1 //===- InputSection.h -------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLD_ELF_INPUT_SECTION_H 10 #define LLD_ELF_INPUT_SECTION_H 11 12 #include "Relocations.h" 13 #include "lld/Common/CommonLinkerContext.h" 14 #include "lld/Common/LLVM.h" 15 #include "lld/Common/Memory.h" 16 #include "llvm/ADT/CachedHashString.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/Object/ELF.h" 20 #include "llvm/Support/Compiler.h" 21 22 namespace lld { 23 namespace elf { 24 25 class InputFile; 26 class Symbol; 27 28 class Defined; 29 struct Partition; 30 class SyntheticSection; 31 template <class ELFT> class ObjFile; 32 class OutputSection; 33 34 LLVM_LIBRARY_VISIBILITY extern std::vector<Partition> partitions; 35 36 // Returned by InputSectionBase::relsOrRelas. At least one member is empty. 37 template <class ELFT> struct RelsOrRelas { 38 ArrayRef<typename ELFT::Rel> rels; 39 ArrayRef<typename ELFT::Rela> relas; 40 bool areRelocsRel() const { return rels.size(); } 41 }; 42 43 // This is the base class of all sections that lld handles. Some are sections in 44 // input files, some are sections in the produced output file and some exist 45 // just as a convenience for implementing special ways of combining some 46 // sections. 47 class SectionBase { 48 public: 49 enum Kind { Regular, Synthetic, EHFrame, Merge, Output }; 50 51 Kind kind() const { return (Kind)sectionKind; } 52 53 uint8_t sectionKind : 3; 54 55 // The next two bit fields are only used by InputSectionBase, but we 56 // put them here so the struct packs better. 57 58 uint8_t bss : 1; 59 60 // Set for sections that should not be folded by ICF. 61 uint8_t keepUnique : 1; 62 63 uint8_t partition = 1; 64 uint32_t type; 65 StringRef name; 66 67 // The 1-indexed partition that this section is assigned to by the garbage 68 // collector, or 0 if this section is dead. Normally there is only one 69 // partition, so this will either be 0 or 1. 70 elf::Partition &getPartition() const; 71 72 // These corresponds to the fields in Elf_Shdr. 73 uint64_t flags; 74 uint32_t addralign; 75 uint32_t entsize; 76 uint32_t link; 77 uint32_t info; 78 79 OutputSection *getOutputSection(); 80 const OutputSection *getOutputSection() const { 81 return const_cast<SectionBase *>(this)->getOutputSection(); 82 } 83 84 // Translate an offset in the input section to an offset in the output 85 // section. 86 uint64_t getOffset(uint64_t offset) const; 87 88 uint64_t getVA(uint64_t offset = 0) const; 89 90 bool isLive() const { return partition != 0; } 91 void markLive() { partition = 1; } 92 void markDead() { partition = 0; } 93 94 protected: 95 constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags, 96 uint32_t entsize, uint32_t addralign, uint32_t type, 97 uint32_t info, uint32_t link) 98 : sectionKind(sectionKind), bss(false), keepUnique(false), type(type), 99 name(name), flags(flags), addralign(addralign), entsize(entsize), 100 link(link), info(info) {} 101 }; 102 103 struct RISCVRelaxAux; 104 105 // This corresponds to a section of an input file. 106 class InputSectionBase : public SectionBase { 107 public: 108 template <class ELFT> 109 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header, 110 StringRef name, Kind sectionKind); 111 112 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type, 113 uint64_t entsize, uint32_t link, uint32_t info, 114 uint32_t addralign, ArrayRef<uint8_t> data, StringRef name, 115 Kind sectionKind); 116 117 static bool classof(const SectionBase *s) { return s->kind() != Output; } 118 119 // The file which contains this section. Its dynamic type is always 120 // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as 121 // its static type. 122 InputFile *file; 123 124 // Input sections are part of an output section. Special sections 125 // like .eh_frame and merge sections are first combined into a 126 // synthetic section that is then added to an output section. In all 127 // cases this points one level up. 128 SectionBase *parent = nullptr; 129 130 // Section index of the relocation section if exists. 131 uint32_t relSecIdx = 0; 132 133 template <class ELFT> ObjFile<ELFT> *getFile() const { 134 return cast_or_null<ObjFile<ELFT>>(file); 135 } 136 137 // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to 138 // indicate the number of bytes which is not counted in the size. This should 139 // be reset to zero after uses. 140 uint16_t bytesDropped = 0; 141 142 mutable bool compressed = false; 143 144 // Whether the section needs to be padded with a NOP filler due to 145 // deleteFallThruJmpInsn. 146 bool nopFiller = false; 147 148 void drop_back(unsigned num) { 149 assert(bytesDropped + num < 256); 150 bytesDropped += num; 151 } 152 153 void push_back(uint64_t num) { 154 assert(bytesDropped >= num); 155 bytesDropped -= num; 156 } 157 158 mutable const uint8_t *content_; 159 uint64_t size; 160 161 void trim() { 162 if (bytesDropped) { 163 size -= bytesDropped; 164 bytesDropped = 0; 165 } 166 } 167 168 ArrayRef<uint8_t> content() const { 169 return ArrayRef<uint8_t>(content_, size); 170 } 171 ArrayRef<uint8_t> contentMaybeDecompress() const { 172 if (compressed) 173 decompress(); 174 return content(); 175 } 176 177 // The next member in the section group if this section is in a group. This is 178 // used by --gc-sections. 