xref: /freebsd/contrib/llvm-project/lld/ELF/LinkerScript.cpp (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::elf;
48 
49 LinkerScript *elf::script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = std::string(location);
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue();
107   uint64_t length = (memRegion->length)().getValue();
108   if (newSize > length)
109     error("section '" + secName + "' will not fit in region '" + regionName +
110           "': overflowed by " + Twine(newSize - length) + " bytes");
111 }
112 
113 void LinkerScript::expandMemoryRegions(uint64_t size) {
114   if (ctx->memRegion)
115     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
116                        ctx->outSec->name);
117   // Only expand the LMARegion if it is different from memRegion.
118   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
119     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
120                        ctx->outSec->name);
121 }
122 
123 void LinkerScript::expandOutputSection(uint64_t size) {
124   ctx->outSec->size += size;
125   expandMemoryRegions(size);
126 }
127 
128 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
129   uint64_t val = e().getValue();
130   if (val < dot && inSec)
131     error(loc + ": unable to move location counter backward for: " +
132           ctx->outSec->name);
133 
134   // Update to location counter means update to section size.
135   if (inSec)
136     expandOutputSection(val - dot);
137 
138   dot = val;
139 }
140 
141 // Used for handling linker symbol assignments, for both finalizing
142 // their values and doing early declarations. Returns true if symbol
143 // should be defined from linker script.
144 static bool shouldDefineSym(SymbolAssignment *cmd) {
145   if (cmd->name == ".")
146     return false;
147 
148   if (!cmd->provide)
149     return true;
150 
151   // If a symbol was in PROVIDE(), we need to define it only
152   // when it is a referenced undefined symbol.
153   Symbol *b = symtab->find(cmd->name);
154   if (b && !b->isDefined())
155     return true;
156   return false;
157 }
158 
159 // Called by processSymbolAssignments() to assign definitions to
160 // linker-script-defined symbols.
161 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
162   if (!shouldDefineSym(cmd))
163     return;
164 
165   // Define a symbol.
166   ExprValue value = cmd->expression();
167   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
168   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
169 
170   // When this function is called, section addresses have not been
171   // fixed yet. So, we may or may not know the value of the RHS
172   // expression.
173   //
174   // For example, if an expression is `x = 42`, we know x is always 42.
175   // However, if an expression is `x = .`, there's no way to know its
176   // value at the moment.
177   //
178   // We want to set symbol values early if we can. This allows us to
179   // use symbols as variables in linker scripts. Doing so allows us to
180   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
181   uint64_t symValue = value.sec ? 0 : value.getValue();
182 
183   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type,
184                  symValue, 0, sec);
185 
186   Symbol *sym = symtab->insert(cmd->name);
187   sym->mergeProperties(newSym);
188   sym->replace(newSym);
189   cmd->sym = cast<Defined>(sym);
190 }
191 
192 // This function is called from LinkerScript::declareSymbols.
193 // It creates a placeholder symbol if needed.
194 static void declareSymbol(SymbolAssignment *cmd) {
195   if (!shouldDefineSym(cmd))
196     return;
197 
198   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
199   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
200                  nullptr);
201 
202   // We can't calculate final value right now.
203   Symbol *sym = symtab->insert(cmd->name);
204   sym->mergeProperties(newSym);
205   sym->replace(newSym);
206 
207   cmd->sym = cast<Defined>(sym);
208   cmd->provide = false;
209   sym->scriptDefined = true;
210 }
211 
212 using SymbolAssignmentMap =
213     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
214 
215 // Collect section/value pairs of linker-script-defined symbols. This is used to
216 // check whether symbol values converge.
217 static SymbolAssignmentMap
218 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
219   SymbolAssignmentMap ret;
220   for (BaseCommand *base : sectionCommands) {
221     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
222       if (cmd->sym) // sym is nullptr for dot.
223         ret.try_emplace(cmd->sym,
224                         std::make_pair(cmd->sym->section, cmd->sym->value));
225       continue;
226     }
227     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
228       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
229         if (cmd->sym)
230           ret.try_emplace(cmd->sym,
231                           std::make_pair(cmd->sym->section, cmd->sym->value));
232   }
233   return ret;
234 }
235 
236 // Returns the lexicographical smallest (for determinism) Defined whose
237 // section/value has changed.
238 static const Defined *
239 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
240   const Defined *changed = nullptr;
241   for (auto &it : oldValues) {
242     const Defined *sym = it.first;
243     if (std::make_pair(sym->section, sym->value) != it.second &&
244         (!changed || sym->getName() < changed->getName()))
245       changed = sym;
246   }
247   return changed;
248 }
249 
250 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
251 // specified output section to the designated place.
252 void LinkerScript::processInsertCommands() {
253   for (const InsertCommand &cmd : insertCommands) {
254     // If cmd.os is empty, it may have been discarded by
255     // adjustSectionsBeforeSorting(). We do not handle such output sections.
