1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputFiles.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <limits> 37 #include <string> 38 #include <vector> 39 40 using namespace llvm; 41 using namespace llvm::ELF; 42 using namespace llvm::object; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::elf; 46 47 ScriptWrapper elf::script; 48 49 static bool isSectionPrefix(StringRef prefix, StringRef name) { 50 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 51 } 52 53 static StringRef getOutputSectionName(const InputSectionBase *s) { 54 // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we 55 // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not 56 // technically required, but not doing it is odd). This code guarantees that. 57 if (auto *isec = dyn_cast<InputSection>(s)) { 58 if (InputSectionBase *rel = isec->getRelocatedSection()) { 59 OutputSection *out = rel->getOutputSection(); 60 if (!out) { 61 assert(config->relocatable && (rel->flags & SHF_LINK_ORDER)); 62 return s->name; 63 } 64 if (s->type == SHT_CREL) 65 return saver().save(".crel" + out->name); 66 if (s->type == SHT_RELA) 67 return saver().save(".rela" + out->name); 68 return saver().save(".rel" + out->name); 69 } 70 } 71 72 if (config->relocatable) 73 return s->name; 74 75 // A BssSection created for a common symbol is identified as "COMMON" in 76 // linker scripts. It should go to .bss section. 77 if (s->name == "COMMON") 78 return ".bss"; 79 80 if (script->hasSectionsCommand) 81 return s->name; 82 83 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 84 // by grouping sections with certain prefixes. 85 86 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 87 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 88 // We provide an option -z keep-text-section-prefix to group such sections 89 // into separate output sections. This is more flexible. See also 90 // sortISDBySectionOrder(). 91 // ".text.unknown" means the hotness of the section is unknown. When 92 // SampleFDO is used, if a function doesn't have sample, it could be very 93 // cold or it could be a new function never being sampled. Those functions 94 // will be kept in the ".text.unknown" section. 95 // ".text.split." holds symbols which are split out from functions in other 96 // input sections. For example, with -fsplit-machine-functions, placing the 97 // cold parts in .text.split instead of .text.unlikely mitigates against poor 98 // profile inaccuracy. Techniques such as hugepage remapping can make 99 // conservative decisions at the section granularity. 100 if (isSectionPrefix(".text", s->name)) { 101 if (config->zKeepTextSectionPrefix) 102 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 103 ".text.startup", ".text.exit", ".text.split"}) 104 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 105 return v; 106 return ".text"; 107 } 108 109 for (StringRef v : 110 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata", 111 ".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array", 112 ".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"}) 113 if (isSectionPrefix(v, s->name)) 114 return v; 115 116 return s->name; 117 } 118 119 uint64_t ExprValue::getValue() const { 120 if (sec) 121 return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val), 122 alignment); 123 return alignToPowerOf2(val, alignment); 124 } 125 126 uint64_t ExprValue::getSecAddr() const { 127 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 128 } 129 130 uint64_t ExprValue::getSectionOffset() const { 131 return getValue() - getSecAddr(); 132 } 133 134 OutputDesc *LinkerScript::createOutputSection(StringRef name, 135 StringRef location) { 136 OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 137 OutputDesc *sec; 138 if (secRef && secRef->osec.location.empty()) { 139 // There was a forward reference. 140 sec = secRef; 141 } else { 142 sec = make<OutputDesc>(name, SHT_PROGBITS, 0); 143 if (!secRef) 144 secRef = sec; 145 } 146 sec->osec.location = std::string(location); 147 return sec; 148 } 149 150 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) { 151 OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)]; 152 if (!cmdRef) 153 cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0); 154 return cmdRef; 155 } 156 157 // Expands the memory region by the specified size. 158 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 159 StringRef secName) { 160 memRegion->curPos += size; 161 } 162 163 void LinkerScript::expandMemoryRegions(uint64_t size) { 164 if (state->memRegion) 165 expandMemoryRegion(state->memRegion, size, state->outSec->name); 166 // Only expand the LMARegion if it is different from memRegion. 167 if (state->lmaRegion && state->memRegion != state->lmaRegion) 168 expandMemoryRegion(state->lmaRegion, size, state->outSec->name); 169 } 170 171 void LinkerScript::expandOutputSection(uint64_t size) { 172 state->outSec->size += size; 173 expandMemoryRegions(size); 174 } 175 176 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 177 uint64_t val = e().getValue(); 178 // If val is smaller and we are in an output section, record the error and 179 // report it if this is the last assignAddresses iteration. dot may be smaller 180 // if there is another assignAddresses iteration. 181 if (val < dot && inSec) { 182 recordError(loc + ": unable to move location counter (0x" + 183 Twine::utohexstr(dot) + ") backward to 0x" + 184 Twine::utohexstr(val) + " for section '" + state->outSec->name + 185 "'"); 186 } 187 188 // Update to location counter means update to section size. 189 if (inSec) 190 expandOutputSection(val - dot); 191 192 dot = val; 193 } 194 195 // Used for handling linker symbol assignments, for both finalizing 196 // their values and doing early declarations. Returns true if symbol 197 // should be defined from linker script. 198 static bool shouldDefineSym(SymbolAssignment *cmd) { 199 if (cmd->name == ".") 200 return false; 201 202 return !cmd->provide || LinkerScript::shouldAddProvideSym(cmd->name); 203 } 204 205 // Called by processSymbolAssignments() to assign definitions to 206 // linker-script-defined symbols. 207 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 208 if (!shouldDefineSym(cmd)) 209 return; 210 211 // Define a symbol. 212 ExprValue value = cmd->expression(); 213 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 214 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 215 216 // When this function is called, section addresses have not been 217 // fixed yet. So, we may or may not know the value of the RHS 218 // expression. 219 // 220 // For example, if an expression is `x = 42`, we know x is always 42. 221 // However, if an expression is `x = .`, there's no way to know its 222 // value at the moment. 223 // 224 // We want to set symbol values early if we can. This allows us to 225 // use symbols as variables in linker scripts. Doing so allows us to 226 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 227 uint64_t symValue = value.sec ? 0 : value.getValue(); 228 229 Defined newSym(createInternalFile(cmd->location), cmd->name, STB_GLOBAL, 230 visibility, value.type, symValue, 0, sec); 231 232 Symbol *sym = symtab.insert(cmd->name); 233 sym->mergeProperties(newSym); 234 newSym.overwrite(*sym); 235 sym->isUsedInRegularObj = true; 236 cmd->sym = cast<Defined>(sym); 237 } 238 239 // This function is called from LinkerScript::declareSymbols. 240 // It creates a placeholder symbol if needed. 241 static void declareSymbol(SymbolAssignment *cmd) { 242 if (!shouldDefineSym(cmd)) 243 return; 244 245 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 246 Defined newSym(ctx.internalFile, cmd->name, STB_GLOBAL, visibility, 247 STT_NOTYPE, 0, 0, nullptr); 248 249 // If the symbol is already defined, its order is 0 (with absence indicating 250 // 0); otherwise it's assigned the order of the SymbolAssignment. 