1 //===- InputSection.h -------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLD_ELF_INPUT_SECTION_H 10 #define LLD_ELF_INPUT_SECTION_H 11 12 #include "Config.h" 13 #include "Relocations.h" 14 #include "Thunks.h" 15 #include "lld/Common/LLVM.h" 16 #include "llvm/ADT/CachedHashString.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/Object/ELF.h" 20 21 namespace lld { 22 namespace elf { 23 24 class Symbol; 25 struct SectionPiece; 26 27 class Defined; 28 struct Partition; 29 class SyntheticSection; 30 class MergeSyntheticSection; 31 template <class ELFT> class ObjFile; 32 class OutputSection; 33 34 extern std::vector<Partition> partitions; 35 36 // This is the base class of all sections that lld handles. Some are sections in 37 // input files, some are sections in the produced output file and some exist 38 // just as a convenience for implementing special ways of combining some 39 // sections. 40 class SectionBase { 41 public: 42 enum Kind { Regular, EHFrame, Merge, Synthetic, Output }; 43 44 Kind kind() const { return (Kind)sectionKind; } 45 46 StringRef name; 47 48 // This pointer points to the "real" instance of this instance. 49 // Usually Repl == this. However, if ICF merges two sections, 50 // Repl pointer of one section points to another section. So, 51 // if you need to get a pointer to this instance, do not use 52 // this but instead this->Repl. 53 SectionBase *repl; 54 55 uint8_t sectionKind : 3; 56 57 // The next two bit fields are only used by InputSectionBase, but we 58 // put them here so the struct packs better. 59 60 uint8_t bss : 1; 61 62 // Set for sections that should not be folded by ICF. 63 uint8_t keepUnique : 1; 64 65 // The 1-indexed partition that this section is assigned to by the garbage 66 // collector, or 0 if this section is dead. Normally there is only one 67 // partition, so this will either be 0 or 1. 68 uint8_t partition; 69 elf::Partition &getPartition() const; 70 71 // These corresponds to the fields in Elf_Shdr. 72 uint32_t alignment; 73 uint64_t flags; 74 uint64_t entsize; 75 uint32_t type; 76 uint32_t link; 77 uint32_t info; 78 79 OutputSection *getOutputSection(); 80 const OutputSection *getOutputSection() const { 81 return const_cast<SectionBase *>(this)->getOutputSection(); 82 } 83 84 // Translate an offset in the input section to an offset in the output 85 // section. 86 uint64_t getOffset(uint64_t offset) const; 87 88 uint64_t getVA(uint64_t offset = 0) const; 89 90 bool isLive() const { return partition != 0; } 91 void markLive() { partition = 1; } 92 void markDead() { partition = 0; } 93 94 protected: 95 SectionBase(Kind sectionKind, StringRef name, uint64_t flags, 96 uint64_t entsize, uint64_t alignment, uint32_t type, 97 uint32_t info, uint32_t link) 98 : name(name), repl(this), sectionKind(sectionKind), bss(false), 99 keepUnique(false), partition(0), alignment(alignment), flags(flags), 100 entsize(entsize), type(type), link(link), info(info) {} 101 }; 102 103 // This corresponds to a section of an input file. 104 class InputSectionBase : public SectionBase { 105 public: 106 template <class ELFT> 107 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header, 108 StringRef name, Kind sectionKind); 109 110 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type, 111 uint64_t entsize, uint32_t link, uint32_t info, 112 uint32_t alignment, ArrayRef<uint8_t> data, StringRef name, 113 Kind sectionKind); 114 115 static bool classof(const SectionBase *s) { return s->kind() != Output; } 116 117 // Relocations that refer to this section. 118 unsigned numRelocations : 31; 119 unsigned areRelocsRela : 1; 120 const void *firstRelocation = nullptr; 121 122 // The file which contains this section. Its dynamic type is always 123 // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as 124 // its static type. 125 InputFile *file; 126 127 template <class ELFT> ObjFile<ELFT> *getFile() const { 128 return cast_or_null<ObjFile<ELFT>>(file); 129 } 130 131 // If basic block sections are enabled, many code sections could end up with 132 // one or two jump instructions at the end that could be relaxed to a smaller 133 // instruction. The members below help trimming the trailing jump instruction 134 // and shrinking a section. 135 unsigned bytesDropped = 0; 136 137 // Whether the section needs to be padded with a NOP filler due to 138 // deleteFallThruJmpInsn. 139 bool nopFiller = false; 140 141 void drop_back(uint64_t num) { bytesDropped += num; } 142 143 void push_back(uint64_t num) { 144 assert(bytesDropped >= num); 145 bytesDropped -= num; 146 } 147 148 void trim() { 149 if (bytesDropped) { 150 rawData = rawData.drop_back(bytesDropped); 151 bytesDropped = 0; 152 } 153 } 154 155 ArrayRef<uint8_t> data() const { 156 if (uncompressedSize >= 0) 157 uncompress(); 158 return rawData; 159 } 160 161 uint64_t getOffsetInFile() const; 162 163 // Input sections are part of an output section. Special sections 164 // like .eh_frame and merge sections are first combined into a 165 // synthetic section that is then added to an output section. In all 166 // cases this points one level up. 167 SectionBase *parent = nullptr; 168 169 // The next member in the section group if this section is in a group. This is 170 // used by --gc-sections. 