256     auto from = llvm::find(sectionCommands, cmd.os);
257     if (from == sectionCommands.end())
258       continue;
259     sectionCommands.erase(from);
260 
261     auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) {
262       auto *to = dyn_cast<OutputSection>(base);
263       return to != nullptr && to->name == cmd.where;
264     });
265     if (insertPos == sectionCommands.end()) {
266       error("unable to insert " + cmd.os->name +
267             (cmd.isAfter ? " after " : " before ") + cmd.where);
268     } else {
269       if (cmd.isAfter)
270         ++insertPos;
271       sectionCommands.insert(insertPos, cmd.os);
272     }
273   }
274 }
275 
276 // Symbols defined in script should not be inlined by LTO. At the same time
277 // we don't know their final values until late stages of link. Here we scan
278 // over symbol assignment commands and create placeholder symbols if needed.
279 void LinkerScript::declareSymbols() {
280   assert(!ctx);
281   for (BaseCommand *base : sectionCommands) {
282     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
283       declareSymbol(cmd);
284       continue;
285     }
286 
287     // If the output section directive has constraints,
288     // we can't say for sure if it is going to be included or not.
289     // Skip such sections for now. Improve the checks if we ever
290     // need symbols from that sections to be declared early.
291     auto *sec = cast<OutputSection>(base);
292     if (sec->constraint != ConstraintKind::NoConstraint)
293       continue;
294     for (BaseCommand *base2 : sec->sectionCommands)
295       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
296         declareSymbol(cmd);
297   }
298 }
299 
300 // This function is called from assignAddresses, while we are
301 // fixing the output section addresses. This function is supposed
302 // to set the final value for a given symbol assignment.
303 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
304   if (cmd->name == ".") {
305     setDot(cmd->expression, cmd->location, inSec);
306     return;
307   }
308 
309   if (!cmd->sym)
310     return;
311 
312   ExprValue v = cmd->expression();
313   if (v.isAbsolute()) {
314     cmd->sym->section = nullptr;
315     cmd->sym->value = v.getValue();
316   } else {
317     cmd->sym->section = v.sec;
318     cmd->sym->value = v.getSectionOffset();
319   }
320   cmd->sym->type = v.type;
321 }
322 
323 static std::string getFilename(InputFile *file) {
324   if (!file)
325     return "";
326   if (file->archiveName.empty())
327     return std::string(file->getName());
328   return (file->archiveName + ':' + file->getName()).str();
329 }
330 
331 bool LinkerScript::shouldKeep(InputSectionBase *s) {
332   if (keptSections.empty())
333     return false;
334   std::string filename = getFilename(s->file);
335   for (InputSectionDescription *id : keptSections)
336     if (id->filePat.match(filename))
337       for (SectionPattern &p : id->sectionPatterns)
338         if (p.sectionPat.match(s->name) &&
339             (s->flags & id->withFlags) == id->withFlags &&
340             (s->flags & id->withoutFlags) == 0)
341           return true;
342   return false;
343 }
344 
345 // A helper function for the SORT() command.
346 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
347                              ConstraintKind kind) {
348   if (kind == ConstraintKind::NoConstraint)
349     return true;
350 
351   bool isRW = llvm::any_of(
352       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
353 
354   return (isRW && kind == ConstraintKind::ReadWrite) ||
355          (!isRW && kind == ConstraintKind::ReadOnly);
356 }
357 
358 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
359                          SortSectionPolicy k) {
360   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
361     // ">" is not a mistake. Sections with larger alignments are placed
362     // before sections with smaller alignments in order to reduce the
363     // amount of padding necessary. This is compatible with GNU.
364     return a->alignment > b->alignment;
365   };
366   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
367     return a->name < b->name;
368   };
369   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
370     return getPriority(a->name) < getPriority(b->name);
371   };
372 
373   switch (k) {
374   case SortSectionPolicy::Default:
375   case SortSectionPolicy::None:
376     return;
377   case SortSectionPolicy::Alignment:
378     return llvm::stable_sort(vec, alignmentComparator);
379   case SortSectionPolicy::Name:
380     return llvm::stable_sort(vec, nameComparator);
381   case SortSectionPolicy::Priority:
382     return llvm::stable_sort(vec, priorityComparator);
383   }
384 }
385 
386 // Sort sections as instructed by SORT-family commands and --sort-section
387 // option. Because SORT-family commands can be nested at most two depth
388 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
389 // line option is respected even if a SORT command is given, the exact
390 // behavior we have here is a bit complicated. Here are the rules.
391 //
392 // 1. If two SORT commands are given, --sort-section is ignored.
393 // 2. If one SORT command is given, and if it is not SORT_NONE,
394 //    --sort-section is handled as an inner SORT command.
395 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
396 // 4. If no SORT command is given, sort according to --sort-section.
397 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
398                               const SectionPattern &pat) {
399   if (pat.sortOuter == SortSectionPolicy::None)
400     return;
401 
402   if (pat.sortInner == SortSectionPolicy::Default)
403     sortSections(vec, config->sortSection);
404   else
405     sortSections(vec, pat.sortInner);
406   sortSections(vec, pat.sortOuter);
407 }
408 
409 // Compute and remember which sections the InputSectionDescription matches.