251 Symbol *sym = symtab.insert(cmd->name); 252 if (!sym->isDefined()) 253 ctx.scriptSymOrder.insert({sym, cmd->symOrder}); 254 255 // We can't calculate final value right now. 256 sym->mergeProperties(newSym); 257 newSym.overwrite(*sym); 258 259 cmd->sym = cast<Defined>(sym); 260 cmd->provide = false; 261 sym->isUsedInRegularObj = true; 262 sym->scriptDefined = true; 263 } 264 265 using SymbolAssignmentMap = 266 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 267 268 // Collect section/value pairs of linker-script-defined symbols. This is used to 269 // check whether symbol values converge. 270 static SymbolAssignmentMap 271 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 272 SymbolAssignmentMap ret; 273 for (SectionCommand *cmd : sectionCommands) { 274 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 275 if (assign->sym) // sym is nullptr for dot. 276 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 277 assign->sym->value)); 278 continue; 279 } 280 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 281 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 282 if (assign->sym) 283 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 284 assign->sym->value)); 285 } 286 return ret; 287 } 288 289 // Returns the lexicographical smallest (for determinism) Defined whose 290 // section/value has changed. 291 static const Defined * 292 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 293 const Defined *changed = nullptr; 294 for (auto &it : oldValues) { 295 const Defined *sym = it.first; 296 if (std::make_pair(sym->section, sym->value) != it.second && 297 (!changed || sym->getName() < changed->getName())) 298 changed = sym; 299 } 300 return changed; 301 } 302 303 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 304 // specified output section to the designated place. 305 void LinkerScript::processInsertCommands() { 306 SmallVector<OutputDesc *, 0> moves; 307 for (const InsertCommand &cmd : insertCommands) { 308 if (config->enableNonContiguousRegions) 309 error("INSERT cannot be used with --enable-non-contiguous-regions"); 310 311 for (StringRef name : cmd.names) { 312 // If base is empty, it may have been discarded by 313 // adjustOutputSections(). We do not handle such output sections. 314 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 315 return isa<OutputDesc>(subCmd) && 316 cast<OutputDesc>(subCmd)->osec.name == name; 317 }); 318 if (from == sectionCommands.end()) 319 continue; 320 moves.push_back(cast<OutputDesc>(*from)); 321 sectionCommands.erase(from); 322 } 323 324 auto insertPos = 325 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 326 auto *to = dyn_cast<OutputDesc>(subCmd); 327 return to != nullptr && to->osec.name == cmd.where; 328 }); 329 if (insertPos == sectionCommands.end()) { 330 error("unable to insert " + cmd.names[0] + 331 (cmd.isAfter ? " after " : " before ") + cmd.where); 332 } else { 333 if (cmd.isAfter) 334 ++insertPos; 335 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 336 } 337 moves.clear(); 338 } 339 } 340 341 // Symbols defined in script should not be inlined by LTO. At the same time 342 // we don't know their final values until late stages of link. Here we scan 343 // over symbol assignment commands and create placeholder symbols if needed. 344 void LinkerScript::declareSymbols() { 345 assert(!state); 346 for (SectionCommand *cmd : sectionCommands) { 347 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 348 declareSymbol(assign); 349 continue; 350 } 351 352 // If the output section directive has constraints, 353 // we can't say for sure if it is going to be included or not. 354 // Skip such sections for now. Improve the checks if we ever 355 // need symbols from that sections to be declared early. 356 const OutputSection &sec = cast<OutputDesc>(cmd)->osec; 357 if (sec.constraint != ConstraintKind::NoConstraint) 358 continue; 359 for (SectionCommand *cmd : sec.commands) 360 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 361 declareSymbol(assign); 362 } 363 } 364 365 // This function is called from assignAddresses, while we are 366 // fixing the output section addresses. This function is supposed 367 // to set the final value for a given symbol assignment. 368 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 369 if (cmd->name == ".") { 370 setDot(cmd->expression, cmd->location, inSec); 371 return; 372 } 373 374 if (!cmd->sym) 375 return; 376 377 ExprValue v = cmd->expression(); 378 if (v.isAbsolute()) { 379 cmd->sym->section = nullptr; 380 cmd->sym->value = v.getValue(); 381 } else { 382 cmd->sym->section = v.sec; 383 cmd->sym->value = v.getSectionOffset(); 384 } 385 cmd->sym->type = v.type; 386 } 387 388 static inline StringRef getFilename(const InputFile *file) { 389 return file ? file->getNameForScript() : StringRef(); 390 } 391 392 bool InputSectionDescription::matchesFile(const InputFile *file) const { 393 if (filePat.isTrivialMatchAll()) 394 return true; 395 396 if (!matchesFileCache || matchesFileCache->first != file) 397 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 398 399 return matchesFileCache->second; 400 } 401 402 bool SectionPattern::excludesFile(const InputFile *file) const { 403 if (excludedFilePat.empty()) 404 return false; 405 406 if (!excludesFileCache || excludesFileCache->first != file) 407 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 408 409 return excludesFileCache->second; 410 } 411 412 bool LinkerScript::shouldKeep(InputSectionBase *s) { 413 for (InputSectionDescription *id : keptSections) 414 if (id->matchesFile(s->file)) 415 for (SectionPattern &p : id->sectionPatterns) 416 if (p.sectionPat.match(s->name) && 417 (s->flags & id->withFlags) == id->withFlags && 418 (s->flags & id->withoutFlags) == 0) 419 return true; 420 return false; 421 } 422 423 // A helper function for the SORT() command. 424 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 425 ConstraintKind kind) { 426 if (kind == ConstraintKind::NoConstraint) 427 return true; 428 429 bool isRW = llvm::any_of( 430 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 431 432 return (isRW && kind == ConstraintKind::ReadWrite) || 433 (!isRW && kind == ConstraintKind::ReadOnly); 434 } 435 436 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 437 SortSectionPolicy k) { 438 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 439 // ">" is not a mistake. Sections with larger alignments are placed 440 // before sections with smaller alignments in order to reduce the 441 // amount of padding necessary. This is compatible with GNU. 442 return a->addralign > b->addralign; 443 }; 444 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 445 return a->name < b->name; 446 }; 447 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 448 return getPriority(a->name) < getPriority(b->name); 449 }; 450 451 switch (k) { 452 case SortSectionPolicy::Default: 453 case SortSectionPolicy::None: 454 return; 455 case SortSectionPolicy::Alignment: 456 return llvm::stable_sort(vec, alignmentComparator); 457 case SortSectionPolicy::Name: 458 return llvm::stable_sort(vec, nameComparator); 459 case SortSectionPolicy::Priority: 460 return llvm::stable_sort(vec, priorityComparator); 461 case SortSectionPolicy::Reverse: 462 return std::reverse(vec.begin(), vec.end()); 463 } 464 } 465 466 // Sort sections as instructed by SORT-family commands and --sort-section 467 // option. Because SORT-family commands can be nested at most two depth 468 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 469 // line option is respected even if a SORT command is given, the exact 470 // behavior we have here is a bit complicated. Here are the rules. 471 // 472 // 1. If two SORT commands are given, --sort-section is ignored. 473 // 2. If one SORT command is given, and if it is not SORT_NONE, 474 // --sort-section is handled as an inner SORT command. 475 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 476 // 4. If no SORT command is given, sort according to --sort-section. 