179 InputSectionBase *nextInSectionGroup = nullptr; 180 181 template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const; 182 183 // InputSections that are dependent on us (reverse dependency for GC) 184 llvm::TinyPtrVector<InputSection *> dependentSections; 185 186 // Returns the size of this section (even if this is a common or BSS.) 187 size_t getSize() const; 188 189 InputSection *getLinkOrderDep() const; 190 191 // Get the function symbol that encloses this offset from within the 192 // section. 193 Defined *getEnclosingFunction(uint64_t offset); 194 195 // Returns a source location string. Used to construct an error message. 196 std::string getLocation(uint64_t offset); 197 std::string getSrcMsg(const Symbol &sym, uint64_t offset); 198 std::string getObjMsg(uint64_t offset); 199 200 // Each section knows how to relocate itself. These functions apply 201 // relocations, assuming that Buf points to this section's copy in 202 // the mmap'ed output buffer. 203 template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd); 204 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, 205 int64_t A, uint64_t P, const Symbol &Sym, 206 RelExpr Expr); 207 208 // The native ELF reloc data type is not very convenient to handle. 209 // So we convert ELF reloc records to our own records in Relocations.cpp. 210 // This vector contains such "cooked" relocations. 211 SmallVector<Relocation, 0> relocations; 212 213 void addReloc(const Relocation &r) { relocations.push_back(r); } 214 MutableArrayRef<Relocation> relocs() { return relocations; } 215 ArrayRef<Relocation> relocs() const { return relocations; } 216 217 union { 218 // These are modifiers to jump instructions that are necessary when basic 219 // block sections are enabled. Basic block sections creates opportunities 220 // to relax jump instructions at basic block boundaries after reordering the 221 // basic blocks. 222 JumpInstrMod *jumpInstrMod = nullptr; 223 224 // Auxiliary information for RISC-V linker relaxation. RISC-V does not use 225 // jumpInstrMod. 226 RISCVRelaxAux *relaxAux; 227 228 // The compressed content size when `compressed` is true. 229 size_t compressedSize; 230 }; 231 232 // A function compiled with -fsplit-stack calling a function 233 // compiled without -fsplit-stack needs its prologue adjusted. Find 234 // such functions and adjust their prologues. This is very similar 235 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more 236 // information. 237 template <typename ELFT> 238 void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end); 239 240 241 template <typename T> llvm::ArrayRef<T> getDataAs() const { 242 size_t s = content().size(); 243 assert(s % sizeof(T) == 0); 244 return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T)); 245 } 246 247 protected: 248 template <typename ELFT> 249 void parseCompressedHeader(); 250 void decompress() const; 251 }; 252 253 // SectionPiece represents a piece of splittable section contents. 254 // We allocate a lot of these and binary search on them. This means that they 255 // have to be as compact as possible, which is why we don't store the size (can 256 // be found by looking at the next one). 257 struct SectionPiece { 258 SectionPiece() = default; 259 SectionPiece(size_t off, uint32_t hash, bool live) 260 : inputOff(off), live(live), hash(hash >> 1) {} 261 262 uint32_t inputOff; 263 uint32_t live : 1; 264 uint32_t hash : 31; 265 uint64_t outputOff = 0; 266 }; 267 268 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big"); 269 270 // This corresponds to a SHF_MERGE section of an input file. 271 class MergeInputSection : public InputSectionBase { 272 public: 273 template <class ELFT> 274 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 275 StringRef name); 276 MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize, 277 ArrayRef<uint8_t> data, StringRef name); 278 279 static bool classof(const SectionBase *s) { return s->kind() == Merge; } 280 void splitIntoPieces(); 281 282 // Translate an offset in the input section to an offset in the parent 283 // MergeSyntheticSection. 284 uint64_t getParentOffset(uint64_t offset) const; 285 286 // Splittable sections are handled as a sequence of data 287 // rather than a single large blob of data. 288 SmallVector<SectionPiece, 0> pieces; 289 290 // Returns I'th piece's data. This function is very hot when 291 // string merging is enabled, so we want to inline. 292 LLVM_ATTRIBUTE_ALWAYS_INLINE 293 llvm::CachedHashStringRef getData(size_t i) const { 294 size_t begin = pieces[i].inputOff; 295 size_t end = 296 (pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff; 297 return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash}; 298 } 299 300 // Returns the SectionPiece at a given input section offset. 