410 std::vector<InputSectionBase *>
411 LinkerScript::computeInputSections(const InputSectionDescription *cmd,
412                                    ArrayRef<InputSectionBase *> sections) {
413   std::vector<InputSectionBase *> ret;
414 
415   // Collects all sections that satisfy constraints of Cmd.
416   for (const SectionPattern &pat : cmd->sectionPatterns) {
417     size_t sizeBefore = ret.size();
418 
419     for (InputSectionBase *sec : sections) {
420       if (!sec->isLive() || sec->parent)
421         continue;
422 
423       // For -emit-relocs we have to ignore entries like
424       //   .rela.dyn : { *(.rela.data) }
425       // which are common because they are in the default bfd script.
426       // We do not ignore SHT_REL[A] linker-synthesized sections here because
427       // want to support scripts that do custom layout for them.
428       if (isa<InputSection>(sec) &&
429           cast<InputSection>(sec)->getRelocatedSection())
430         continue;
431 
432       // Check the name early to improve performance in the common case.
433       if (!pat.sectionPat.match(sec->name))
434         continue;
435 
436       std::string filename = getFilename(sec->file);
437       if (!cmd->filePat.match(filename) ||
438           pat.excludedFilePat.match(filename) ||
439           (sec->flags & cmd->withFlags) != cmd->withFlags ||
440           (sec->flags & cmd->withoutFlags) != 0)
441         continue;
442 
443       ret.push_back(sec);
444     }
445 
446     sortInputSections(
447         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
448   }
449   return ret;
450 }
451 
452 void LinkerScript::discard(InputSectionBase *s) {
453   if (s == in.shStrTab || s == mainPart->relrDyn)
454     error("discarding " + s->name + " section is not allowed");
455 
456   // You can discard .hash and .gnu.hash sections by linker scripts. Since
457   // they are synthesized sections, we need to handle them differently than
458   // other regular sections.
459   if (s == mainPart->gnuHashTab)
460     mainPart->gnuHashTab = nullptr;
461   if (s == mainPart->hashTab)
462     mainPart->hashTab = nullptr;
463 
464   s->markDead();
465   s->parent = nullptr;
466   for (InputSection *ds : s->dependentSections)
467     discard(ds);
468 }
469 
470 void LinkerScript::discardSynthetic(OutputSection &outCmd) {
471   for (Partition &part : partitions) {
472     if (!part.armExidx || !part.armExidx->isLive())
473       continue;
474     std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(),
475                                          part.armExidx->exidxSections.end());
476     for (BaseCommand *base : outCmd.sectionCommands)
477       if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
478         std::vector<InputSectionBase *> matches =
479             computeInputSections(cmd, secs);
480         for (InputSectionBase *s : matches)
481           discard(s);
482       }
483   }
484 }
485 
486 std::vector<InputSectionBase *>
487 LinkerScript::createInputSectionList(OutputSection &outCmd) {
488   std::vector<InputSectionBase *> ret;
489 
490   for (BaseCommand *base : outCmd.sectionCommands) {
491     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
492       cmd->sectionBases = computeInputSections(cmd, inputSections);
493       for (InputSectionBase *s : cmd->sectionBases)
494         s->parent = &outCmd;
495       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
496     }
497   }
498   return ret;
499 }
500 
501 // Create output sections described by SECTIONS commands.
502 void LinkerScript::processSectionCommands() {
503   size_t i = 0;
504   for (BaseCommand *base : sectionCommands) {
505     if (auto *sec = dyn_cast<OutputSection>(base)) {
506       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
507 
508       // The output section name `/DISCARD/' is special.
509       // Any input section assigned to it is discarded.
510       if (sec->name == "/DISCARD/") {
511         for (InputSectionBase *s : v)
512           discard(s);
513         discardSynthetic(*sec);
514         sec->sectionCommands.clear();
515         continue;
516       }
517 
518       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
519       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
520       // sections satisfy a given constraint. If not, a directive is handled
521       // as if it wasn't present from the beginning.
522       //
523       // Because we'll iterate over SectionCommands many more times, the easy
524       // way to "make it as if it wasn't present" is to make it empty.
525       if (!matchConstraints(v, sec->constraint)) {
526         for (InputSectionBase *s : v)
527           s->parent = nullptr;
528         sec->sectionCommands.clear();
529         continue;
530       }
531 
532       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
533       // is given, input sections are aligned to that value, whether the
534       // given value is larger or smaller than the original section alignment.
535       if (sec->subalignExpr) {
536         uint32_t subalign = sec->subalignExpr().getValue();
537         for (InputSectionBase *s : v)
538           s->alignment = subalign;
539       }
540 
541       // Set the partition field the same way OutputSection::recordSection()
542       // does. Partitions cannot be used with the SECTIONS command, so this is
543       // always 1.
