1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputFiles.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <limits> 37 #include <string> 38 #include <vector> 39 40 using namespace llvm; 41 using namespace llvm::ELF; 42 using namespace llvm::object; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::elf; 46 47 std::unique_ptr<LinkerScript> elf::script; 48 49 static bool isSectionPrefix(StringRef prefix, StringRef name) { 50 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 51 } 52 53 static StringRef getOutputSectionName(const InputSectionBase *s) { 54 // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we 55 // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not 56 // technically required, but not doing it is odd). This code guarantees that. 57 if (auto *isec = dyn_cast<InputSection>(s)) { 58 if (InputSectionBase *rel = isec->getRelocatedSection()) { 59 OutputSection *out = rel->getOutputSection(); 60 if (!out) { 61 assert(config->relocatable && (rel->flags & SHF_LINK_ORDER)); 62 return s->name; 63 } 64 if (s->type == SHT_RELA) 65 return saver().save(".rela" + out->name); 66 return saver().save(".rel" + out->name); 67 } 68 } 69 70 if (config->relocatable) 71 return s->name; 72 73 // A BssSection created for a common symbol is identified as "COMMON" in 74 // linker scripts. It should go to .bss section. 75 if (s->name == "COMMON") 76 return ".bss"; 77 78 if (script->hasSectionsCommand) 79 return s->name; 80 81 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 82 // by grouping sections with certain prefixes. 83 84 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 85 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 86 // We provide an option -z keep-text-section-prefix to group such sections 87 // into separate output sections. This is more flexible. See also 88 // sortISDBySectionOrder(). 89 // ".text.unknown" means the hotness of the section is unknown. When 90 // SampleFDO is used, if a function doesn't have sample, it could be very 91 // cold or it could be a new function never being sampled. Those functions 92 // will be kept in the ".text.unknown" section. 93 // ".text.split." holds symbols which are split out from functions in other 94 // input sections. For example, with -fsplit-machine-functions, placing the 95 // cold parts in .text.split instead of .text.unlikely mitigates against poor 96 // profile inaccuracy. Techniques such as hugepage remapping can make 97 // conservative decisions at the section granularity. 98 if (isSectionPrefix(".text", s->name)) { 99 if (config->zKeepTextSectionPrefix) 100 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 101 ".text.startup", ".text.exit", ".text.split"}) 102 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 103 return v; 104 return ".text"; 105 } 106 107 for (StringRef v : 108 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata", 109 ".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array", 110 ".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"}) 111 if (isSectionPrefix(v, s->name)) 112 return v; 113 114 return s->name; 115 } 116 117 uint64_t ExprValue::getValue() const { 118 if (sec) 119 return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val), 120 alignment); 121 return alignToPowerOf2(val, alignment); 122 } 123 124 uint64_t ExprValue::getSecAddr() const { 125 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 126 } 127 128 uint64_t ExprValue::getSectionOffset() const { 129 return getValue() - getSecAddr(); 130 } 131 132 OutputDesc *LinkerScript::createOutputSection(StringRef name, 133 StringRef location) { 134 OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 135 OutputDesc *sec; 136 if (secRef && secRef->osec.location.empty()) { 137 // There was a forward reference. 138 sec = secRef; 139 } else { 140 sec = make<OutputDesc>(name, SHT_PROGBITS, 0); 141 if (!secRef) 142 secRef = sec; 143 } 144 sec->osec.location = std::string(location); 145 return sec; 146 } 147 148 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) { 149 OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)]; 150 if (!cmdRef) 151 cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0); 152 return cmdRef; 153 } 154 155 // Expands the memory region by the specified size. 156 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 157 StringRef secName) { 158 memRegion->curPos += size; 159 } 160 161 void LinkerScript::expandMemoryRegions(uint64_t size) { 162 if (state->memRegion) 163 expandMemoryRegion(state->memRegion, size, state->outSec->name); 164 // Only expand the LMARegion if it is different from memRegion. 165 if (state->lmaRegion && state->memRegion != state->lmaRegion) 166 expandMemoryRegion(state->lmaRegion, size, state->outSec->name); 167 } 168 169 void LinkerScript::expandOutputSection(uint64_t size) { 170 state->outSec->size += size; 171 expandMemoryRegions(size); 172 } 173 174 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 175 uint64_t val = e().getValue(); 176 // If val is smaller and we are in an output section, record the error and 177 // report it if this is the last assignAddresses iteration. dot may be smaller 178 // if there is another assignAddresses iteration. 179 if (val < dot && inSec) { 180 backwardDotErr = 181 (loc + ": unable to move location counter (0x" + Twine::utohexstr(dot) + 182 ") backward to 0x" + Twine::utohexstr(val) + " for section '" + 183 state->outSec->name + "'") 184 .str(); 185 } 186 187 // Update to location counter means update to section size. 188 if (inSec) 189 expandOutputSection(val - dot); 190 191 dot = val; 192 } 193 194 // Used for handling linker symbol assignments, for both finalizing 195 // their values and doing early declarations. Returns true if symbol 196 // should be defined from linker script. 197 static bool shouldDefineSym(SymbolAssignment *cmd) { 198 if (cmd->name == ".") 199 return false; 200 201 if (!cmd->provide) 202 return true; 203 204 // If a symbol was in PROVIDE(), we need to define it only 205 // when it is a referenced undefined symbol. 206 Symbol *b = symtab.find(cmd->name); 207 if (b && !b->isDefined() && !b->isCommon()) 208 return true; 209 return false; 210 } 211 212 // Called by processSymbolAssignments() to assign definitions to 213 // linker-script-defined symbols. 214 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 215 if (!shouldDefineSym(cmd)) 216 return; 217 218 // Define a symbol. 219 ExprValue value = cmd->expression(); 220 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 221 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 222 223 // When this function is called, section addresses have not been 224 // fixed yet. So, we may or may not know the value of the RHS 225 // expression. 226 // 227 // For example, if an expression is `x = 42`, we know x is always 42. 228 // However, if an expression is `x = .`, there's no way to know its 229 // value at the moment. 