171 InputSectionBase *nextInSectionGroup = nullptr; 172 173 template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const { 174 assert(!areRelocsRela); 175 return llvm::makeArrayRef( 176 static_cast<const typename ELFT::Rel *>(firstRelocation), 177 numRelocations); 178 } 179 180 template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const { 181 assert(areRelocsRela); 182 return llvm::makeArrayRef( 183 static_cast<const typename ELFT::Rela *>(firstRelocation), 184 numRelocations); 185 } 186 187 // InputSections that are dependent on us (reverse dependency for GC) 188 llvm::TinyPtrVector<InputSection *> dependentSections; 189 190 // Returns the size of this section (even if this is a common or BSS.) 191 size_t getSize() const; 192 193 InputSection *getLinkOrderDep() const; 194 195 // Get the function symbol that encloses this offset from within the 196 // section. 197 template <class ELFT> 198 Defined *getEnclosingFunction(uint64_t offset); 199 200 // Returns a source location string. Used to construct an error message. 201 template <class ELFT> std::string getLocation(uint64_t offset); 202 std::string getSrcMsg(const Symbol &sym, uint64_t offset); 203 std::string getObjMsg(uint64_t offset); 204 205 // Each section knows how to relocate itself. These functions apply 206 // relocations, assuming that Buf points to this section's copy in 207 // the mmap'ed output buffer. 208 template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd); 209 void relocateAlloc(uint8_t *buf, uint8_t *bufEnd); 210 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, 211 int64_t A, uint64_t P, const Symbol &Sym, 212 RelExpr Expr); 213 214 // The native ELF reloc data type is not very convenient to handle. 215 // So we convert ELF reloc records to our own records in Relocations.cpp. 216 // This vector contains such "cooked" relocations. 217 SmallVector<Relocation, 0> relocations; 218 219 // These are modifiers to jump instructions that are necessary when basic 220 // block sections are enabled. Basic block sections creates opportunities to 221 // relax jump instructions at basic block boundaries after reordering the 222 // basic blocks. 223 SmallVector<JumpInstrMod, 0> jumpInstrMods; 224 225 // A function compiled with -fsplit-stack calling a function 226 // compiled without -fsplit-stack needs its prologue adjusted. Find 227 // such functions and adjust their prologues. This is very similar 228 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more 229 // information. 230 template <typename ELFT> 231 void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end); 232 233 234 template <typename T> llvm::ArrayRef<T> getDataAs() const { 235 size_t s = data().size(); 236 assert(s % sizeof(T) == 0); 237 return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T)); 238 } 239 240 protected: 241 template <typename ELFT> 242 void parseCompressedHeader(); 243 void uncompress() const; 244 245 mutable ArrayRef<uint8_t> rawData; 246 247 // This field stores the uncompressed size of the compressed data in rawData, 248 // or -1 if rawData is not compressed (either because the section wasn't 249 // compressed in the first place, or because we ended up uncompressing it). 250 // Since the feature is not used often, this is usually -1. 251 mutable int64_t uncompressedSize = -1; 252 }; 253 254 // SectionPiece represents a piece of splittable section contents. 255 // We allocate a lot of these and binary search on them. This means that they 256 // have to be as compact as possible, which is why we don't store the size (can 257 // be found by looking at the next one). 258 struct SectionPiece { 259 SectionPiece(size_t off, uint32_t hash, bool live) 260 : inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {} 261 262 uint32_t inputOff; 263 uint32_t live : 1; 264 uint32_t hash : 31; 265 uint64_t outputOff = 0; 266 }; 267 268 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big"); 269 270 // This corresponds to a SHF_MERGE section of an input file. 271 class MergeInputSection : public InputSectionBase { 272 public: 273 template <class ELFT> 274 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 275 StringRef name); 276 MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize, 277 ArrayRef<uint8_t> data, StringRef name); 278 279 static bool classof(const SectionBase *s) { return s->kind() == Merge; } 280 void splitIntoPieces(); 281 282 // Translate an offset in the input section to an offset in the parent 283 // MergeSyntheticSection. 