544       sec->partition = 1;
545 
546       sec->sectionIndex = i++;
547     }
548   }
549 }
550 
551 void LinkerScript::processSymbolAssignments() {
552   // Dot outside an output section still represents a relative address, whose
553   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
554   // that fills the void outside a section. It has an index of one, which is
555   // indistinguishable from any other regular section index.
556   aether = make<OutputSection>("", 0, SHF_ALLOC);
557   aether->sectionIndex = 1;
558 
559   // ctx captures the local AddressState and makes it accessible deliberately.
560   // This is needed as there are some cases where we cannot just thread the
561   // current state through to a lambda function created by the script parser.
562   AddressState state;
563   ctx = &state;
564   ctx->outSec = aether;
565 
566   for (BaseCommand *base : sectionCommands) {
567     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
568       addSymbol(cmd);
569     else
570       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
571         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
572           addSymbol(cmd);
573   }
574 
575   ctx = nullptr;
576 }
577 
578 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
579                                  StringRef name) {
580   for (BaseCommand *base : vec)
581     if (auto *sec = dyn_cast<OutputSection>(base))
582       if (sec->name == name)
583         return sec;
584   return nullptr;
585 }
586 
587 static OutputSection *createSection(InputSectionBase *isec,
588                                     StringRef outsecName) {
589   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
590   sec->recordSection(isec);
591   return sec;
592 }
593 
594 static OutputSection *
595 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
596             InputSectionBase *isec, StringRef outsecName) {
597   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
598   // option is given. A section with SHT_GROUP defines a "section group", and
599   // its members have SHF_GROUP attribute. Usually these flags have already been
600   // stripped by InputFiles.cpp as section groups are processed and uniquified.
601   // However, for the -r option, we want to pass through all section groups
602   // as-is because adding/removing members or merging them with other groups
603   // change their semantics.
604   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
605     return createSection(isec, outsecName);
606 
607   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
608   // relocation sections .rela.foo and .rela.bar for example. Most tools do
609   // not allow multiple REL[A] sections for output section. Hence we
610   // should combine these relocation sections into single output.
611   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
612   // other REL[A] sections created by linker itself.
613   if (!isa<SyntheticSection>(isec) &&
614       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
615     auto *sec = cast<InputSection>(isec);
616     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
617 
618     if (out->relocationSection) {
619       out->relocationSection->recordSection(sec);
620       return nullptr;
621     }
622 
623     out->relocationSection = createSection(isec, outsecName);
624     return out->relocationSection;
625   }
626 
627   //  The ELF spec just says
628   // ----------------------------------------------------------------
629   // In the first phase, input sections that match in name, type and
630   // attribute flags should be concatenated into single sections.
631   // ----------------------------------------------------------------
632   //
633   // However, it is clear that at least some flags have to be ignored for
634   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
635   // ignored. We should not have two output .text sections just because one was
636   // in a group and another was not for example.
637   //
638   // It also seems that wording was a late addition and didn't get the
639   // necessary scrutiny.
640   //
641   // Merging sections with different flags is expected by some users. One
642   // reason is that if one file has
643   //
644   // int *const bar __attribute__((section(".foo"))) = (int *)0;
645   //
646   // gcc with -fPIC will produce a read only .foo section. But if another
647   // file has
648   //
649   // int zed;
650   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
651   //
652   // gcc with -fPIC will produce a read write section.
653   //
654   // Last but not least, when using linker script the merge rules are forced by
655   // the script. Unfortunately, linker scripts are name based. This means that
656   // expressions like *(.foo*) can refer to multiple input sections with
657   // different flags. We cannot put them in different output sections or we
658   // would produce wrong results for
659   //
660   // start = .; *(.foo.*) end = .; *(.bar)
661   //
662   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
663   // another. The problem is that there is no way to layout those output
664   // sections such that the .foo sections are the only thing between the start
665   // and end symbols.
666   //
667   // Given the above issues, we instead merge sections by name and error on
668   // incompatible types and flags.
669   TinyPtrVector<OutputSection *> &v = map[outsecName];
670   for (OutputSection *sec : v) {
671     if (sec->partition != isec->partition)
672       continue;
673 
674     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
675       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
676       // change their semantics, so we only merge them in -r links if they will
677       // end up being linked to the same output section. The casts are fine
678       // because everything in the map was created by the orphan placement code.
679       auto *firstIsec = cast<InputSectionBase>(
680           cast<InputSectionDescription>(sec->sectionCommands[0])
681               ->sectionBases[0]);
682       OutputSection *firstIsecOut =
683           firstIsec->flags & SHF_LINK_ORDER
684               ? firstIsec->getLinkOrderDep()->getOutputSection()
685               : nullptr;
686       if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
687         continue;
688     }
689 
690     sec->recordSection(isec);
691     return nullptr;
692   }
693 
694   OutputSection *sec = createSection(isec, outsecName);
695   v.push_back(sec);
696   return sec;
697 }
698 
699 // Add sections that didn't match any sections command.