301 SectionPiece &getSectionPiece(uint64_t offset); 302 const SectionPiece &getSectionPiece(uint64_t offset) const { 303 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset); 304 } 305 306 SyntheticSection *getParent() const { 307 return cast_or_null<SyntheticSection>(parent); 308 } 309 310 private: 311 void splitStrings(StringRef s, size_t size); 312 void splitNonStrings(ArrayRef<uint8_t> a, size_t size); 313 }; 314 315 struct EhSectionPiece { 316 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size, 317 unsigned firstRelocation) 318 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {} 319 320 ArrayRef<uint8_t> data() const { 321 return {sec->content().data() + this->inputOff, size}; 322 } 323 324 size_t inputOff; 325 ssize_t outputOff = -1; 326 InputSectionBase *sec; 327 uint32_t size; 328 unsigned firstRelocation; 329 }; 330 331 // This corresponds to a .eh_frame section of an input file. 332 class EhInputSection : public InputSectionBase { 333 public: 334 template <class ELFT> 335 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 336 StringRef name); 337 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; } 338 template <class ELFT> void split(); 339 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels); 340 341 // Splittable sections are handled as a sequence of data 342 // rather than a single large blob of data. 343 SmallVector<EhSectionPiece, 0> cies, fdes; 344 345 SyntheticSection *getParent() const; 346 uint64_t getParentOffset(uint64_t offset) const; 347 }; 348 349 // This is a section that is added directly to an output section 350 // instead of needing special combination via a synthetic section. This 351 // includes all input sections with the exceptions of SHF_MERGE and 352 // .eh_frame. It also includes the synthetic sections themselves. 353 class InputSection : public InputSectionBase { 354 public: 355 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign, 356 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular); 357 template <class ELFT> 358 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 359 StringRef name); 360 361 static bool classof(const SectionBase *s) { 362 return s->kind() == SectionBase::Regular || 363 s->kind() == SectionBase::Synthetic; 364 } 365 366 // Write this section to a mmap'ed file, assuming Buf is pointing to 367 // beginning of the output section. 368 template <class ELFT> void writeTo(uint8_t *buf); 369 370 OutputSection *getParent() const { 371 return reinterpret_cast<OutputSection *>(parent); 372 } 373 374 // This variable has two usages. Initially, it represents an index in the 375 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER 376 // sections. After assignAddresses is called, it represents the offset from 377 // the beginning of the output section this section was assigned to. 378 uint64_t outSecOff = 0; 379 380 InputSectionBase *getRelocatedSection() const; 381 382 template <class ELFT, class RelTy> 383 void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels); 384 385 // Points to the canonical section. If ICF folds two sections, repl pointer of 386 // one section points to the other. 387 InputSection *repl = this; 388 389 // Used by ICF. 390 uint32_t eqClass[2] = {0, 0}; 391 392 // Called by ICF to merge two input sections. 393 void replace(InputSection *other); 394 395 static InputSection discarded; 396 397 private: 398 template <class ELFT, class RelTy> 399 void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels); 400 401 template <class ELFT> void copyShtGroup(uint8_t *buf); 402 }; 403 404 static_assert(sizeof(InputSection) <= 152, "InputSection is too big"); 405 406 class SyntheticSection : public InputSection { 407 public: 408 SyntheticSection(uint64_t flags, uint32_t type, uint32_t addralign, 409 StringRef name) 410 : InputSection(nullptr, flags, type, addralign, {}, name, 411 InputSectionBase::Synthetic) {} 412 413 virtual ~SyntheticSection() = default; 414 virtual size_t getSize() const = 0; 415 virtual bool updateAllocSize() { return false; } 416 // If the section has the SHF_ALLOC flag and the size may be changed if 417 // thunks are added, update the section size. 418 virtual bool isNeeded() const { return true; } 419 virtual void finalizeContents() {} 420 virtual void writeTo(uint8_t *buf) = 0; 421 422 static bool classof(const SectionBase *sec) { 423 return sec->kind() == InputSectionBase::Synthetic; 424 } 425 }; 426 427 inline bool isDebugSection(const InputSectionBase &sec) { 428 return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 && 429 sec.name.startswith(".debug"); 430 } 431 432 // The set of TOC entries (.toc + addend) for which we should not apply 433 // toc-indirect to toc-relative relaxation. const Symbol * refers to the 434 // STT_SECTION symbol associated to the .toc input section. 435 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax; 436 437 } // namespace elf 438 439 std::string toString(const elf::InputSectionBase *); 440 } // namespace lld 441 442 #endif 443