230 // 231 // We want to set symbol values early if we can. This allows us to 232 // use symbols as variables in linker scripts. Doing so allows us to 233 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 234 uint64_t symValue = value.sec ? 0 : value.getValue(); 235 236 Defined newSym(createInternalFile(cmd->location), cmd->name, STB_GLOBAL, 237 visibility, value.type, symValue, 0, sec); 238 239 Symbol *sym = symtab.insert(cmd->name); 240 sym->mergeProperties(newSym); 241 newSym.overwrite(*sym); 242 sym->isUsedInRegularObj = true; 243 cmd->sym = cast<Defined>(sym); 244 } 245 246 // This function is called from LinkerScript::declareSymbols. 247 // It creates a placeholder symbol if needed. 248 static void declareSymbol(SymbolAssignment *cmd) { 249 if (!shouldDefineSym(cmd)) 250 return; 251 252 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 253 Defined newSym(ctx.internalFile, cmd->name, STB_GLOBAL, visibility, 254 STT_NOTYPE, 0, 0, nullptr); 255 256 // If the symbol is already defined, its order is 0 (with absence indicating 257 // 0); otherwise it's assigned the order of the SymbolAssignment. 258 Symbol *sym = symtab.insert(cmd->name); 259 if (!sym->isDefined()) 260 ctx.scriptSymOrder.insert({sym, cmd->symOrder}); 261 262 // We can't calculate final value right now. 263 sym->mergeProperties(newSym); 264 newSym.overwrite(*sym); 265 266 cmd->sym = cast<Defined>(sym); 267 cmd->provide = false; 268 sym->isUsedInRegularObj = true; 269 sym->scriptDefined = true; 270 } 271 272 using SymbolAssignmentMap = 273 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 274 275 // Collect section/value pairs of linker-script-defined symbols. This is used to 276 // check whether symbol values converge. 277 static SymbolAssignmentMap 278 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 279 SymbolAssignmentMap ret; 280 for (SectionCommand *cmd : sectionCommands) { 281 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 282 if (assign->sym) // sym is nullptr for dot. 283 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 284 assign->sym->value)); 285 continue; 286 } 287 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 288 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 289 if (assign->sym) 290 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 291 assign->sym->value)); 292 } 293 return ret; 294 } 295 296 // Returns the lexicographical smallest (for determinism) Defined whose 297 // section/value has changed. 298 static const Defined * 299 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 300 const Defined *changed = nullptr; 301 for (auto &it : oldValues) { 302 const Defined *sym = it.first; 303 if (std::make_pair(sym->section, sym->value) != it.second && 304 (!changed || sym->getName() < changed->getName())) 305 changed = sym; 306 } 307 return changed; 308 } 309 310 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 311 // specified output section to the designated place. 312 void LinkerScript::processInsertCommands() { 313 SmallVector<OutputDesc *, 0> moves; 314 for (const InsertCommand &cmd : insertCommands) { 315 for (StringRef name : cmd.names) { 316 // If base is empty, it may have been discarded by 317 // adjustOutputSections(). We do not handle such output sections. 318 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 319 return isa<OutputDesc>(subCmd) && 320 cast<OutputDesc>(subCmd)->osec.name == name; 321 }); 322 if (from == sectionCommands.end()) 323 continue; 324 moves.push_back(cast<OutputDesc>(*from)); 325 sectionCommands.erase(from); 326 } 327 328 auto insertPos = 329 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 330 auto *to = dyn_cast<OutputDesc>(subCmd); 331 return to != nullptr && to->osec.name == cmd.where; 332 }); 333 if (insertPos == sectionCommands.end()) { 334 error("unable to insert " + cmd.names[0] + 335 (cmd.isAfter ? " after " : " before ") + cmd.where); 336 } else { 337 if (cmd.isAfter) 338 ++insertPos; 339 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 340 } 341 moves.clear(); 342 } 343 } 344 345 // Symbols defined in script should not be inlined by LTO. At the same time 346 // we don't know their final values until late stages of link. Here we scan 347 // over symbol assignment commands and create placeholder symbols if needed. 348 void LinkerScript::declareSymbols() { 349 assert(!state); 350 for (SectionCommand *cmd : sectionCommands) { 351 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 352 declareSymbol(assign); 353 continue; 354 } 355 356 // If the output section directive has constraints, 357 // we can't say for sure if it is going to be included or not. 358 // Skip such sections for now. Improve the checks if we ever 359 // need symbols from that sections to be declared early. 360 const OutputSection &sec = cast<OutputDesc>(cmd)->osec; 361 if (sec.constraint != ConstraintKind::NoConstraint) 362 continue; 363 for (SectionCommand *cmd : sec.commands) 364 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 365 declareSymbol(assign); 366 } 367 } 368 369 // This function is called from assignAddresses, while we are 370 // fixing the output section addresses. This function is supposed 371 // to set the final value for a given symbol assignment. 372 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 373 if (cmd->name == ".") { 374 setDot(cmd->expression, cmd->location, inSec); 375 return; 376 } 377 378 if (!cmd->sym) 379 return; 380 381 ExprValue v = cmd->expression(); 382 if (v.isAbsolute()) { 383 cmd->sym->section = nullptr; 384 cmd->sym->value = v.getValue(); 385 } else { 386 cmd->sym->section = v.sec; 387 cmd->sym->value = v.getSectionOffset(); 388 } 389 cmd->sym->type = v.type; 390 } 391 392 static inline StringRef getFilename(const InputFile *file) { 393 return file ? file->getNameForScript() : StringRef(); 394 } 395 396 bool InputSectionDescription::matchesFile(const InputFile *file) const { 397 if (filePat.isTrivialMatchAll()) 398 return true; 399 400 if (!matchesFileCache || matchesFileCache->first != file) 401 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 402 403 return matchesFileCache->second; 404 } 405 406 bool SectionPattern::excludesFile(const InputFile *file) const { 407 if (excludedFilePat.empty()) 408 return false; 409 410 if (!excludesFileCache || excludesFileCache->first != file) 411 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 412 413 return excludesFileCache->second; 414 } 415 416 bool LinkerScript::shouldKeep(InputSectionBase *s) { 417 for (InputSectionDescription *id : keptSections) 418 if (id->matchesFile(s->file)) 419 for (SectionPattern &p : id->sectionPatterns) 420 if (p.sectionPat.match(s->name) && 421 (s->flags & id->withFlags) == id->withFlags && 422 (s->flags & id->withoutFlags) == 0) 423 return true; 424 return false; 425 } 426 427 // A helper function for the SORT() command. 