700 void LinkerScript::addOrphanSections() {
701   StringMap<TinyPtrVector<OutputSection *>> map;
702   std::vector<OutputSection *> v;
703 
704   std::function<void(InputSectionBase *)> add;
705   add = [&](InputSectionBase *s) {
706     if (s->isLive() && !s->parent) {
707       orphanSections.push_back(s);
708 
709       StringRef name = getOutputSectionName(s);
710       if (config->unique) {
711         v.push_back(createSection(s, name));
712       } else if (OutputSection *sec = findByName(sectionCommands, name)) {
713         sec->recordSection(s);
714       } else {
715         if (OutputSection *os = addInputSec(map, s, name))
716           v.push_back(os);
717         assert(isa<MergeInputSection>(s) ||
718                s->getOutputSection()->sectionIndex == UINT32_MAX);
719       }
720     }
721 
722     if (config->relocatable)
723       for (InputSectionBase *depSec : s->dependentSections)
724         if (depSec->flags & SHF_LINK_ORDER)
725           add(depSec);
726   };
727 
728   // For futher --emit-reloc handling code we need target output section
729   // to be created before we create relocation output section, so we want
730   // to create target sections first. We do not want priority handling
731   // for synthetic sections because them are special.
732   for (InputSectionBase *isec : inputSections) {
733     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
734     // sections because we need to know the parent's output section before we
735     // can select an output section for the SHF_LINK_ORDER section.
736     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
737       continue;
738 
739     if (auto *sec = dyn_cast<InputSection>(isec))
740       if (InputSectionBase *rel = sec->getRelocatedSection())
741         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
742           add(relIS);
743     add(isec);
744   }
745 
746   // If no SECTIONS command was given, we should insert sections commands
747   // before others, so that we can handle scripts which refers them,
748   // for example: "foo = ABSOLUTE(ADDR(.text)));".
749   // When SECTIONS command is present we just add all orphans to the end.
750   if (hasSectionsCommand)
751     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
752   else
753     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
754 }
755 
756 void LinkerScript::diagnoseOrphanHandling() const {
757   for (const InputSectionBase *sec : orphanSections) {
758     // Input SHT_REL[A] retained by --emit-relocs are ignored by
759     // computeInputSections(). Don't warn/error.
760     if (isa<InputSection>(sec) &&
761         cast<InputSection>(sec)->getRelocatedSection())
762       continue;
763 
764     StringRef name = getOutputSectionName(sec);
765     if (config->orphanHandling == OrphanHandlingPolicy::Error)
766       error(toString(sec) + " is being placed in '" + name + "'");
767     else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
768       warn(toString(sec) + " is being placed in '" + name + "'");
769   }
770 }
771 
772 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
773   bool isTbss =
774       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
775   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
776   start = alignTo(start, alignment);
777   uint64_t end = start + size;
778 
779   if (isTbss)
780     ctx->threadBssOffset = end - dot;
781   else
782     dot = end;
783   return end;
784 }
785 
786 void LinkerScript::output(InputSection *s) {
787   assert(ctx->outSec == s->getParent());
788   uint64_t before = advance(0, 1);
789   uint64_t pos = advance(s->getSize(), s->alignment);
790   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
791 
792   // Update output section size after adding each section. This is so that
793   // SIZEOF works correctly in the case below:
794   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
795   expandOutputSection(pos - before);
796 }
797 
798 void LinkerScript::switchTo(OutputSection *sec) {
799   ctx->outSec = sec;
800 
801   uint64_t pos = advance(0, 1);
802   if (sec->addrExpr && script->hasSectionsCommand) {
803     // The alignment is ignored.
804     ctx->outSec->addr = pos;
805   } else {
806     // ctx->outSec->alignment is the max of ALIGN and the maximum of input
807     // section alignments.
808     ctx->outSec->addr = advance(0, ctx->outSec->alignment);
809     expandMemoryRegions(ctx->outSec->addr - pos);
810   }
811 }
812 
813 // This function searches for a memory region to place the given output
814 // section in. If found, a pointer to the appropriate memory region is
815 // returned. Otherwise, a nullptr is returned.
816 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
817   // If a memory region name was specified in the output section command,
818   // then try to find that region first.
819   if (!sec->memoryRegionName.empty()) {
820     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
821       return m;
822     error("memory region '" + sec->memoryRegionName + "' not declared");
823     return nullptr;
824   }
825 
826   // If at least one memory region is defined, all sections must
827   // belong to some memory region. Otherwise, we don't need to do
828   // anything for memory regions.
829   if (memoryRegions.empty())
830     return nullptr;
831 
832   // See if a region can be found by matching section flags.
833   for (auto &pair : memoryRegions) {
834     MemoryRegion *m = pair.second;
835     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
836       return m;
837   }
838 
839   // Otherwise, no suitable region was found.
840   if (sec->flags & SHF_ALLOC)
841     error("no memory region specified for section '" + sec->name + "'");
842   return nullptr;
843 }
844 
845 static OutputSection *findFirstSection(PhdrEntry *load) {
846   for (OutputSection *sec : outputSections)
847     if (sec->ptLoad == load)
848       return sec;
849   return nullptr;
850 }
851 
852 // This function assigns offsets to input sections and an output section
853 // for a single sections command (e.g. ".text { *(.text); }").