477 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 478 SortSectionPolicy outer, 479 SortSectionPolicy inner) { 480 if (outer == SortSectionPolicy::None) 481 return; 482 483 if (inner == SortSectionPolicy::Default) 484 sortSections(vec, config->sortSection); 485 else 486 sortSections(vec, inner); 487 sortSections(vec, outer); 488 } 489 490 // Compute and remember which sections the InputSectionDescription matches. 491 SmallVector<InputSectionBase *, 0> 492 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 493 ArrayRef<InputSectionBase *> sections, 494 const OutputSection &outCmd) { 495 SmallVector<InputSectionBase *, 0> ret; 496 SmallVector<size_t, 0> indexes; 497 DenseSet<size_t> seen; 498 DenseSet<InputSectionBase *> spills; 499 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 500 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 501 for (size_t i = begin; i != end; ++i) 502 ret[i] = sections[indexes[i]]; 503 sortInputSections( 504 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 505 config->sortSection, SortSectionPolicy::None); 506 }; 507 508 // Collects all sections that satisfy constraints of Cmd. 509 size_t sizeAfterPrevSort = 0; 510 for (const SectionPattern &pat : cmd->sectionPatterns) { 511 size_t sizeBeforeCurrPat = ret.size(); 512 513 for (size_t i = 0, e = sections.size(); i != e; ++i) { 514 // Skip if the section is dead or has been matched by a previous pattern 515 // in this input section description. 516 InputSectionBase *sec = sections[i]; 517 if (!sec->isLive() || seen.contains(i)) 518 continue; 519 520 // For --emit-relocs we have to ignore entries like 521 // .rela.dyn : { *(.rela.data) } 522 // which are common because they are in the default bfd script. 523 // We do not ignore SHT_REL[A] linker-synthesized sections here because 524 // want to support scripts that do custom layout for them. 525 if (isa<InputSection>(sec) && 526 cast<InputSection>(sec)->getRelocatedSection()) 527 continue; 528 529 // Check the name early to improve performance in the common case. 530 if (!pat.sectionPat.match(sec->name)) 531 continue; 532 533 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 534 (sec->flags & cmd->withFlags) != cmd->withFlags || 535 (sec->flags & cmd->withoutFlags) != 0) 536 continue; 537 538 if (sec->parent) { 539 // Skip if not allowing multiple matches. 540 if (!config->enableNonContiguousRegions) 541 continue; 542 543 // Disallow spilling into /DISCARD/; special handling would be needed 544 // for this in address assignment, and the semantics are nebulous. 545 if (outCmd.name == "/DISCARD/") 546 continue; 547 548 // Skip if the section's first match was /DISCARD/; such sections are 549 // always discarded. 550 if (sec->parent->name == "/DISCARD/") 551 continue; 552 553 // Skip if the section was already matched by a different input section 554 // description within this output section. 555 if (sec->parent == &outCmd) 556 continue; 557 558 spills.insert(sec); 559 } 560 561 ret.push_back(sec); 562 indexes.push_back(i); 563 seen.insert(i); 564 } 565 566 if (pat.sortOuter == SortSectionPolicy::Default) 567 continue; 568 569 // Matched sections are ordered by radix sort with the keys being (SORT*, 570 // --sort-section, input order), where SORT* (if present) is most 571 // significant. 572 // 573 // Matched sections between the previous SORT* and this SORT* are sorted by 574 // (--sort-alignment, input order). 575 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 576 // Matched sections by this SORT* pattern are sorted using all 3 keys. 577 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 578 // just sort by sortOuter and sortInner. 579 sortInputSections( 580 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 581 pat.sortOuter, pat.sortInner); 582 sizeAfterPrevSort = ret.size(); 583 } 584 // Matched sections after the last SORT* are sorted by (--sort-alignment, 585 // input order). 586 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 587 588 // The flag --enable-non-contiguous-regions may cause sections to match an 589 // InputSectionDescription in more than one OutputSection. Matches after the 590 // first were collected in the spills set, so replace these with potential 591 // spill sections. 592 if (!spills.empty()) { 593 for (InputSectionBase *&sec : ret) { 594 if (!spills.contains(sec)) 595 continue; 596 597 // Append the spill input section to the list for the input section, 598 // creating it if necessary. 599 PotentialSpillSection *pss = make<PotentialSpillSection>( 600 *sec, const_cast<InputSectionDescription &>(*cmd)); 601 auto [it, inserted] = 602 potentialSpillLists.try_emplace(sec, PotentialSpillList{pss, pss}); 603 if (!inserted) { 604 PotentialSpillSection *&tail = it->second.tail; 605 tail = tail->next = pss; 606 } 607 sec = pss; 608 } 609 } 610 611 return ret; 612 } 613 614 void LinkerScript::discard(InputSectionBase &s) { 615 if (&s == in.shStrTab.get()) 616 error("discarding " + s.name + " section is not allowed"); 617 618 s.markDead(); 619 s.parent = nullptr; 620 for (InputSection *sec : s.dependentSections) 621 discard(*sec); 622 } 623 624 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 625 for (Partition &part : partitions) { 626 if (!part.armExidx || !part.armExidx->isLive()) 627 continue; 628 SmallVector<InputSectionBase *, 0> secs( 629 part.armExidx->exidxSections.begin(), 630 part.armExidx->exidxSections.end()); 631 for (SectionCommand *cmd : outCmd.commands) 632 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 633 for (InputSectionBase *s : computeInputSections(isd, secs, outCmd)) 634 discard(*s); 635 } 636 } 637 638 SmallVector<InputSectionBase *, 0> 639 LinkerScript::createInputSectionList(OutputSection &outCmd) { 640 SmallVector<InputSectionBase *, 0> ret; 641 642 for (SectionCommand *cmd : outCmd.commands) { 643 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 644 isd->sectionBases = computeInputSections(isd, ctx.inputSections, outCmd); 645 for (InputSectionBase *s : isd->sectionBases) 646 s->parent = &outCmd; 647 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 648 } 649 } 650 return ret; 651 } 652 653 // Create output sections described by SECTIONS commands. 654 void LinkerScript::processSectionCommands() { 655 auto process = [this](OutputSection *osec) { 656 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 657 658 // The output section name `/DISCARD/' is special. 659 // Any input section assigned to it is discarded. 660 if (osec->name == "/DISCARD/") { 661 for (InputSectionBase *s : v) 662 discard(*s); 663 discardSynthetic(*osec); 664 osec->commands.clear(); 665 return false; 666 } 667 668 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 669 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 670 // sections satisfy a given constraint. If not, a directive is handled 671 // as if it wasn't present from the beginning. 672 // 673 // Because we'll iterate over SectionCommands many more times, the easy 674 // way to "make it as if it wasn't present" is to make it empty. 675 if (!matchConstraints(v, osec->constraint)) { 676 for (InputSectionBase *s : v) 677 s->parent = nullptr; 678 osec->commands.clear(); 679 return false; 680 } 681 682 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 683 // is given, input sections are aligned to that value, whether the 684 // given value is larger or smaller than the original section alignment. 685 if (osec->subalignExpr) { 686 uint32_t subalign = osec->subalignExpr().getValue(); 687 for (InputSectionBase *s : v) 688 s->addralign = subalign; 689 } 690 691 // Set the partition field the same way OutputSection::recordSection() 692 // does. Partitions cannot be used with the SECTIONS command, so this is 693 // always 1. 694 osec->partition = 1; 695 return true; 696 }; 697 698 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 699 // or orphans. 