428 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 429 ConstraintKind kind) { 430 if (kind == ConstraintKind::NoConstraint) 431 return true; 432 433 bool isRW = llvm::any_of( 434 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 435 436 return (isRW && kind == ConstraintKind::ReadWrite) || 437 (!isRW && kind == ConstraintKind::ReadOnly); 438 } 439 440 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 441 SortSectionPolicy k) { 442 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 443 // ">" is not a mistake. Sections with larger alignments are placed 444 // before sections with smaller alignments in order to reduce the 445 // amount of padding necessary. This is compatible with GNU. 446 return a->addralign > b->addralign; 447 }; 448 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 449 return a->name < b->name; 450 }; 451 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 452 return getPriority(a->name) < getPriority(b->name); 453 }; 454 455 switch (k) { 456 case SortSectionPolicy::Default: 457 case SortSectionPolicy::None: 458 return; 459 case SortSectionPolicy::Alignment: 460 return llvm::stable_sort(vec, alignmentComparator); 461 case SortSectionPolicy::Name: 462 return llvm::stable_sort(vec, nameComparator); 463 case SortSectionPolicy::Priority: 464 return llvm::stable_sort(vec, priorityComparator); 465 case SortSectionPolicy::Reverse: 466 return std::reverse(vec.begin(), vec.end()); 467 } 468 } 469 470 // Sort sections as instructed by SORT-family commands and --sort-section 471 // option. Because SORT-family commands can be nested at most two depth 472 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 473 // line option is respected even if a SORT command is given, the exact 474 // behavior we have here is a bit complicated. Here are the rules. 475 // 476 // 1. If two SORT commands are given, --sort-section is ignored. 477 // 2. If one SORT command is given, and if it is not SORT_NONE, 478 // --sort-section is handled as an inner SORT command. 479 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 480 // 4. If no SORT command is given, sort according to --sort-section. 481 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 482 SortSectionPolicy outer, 483 SortSectionPolicy inner) { 484 if (outer == SortSectionPolicy::None) 485 return; 486 487 if (inner == SortSectionPolicy::Default) 488 sortSections(vec, config->sortSection); 489 else 490 sortSections(vec, inner); 491 sortSections(vec, outer); 492 } 493 494 // Compute and remember which sections the InputSectionDescription matches. 495 SmallVector<InputSectionBase *, 0> 496 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 497 ArrayRef<InputSectionBase *> sections) { 498 SmallVector<InputSectionBase *, 0> ret; 499 SmallVector<size_t, 0> indexes; 500 DenseSet<size_t> seen; 501 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 502 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 503 for (size_t i = begin; i != end; ++i) 504 ret[i] = sections[indexes[i]]; 505 sortInputSections( 506 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 507 config->sortSection, SortSectionPolicy::None); 508 }; 509 510 // Collects all sections that satisfy constraints of Cmd. 511 size_t sizeAfterPrevSort = 0; 512 for (const SectionPattern &pat : cmd->sectionPatterns) { 513 size_t sizeBeforeCurrPat = ret.size(); 514 515 for (size_t i = 0, e = sections.size(); i != e; ++i) { 516 // Skip if the section is dead or has been matched by a previous input 517 // section description or a previous pattern. 518 InputSectionBase *sec = sections[i]; 519 if (!sec->isLive() || sec->parent || seen.contains(i)) 520 continue; 521 522 // For --emit-relocs we have to ignore entries like 523 // .rela.dyn : { *(.rela.data) } 524 // which are common because they are in the default bfd script. 525 // We do not ignore SHT_REL[A] linker-synthesized sections here because 526 // want to support scripts that do custom layout for them. 527 if (isa<InputSection>(sec) && 528 cast<InputSection>(sec)->getRelocatedSection()) 529 continue; 530 531 // Check the name early to improve performance in the common case. 532 if (!pat.sectionPat.match(sec->name)) 533 continue; 534 535 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 536 (sec->flags & cmd->withFlags) != cmd->withFlags || 537 (sec->flags & cmd->withoutFlags) != 0) 538 continue; 539 540 ret.push_back(sec); 541 indexes.push_back(i); 542 seen.insert(i); 543 } 544 545 if (pat.sortOuter == SortSectionPolicy::Default) 546 continue; 547 548 // Matched sections are ordered by radix sort with the keys being (SORT*, 549 // --sort-section, input order), where SORT* (if present) is most 550 // significant. 551 // 552 // Matched sections between the previous SORT* and this SORT* are sorted by 553 // (--sort-alignment, input order). 554 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 555 // Matched sections by this SORT* pattern are sorted using all 3 keys. 556 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 557 // just sort by sortOuter and sortInner. 558 sortInputSections( 559 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 560 pat.sortOuter, pat.sortInner); 561 sizeAfterPrevSort = ret.size(); 562 } 563 // Matched sections after the last SORT* are sorted by (--sort-alignment, 564 // input order). 565 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 566 return ret; 567 } 568 569 void LinkerScript::discard(InputSectionBase &s) { 570 if (&s == in.shStrTab.get()) 571 error("discarding " + s.name + " section is not allowed"); 572 573 s.markDead(); 574 s.parent = nullptr; 575 for (InputSection *sec : s.dependentSections) 576 discard(*sec); 577 } 578 579 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 580 for (Partition &part : partitions) { 581 if (!part.armExidx || !part.armExidx->isLive()) 582 continue; 583 SmallVector<InputSectionBase *, 0> secs( 584 part.armExidx->exidxSections.begin(), 585 part.armExidx->exidxSections.end()); 586 for (SectionCommand *cmd : outCmd.commands) 587 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 588 for (InputSectionBase *s : computeInputSections(isd, secs)) 589 discard(*s); 590 } 591 } 592 593 SmallVector<InputSectionBase *, 0> 594 LinkerScript::createInputSectionList(OutputSection &outCmd) { 595 SmallVector<InputSectionBase *, 0> ret; 596 597 for (SectionCommand *cmd : outCmd.commands) { 598 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 599 isd->sectionBases = computeInputSections(isd, ctx.inputSections); 600 for (InputSectionBase *s : isd->sectionBases) 601 s->parent = &outCmd; 602 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 603 } 604 } 605 return ret; 606 } 607 608 // Create output sections described by SECTIONS commands. 609 void LinkerScript::processSectionCommands() { 610 auto process = [this](OutputSection *osec) { 611 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 612 613 // The output section name `/DISCARD/' is special. 614 // Any input section assigned to it is discarded. 