854 void LinkerScript::assignOffsets(OutputSection *sec) {
855   if (!(sec->flags & SHF_ALLOC))
856     dot = 0;
857 
858   const bool sameMemRegion = ctx->memRegion == sec->memRegion;
859   const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr;
860   ctx->memRegion = sec->memRegion;
861   ctx->lmaRegion = sec->lmaRegion;
862   if (ctx->memRegion)
863     dot = ctx->memRegion->curPos;
864 
865   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
866     setDot(sec->addrExpr, sec->location, false);
867 
868   // If the address of the section has been moved forward by an explicit
869   // expression so that it now starts past the current curPos of the enclosing
870   // region, we need to expand the current region to account for the space
871   // between the previous section, if any, and the start of this section.
872   if (ctx->memRegion && ctx->memRegion->curPos < dot)
873     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
874                        ctx->memRegion->name, sec->name);
875 
876   switchTo(sec);
877 
878   // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or
879   // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA
880   // region is the default, and the two sections are in the same memory region,
881   // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
882   // heuristics described in
883   // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
884   if (sec->lmaExpr)
885     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
886   else if (MemoryRegion *mr = sec->lmaRegion)
887     ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot;
888   else if (!sameMemRegion || !prevLMARegionIsDefault)
889     ctx->lmaOffset = 0;
890 
891   // Propagate ctx->lmaOffset to the first "non-header" section.
892   if (PhdrEntry *l = ctx->outSec->ptLoad)
893     if (sec == findFirstSection(l))
894       l->lmaOffset = ctx->lmaOffset;
895 
896   // We can call this method multiple times during the creation of
897   // thunks and want to start over calculation each time.
898   sec->size = 0;
899 
900   // We visited SectionsCommands from processSectionCommands to
901   // layout sections. Now, we visit SectionsCommands again to fix
902   // section offsets.
903   for (BaseCommand *base : sec->sectionCommands) {
904     // This handles the assignments to symbol or to the dot.
905     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
906       cmd->addr = dot;
907       assignSymbol(cmd, true);
908       cmd->size = dot - cmd->addr;
909       continue;
910     }
911 
912     // Handle BYTE(), SHORT(), LONG(), or QUAD().
913     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
914       cmd->offset = dot - ctx->outSec->addr;
915       dot += cmd->size;
916       expandOutputSection(cmd->size);
917       continue;
918     }
919 
920     // Handle a single input section description command.
921     // It calculates and assigns the offsets for each section and also
922     // updates the output section size.
923     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
924       output(sec);
925   }
926 }
927 
928 static bool isDiscardable(OutputSection &sec) {
929   if (sec.name == "/DISCARD/")
930     return true;
931 
932   // We do not remove empty sections that are explicitly
933   // assigned to any segment.
934   if (!sec.phdrs.empty())
935     return false;
936 
937   // We do not want to remove OutputSections with expressions that reference
938   // symbols even if the OutputSection is empty. We want to ensure that the
939   // expressions can be evaluated and report an error if they cannot.
940   if (sec.expressionsUseSymbols)
941     return false;
942 
943   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
944   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
945   // to maintain the integrity of the other Expression.
946   if (sec.usedInExpression)
947     return false;
948 
949   for (BaseCommand *base : sec.sectionCommands) {
950     if (auto cmd = dyn_cast<SymbolAssignment>(base))
951       // Don't create empty output sections just for unreferenced PROVIDE
952       // symbols.
953       if (cmd->name != "." && !cmd->sym)
954         continue;
955 
956     if (!isa<InputSectionDescription>(*base))
957       return false;
958   }
959   return true;
960 }
961 
962 void LinkerScript::adjustSectionsBeforeSorting() {
963   // If the output section contains only symbol assignments, create a
964   // corresponding output section. The issue is what to do with linker script
965   // like ".foo : { symbol = 42; }". One option would be to convert it to
966   // "symbol = 42;". That is, move the symbol out of the empty section
967   // description. That seems to be what bfd does for this simple case. The
968   // problem is that this is not completely general. bfd will give up and
969   // create a dummy section too if there is a ". = . + 1" inside the section
970   // for example.
971   // Given that we want to create the section, we have to worry what impact
972   // it will have on the link. For example, if we just create a section with
973   // 0 for flags, it would change which PT_LOADs are created.
974   // We could remember that particular section is dummy and ignore it in
975   // other parts of the linker, but unfortunately there are quite a few places
976   // that would need to change:
977   //   * The program header creation.
978   //   * The orphan section placement.
979   //   * The address assignment.
980   // The other option is to pick flags that minimize the impact the section
981   // will have on the rest of the linker. That is why we copy the flags from
982   // the previous sections. Only a few flags are needed to keep the impact low.
