } 1438 return ret; 1439 } 1440 1441 void LinkerScript::printMemoryUsage(raw_ostream& os) { 1442 auto printSize = [&](uint64_t size) { 1443 if ((size & 0x3fffffff) == 0) 1444 os << format_decimal(size >> 30, 10) << " GB"; 1445 else if ((size & 0xfffff) == 0) 1446 os << format_decimal(size >> 20, 10) << " MB"; 1447 else if ((size & 0x3ff) == 0) 1448 os << format_decimal(size >> 10, 10) << " KB"; 1449 else 1450 os << " " << format_decimal(size, 10) << " B"; 1451 }; 1452 os << "Memory region Used Size Region Size %age Used\n"; 1453 for (auto &pair : memoryRegions) { 1454 MemoryRegion *m = pair.second; 1455 uint64_t usedLength = m->curPos - m->getOrigin(); 1456 os << right_justify(m->name, 16) << ": "; 1457 printSize(usedLength); 1458 uint64_t length = m->getLength(); 1459 if (length != 0) { 1460 printSize(length); 1461 double percent = usedLength * 100.0 / length; 1462 os << " " << format("%6.2f%%", percent); 1463 } 1464 os << '\n'; 1465 } 1466 } 1467 1468 static void checkMemoryRegion(const MemoryRegion *region, 1469 const OutputSection *osec, uint64_t addr) { 1470 uint64_t osecEnd = addr + osec->size; 1471 uint64_t regionEnd = region->getOrigin() + region->getLength(); 1472 if (osecEnd > regionEnd) { 1473 error("section '" + osec->name + "' will not fit in region '" + 1474 region->name + "': overflowed by " + Twine(osecEnd - regionEnd) + 1475 " bytes"); 1476 } 1477 } 1478 1479 void LinkerScript::checkMemoryRegions() const { 1480 for (const OutputSection *sec : outputSections) { 1481 if (const MemoryRegion *memoryRegion = sec->memRegion) 1482 checkMemoryRegion(memoryRegion, sec, sec->addr); 1483 if (const MemoryRegion *lmaRegion = sec->lmaRegion) 1484 checkMemoryRegion(lmaRegion, sec, sec->getLMA()); 1485 } 1486 } 1487