615 if (osec->name == "/DISCARD/") { 616 for (InputSectionBase *s : v) 617 discard(*s); 618 discardSynthetic(*osec); 619 osec->commands.clear(); 620 return false; 621 } 622 623 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 624 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 625 // sections satisfy a given constraint. If not, a directive is handled 626 // as if it wasn't present from the beginning. 627 // 628 // Because we'll iterate over SectionCommands many more times, the easy 629 // way to "make it as if it wasn't present" is to make it empty. 630 if (!matchConstraints(v, osec->constraint)) { 631 for (InputSectionBase *s : v) 632 s->parent = nullptr; 633 osec->commands.clear(); 634 return false; 635 } 636 637 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 638 // is given, input sections are aligned to that value, whether the 639 // given value is larger or smaller than the original section alignment. 640 if (osec->subalignExpr) { 641 uint32_t subalign = osec->subalignExpr().getValue(); 642 for (InputSectionBase *s : v) 643 s->addralign = subalign; 644 } 645 646 // Set the partition field the same way OutputSection::recordSection() 647 // does. Partitions cannot be used with the SECTIONS command, so this is 648 // always 1. 649 osec->partition = 1; 650 return true; 651 }; 652 653 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 654 // or orphans. 655 DenseMap<CachedHashStringRef, OutputDesc *> map; 656 size_t i = 0; 657 for (OutputDesc *osd : overwriteSections) { 658 OutputSection *osec = &osd->osec; 659 if (process(osec) && 660 !map.try_emplace(CachedHashStringRef(osec->name), osd).second) 661 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 662 } 663 for (SectionCommand *&base : sectionCommands) 664 if (auto *osd = dyn_cast<OutputDesc>(base)) { 665 OutputSection *osec = &osd->osec; 666 if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) { 667 log(overwrite->osec.location + " overwrites " + osec->name); 668 overwrite->osec.sectionIndex = i++; 669 base = overwrite; 670 } else if (process(osec)) { 671 osec->sectionIndex = i++; 672 } 673 } 674 675 // If an OVERWRITE_SECTIONS specified output section is not in 676 // sectionCommands, append it to the end. The section will be inserted by 677 // orphan placement. 678 for (OutputDesc *osd : overwriteSections) 679 if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX) 680 sectionCommands.push_back(osd); 681 } 682 683 void LinkerScript::processSymbolAssignments() { 684 // Dot outside an output section still represents a relative address, whose 685 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 686 // that fills the void outside a section. It has an index of one, which is 687 // indistinguishable from any other regular section index. 688 aether = make<OutputSection>("", 0, SHF_ALLOC); 689 aether->sectionIndex = 1; 690 691 // `st` captures the local AddressState and makes it accessible deliberately. 692 // This is needed as there are some cases where we cannot just thread the 693 // current state through to a lambda function created by the script parser. 694 AddressState st; 695 state = &st; 696 st.outSec = aether; 697 698 for (SectionCommand *cmd : sectionCommands) { 699 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 700 addSymbol(assign); 701 else 702 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 703 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 704 addSymbol(assign); 705 } 706 707 state = nullptr; 708 } 709 710 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 711 StringRef name) { 712 for (SectionCommand *cmd : vec) 713 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 714 if (osd->osec.name == name) 715 return &osd->osec; 716 return nullptr; 717 } 718 719 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) { 720 OutputDesc *osd = script->createOutputSection(outsecName, "<internal>"); 721 osd->osec.recordSection(isec); 722 return osd; 723 } 724 725 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 726 InputSectionBase *isec, StringRef outsecName) { 727 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 728 // option is given. A section with SHT_GROUP defines a "section group", and 729 // its members have SHF_GROUP attribute. Usually these flags have already been 730 // stripped by InputFiles.cpp as section groups are processed and uniquified. 731 // However, for the -r option, we want to pass through all section groups 732 // as-is because adding/removing members or merging them with other groups 733 // change their semantics. 734 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 735 return createSection(isec, outsecName); 736 737 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 738 // relocation sections .rela.foo and .rela.bar for example. Most tools do 739 // not allow multiple REL[A] sections for output section. Hence we 740 // should combine these relocation sections into single output. 741 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 742 // other REL[A] sections created by linker itself. 743 if (!isa<SyntheticSection>(isec) && 744 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 745 auto *sec = cast<InputSection>(isec); 746 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 747 748 if (out->relocationSection) { 749 out->relocationSection->recordSection(sec); 750 return nullptr; 751 } 752 753 OutputDesc *osd = createSection(isec, outsecName); 754 out->relocationSection = &osd->osec; 755 return osd; 756 } 757 758 // The ELF spec just says 759 // ---------------------------------------------------------------- 760 // In the first phase, input sections that match in name, type and 761 // attribute flags should be concatenated into single sections. 762 // ---------------------------------------------------------------- 763 // 764 // However, it is clear that at least some flags have to be ignored for 765 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 766 // ignored. We should not have two output .text sections just because one was 767 // in a group and another was not for example. 768 // 769 // It also seems that wording was a late addition and didn't get the 770 // necessary scrutiny. 771 // 772 // Merging sections with different flags is expected by some users. One 773 // reason is that if one file has 774 // 775 // int *const bar __attribute__((section(".foo"))) = (int *)0; 776 // 777 // gcc with -fPIC will produce a read only .foo section. But if another 778 // file has 779 // 780 // int zed; 781 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 782 // 783 // gcc with -fPIC will produce a read write section. 784 // 785 // Last but not least, when using linker script the merge rules are forced by 786 // the script. Unfortunately, linker scripts are name based. This means that 787 // expressions like *(.foo*) can refer to multiple input sections with 788 // different flags. We cannot put them in different output sections or we 789 // would produce wrong results for 790 // 791 // start = .; *(.foo.