983   uint64_t flags = SHF_ALLOC;
984 
985   for (BaseCommand *&cmd : sectionCommands) {
986     auto *sec = dyn_cast<OutputSection>(cmd);
987     if (!sec)
988       continue;
989 
990     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
991     if (sec->alignExpr)
992       sec->alignment =
993           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
994 
995     // The input section might have been removed (if it was an empty synthetic
996     // section), but we at least know the flags.
997     if (sec->hasInputSections)
998       flags = sec->flags;
999 
1000     // We do not want to keep any special flags for output section
1001     // in case it is empty.
1002     bool isEmpty = (getFirstInputSection(sec) == nullptr);
1003     if (isEmpty)
1004       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
1005                             SHF_WRITE | SHF_EXECINSTR);
1006 
1007     if (isEmpty && isDiscardable(*sec)) {
1008       sec->markDead();
1009       cmd = nullptr;
1010     }
1011   }
1012 
1013   // It is common practice to use very generic linker scripts. So for any
1014   // given run some of the output sections in the script will be empty.
1015   // We could create corresponding empty output sections, but that would
1016   // clutter the output.
1017   // We instead remove trivially empty sections. The bfd linker seems even
1018   // more aggressive at removing them.
1019   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
1020 }
1021 
1022 void LinkerScript::adjustSectionsAfterSorting() {
1023   // Try and find an appropriate memory region to assign offsets in.
1024   for (BaseCommand *base : sectionCommands) {
1025     if (auto *sec = dyn_cast<OutputSection>(base)) {
1026       if (!sec->lmaRegionName.empty()) {
1027         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1028           sec->lmaRegion = m;
1029         else
1030           error("memory region '" + sec->lmaRegionName + "' not declared");
1031       }
1032       sec->memRegion = findMemoryRegion(sec);
1033     }
1034   }
1035 
1036   // If output section command doesn't specify any segments,
1037   // and we haven't previously assigned any section to segment,
1038   // then we simply assign section to the very first load segment.
1039   // Below is an example of such linker script:
1040   // PHDRS { seg PT_LOAD; }
1041   // SECTIONS { .aaa : { *(.aaa) } }
1042   std::vector<StringRef> defPhdrs;
1043   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1044     return cmd.type == PT_LOAD;
1045   });
1046   if (firstPtLoad != phdrsCommands.end())
1047     defPhdrs.push_back(firstPtLoad->name);
1048 
1049   // Walk the commands and propagate the program headers to commands that don't
1050   // explicitly specify them.
1051   for (BaseCommand *base : sectionCommands) {
1052     auto *sec = dyn_cast<OutputSection>(base);
1053     if (!sec)
1054       continue;
1055 
1056     if (sec->phdrs.empty()) {
1057       // To match the bfd linker script behaviour, only propagate program
1058       // headers to sections that are allocated.
1059       if (sec->flags & SHF_ALLOC)
1060         sec->phdrs = defPhdrs;
1061     } else {
1062       defPhdrs = sec->phdrs;
1063     }
1064   }
1065 }
1066 
1067 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1068   // If there is no SECTIONS or if the linkerscript is explicit about program
1069   // headers, do our best to allocate them.
1070   if (!script->hasSectionsCommand || allocateHeaders)
1071     return 0;
1072   // Otherwise only allocate program headers if that would not add a page.
1073   return alignDown(min, config->maxPageSize);
1074 }
1075 
1076 // When the SECTIONS command is used, try to find an address for the file and
1077 // program headers output sections, which can be added to the first PT_LOAD
1078 // segment when program headers are created.
1079 //
1080 // We check if the headers fit below the first allocated section. If there isn't
1081 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1082 // and we'll also remove the PT_PHDR segment.
1083 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1084   uint64_t min = std::numeric_limits<uint64_t>::max();
1085   for (OutputSection *sec : outputSections)
1086     if (sec->flags & SHF_ALLOC)
1087       min = std::min<uint64_t>(min, sec->addr);
1088 
1089   auto it = llvm::find_if(
1090       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1091   if (it == phdrs.end())
1092     return;
1093   PhdrEntry *firstPTLoad = *it;
1094 
1095   bool hasExplicitHeaders =
1096       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1097         return cmd.hasPhdrs || cmd.hasFilehdr;
1098       });
1099   bool paged = !config->omagic && !config->nmagic;
1100   uint64_t headerSize = getHeaderSize();
1101   if ((paged || hasExplicitHeaders) &&
1102       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1103     min = alignDown(min - headerSize, config->maxPageSize);
1104     Out::elfHeader->addr = min;
1105     Out::programHeaders->addr = min + Out::elfHeader->size;
1106     return;
1107   }
1108 
1109   // Error if we were explicitly asked to allocate headers.
