1 //===- InputSection.h -------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLD_ELF_INPUT_SECTION_H 10 #define LLD_ELF_INPUT_SECTION_H 11 12 #include "Config.h" 13 #include "Relocations.h" 14 #include "Thunks.h" 15 #include "lld/Common/LLVM.h" 16 #include "llvm/ADT/CachedHashString.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/Object/ELF.h" 20 21 namespace lld { 22 namespace elf { 23 24 class Symbol; 25 struct SectionPiece; 26 27 class Defined; 28 struct Partition; 29 class SyntheticSection; 30 class MergeSyntheticSection; 31 template <class ELFT> class ObjFile; 32 class OutputSection; 33 34 extern std::vector<Partition> partitions; 35 36 // This is the base class of all sections that lld handles. Some are sections in 37 // input files, some are sections in the produced output file and some exist 38 // just as a convenience for implementing special ways of combining some 39 // sections. 40 class SectionBase { 41 public: 42 enum Kind { Regular, EHFrame, Merge, Synthetic, Output }; 43 44 Kind kind() const { return (Kind)sectionKind; } 45 46 StringRef name; 47 48 // This pointer points to the "real" instance of this instance. 49 // Usually Repl == this. However, if ICF merges two sections, 50 // Repl pointer of one section points to another section. So, 51 // if you need to get a pointer to this instance, do not use 52 // this but instead this->Repl. 53 SectionBase *repl; 54 55 unsigned sectionKind : 3; 56 57 // The next two bit fields are only used by InputSectionBase, but we 58 // put them here so the struct packs better. 59 60 unsigned bss : 1; 61 62 // Set for sections that should not be folded by ICF. 63 unsigned keepUnique : 1; 64 65 // The 1-indexed partition that this section is assigned to by the garbage 66 // collector, or 0 if this section is dead. Normally there is only one 67 // partition, so this will either be 0 or 1. 68 uint8_t partition; 69 elf::Partition &getPartition() const; 70 71 // These corresponds to the fields in Elf_Shdr. 72 uint32_t alignment; 73 uint64_t flags; 74 uint64_t entsize; 75 uint32_t type; 76 uint32_t link; 77 uint32_t info; 78 79 OutputSection *getOutputSection(); 80 const OutputSection *getOutputSection() const { 81 return const_cast<SectionBase *>(this)->getOutputSection(); 82 } 83 84 // Translate an offset in the input section to an offset in the output 85 // section. 86 uint64_t getOffset(uint64_t offset) const; 87 88 uint64_t getVA(uint64_t offset = 0) const; 89 90 bool isLive() const { return partition != 0; } 91 void markLive() { partition = 1; } 92 void markDead() { partition = 0; } 93 94 protected: 95 SectionBase(Kind sectionKind, StringRef name, uint64_t flags, 96 uint64_t entsize, uint64_t alignment, uint32_t type, 97 uint32_t info, uint32_t link) 98 : name(name), repl(this), sectionKind(sectionKind), bss(false), 99 keepUnique(false), partition(0), alignment(alignment), flags(flags), 100 entsize(entsize), type(type), link(link), info(info) {} 101 }; 102 103 // This corresponds to a section of an input file. 104 class InputSectionBase : public SectionBase { 105 public: 106 template <class ELFT> 107 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header, 108 StringRef name, Kind sectionKind); 109 110 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type, 111 uint64_t entsize, uint32_t link, uint32_t info, 112 uint32_t alignment, ArrayRef<uint8_t> data, StringRef name, 113 Kind sectionKind); 114 115 static bool classof(const SectionBase *s) { return s->kind() != Output; } 116 117 // Relocations that refer to this section. 118 unsigned numRelocations : 31; 119 unsigned areRelocsRela : 1; 120 const void *firstRelocation = nullptr; 121 122 // The file which contains this section. Its dynamic type is always 123 // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as 124 // its static type. 125 InputFile *file; 126 127 template <class ELFT> ObjFile<ELFT> *getFile() const { 128 return cast_or_null<ObjFile<ELFT>>(file); 129 } 130 131 ArrayRef<uint8_t> data() const { 132 if (uncompressedSize >= 0) 133 uncompress(); 134 return rawData; 135 } 136 137 uint64_t getOffsetInFile() const; 138 139 // Input sections are part of an output section. Special sections 140 // like .eh_frame and merge sections are first combined into a 141 // synthetic section that is then added to an output section. In all 142 // cases this points one level up. 143 SectionBase *parent = nullptr; 144 145 // The next member in the section group if this section is in a group. This is 146 // used by --gc-sections. 