*) end = .; *(.bar) 792 // 793 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 794 // another. The problem is that there is no way to layout those output 795 // sections such that the .foo sections are the only thing between the start 796 // and end symbols. 797 // 798 // Given the above issues, we instead merge sections by name and error on 799 // incompatible types and flags. 800 TinyPtrVector<OutputSection *> &v = map[outsecName]; 801 for (OutputSection *sec : v) { 802 if (sec->partition != isec->partition) 803 continue; 804 805 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 806 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 807 // change their semantics, so we only merge them in -r links if they will 808 // end up being linked to the same output section. The casts are fine 809 // because everything in the map was created by the orphan placement code. 810 auto *firstIsec = cast<InputSectionBase>( 811 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 812 OutputSection *firstIsecOut = 813 firstIsec->flags & SHF_LINK_ORDER 814 ? firstIsec->getLinkOrderDep()->getOutputSection() 815 : nullptr; 816 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 817 continue; 818 } 819 820 sec->recordSection(isec); 821 return nullptr; 822 } 823 824 OutputDesc *osd = createSection(isec, outsecName); 825 v.push_back(&osd->osec); 826 return osd; 827 } 828 829 // Add sections that didn't match any sections command. 830 void LinkerScript::addOrphanSections() { 831 StringMap<TinyPtrVector<OutputSection *>> map; 832 SmallVector<OutputDesc *, 0> v; 833 834 auto add = [&](InputSectionBase *s) { 835 if (s->isLive() && !s->parent) { 836 orphanSections.push_back(s); 837 838 StringRef name = getOutputSectionName(s); 839 if (config->unique) { 840 v.push_back(createSection(s, name)); 841 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 842 sec->recordSection(s); 843 } else { 844 if (OutputDesc *osd = addInputSec(map, s, name)) 845 v.push_back(osd); 846 assert(isa<MergeInputSection>(s) || 847 s->getOutputSection()->sectionIndex == UINT32_MAX); 848 } 849 } 850 }; 851 852 // For further --emit-reloc handling code we need target output section 853 // to be created before we create relocation output section, so we want 854 // to create target sections first. We do not want priority handling 855 // for synthetic sections because them are special. 856 size_t n = 0; 857 for (InputSectionBase *isec : ctx.inputSections) { 858 // Process InputSection and MergeInputSection. 859 if (LLVM_LIKELY(isa<InputSection>(isec))) 860 ctx.inputSections[n++] = isec; 861 862 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 863 // sections because we need to know the parent's output section before we 864 // can select an output section for the SHF_LINK_ORDER section. 865 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 866 continue; 867 868 if (auto *sec = dyn_cast<InputSection>(isec)) 869 if (InputSectionBase *rel = sec->getRelocatedSection()) 870 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 871 add(relIS); 872 add(isec); 873 if (config->relocatable) 874 for (InputSectionBase *depSec : isec->dependentSections) 875 if (depSec->flags & SHF_LINK_ORDER) 876 add(depSec); 877 } 878 // Keep just InputSection. 879 ctx.inputSections.resize(n); 880 881 // If no SECTIONS command was given, we should insert sections commands 882 // before others, so that we can handle scripts which refers them, 883 // for example: "foo = ABSOLUTE(ADDR(.text)));". 884 // When SECTIONS command is present we just add all orphans to the end. 885 if (hasSectionsCommand) 886 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 887 else 888 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 889 } 890 891 void LinkerScript::diagnoseOrphanHandling() const { 892 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 893 if (config->orphanHandling == OrphanHandlingPolicy::Place) 894 return; 895 for (const InputSectionBase *sec : orphanSections) { 896 // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present, 897 // automatically. The section is not supposed to be specified by scripts. 898 if (sec == in.relroPadding.get()) 899 continue; 900 // Input SHT_REL[A] retained by --emit-relocs are ignored by 901 // computeInputSections(). Don't warn/error. 902 if (isa<InputSection>(sec) && 903 cast<InputSection>(sec)->getRelocatedSection()) 904 continue; 905 906 StringRef name = getOutputSectionName(sec); 907 if (config->orphanHandling == OrphanHandlingPolicy::Error) 908 error(toString(sec) + " is being placed in '" + name + "'"); 909 else 910 warn(toString(sec) + " is being placed in '" + name + "'"); 911 } 912 } 913 914 void LinkerScript::diagnoseMissingSGSectionAddress() const { 915 if (!config->cmseImplib || !in.armCmseSGSection->isNeeded()) 916 return; 917 918 OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs"); 919 if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs")) 920 error("no address assigned to the veneers output section " + sec->name); 921 } 922 923 // This function searches for a memory region to place the given output 924 // section in. If found, a pointer to the appropriate memory region is 925 // returned in the first member of the pair. Otherwise, a nullptr is returned. 926 // The second member of the pair is a hint that should be passed to the 927 // subsequent call of this method. 928 std::pair<MemoryRegion *, MemoryRegion *> 929 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 930 // Non-allocatable sections are not part of the process image. 931 if (!(sec->flags & SHF_ALLOC)) { 932 bool hasInputOrByteCommand = 933 sec->hasInputSections || 934 llvm::any_of(sec->commands, [](SectionCommand *comm) { 935 return ByteCommand::classof(comm); 936 }); 937 if (!sec->memoryRegionName.empty() && hasInputOrByteCommand) 938 warn("ignoring memory region assignment for non-allocatable section '" + 939 sec->name + "'"); 940 return {nullptr, nullptr}; 941 } 942 943 // If a memory region name was specified in the output section command, 944 // then try to find that region first. 945 if (!sec->memoryRegionName.empty()) { 946 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 947 return {m, m}; 948 error("memory region '" + sec->memoryRegionName + "' not declared"); 949 return {nullptr, nullptr}; 950 } 951 952 // If at least one memory region is defined, all sections must 953 // belong to some memory region. Otherwise, we don't need to do 954 // anything for memory regions. 955 if (memoryRegions.empty()) 956 return {nullptr, nullptr}; 957 958 // An orphan section should continue the previous memory region. 959 if (sec->sectionIndex == UINT32_MAX && hint) 960 return {hint, hint}; 961 962 // See if a region can be found by matching section flags. 963 for (auto &pair : memoryRegions) { 964 MemoryRegion *m = pair.second; 965 if (m->compatibleWith(sec->flags)) 966 return {m, nullptr}; 967 } 968 969 // Otherwise, no suitable region was found. 