700 if (config->enableNonContiguousRegions && !overwriteSections.empty()) 701 error("OVERWRITE_SECTIONS cannot be used with " 702 "--enable-non-contiguous-regions"); 703 DenseMap<CachedHashStringRef, OutputDesc *> map; 704 size_t i = 0; 705 for (OutputDesc *osd : overwriteSections) { 706 OutputSection *osec = &osd->osec; 707 if (process(osec) && 708 !map.try_emplace(CachedHashStringRef(osec->name), osd).second) 709 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 710 } 711 for (SectionCommand *&base : sectionCommands) 712 if (auto *osd = dyn_cast<OutputDesc>(base)) { 713 OutputSection *osec = &osd->osec; 714 if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) { 715 log(overwrite->osec.location + " overwrites " + osec->name); 716 overwrite->osec.sectionIndex = i++; 717 base = overwrite; 718 } else if (process(osec)) { 719 osec->sectionIndex = i++; 720 } 721 } 722 723 // If an OVERWRITE_SECTIONS specified output section is not in 724 // sectionCommands, append it to the end. The section will be inserted by 725 // orphan placement. 726 for (OutputDesc *osd : overwriteSections) 727 if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX) 728 sectionCommands.push_back(osd); 729 } 730 731 void LinkerScript::processSymbolAssignments() { 732 // Dot outside an output section still represents a relative address, whose 733 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 734 // that fills the void outside a section. It has an index of one, which is 735 // indistinguishable from any other regular section index. 736 aether = make<OutputSection>("", 0, SHF_ALLOC); 737 aether->sectionIndex = 1; 738 739 // `st` captures the local AddressState and makes it accessible deliberately. 740 // This is needed as there are some cases where we cannot just thread the 741 // current state through to a lambda function created by the script parser. 742 AddressState st; 743 state = &st; 744 st.outSec = aether; 745 746 for (SectionCommand *cmd : sectionCommands) { 747 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 748 addSymbol(assign); 749 else 750 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 751 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 752 addSymbol(assign); 753 } 754 755 state = nullptr; 756 } 757 758 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 759 StringRef name) { 760 for (SectionCommand *cmd : vec) 761 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 762 if (osd->osec.name == name) 763 return &osd->osec; 764 return nullptr; 765 } 766 767 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) { 768 OutputDesc *osd = script->createOutputSection(outsecName, "<internal>"); 769 osd->osec.recordSection(isec); 770 return osd; 771 } 772 773 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 774 InputSectionBase *isec, StringRef outsecName) { 775 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 776 // option is given. A section with SHT_GROUP defines a "section group", and 777 // its members have SHF_GROUP attribute. Usually these flags have already been 778 // stripped by InputFiles.cpp as section groups are processed and uniquified. 779 // However, for the -r option, we want to pass through all section groups 780 // as-is because adding/removing members or merging them with other groups 781 // change their semantics. 782 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 783 return createSection(isec, outsecName); 784 785 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 786 // relocation sections .rela.foo and .rela.bar for example. Most tools do 787 // not allow multiple REL[A] sections for output section. Hence we 788 // should combine these relocation sections into single output. 789 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 790 // other REL[A] sections created by linker itself. 791 if (!isa<SyntheticSection>(isec) && isStaticRelSecType(isec->type)) { 792 auto *sec = cast<InputSection>(isec); 793 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 794 795 if (auto *relSec = out->relocationSection) { 796 relSec->recordSection(sec); 797 return nullptr; 798 } 799 800 OutputDesc *osd = createSection(isec, outsecName); 801 out->relocationSection = &osd->osec; 802 return osd; 803 } 804 805 // The ELF spec just says 806 // ---------------------------------------------------------------- 807 // In the first phase, input sections that match in name, type and 808 // attribute flags should be concatenated into single sections. 809 // ---------------------------------------------------------------- 810 // 811 // However, it is clear that at least some flags have to be ignored for 812 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 813 // ignored. We should not have two output .text sections just because one was 814 // in a group and another was not for example. 815 // 816 // It also seems that wording was a late addition and didn't get the 817 // necessary scrutiny. 818 // 819 // Merging sections with different flags is expected by some users. One 820 // reason is that if one file has 821 // 822 // int *const bar __attribute__((section(".foo"))) = (int *)0; 823 // 824 // gcc with -fPIC will produce a read only .foo section. But if another 825 // file has 826 // 827 // int zed; 828 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 829 // 830 // gcc with -fPIC will produce a read write section. 831 // 832 // Last but not least, when using linker script the merge rules are forced by 833 // the script. Unfortunately, linker scripts are name based. This means that 834 // expressions like *(.foo*) can refer to multiple input sections with 835 // different flags. We cannot put them in different output sections or we 836 // would produce wrong results for 837 // 838 // start = .; *(.foo.*) end = .; *(.bar) 839 // 840 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 841 // another. The problem is that there is no way to layout those output 842 // sections such that the .foo sections are the only thing between the start 843 // and end symbols. 844 // 845 // Given the above issues, we instead merge sections by name and error on 846 // incompatible types and flags. 847 TinyPtrVector<OutputSection *> &v = map[outsecName]; 848 for (OutputSection *sec : v) { 849 if (sec->partition != isec->partition) 850 continue; 851 852 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 853 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 854 // change their semantics, so we only merge them in -r links if they will 855 // end up being linked to the same output section. The casts are fine 856 // because everything in the map was created by the orphan placement code. 857 auto *firstIsec = cast<InputSectionBase>( 858 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 859 OutputSection *firstIsecOut = 860 (firstIsec->flags & SHF_LINK_ORDER) 861 ? firstIsec->getLinkOrderDep()->getOutputSection() 862 : nullptr; 863 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 864 continue; 865 } 866 867 sec->recordSection(isec); 868 return nullptr; 869 } 870 871 OutputDesc *osd = createSection(isec, outsecName); 872 v.push_back(&osd->osec); 873 return osd; 874 } 875 876 // Add sections that didn't match any sections command. 877 void LinkerScript::addOrphanSections() { 878 StringMap<TinyPtrVector<OutputSection *>> map; 879 SmallVector<OutputDesc *, 0> v; 880 881 auto add = [&](InputSectionBase *s) { 882 if (s->isLive() && !s->parent) { 883 orphanSections.push_back(s); 884 885 StringRef name = getOutputSectionName(s); 886 if (config->unique) { 887 v.push_back(createSection(s, name)); 888 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 889 sec->recordSection(s); 890 } else { 891 if (OutputDesc *osd = addInputSec(map, s, name)) 892 v.push_back(osd); 893 assert(isa<MergeInputSection>(s) || 894 s->getOutputSection()->sectionIndex == UINT32_MAX); 895 } 896 } 897 }; 898 899 // For further --emit-reloc handling code we need target output section 900 // to be created before we create relocation output section, so we want 901 // to create target sections first. We do not want priority handling 902 // for synthetic sections because them are special. 