147 InputSectionBase *nextInSectionGroup = nullptr; 148 149 template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const { 150 assert(!areRelocsRela); 151 return llvm::makeArrayRef( 152 static_cast<const typename ELFT::Rel *>(firstRelocation), 153 numRelocations); 154 } 155 156 template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const { 157 assert(areRelocsRela); 158 return llvm::makeArrayRef( 159 static_cast<const typename ELFT::Rela *>(firstRelocation), 160 numRelocations); 161 } 162 163 // InputSections that are dependent on us (reverse dependency for GC) 164 llvm::TinyPtrVector<InputSection *> dependentSections; 165 166 // Returns the size of this section (even if this is a common or BSS.) 167 size_t getSize() const; 168 169 InputSection *getLinkOrderDep() const; 170 171 // Get the function symbol that encloses this offset from within the 172 // section. 173 template <class ELFT> 174 Defined *getEnclosingFunction(uint64_t offset); 175 176 // Returns a source location string. Used to construct an error message. 177 template <class ELFT> std::string getLocation(uint64_t offset); 178 std::string getSrcMsg(const Symbol &sym, uint64_t offset); 179 std::string getObjMsg(uint64_t offset); 180 181 // Each section knows how to relocate itself. These functions apply 182 // relocations, assuming that Buf points to this section's copy in 183 // the mmap'ed output buffer. 184 template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd); 185 void relocateAlloc(uint8_t *buf, uint8_t *bufEnd); 186 187 // The native ELF reloc data type is not very convenient to handle. 188 // So we convert ELF reloc records to our own records in Relocations.cpp. 189 // This vector contains such "cooked" relocations. 190 std::vector<Relocation> relocations; 191 192 // A function compiled with -fsplit-stack calling a function 193 // compiled without -fsplit-stack needs its prologue adjusted. Find 194 // such functions and adjust their prologues. This is very similar 195 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more 196 // information. 197 template <typename ELFT> 198 void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end); 199 200 201 template <typename T> llvm::ArrayRef<T> getDataAs() const { 202 size_t s = data().size(); 203 assert(s % sizeof(T) == 0); 204 return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T)); 205 } 206 207 protected: 208 void parseCompressedHeader(); 209 void uncompress() const; 210 211 mutable ArrayRef<uint8_t> rawData; 212 213 // This field stores the uncompressed size of the compressed data in rawData, 214 // or -1 if rawData is not compressed (either because the section wasn't 215 // compressed in the first place, or because we ended up uncompressing it). 216 // Since the feature is not used often, this is usually -1. 217 mutable int64_t uncompressedSize = -1; 218 }; 219 220 // SectionPiece represents a piece of splittable section contents. 221 // We allocate a lot of these and binary search on them. This means that they 222 // have to be as compact as possible, which is why we don't store the size (can 223 // be found by looking at the next one). 224 struct SectionPiece { 225 SectionPiece(size_t off, uint32_t hash, bool live) 226 : inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {} 227 228 uint32_t inputOff; 229 uint32_t live : 1; 230 uint32_t hash : 31; 231 uint64_t outputOff = 0; 232 }; 233 234 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big"); 235 236 // This corresponds to a SHF_MERGE section of an input file. 237 class MergeInputSection : public InputSectionBase { 238 public: 239 template <class ELFT> 240 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 241 StringRef name); 242 MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize, 243 ArrayRef<uint8_t> data, StringRef name); 244 245 static bool classof(const SectionBase *s) { return s->kind() == Merge; } 246 void splitIntoPieces(); 247 248 // Translate an offset in the input section to an offset in the parent 249 // MergeSyntheticSection. 