970 error("no memory region specified for section '" + sec->name + "'"); 971 return {nullptr, nullptr}; 972 } 973 974 static OutputSection *findFirstSection(PhdrEntry *load) { 975 for (OutputSection *sec : outputSections) 976 if (sec->ptLoad == load) 977 return sec; 978 return nullptr; 979 } 980 981 // This function assigns offsets to input sections and an output section 982 // for a single sections command (e.g. ".text { *(.text); }"). 983 void LinkerScript::assignOffsets(OutputSection *sec) { 984 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 985 const bool sameMemRegion = state->memRegion == sec->memRegion; 986 const bool prevLMARegionIsDefault = state->lmaRegion == nullptr; 987 const uint64_t savedDot = dot; 988 state->memRegion = sec->memRegion; 989 state->lmaRegion = sec->lmaRegion; 990 991 if (!(sec->flags & SHF_ALLOC)) { 992 // Non-SHF_ALLOC sections have zero addresses. 993 dot = 0; 994 } else if (isTbss) { 995 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 996 // starts from the end address of the previous tbss section. 997 if (state->tbssAddr == 0) 998 state->tbssAddr = dot; 999 else 1000 dot = state->tbssAddr; 1001 } else { 1002 if (state->memRegion) 1003 dot = state->memRegion->curPos; 1004 if (sec->addrExpr) 1005 setDot(sec->addrExpr, sec->location, false); 1006 1007 // If the address of the section has been moved forward by an explicit 1008 // expression so that it now starts past the current curPos of the enclosing 1009 // region, we need to expand the current region to account for the space 1010 // between the previous section, if any, and the start of this section. 1011 if (state->memRegion && state->memRegion->curPos < dot) 1012 expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos, 1013 sec->name); 1014 } 1015 1016 state->outSec = sec; 1017 if (sec->addrExpr && script->hasSectionsCommand) { 1018 // The alignment is ignored. 1019 sec->addr = dot; 1020 } else { 1021 // sec->alignment is the max of ALIGN and the maximum of input 1022 // section alignments. 1023 const uint64_t pos = dot; 1024 dot = alignToPowerOf2(dot, sec->addralign); 1025 sec->addr = dot; 1026 expandMemoryRegions(dot - pos); 1027 } 1028 1029 // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() 1030 // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA 1031 // region is the default, and the two sections are in the same memory region, 1032 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1033 // heuristics described in 1034 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1035 if (sec->lmaExpr) { 1036 state->lmaOffset = sec->lmaExpr().getValue() - dot; 1037 } else if (MemoryRegion *mr = sec->lmaRegion) { 1038 uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign); 1039 if (mr->curPos < lmaStart) 1040 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1041 state->lmaOffset = lmaStart - dot; 1042 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1043 state->lmaOffset = 0; 1044 } 1045 1046 // Propagate state->lmaOffset to the first "non-header" section. 1047 if (PhdrEntry *l = sec->ptLoad) 1048 if (sec == findFirstSection(l)) 1049 l->lmaOffset = state->lmaOffset; 1050 1051 // We can call this method multiple times during the creation of 1052 // thunks and want to start over calculation each time. 1053 sec->size = 0; 1054 1055 // We visited SectionsCommands from processSectionCommands to 1056 // layout sections. Now, we visit SectionsCommands again to fix 1057 // section offsets. 1058 for (SectionCommand *cmd : sec->commands) { 1059 // This handles the assignments to symbol or to the dot. 1060 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1061 assign->addr = dot; 1062 assignSymbol(assign, true); 1063 assign->size = dot - assign->addr; 1064 continue; 1065 } 1066 1067 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1068 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1069 data->offset = dot - sec->addr; 1070 dot += data->size; 1071 expandOutputSection(data->size); 1072 continue; 1073 } 1074 1075 // Handle a single input section description command. 1076 // It calculates and assigns the offsets for each section and also 1077 // updates the output section size. 1078 for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { 1079 assert(isec->getParent() == sec); 1080 const uint64_t pos = dot; 1081 dot = alignToPowerOf2(dot, isec->addralign); 1082 isec->outSecOff = dot - sec->addr; 1083 dot += isec->getSize(); 1084 1085 // Update output section size after adding each section. This is so that 1086 // SIZEOF works correctly in the case below: 1087 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1088 expandOutputSection(dot - pos); 1089 } 1090 } 1091 1092 // If .relro_padding is present, round up the end to a common-page-size 1093 // boundary to protect the last page. 1094 if (in.relroPadding && sec == in.relroPadding->getParent()) 1095 expandOutputSection(alignToPowerOf2(dot, config->commonPageSize) - dot); 1096 1097 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1098 // as they are not part of the process image. 1099 if (!(sec->flags & SHF_ALLOC)) { 1100 dot = savedDot; 1101 } else if (isTbss) { 1102 // NOBITS TLS sections are similar. Additionally save the end address. 1103 state->tbssAddr = dot; 1104 dot = savedDot; 1105 } 1106 } 1107 1108 static bool isDiscardable(const OutputSection &sec) { 1109 if (sec.name == "/DISCARD/") 1110 return true; 1111 1112 // We do not want to remove OutputSections with expressions that reference 1113 // symbols even if the OutputSection is empty. We want to ensure that the 1114 // expressions can be evaluated and report an error if they cannot. 1115 if (sec.expressionsUseSymbols) 1116 return false; 1117 1118 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1119 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1120 // to maintain the integrity of the other Expression. 1121 if (sec.usedInExpression) 1122 return false; 1123 1124 for (SectionCommand *cmd : sec.commands) { 1125 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1126 // Don't create empty output sections just for unreferenced PROVIDE 1127 // symbols. 1128 if (assign->name != "." && !assign->sym) 1129 continue; 1130 1131 if (!isa<InputSectionDescription>(*cmd)) 1132 return false; 1133 } 1134 return true; 1135 } 1136 1137 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1138 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1139 isDiscardable(*sec); 1140 } 1141 1142 static void maybePropagatePhdrs(OutputSection &sec, 1143 SmallVector<StringRef, 0> &phdrs) { 1144 if (sec.phdrs.empty()) { 1145 // To match the bfd linker script behaviour, only propagate program 1146 // headers to sections that are allocated. 1147 if (sec.flags & SHF_ALLOC) 1148 sec.phdrs = phdrs; 1149 } else { 1150 phdrs = sec.phdrs; 1151 } 1152 } 1153 1154 void LinkerScript::adjustOutputSections() { 1155 // If the output section contains only symbol assignments, create a 1156 // corresponding output section. The issue is what to do with linker script 1157 // like ".foo : { symbol = 42; }". One option would be to convert it to 1158 // "symbol = 42;". That is, move the symbol out of the empty section 1159 // description. That seems to be what bfd does for this simple case. The 1160 // problem is that this is not completely general. bfd will give up and 1161 // create a dummy section too if there is a ". = . + 1" inside the section 1162 // for example. 