903 size_t n = 0; 904 for (InputSectionBase *isec : ctx.inputSections) { 905 // Process InputSection and MergeInputSection. 906 if (LLVM_LIKELY(isa<InputSection>(isec))) 907 ctx.inputSections[n++] = isec; 908 909 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 910 // sections because we need to know the parent's output section before we 911 // can select an output section for the SHF_LINK_ORDER section. 912 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 913 continue; 914 915 if (auto *sec = dyn_cast<InputSection>(isec)) 916 if (InputSectionBase *rel = sec->getRelocatedSection()) 917 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 918 add(relIS); 919 add(isec); 920 if (config->relocatable) 921 for (InputSectionBase *depSec : isec->dependentSections) 922 if (depSec->flags & SHF_LINK_ORDER) 923 add(depSec); 924 } 925 // Keep just InputSection. 926 ctx.inputSections.resize(n); 927 928 // If no SECTIONS command was given, we should insert sections commands 929 // before others, so that we can handle scripts which refers them, 930 // for example: "foo = ABSOLUTE(ADDR(.text)));". 931 // When SECTIONS command is present we just add all orphans to the end. 932 if (hasSectionsCommand) 933 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 934 else 935 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 936 } 937 938 void LinkerScript::diagnoseOrphanHandling() const { 939 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 940 if (config->orphanHandling == OrphanHandlingPolicy::Place || 941 !hasSectionsCommand) 942 return; 943 for (const InputSectionBase *sec : orphanSections) { 944 // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present, 945 // automatically. The section is not supposed to be specified by scripts. 946 if (sec == in.relroPadding.get()) 947 continue; 948 // Input SHT_REL[A] retained by --emit-relocs are ignored by 949 // computeInputSections(). Don't warn/error. 950 if (isa<InputSection>(sec) && 951 cast<InputSection>(sec)->getRelocatedSection()) 952 continue; 953 954 StringRef name = getOutputSectionName(sec); 955 if (config->orphanHandling == OrphanHandlingPolicy::Error) 956 error(toString(sec) + " is being placed in '" + name + "'"); 957 else 958 warn(toString(sec) + " is being placed in '" + name + "'"); 959 } 960 } 961 962 void LinkerScript::diagnoseMissingSGSectionAddress() const { 963 if (!config->cmseImplib || !in.armCmseSGSection->isNeeded()) 964 return; 965 966 OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs"); 967 if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs")) 968 error("no address assigned to the veneers output section " + sec->name); 969 } 970 971 // This function searches for a memory region to place the given output 972 // section in. If found, a pointer to the appropriate memory region is 973 // returned in the first member of the pair. Otherwise, a nullptr is returned. 974 // The second member of the pair is a hint that should be passed to the 975 // subsequent call of this method. 976 std::pair<MemoryRegion *, MemoryRegion *> 977 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 978 // Non-allocatable sections are not part of the process image. 979 if (!(sec->flags & SHF_ALLOC)) { 980 bool hasInputOrByteCommand = 981 sec->hasInputSections || 982 llvm::any_of(sec->commands, [](SectionCommand *comm) { 983 return ByteCommand::classof(comm); 984 }); 985 if (!sec->memoryRegionName.empty() && hasInputOrByteCommand) 986 warn("ignoring memory region assignment for non-allocatable section '" + 987 sec->name + "'"); 988 return {nullptr, nullptr}; 989 } 990 991 // If a memory region name was specified in the output section command, 992 // then try to find that region first. 993 if (!sec->memoryRegionName.empty()) { 994 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 995 return {m, m}; 996 error("memory region '" + sec->memoryRegionName + "' not declared"); 997 return {nullptr, nullptr}; 998 } 999 1000 // If at least one memory region is defined, all sections must 1001 // belong to some memory region. Otherwise, we don't need to do 1002 // anything for memory regions. 1003 if (memoryRegions.empty()) 1004 return {nullptr, nullptr}; 1005 1006 // An orphan section should continue the previous memory region. 1007 if (sec->sectionIndex == UINT32_MAX && hint) 1008 return {hint, hint}; 1009 1010 // See if a region can be found by matching section flags. 1011 for (auto &pair : memoryRegions) { 1012 MemoryRegion *m = pair.second; 1013 if (m->compatibleWith(sec->flags)) 1014 return {m, nullptr}; 1015 } 1016 1017 // Otherwise, no suitable region was found. 1018 error("no memory region specified for section '" + sec->name + "'"); 1019 return {nullptr, nullptr}; 1020 } 1021 1022 static OutputSection *findFirstSection(PhdrEntry *load) { 1023 for (OutputSection *sec : outputSections) 1024 if (sec->ptLoad == load) 1025 return sec; 1026 return nullptr; 1027 } 1028 1029 // Assign addresses to an output section and offsets to its input sections and 1030 // symbol assignments. Return true if the output section's address has changed. 1031 bool LinkerScript::assignOffsets(OutputSection *sec) { 1032 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 1033 const bool sameMemRegion = state->memRegion == sec->memRegion; 1034 const bool prevLMARegionIsDefault = state->lmaRegion == nullptr; 1035 const uint64_t savedDot = dot; 1036 bool addressChanged = false; 1037 state->memRegion = sec->memRegion; 1038 state->lmaRegion = sec->lmaRegion; 1039 1040 if (!(sec->flags & SHF_ALLOC)) { 1041 // Non-SHF_ALLOC sections have zero addresses. 1042 dot = 0; 1043 } else if (isTbss) { 1044 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 1045 // starts from the end address of the previous tbss section. 1046 if (state->tbssAddr == 0) 1047 state->tbssAddr = dot; 1048 else 1049 dot = state->tbssAddr; 1050 } else { 1051 if (state->memRegion) 1052 dot = state->memRegion->curPos; 1053 if (sec->addrExpr) 1054 setDot(sec->addrExpr, sec->location, false); 1055 1056 // If the address of the section has been moved forward by an explicit 1057 // expression so that it now starts past the current curPos of the enclosing 1058 // region, we need to expand the current region to account for the space 1059 // between the previous section, if any, and the start of this section. 1060 if (state->memRegion && state->memRegion->curPos < dot) 1061 expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos, 1062 sec->name); 1063 } 1064 1065 state->outSec = sec; 1066 if (!(sec->addrExpr && script->hasSectionsCommand)) { 1067 // ALIGN is respected. sec->alignment is the max of ALIGN and the maximum of 1068 // input section alignments. 1069 const uint64_t pos = dot; 1070 dot = alignToPowerOf2(dot, sec->addralign); 1071 expandMemoryRegions(dot - pos); 1072 } 1073 addressChanged = sec->addr != dot; 1074 sec->addr = dot; 1075 1076 // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() 1077 // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA 1078 // region is the default, and the two sections are in the same memory region, 1079 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1080 // heuristics described in 1081 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1082 if (sec->lmaExpr) { 1083 state->lmaOffset = sec->lmaExpr().getValue() - dot; 1084 } else if (MemoryRegion *mr = sec->lmaRegion) { 1085 uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign); 1086 if (mr->curPos < lmaStart) 1087 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1088 state->lmaOffset = lmaStart - dot; 1089 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1090 state->lmaOffset = 0; 1091 } 1092 1093 // Propagate state->lmaOffset to the first "non-header" section. 