1110   if (hasExplicitHeaders)
1111     error("could not allocate headers");
1112 
1113   Out::elfHeader->ptLoad = nullptr;
1114   Out::programHeaders->ptLoad = nullptr;
1115   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1116 
1117   llvm::erase_if(phdrs,
1118                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1119 }
1120 
1121 LinkerScript::AddressState::AddressState() {
1122   for (auto &mri : script->memoryRegions) {
1123     MemoryRegion *mr = mri.second;
1124     mr->curPos = (mr->origin)().getValue();
1125   }
1126 }
1127 
1128 // Here we assign addresses as instructed by linker script SECTIONS
1129 // sub-commands. Doing that allows us to use final VA values, so here
1130 // we also handle rest commands like symbol assignments and ASSERTs.
1131 // Returns a symbol that has changed its section or value, or nullptr if no
1132 // symbol has changed.
1133 const Defined *LinkerScript::assignAddresses() {
1134   if (script->hasSectionsCommand) {
1135     // With a linker script, assignment of addresses to headers is covered by
1136     // allocateHeaders().
1137     dot = config->imageBase.getValueOr(0);
1138   } else {
1139     // Assign addresses to headers right now.
1140     dot = target->getImageBase();
1141     Out::elfHeader->addr = dot;
1142     Out::programHeaders->addr = dot + Out::elfHeader->size;
1143     dot += getHeaderSize();
1144   }
1145 
1146   auto deleter = std::make_unique<AddressState>();
1147   ctx = deleter.get();
1148   errorOnMissingSection = true;
1149   switchTo(aether);
1150 
1151   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1152   for (BaseCommand *base : sectionCommands) {
1153     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1154       cmd->addr = dot;
1155       assignSymbol(cmd, false);
1156       cmd->size = dot - cmd->addr;
1157       continue;
1158     }
1159     assignOffsets(cast<OutputSection>(base));
1160   }
1161 
1162   ctx = nullptr;
1163   return getChangedSymbolAssignment(oldValues);
1164 }
1165 
1166 // Creates program headers as instructed by PHDRS linker script command.
1167 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1168   std::vector<PhdrEntry *> ret;
1169 
1170   // Process PHDRS and FILEHDR keywords because they are not
1171   // real output sections and cannot be added in the following loop.
1172   for (const PhdrsCommand &cmd : phdrsCommands) {
1173     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1174 
1175     if (cmd.hasFilehdr)
1176       phdr->add(Out::elfHeader);
1177     if (cmd.hasPhdrs)
1178       phdr->add(Out::programHeaders);
1179 
1180     if (cmd.lmaExpr) {
1181       phdr->p_paddr = cmd.lmaExpr().getValue();
1182       phdr->hasLMA = true;
1183     }
1184     ret.push_back(phdr);
1185   }
1186 
1187   // Add output sections to program headers.
1188   for (OutputSection *sec : outputSections) {
1189     // Assign headers specified by linker script
1190     for (size_t id : getPhdrIndices(sec)) {
1191       ret[id]->add(sec);
1192       if (!phdrsCommands[id].flags.hasValue())
1193         ret[id]->p_flags |= sec->getPhdrFlags();
1194     }
1195   }
1196   return ret;
1197 }
1198 
1199 // Returns true if we should emit an .interp section.
1200 //
1201 // We usually do. But if PHDRS commands are given, and
1202 // no PT_INTERP is there, there's no place to emit an
1203 // .interp, so we don't do that in that case.
1204 bool LinkerScript::needsInterpSection() {
1205   if (phdrsCommands.empty())
1206     return true;
1207   for (PhdrsCommand &cmd : phdrsCommands)
1208     if (cmd.type == PT_INTERP)
1209       return true;
1210   return false;
1211 }
1212 
1213 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1214   if (name == ".") {
1215     if (ctx)
1216       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1217     error(loc + ": unable to get location counter value");
1218     return 0;
1219   }
1220 
1221   if (Symbol *sym = symtab->find(name)) {
1222     if (auto *ds = dyn_cast<Defined>(sym)) {
1223       ExprValue v{ds->section, false, ds->value, loc};
1224       // Retain the original st_type, so that the alias will get the same
1225       // behavior in relocation processing. Any operation will reset st_type to
1226       // STT_NOTYPE.
1227       v.type = ds->type;
1228       return v;
1229     }
1230     if (isa<SharedSymbol>(sym))
1231       if (!errorOnMissingSection)
1232         return {nullptr, false, 0, loc};
1233   }
1234 
1235   error(loc + ": symbol not found: " + name);
1236   return 0;
1237 }
1238 
1239 // Returns the index of the segment named Name.
1240 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1241                                      StringRef name) {
1242   for (size_t i = 0; i < vec.size(); ++i)
1243     if (vec[i].name == name)
1244       return i;
1245   return None;
1246 }
1247 
1248 // Returns indices of ELF headers containing specific section. Each index is a
1249 // zero based number of ELF header listed within PHDRS {} script block.
1250 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1251   std::vector<size_t> ret;
1252 
1253   for (StringRef s : cmd->phdrs) {
1254     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1255       ret.push_back(*idx);
1256     else if (s != "NONE")
1257       error(cmd->location + ": program header '" + s +
1258             "' is not listed in PHDRS");
1259   }
1260   return ret;
1261 }
1262