1163 // Given that we want to create the section, we have to worry what impact 1164 // it will have on the link. For example, if we just create a section with 1165 // 0 for flags, it would change which PT_LOADs are created. 1166 // We could remember that particular section is dummy and ignore it in 1167 // other parts of the linker, but unfortunately there are quite a few places 1168 // that would need to change: 1169 // * The program header creation. 1170 // * The orphan section placement. 1171 // * The address assignment. 1172 // The other option is to pick flags that minimize the impact the section 1173 // will have on the rest of the linker. That is why we copy the flags from 1174 // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the 1175 // impact low. We do not propagate SHF_EXECINSTR as in some cases this can 1176 // lead to executable writeable section. 1177 uint64_t flags = SHF_ALLOC; 1178 1179 SmallVector<StringRef, 0> defPhdrs; 1180 bool seenRelro = false; 1181 for (SectionCommand *&cmd : sectionCommands) { 1182 if (!isa<OutputDesc>(cmd)) 1183 continue; 1184 auto *sec = &cast<OutputDesc>(cmd)->osec; 1185 1186 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1187 if (sec->alignExpr) 1188 sec->addralign = 1189 std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue()); 1190 1191 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1192 bool discardable = isEmpty && isDiscardable(*sec); 1193 // If sec has at least one input section and not discarded, remember its 1194 // flags to be inherited by subsequent output sections. (sec may contain 1195 // just one empty synthetic section.) 1196 if (sec->hasInputSections && !discardable) 1197 flags = sec->flags; 1198 1199 // We do not want to keep any special flags for output section 1200 // in case it is empty. 1201 if (isEmpty) 1202 sec->flags = 1203 flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE); 1204 1205 // The code below may remove empty output sections. We should save the 1206 // specified program headers (if exist) and propagate them to subsequent 1207 // sections which do not specify program headers. 1208 // An example of such a linker script is: 1209 // SECTIONS { .empty : { *(.empty) } :rw 1210 // .foo : { *(.foo) } } 1211 // Note: at this point the order of output sections has not been finalized, 1212 // because orphans have not been inserted into their expected positions. We 1213 // will handle them in adjustSectionsAfterSorting(). 1214 if (sec->sectionIndex != UINT32_MAX) 1215 maybePropagatePhdrs(*sec, defPhdrs); 1216 1217 // Discard .relro_padding if we have not seen one RELRO section. Note: when 1218 // .tbss is the only RELRO section, there is no associated PT_LOAD segment 1219 // (needsPtLoad), so we don't append .relro_padding in the case. 1220 if (in.relroPadding && in.relroPadding->getParent() == sec && !seenRelro) 1221 discardable = true; 1222 if (discardable) { 1223 sec->markDead(); 1224 cmd = nullptr; 1225 } else { 1226 seenRelro |= 1227 sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS)); 1228 } 1229 } 1230 1231 // It is common practice to use very generic linker scripts. So for any 1232 // given run some of the output sections in the script will be empty. 1233 // We could create corresponding empty output sections, but that would 1234 // clutter the output. 1235 // We instead remove trivially empty sections. The bfd linker seems even 1236 // more aggressive at removing them. 1237 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1238 } 1239 1240 void LinkerScript::adjustSectionsAfterSorting() { 1241 // Try and find an appropriate memory region to assign offsets in. 1242 MemoryRegion *hint = nullptr; 1243 for (SectionCommand *cmd : sectionCommands) { 1244 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1245 OutputSection *sec = &osd->osec; 1246 if (!sec->lmaRegionName.empty()) { 1247 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1248 sec->lmaRegion = m; 1249 else 1250 error("memory region '" + sec->lmaRegionName + "' not declared"); 1251 } 1252 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1253 } 1254 } 1255 1256 // If output section command doesn't specify any segments, 1257 // and we haven't previously assigned any section to segment, 1258 // then we simply assign section to the very first load segment. 1259 // Below is an example of such linker script: 1260 // PHDRS { seg PT_LOAD; } 1261 // SECTIONS { .aaa : { *(.aaa) } } 1262 SmallVector<StringRef, 0> defPhdrs; 1263 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1264 return cmd.type == PT_LOAD; 1265 }); 1266 if (firstPtLoad != phdrsCommands.end()) 1267 defPhdrs.push_back(firstPtLoad->name); 1268 1269 // Walk the commands and propagate the program headers to commands that don't 1270 // explicitly specify them. 1271 for (SectionCommand *cmd : sectionCommands) 1272 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1273 maybePropagatePhdrs(osd->osec, defPhdrs); 1274 } 1275 1276 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1277 // If there is no SECTIONS or if the linkerscript is explicit about program 1278 // headers, do our best to allocate them. 1279 if (!script->hasSectionsCommand || allocateHeaders) 1280 return 0; 1281 // Otherwise only allocate program headers if that would not add a page. 1282 return alignDown(min, config->maxPageSize); 1283 } 1284 1285 // When the SECTIONS command is used, try to find an address for the file and 1286 // program headers output sections, which can be added to the first PT_LOAD 1287 // segment when program headers are created. 1288 // 1289 // We check if the headers fit below the first allocated section. If there isn't 1290 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1291 // and we'll also remove the PT_PHDR segment. 1292 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) { 1293 uint64_t min = std::numeric_limits<uint64_t>::max(); 1294 for (OutputSection *sec : outputSections) 1295 if (sec->flags & SHF_ALLOC) 1296 min = std::min<uint64_t>(min, sec->addr); 1297 1298 auto it = llvm::find_if( 1299 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1300 if (it == phdrs.end()) 1301 return; 1302 PhdrEntry *firstPTLoad = *it; 1303 1304 bool hasExplicitHeaders = 1305 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1306 return cmd.hasPhdrs || cmd.hasFilehdr; 1307 }); 1308 bool paged = !config->omagic && !config->nmagic; 1309 uint64_t headerSize = getHeaderSize(); 1310 if ((paged || hasExplicitHeaders) && 1311 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1312 min = alignDown(min - headerSize, config->maxPageSize); 1313 Out::elfHeader->addr = min; 1314 Out::programHeaders->addr = min + Out::elfHeader->size; 1315 return; 1316 } 1317 1318 // Error if we were explicitly asked to allocate headers. 