284 uint64_t getParentOffset(uint64_t offset) const; 285 286 // Splittable sections are handled as a sequence of data 287 // rather than a single large blob of data. 288 std::vector<SectionPiece> pieces; 289 290 // Returns I'th piece's data. This function is very hot when 291 // string merging is enabled, so we want to inline. 292 LLVM_ATTRIBUTE_ALWAYS_INLINE 293 llvm::CachedHashStringRef getData(size_t i) const { 294 size_t begin = pieces[i].inputOff; 295 size_t end = 296 (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff; 297 return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash}; 298 } 299 300 // Returns the SectionPiece at a given input section offset. 301 SectionPiece *getSectionPiece(uint64_t offset); 302 const SectionPiece *getSectionPiece(uint64_t offset) const { 303 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset); 304 } 305 306 SyntheticSection *getParent() const; 307 308 private: 309 void splitStrings(ArrayRef<uint8_t> a, size_t size); 310 void splitNonStrings(ArrayRef<uint8_t> a, size_t size); 311 }; 312 313 struct EhSectionPiece { 314 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size, 315 unsigned firstRelocation) 316 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {} 317 318 ArrayRef<uint8_t> data() const { 319 return {sec->data().data() + this->inputOff, size}; 320 } 321 322 size_t inputOff; 323 ssize_t outputOff = -1; 324 InputSectionBase *sec; 325 uint32_t size; 326 unsigned firstRelocation; 327 }; 328 329 // This corresponds to a .eh_frame section of an input file. 330 class EhInputSection : public InputSectionBase { 331 public: 332 template <class ELFT> 333 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 334 StringRef name); 335 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; } 336 template <class ELFT> void split(); 337 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels); 338 339 // Splittable sections are handled as a sequence of data 340 // rather than a single large blob of data. 341 std::vector<EhSectionPiece> pieces; 342 343 SyntheticSection *getParent() const; 344 }; 345 346 // This is a section that is added directly to an output section 347 // instead of needing special combination via a synthetic section. This 348 // includes all input sections with the exceptions of SHF_MERGE and 349 // .eh_frame. It also includes the synthetic sections themselves. 350 class InputSection : public InputSectionBase { 351 public: 352 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment, 353 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular); 354 template <class ELFT> 355 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 356 StringRef name); 357 358 // Write this section to a mmap'ed file, assuming Buf is pointing to 359 // beginning of the output section. 360 template <class ELFT> void writeTo(uint8_t *buf); 361 362 uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; } 363 364 OutputSection *getParent() const; 365 366 // This variable has two usages. Initially, it represents an index in the 367 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER 368 // sections. After assignAddresses is called, it represents the offset from 369 // the beginning of the output section this section was assigned to. 370 uint64_t outSecOff = 0; 371 372 static bool classof(const SectionBase *s); 373 374 InputSectionBase *getRelocatedSection() const; 375 376 template <class ELFT, class RelTy> 377 void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels); 378 379 // Used by ICF. 380 uint32_t eqClass[2] = {0, 0}; 381 382 // Called by ICF to merge two input sections. 383 void replace(InputSection *other); 384 385 static InputSection discarded; 386 387 private: 388 template <class ELFT, class RelTy> 389 void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels); 390 391 template <class ELFT> void copyShtGroup(uint8_t *buf); 392 }; 393 394 #ifdef _WIN32 395 static_assert(sizeof(InputSection) <= 192, "InputSection is too big"); 396 #else 397 static_assert(sizeof(InputSection) <= 184, "InputSection is too big"); 398 #endif 399 400 inline bool isDebugSection(const InputSectionBase &sec) { 401 return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 && 402 (sec.name.startswith(".debug") || sec.name.startswith(".zdebug")); 403 } 404 405 // The list of all input sections. 406 extern std::vector<InputSectionBase *> inputSections; 407 408 // The set of TOC entries (.toc + addend) for which we should not apply 409 // toc-indirect to toc-relative relaxation. const Symbol * refers to the 410 // STT_SECTION symbol associated to the .toc input section. 411 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax; 412 413 } // namespace elf 414 415 std::string toString(const elf::InputSectionBase *); 416 } // namespace lld 417 418 #endif 419