1094 if (PhdrEntry *l = sec->ptLoad) 1095 if (sec == findFirstSection(l)) 1096 l->lmaOffset = state->lmaOffset; 1097 1098 // We can call this method multiple times during the creation of 1099 // thunks and want to start over calculation each time. 1100 sec->size = 0; 1101 1102 // We visited SectionsCommands from processSectionCommands to 1103 // layout sections. Now, we visit SectionsCommands again to fix 1104 // section offsets. 1105 for (SectionCommand *cmd : sec->commands) { 1106 // This handles the assignments to symbol or to the dot. 1107 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1108 assign->addr = dot; 1109 assignSymbol(assign, true); 1110 assign->size = dot - assign->addr; 1111 continue; 1112 } 1113 1114 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1115 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1116 data->offset = dot - sec->addr; 1117 dot += data->size; 1118 expandOutputSection(data->size); 1119 continue; 1120 } 1121 1122 // Handle a single input section description command. 1123 // It calculates and assigns the offsets for each section and also 1124 // updates the output section size. 1125 1126 auto §ions = cast<InputSectionDescription>(cmd)->sections; 1127 for (InputSection *isec : sections) { 1128 assert(isec->getParent() == sec); 1129 if (isa<PotentialSpillSection>(isec)) 1130 continue; 1131 const uint64_t pos = dot; 1132 dot = alignToPowerOf2(dot, isec->addralign); 1133 isec->outSecOff = dot - sec->addr; 1134 dot += isec->getSize(); 1135 1136 // Update output section size after adding each section. This is so that 1137 // SIZEOF works correctly in the case below: 1138 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1139 expandOutputSection(dot - pos); 1140 } 1141 } 1142 1143 // If .relro_padding is present, round up the end to a common-page-size 1144 // boundary to protect the last page. 1145 if (in.relroPadding && sec == in.relroPadding->getParent()) 1146 expandOutputSection(alignToPowerOf2(dot, config->commonPageSize) - dot); 1147 1148 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1149 // as they are not part of the process image. 1150 if (!(sec->flags & SHF_ALLOC)) { 1151 dot = savedDot; 1152 } else if (isTbss) { 1153 // NOBITS TLS sections are similar. Additionally save the end address. 1154 state->tbssAddr = dot; 1155 dot = savedDot; 1156 } 1157 return addressChanged; 1158 } 1159 1160 static bool isDiscardable(const OutputSection &sec) { 1161 if (sec.name == "/DISCARD/") 1162 return true; 1163 1164 // We do not want to remove OutputSections with expressions that reference 1165 // symbols even if the OutputSection is empty. We want to ensure that the 1166 // expressions can be evaluated and report an error if they cannot. 1167 if (sec.expressionsUseSymbols) 1168 return false; 1169 1170 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1171 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1172 // to maintain the integrity of the other Expression. 1173 if (sec.usedInExpression) 1174 return false; 1175 1176 for (SectionCommand *cmd : sec.commands) { 1177 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1178 // Don't create empty output sections just for unreferenced PROVIDE 1179 // symbols. 1180 if (assign->name != "." && !assign->sym) 1181 continue; 1182 1183 if (!isa<InputSectionDescription>(*cmd)) 1184 return false; 1185 } 1186 return true; 1187 } 1188 1189 static void maybePropagatePhdrs(OutputSection &sec, 1190 SmallVector<StringRef, 0> &phdrs) { 1191 if (sec.phdrs.empty()) { 1192 // To match the bfd linker script behaviour, only propagate program 1193 // headers to sections that are allocated. 1194 if (sec.flags & SHF_ALLOC) 1195 sec.phdrs = phdrs; 1196 } else { 1197 phdrs = sec.phdrs; 1198 } 1199 } 1200 1201 void LinkerScript::adjustOutputSections() { 1202 // If the output section contains only symbol assignments, create a 1203 // corresponding output section. The issue is what to do with linker script 1204 // like ".foo : { symbol = 42; }". One option would be to convert it to 1205 // "symbol = 42;". That is, move the symbol out of the empty section 1206 // description. That seems to be what bfd does for this simple case. The 1207 // problem is that this is not completely general. bfd will give up and 1208 // create a dummy section too if there is a ". = . + 1" inside the section 1209 // for example. 1210 // Given that we want to create the section, we have to worry what impact 1211 // it will have on the link. For example, if we just create a section with 1212 // 0 for flags, it would change which PT_LOADs are created. 1213 // We could remember that particular section is dummy and ignore it in 1214 // other parts of the linker, but unfortunately there are quite a few places 1215 // that would need to change: 1216 // * The program header creation. 1217 // * The orphan section placement. 1218 // * The address assignment. 1219 // The other option is to pick flags that minimize the impact the section 1220 // will have on the rest of the linker. That is why we copy the flags from 1221 // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the 1222 // impact low. We do not propagate SHF_EXECINSTR as in some cases this can 1223 // lead to executable writeable section. 1224 uint64_t flags = SHF_ALLOC; 1225 1226 SmallVector<StringRef, 0> defPhdrs; 1227 bool seenRelro = false; 1228 for (SectionCommand *&cmd : sectionCommands) { 1229 if (!isa<OutputDesc>(cmd)) 1230 continue; 1231 auto *sec = &cast<OutputDesc>(cmd)->osec; 1232 1233 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1234 if (sec->alignExpr) 1235 sec->addralign = 1236 std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue()); 1237 1238 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1239 bool discardable = isEmpty && isDiscardable(*sec); 1240 // If sec has at least one input section and not discarded, remember its 1241 // flags to be inherited by subsequent output sections. (sec may contain 1242 // just one empty synthetic section.) 1243 if (sec->hasInputSections && !discardable) 1244 flags = sec->flags; 1245 1246 // We do not want to keep any special flags for output section 1247 // in case it is empty. 1248 if (isEmpty) { 1249 sec->flags = 1250 flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE); 1251 sec->sortRank = getSectionRank(*sec); 1252 } 1253 1254 // The code below may remove empty output sections. We should save the 1255 // specified program headers (if exist) and propagate them to subsequent 1256 // sections which do not specify program headers. 1257 // An example of such a linker script is: 1258 // SECTIONS { .empty : { *(.empty) } :rw 1259 // .foo : { *(.foo) } } 1260 // Note: at this point the order of output sections has not been finalized, 1261 // because orphans have not been inserted into their expected positions. We 1262 // will handle them in adjustSectionsAfterSorting(). 1263 if (sec->sectionIndex != UINT32_MAX) 1264 maybePropagatePhdrs(*sec, defPhdrs); 1265 1266 // Discard .relro_padding if we have not seen one RELRO section. Note: when 1267 // .tbss is the only RELRO section, there is no associated PT_LOAD segment 1268 // (needsPtLoad), so we don't append .relro_padding in the case. 1269 if (in.relroPadding && in.relroPadding->getParent() == sec && !seenRelro) 1270 discardable = true; 1271 if (discardable) { 1272 sec->markDead(); 1273 cmd = nullptr; 1274 } else { 1275 seenRelro |= 1276 sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS)); 1277 } 1278 } 1279 1280 // It is common practice to use very generic linker scripts. So for any 1281 // given run some of the output sections in the script will be empty. 1282 // We could create corresponding empty output sections, but that would 1283 // clutter the output. 