1319 if (hasExplicitHeaders) 1320 error("could not allocate headers"); 1321 1322 Out::elfHeader->ptLoad = nullptr; 1323 Out::programHeaders->ptLoad = nullptr; 1324 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1325 1326 llvm::erase_if(phdrs, 1327 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1328 } 1329 1330 LinkerScript::AddressState::AddressState() { 1331 for (auto &mri : script->memoryRegions) { 1332 MemoryRegion *mr = mri.second; 1333 mr->curPos = (mr->origin)().getValue(); 1334 } 1335 } 1336 1337 // Here we assign addresses as instructed by linker script SECTIONS 1338 // sub-commands. Doing that allows us to use final VA values, so here 1339 // we also handle rest commands like symbol assignments and ASSERTs. 1340 // Returns a symbol that has changed its section or value, or nullptr if no 1341 // symbol has changed. 1342 const Defined *LinkerScript::assignAddresses() { 1343 if (script->hasSectionsCommand) { 1344 // With a linker script, assignment of addresses to headers is covered by 1345 // allocateHeaders(). 1346 dot = config->imageBase.value_or(0); 1347 } else { 1348 // Assign addresses to headers right now. 1349 dot = target->getImageBase(); 1350 Out::elfHeader->addr = dot; 1351 Out::programHeaders->addr = dot + Out::elfHeader->size; 1352 dot += getHeaderSize(); 1353 } 1354 1355 AddressState st; 1356 state = &st; 1357 errorOnMissingSection = true; 1358 st.outSec = aether; 1359 backwardDotErr.clear(); 1360 1361 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1362 for (SectionCommand *cmd : sectionCommands) { 1363 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1364 assign->addr = dot; 1365 assignSymbol(assign, false); 1366 assign->size = dot - assign->addr; 1367 continue; 1368 } 1369 assignOffsets(&cast<OutputDesc>(cmd)->osec); 1370 } 1371 1372 state = nullptr; 1373 return getChangedSymbolAssignment(oldValues); 1374 } 1375 1376 // Creates program headers as instructed by PHDRS linker script command. 1377 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() { 1378 SmallVector<PhdrEntry *, 0> ret; 1379 1380 // Process PHDRS and FILEHDR keywords because they are not 1381 // real output sections and cannot be added in the following loop. 1382 for (const PhdrsCommand &cmd : phdrsCommands) { 1383 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R)); 1384 1385 if (cmd.hasFilehdr) 1386 phdr->add(Out::elfHeader); 1387 if (cmd.hasPhdrs) 1388 phdr->add(Out::programHeaders); 1389 1390 if (cmd.lmaExpr) { 1391 phdr->p_paddr = cmd.lmaExpr().getValue(); 1392 phdr->hasLMA = true; 1393 } 1394 ret.push_back(phdr); 1395 } 1396 1397 // Add output sections to program headers. 1398 for (OutputSection *sec : outputSections) { 1399 // Assign headers specified by linker script 1400 for (size_t id : getPhdrIndices(sec)) { 1401 ret[id]->add(sec); 1402 if (!phdrsCommands[id].flags) 1403 ret[id]->p_flags |= sec->getPhdrFlags(); 1404 } 1405 } 1406 return ret; 1407 } 1408 1409 // Returns true if we should emit an .interp section. 1410 // 1411 // We usually do. But if PHDRS commands are given, and 1412 // no PT_INTERP is there, there's no place to emit an 1413 // .interp, so we don't do that in that case. 1414 bool LinkerScript::needsInterpSection() { 1415 if (phdrsCommands.empty()) 1416 return true; 1417 for (PhdrsCommand &cmd : phdrsCommands) 1418 if (cmd.type == PT_INTERP) 1419 return true; 1420 return false; 1421 } 1422 1423 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1424 if (name == ".") { 1425 if (state) 1426 return {state->outSec, false, dot - state->outSec->addr, loc}; 1427 error(loc + ": unable to get location counter value"); 1428 return 0; 1429 } 1430 1431 if (Symbol *sym = symtab.find(name)) { 1432 if (auto *ds = dyn_cast<Defined>(sym)) { 1433 ExprValue v{ds->section, false, ds->value, loc}; 1434 // Retain the original st_type, so that the alias will get the same 1435 // behavior in relocation processing. Any operation will reset st_type to 1436 // STT_NOTYPE. 1437 v.type = ds->type; 1438 return v; 1439 } 1440 if (isa<SharedSymbol>(sym)) 1441 if (!errorOnMissingSection) 1442 return {nullptr, false, 0, loc}; 1443 } 1444 1445 error(loc + ": symbol not found: " + name); 1446 return 0; 1447 } 1448 1449 // Returns the index of the segment named Name. 1450 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1451 StringRef name) { 1452 for (size_t i = 0; i < vec.size(); ++i) 1453 if (vec[i].name == name) 1454 return i; 1455 return std::nullopt; 1456 } 1457 1458 // Returns indices of ELF headers containing specific section. Each index is a 1459 // zero based number of ELF header listed within PHDRS {} script block. 1460 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1461 SmallVector<size_t, 0> ret; 1462 1463 for (StringRef s : cmd->phdrs) { 1464 if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1465 ret.push_back(*idx); 1466 else if (s != "NONE") 1467 error(cmd->location + ": program header '" + s + 1468 "' is not listed in PHDRS"); 1469 } 1470 return ret; 1471 } 1472 1473 void LinkerScript::printMemoryUsage(raw_ostream& os) { 1474 auto printSize = [&](uint64_t size) { 1475 if ((size & 0x3fffffff) == 0) 1476 os << format_decimal(size >> 30, 10) << " GB"; 1477 else if ((size & 0xfffff) == 0) 1478 os << format_decimal(size >> 20, 10) << " MB"; 1479 else if ((size & 0x3ff) == 0) 1480 os << format_decimal(size >> 10, 10) << " KB"; 1481 else 1482 os << " " << format_decimal(size, 10) << " B"; 1483 }; 1484 os << "Memory region Used Size Region Size %age Used\n"; 1485 for (auto &pair : memoryRegions) { 1486 MemoryRegion *m = pair.second; 1487 uint64_t usedLength = m->curPos - m->getOrigin(); 1488 os << right_justify(m->name, 16) << ": "; 1489 printSize(usedLength); 1490 uint64_t length = m->getLength(); 1491 if (length != 0) { 1492 printSize(length); 1493 double percent = usedLength * 100.0 / length; 1494 os << " " << format("%6.2f%%", percent); 1495 } 1496 os << '\n'; 1497 } 1498 } 1499 1500 static void checkMemoryRegion(const MemoryRegion *region, 1501 const OutputSection *osec, uint64_t addr) { 1502 uint64_t osecEnd = addr + osec->size; 1503 uint64_t regionEnd = region->getOrigin() + region->getLength(); 1504 if (osecEnd > regionEnd) { 1505 error("section '" + osec->name + "' will not fit in region '" + 1506 region->name + "': overflowed by " + Twine(osecEnd - regionEnd) + 1507 " bytes"); 1508 } 1509 } 1510 1511 void LinkerScript::checkFinalScriptConditions() const { 1512 if (backwardDotErr.size()) 1513 errorOrWarn(backwardDotErr); 1514 for (const OutputSection *sec : outputSections) { 1515 if (const MemoryRegion *memoryRegion = sec->memRegion) 1516 checkMemoryRegion(memoryRegion, sec, sec->addr); 1517 if (const MemoryRegion *lmaRegion = sec->lmaRegion) 1518 checkMemoryRegion(lmaRegion, sec, sec->getLMA()); 1519 } 1520 } 1521