250 uint64_t getParentOffset(uint64_t offset) const; 251 252 // Splittable sections are handled as a sequence of data 253 // rather than a single large blob of data. 254 std::vector<SectionPiece> pieces; 255 256 // Returns I'th piece's data. This function is very hot when 257 // string merging is enabled, so we want to inline. 258 LLVM_ATTRIBUTE_ALWAYS_INLINE 259 llvm::CachedHashStringRef getData(size_t i) const { 260 size_t begin = pieces[i].inputOff; 261 size_t end = 262 (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff; 263 return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash}; 264 } 265 266 // Returns the SectionPiece at a given input section offset. 267 SectionPiece *getSectionPiece(uint64_t offset); 268 const SectionPiece *getSectionPiece(uint64_t offset) const { 269 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset); 270 } 271 272 SyntheticSection *getParent() const; 273 274 private: 275 void splitStrings(ArrayRef<uint8_t> a, size_t size); 276 void splitNonStrings(ArrayRef<uint8_t> a, size_t size); 277 }; 278 279 struct EhSectionPiece { 280 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size, 281 unsigned firstRelocation) 282 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {} 283 284 ArrayRef<uint8_t> data() { 285 return {sec->data().data() + this->inputOff, size}; 286 } 287 288 size_t inputOff; 289 ssize_t outputOff = -1; 290 InputSectionBase *sec; 291 uint32_t size; 292 unsigned firstRelocation; 293 }; 294 295 // This corresponds to a .eh_frame section of an input file. 296 class EhInputSection : public InputSectionBase { 297 public: 298 template <class ELFT> 299 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 300 StringRef name); 301 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; } 302 template <class ELFT> void split(); 303 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels); 304 305 // Splittable sections are handled as a sequence of data 306 // rather than a single large blob of data. 307 std::vector<EhSectionPiece> pieces; 308 309 SyntheticSection *getParent() const; 310 }; 311 312 // This is a section that is added directly to an output section 313 // instead of needing special combination via a synthetic section. This 314 // includes all input sections with the exceptions of SHF_MERGE and 315 // .eh_frame. It also includes the synthetic sections themselves. 316 class InputSection : public InputSectionBase { 317 public: 318 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment, 319 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular); 320 template <class ELFT> 321 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 322 StringRef name); 323 324 // Write this section to a mmap'ed file, assuming Buf is pointing to 325 // beginning of the output section. 326 template <class ELFT> void writeTo(uint8_t *buf); 327 328 uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; } 329 330 OutputSection *getParent() const; 331 332 // This variable has two usages. Initially, it represents an index in the 333 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER 334 // sections. After assignAddresses is called, it represents the offset from 335 // the beginning of the output section this section was assigned to. 336 uint64_t outSecOff = 0; 337 338 static bool classof(const SectionBase *s); 339 340 InputSectionBase *getRelocatedSection() const; 341 342 template <class ELFT, class RelTy> 343 void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels); 344 345 // Used by ICF. 346 uint32_t eqClass[2] = {0, 0}; 347 348 // Called by ICF to merge two input sections. 349 void replace(InputSection *other); 350 351 static InputSection discarded; 352 353 private: 354 template <class ELFT, class RelTy> 355 void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels); 356 357 template <class ELFT> void copyShtGroup(uint8_t *buf); 358 }; 359 360 // The list of all input sections. 361 extern std::vector<InputSectionBase *> inputSections; 362 363 } // namespace elf 364 365 std::string toString(const elf::InputSectionBase *); 366 } // namespace lld 367 368 #endif 369