1284 // We instead remove trivially empty sections. The bfd linker seems even 1285 // more aggressive at removing them. 1286 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1287 } 1288 1289 void LinkerScript::adjustSectionsAfterSorting() { 1290 // Try and find an appropriate memory region to assign offsets in. 1291 MemoryRegion *hint = nullptr; 1292 for (SectionCommand *cmd : sectionCommands) { 1293 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1294 OutputSection *sec = &osd->osec; 1295 if (!sec->lmaRegionName.empty()) { 1296 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1297 sec->lmaRegion = m; 1298 else 1299 error("memory region '" + sec->lmaRegionName + "' not declared"); 1300 } 1301 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1302 } 1303 } 1304 1305 // If output section command doesn't specify any segments, 1306 // and we haven't previously assigned any section to segment, 1307 // then we simply assign section to the very first load segment. 1308 // Below is an example of such linker script: 1309 // PHDRS { seg PT_LOAD; } 1310 // SECTIONS { .aaa : { *(.aaa) } } 1311 SmallVector<StringRef, 0> defPhdrs; 1312 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1313 return cmd.type == PT_LOAD; 1314 }); 1315 if (firstPtLoad != phdrsCommands.end()) 1316 defPhdrs.push_back(firstPtLoad->name); 1317 1318 // Walk the commands and propagate the program headers to commands that don't 1319 // explicitly specify them. 1320 for (SectionCommand *cmd : sectionCommands) 1321 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1322 maybePropagatePhdrs(osd->osec, defPhdrs); 1323 } 1324 1325 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1326 // If there is no SECTIONS or if the linkerscript is explicit about program 1327 // headers, do our best to allocate them. 1328 if (!script->hasSectionsCommand || allocateHeaders) 1329 return 0; 1330 // Otherwise only allocate program headers if that would not add a page. 1331 return alignDown(min, config->maxPageSize); 1332 } 1333 1334 // When the SECTIONS command is used, try to find an address for the file and 1335 // program headers output sections, which can be added to the first PT_LOAD 1336 // segment when program headers are created. 1337 // 1338 // We check if the headers fit below the first allocated section. If there isn't 1339 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1340 // and we'll also remove the PT_PHDR segment. 1341 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) { 1342 uint64_t min = std::numeric_limits<uint64_t>::max(); 1343 for (OutputSection *sec : outputSections) 1344 if (sec->flags & SHF_ALLOC) 1345 min = std::min<uint64_t>(min, sec->addr); 1346 1347 auto it = llvm::find_if( 1348 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1349 if (it == phdrs.end()) 1350 return; 1351 PhdrEntry *firstPTLoad = *it; 1352 1353 bool hasExplicitHeaders = 1354 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1355 return cmd.hasPhdrs || cmd.hasFilehdr; 1356 }); 1357 bool paged = !config->omagic && !config->nmagic; 1358 uint64_t headerSize = getHeaderSize(); 1359 if ((paged || hasExplicitHeaders) && 1360 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1361 min = alignDown(min - headerSize, config->maxPageSize); 1362 Out::elfHeader->addr = min; 1363 Out::programHeaders->addr = min + Out::elfHeader->size; 1364 return; 1365 } 1366 1367 // Error if we were explicitly asked to allocate headers. 1368 if (hasExplicitHeaders) 1369 error("could not allocate headers"); 1370 1371 Out::elfHeader->ptLoad = nullptr; 1372 Out::programHeaders->ptLoad = nullptr; 1373 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1374 1375 llvm::erase_if(phdrs, 1376 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1377 } 1378 1379 LinkerScript::AddressState::AddressState() { 1380 for (auto &mri : script->memoryRegions) { 1381 MemoryRegion *mr = mri.second; 1382 mr->curPos = (mr->origin)().getValue(); 1383 } 1384 } 1385 1386 // Here we assign addresses as instructed by linker script SECTIONS 1387 // sub-commands. Doing that allows us to use final VA values, so here 1388 // we also handle rest commands like symbol assignments and ASSERTs. 1389 // Return an output section that has changed its address or null, and a symbol 1390 // that has changed its section or value (or nullptr if no symbol has changed). 1391 std::pair<const OutputSection *, const Defined *> 1392 LinkerScript::assignAddresses() { 1393 if (script->hasSectionsCommand) { 1394 // With a linker script, assignment of addresses to headers is covered by 1395 // allocateHeaders(). 1396 dot = config->imageBase.value_or(0); 1397 } else { 1398 // Assign addresses to headers right now. 1399 dot = target->getImageBase(); 1400 Out::elfHeader->addr = dot; 1401 Out::programHeaders->addr = dot + Out::elfHeader->size; 1402 dot += getHeaderSize(); 1403 } 1404 1405 OutputSection *changedOsec = nullptr; 1406 AddressState st; 1407 state = &st; 1408 errorOnMissingSection = true; 1409 st.outSec = aether; 1410 recordedErrors.clear(); 1411 1412 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1413 for (SectionCommand *cmd : sectionCommands) { 1414 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1415 assign->addr = dot; 1416 assignSymbol(assign, false); 1417 assign->size = dot - assign->addr; 1418 continue; 1419 } 1420 if (assignOffsets(&cast<OutputDesc>(cmd)->osec) && !changedOsec) 1421 changedOsec = &cast<OutputDesc>(cmd)->osec; 1422 } 1423 1424 state = nullptr; 1425 return {changedOsec, getChangedSymbolAssignment(oldValues)}; 1426 } 1427 1428 static bool hasRegionOverflowed(MemoryRegion *mr) { 1429 if (!mr) 1430 return false; 1431 return mr->curPos - mr->getOrigin() > mr->getLength(); 1432 } 1433 1434 // Spill input sections in reverse order of address assignment to (potentially) 1435 // bring memory regions out of overflow. The size savings of a spill can only be 1436 // estimated, since general linker script arithmetic may occur afterwards. 1437 // Under-estimates may cause unnecessary spills, but over-estimates can always 1438 // be corrected on the next pass. 1439 bool LinkerScript::spillSections() { 1440 if (!config->enableNonContiguousRegions) 1441 return false; 1442 1443 bool spilled = false; 1444 for (SectionCommand *cmd : reverse(sectionCommands)) { 1445 auto *od = dyn_cast<OutputDesc>(cmd); 1446 if (!od) 1447 continue; 1448 OutputSection *osec = &od->osec; 1449 if (!osec->memRegion) 1450 continue; 1451 1452 // Input sections that have replaced a potential spill and should be removed 1453 // from their input section description. 1454 DenseSet<InputSection *> spilledInputSections; 1455 1456 for (SectionCommand *cmd : reverse(osec->commands)) { 1457 if (!hasRegionOverflowed(osec->memRegion) && 1458 !hasRegionOverflowed(osec->lmaRegion)) 1459 break; 1460 1461 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1462 if (!isd) 1463 continue; 1464 for (InputSection *isec : reverse(isd->sections)) { 1465 // Potential spill locations cannot be spilled. 1466 if (isa<PotentialSpillSection>(isec)) 1467 continue; 1468 1469 // Find the next potential spill location and remove it from the list. 1470 auto it = potentialSpillLists.find(isec); 1471 if (it == potentialSpillLists.end()) 1472 continue; 1473 PotentialSpillList &list = it->second; 1474 PotentialSpillSection *spill = list.head; 1475 if (spill->next) 1476 list.head = spill->next; 1477 else 1478 potentialSpillLists.erase(isec); 1479 1480 // Replace the next spill location with the spilled section and adjust 1481 // its properties to match the new location. Note that the alignment of 1482 // the spill section may have diverged from the original due to e.g. a 1483 // SUBALIGN. Correct assignment requires the spill's alignment to be 1484 // used, not the original. 1485 spilledInputSections.insert(isec); 1486 *llvm::find(spill->isd->sections, spill) = isec; 1487 isec->parent = spill->parent; 1488 isec->addralign = spill->addralign; 1489 1490 // Record the (potential) reduction in the region's end position. 1491 osec->memRegion->curPos -= isec->getSize(); 1492 if (osec->lmaRegion) 1493 osec->lmaRegion->curPos -= isec->getSize(); 1494 1495 // Spilling continues until the end position no longer overflows the 1496 // region. Then, another round of address assignment will either confirm 1497 // the spill's success or lead to yet more spilling. 1498 if (!hasRegionOverflowed(osec->memRegion) && 1499 !hasRegionOverflowed(osec->lmaRegion)) 1500 break; 1501 } 1502 1503 // Remove any spilled input sections to complete their move. 1504 if (!spilledInputSections.empty()) { 1505 spilled = true; 1506 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1507 return spilledInputSections.contains(isec); 1508 }); 1509 } 1510 } 1511 } 1512 1513 return spilled; 1514 } 1515 1516 // Erase any potential spill sections that were not used. 1517 void LinkerScript::erasePotentialSpillSections() { 1518 if (potentialSpillLists.empty()) 1519 return; 1520 1521 // Collect the set of input section descriptions that contain potential 1522 // spills. 1523 DenseSet<InputSectionDescription *> isds; 1524 for (const auto &[_, list] : potentialSpillLists) 1525 for (PotentialSpillSection *s = list.head; s; s = s->next) 1526 isds.insert(s->isd); 1527 1528 for (InputSectionDescription *isd : isds) 1529 llvm::erase_if(isd->sections, [](InputSection *s) { 1530 return isa<PotentialSpillSection>(s); 1531 }); 1532 1533 potentialSpillLists.clear(); 1534 } 1535 1536 // Creates program headers as instructed by PHDRS linker script command. 1537 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() { 1538 SmallVector<PhdrEntry *, 0> ret; 1539 1540 // Process PHDRS and FILEHDR keywords because they are not 1541 // real output sections and cannot be added in the following loop. 1542 for (const PhdrsCommand &cmd : phdrsCommands) { 1543 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R)); 1544 1545 if (cmd.hasFilehdr) 1546 phdr->add(Out::elfHeader); 1547 if (cmd.hasPhdrs) 1548 phdr->add(Out::programHeaders); 1549 1550 if (cmd.lmaExpr) { 1551 phdr->p_paddr = cmd.lmaExpr().getValue(); 1552 phdr->hasLMA = true; 1553 } 1554 ret.push_back(phdr); 1555 } 1556 1557 // Add output sections to program headers. 1558 for (OutputSection *sec : outputSections) { 1559 // Assign headers specified by linker script 1560 for (size_t id : getPhdrIndices(sec)) { 1561 ret[id]->add(sec); 1562 if (!phdrsCommands[id].flags) 1563 ret[id]->p_flags |= sec->getPhdrFlags(); 1564 } 1565 } 1566 return ret; 1567 } 1568 1569 // Returns true if we should emit an .interp section. 1570 // 1571 // We usually do. But if PHDRS commands are given, and 1572 // no PT_INTERP is there, there's no place to emit an 1573 // .interp, so we don't do that in that case. 1574 bool LinkerScript::needsInterpSection() { 1575 if (phdrsCommands.empty()) 1576 return true; 1577 for (PhdrsCommand &cmd : phdrsCommands) 1578 if (cmd.type == PT_INTERP) 1579 return true; 1580 return false; 1581 } 1582 1583 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1584 if (name == ".") { 1585 if (state) 1586 return {state->outSec, false, dot - state->outSec->addr, loc}; 1587 error(loc + ": unable to get location counter value"); 1588 return 0; 1589 } 1590 1591 if (Symbol *sym = symtab.find(name)) { 1592 if (auto *ds = dyn_cast<Defined>(sym)) { 1593 ExprValue v{ds->section, false, ds->value, loc}; 1594 // Retain the original st_type, so that the alias will get the same 1595 // behavior in relocation processing. Any operation will reset st_type to 1596 // STT_NOTYPE. 1597 v.type = ds->type; 1598 return v; 1599 } 1600 if (isa<SharedSymbol>(sym)) 1601 if (!errorOnMissingSection) 1602 return {nullptr, false, 0, loc}; 1603 } 1604 1605 error(loc + ": symbol not found: " + name); 1606 return 0; 1607 } 1608 1609 // Returns the index of the segment named Name. 1610 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1611 StringRef name) { 1612 for (size_t i = 0; i < vec.size(); ++i) 1613 if (vec[i].name == name) 1614 return i; 1615 return std::nullopt; 1616 } 1617 1618 // Returns indices of ELF headers containing specific section. Each index is a 1619 // zero based number of ELF header listed within PHDRS {} script block. 1620 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1621 SmallVector<size_t, 0> ret; 1622 1623 for (StringRef s : cmd->phdrs) { 1624 if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1625 ret.push_back(*idx); 1626 else if (s != "NONE") 1627 error(cmd->location + ": program header '" + s + 1628 "' is not listed in PHDRS"); 1629 } 1630 return ret; 1631 } 1632 1633 void LinkerScript::printMemoryUsage(raw_ostream& os) { 1634 auto printSize = [&](uint64_t size) { 1635 if ((size & 0x3fffffff) == 0) 1636 os << format_decimal(size >> 30, 10) << " GB"; 1637 else if ((size & 0xfffff) == 0) 1638 os << format_decimal(size >> 20, 10) << " MB"; 1639 else if ((size & 0x3ff) == 0) 1640 os << format_decimal(size >> 10, 10) << " KB"; 1641 else 1642 os << " " << format_decimal(size, 10) << " B"; 1643 }; 1644 os << "Memory region Used Size Region Size %age Used\n"; 1645 for (auto &pair : memoryRegions) { 1646 MemoryRegion *m = pair.second; 1647 uint64_t usedLength = m->curPos - m->getOrigin(); 1648 os << right_justify(m->name, 16) << ": "; 1649 printSize(usedLength); 1650 uint64_t length = m->getLength(); 1651 if (length != 0) { 1652 printSize(length); 1653 double percent = usedLength * 100.0 / length; 1654 os << " " << format("%6.2f%%", percent); 1655 } 1656 os << '\n'; 1657 } 1658 } 1659 1660 void LinkerScript::recordError(const Twine &msg) { 1661 auto &str = recordedErrors.emplace_back(); 1662 msg.toVector(str); 1663 } 1664 1665 static void checkMemoryRegion(const MemoryRegion *region, 1666 const OutputSection *osec, uint64_t addr) { 1667 uint64_t osecEnd = addr + osec->size; 1668 uint64_t regionEnd = region->getOrigin() + region->getLength(); 1669 if (osecEnd > regionEnd) { 1670 error("section '" + osec->name + "' will not fit in region '" + 1671 region->name + "': overflowed by " + Twine(osecEnd - regionEnd) + 1672 " bytes"); 1673 } 1674 } 1675 1676 void LinkerScript::checkFinalScriptConditions() const { 1677 for (StringRef err : recordedErrors) 1678 errorOrWarn(err); 1679 for (const OutputSection *sec : outputSections) { 1680 if (const MemoryRegion *memoryRegion = sec->memRegion) 1681 checkMemoryRegion(memoryRegion, sec, sec->addr); 1682 if (const MemoryRegion *lmaRegion = sec->lmaRegion) 1683 checkMemoryRegion(lmaRegion, sec, sec->getLMA()); 1684 } 1685 } 1686 1687 void LinkerScript::addScriptReferencedSymbolsToSymTable() { 1688 // Some symbols (such as __ehdr_start) are defined lazily only when there 1689 // are undefined symbols for them, so we add these to trigger that logic. 1690 auto reference = [](StringRef name) { 1691 Symbol *sym = symtab.addUnusedUndefined(name); 1692 sym->isUsedInRegularObj = true; 1693 sym->referenced = true; 1694 }; 1695 for (StringRef name : referencedSymbols) 1696 reference(name); 1697 1698 // Keeps track of references from which PROVIDE symbols have been added to the 1699 // symbol table. 1700 DenseSet<StringRef> added; 1701 SmallVector<const SmallVector<StringRef, 0> *, 0> symRefsVec; 1702 for (const auto &[name, symRefs] : provideMap) 1703 if (LinkerScript::shouldAddProvideSym(name) && added.insert(name).second) 1704 symRefsVec.push_back(&symRefs); 1705 while (symRefsVec.size()) { 1706 for (StringRef name : *symRefsVec.pop_back_val()) { 1707 reference(name); 1708 // Prevent the symbol from being discarded by --gc-sections. 1709 script->referencedSymbols.push_back(name); 1710 auto it = script->provideMap.find(name); 1711 if (it != script->provideMap.end() && 1712 LinkerScript::shouldAddProvideSym(name) && 1713 added.insert(name).second) { 1714 symRefsVec.push_back(&it->second); 1715 } 1716 } 1717 } 1718 } 1719 1720 bool LinkerScript::shouldAddProvideSym(StringRef symName) { 1721 Symbol *sym = symtab.find(symName); 1722 return sym && !sym->isDefined() && !sym->isCommon(); 1723 } 1724