xref: /freebsd/contrib/llvm-project/lld/ELF/InputSection.h (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
11 
12 #include "Config.h"
13 #include "Relocations.h"
14 #include "Thunks.h"
15 #include "lld/Common/LLVM.h"
16 #include "llvm/ADT/CachedHashString.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Object/ELF.h"
20 
21 namespace lld {
22 namespace elf {
23 
24 class Symbol;
25 struct SectionPiece;
26 
27 class Defined;
28 struct Partition;
29 class SyntheticSection;
30 class MergeSyntheticSection;
31 template <class ELFT> class ObjFile;
32 class OutputSection;
33 
34 extern std::vector<Partition> partitions;
35 
36 // This is the base class of all sections that lld handles. Some are sections in
37 // input files, some are sections in the produced output file and some exist
38 // just as a convenience for implementing special ways of combining some
39 // sections.
40 class SectionBase {
41 public:
42   enum Kind { Regular, EHFrame, Merge, Synthetic, Output };
43 
44   Kind kind() const { return (Kind)sectionKind; }
45 
46   StringRef name;
47 
48   // This pointer points to the "real" instance of this instance.
49   // Usually Repl == this. However, if ICF merges two sections,
50   // Repl pointer of one section points to another section. So,
51   // if you need to get a pointer to this instance, do not use
52   // this but instead this->Repl.
53   SectionBase *repl;
54 
55   uint8_t sectionKind : 3;
56 
57   // The next two bit fields are only used by InputSectionBase, but we
58   // put them here so the struct packs better.
59 
60   uint8_t bss : 1;
61 
62   // Set for sections that should not be folded by ICF.
63   uint8_t keepUnique : 1;
64 
65   // The 1-indexed partition that this section is assigned to by the garbage
66   // collector, or 0 if this section is dead. Normally there is only one
67   // partition, so this will either be 0 or 1.
68   uint8_t partition;
69   elf::Partition &getPartition() const;
70 
71   // These corresponds to the fields in Elf_Shdr.
72   uint32_t alignment;
73   uint64_t flags;
74   uint64_t entsize;
75   uint32_t type;
76   uint32_t link;
77   uint32_t info;
78 
79   OutputSection *getOutputSection();
80   const OutputSection *getOutputSection() const {
81     return const_cast<SectionBase *>(this)->getOutputSection();
82   }
83 
84   // Translate an offset in the input section to an offset in the output
85   // section.
86   uint64_t getOffset(uint64_t offset) const;
87 
88   uint64_t getVA(uint64_t offset = 0) const;
89 
90   bool isLive() const { return partition != 0; }
91   void markLive() { partition = 1; }
92   void markDead() { partition = 0; }
93 
94 protected:
95   SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
96               uint64_t entsize, uint64_t alignment, uint32_t type,
97               uint32_t info, uint32_t link)
98       : name(name), repl(this), sectionKind(sectionKind), bss(false),
99         keepUnique(false), partition(0), alignment(alignment), flags(flags),
100         entsize(entsize), type(type), link(link), info(info) {}
101 };
102 
103 // This corresponds to a section of an input file.
104 class InputSectionBase : public SectionBase {
105 public:
106   template <class ELFT>
107   InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
108                    StringRef name, Kind sectionKind);
109 
110   InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
111                    uint64_t entsize, uint32_t link, uint32_t info,
112                    uint32_t alignment, ArrayRef<uint8_t> data, StringRef name,
113                    Kind sectionKind);
114 
115   static bool classof(const SectionBase *s) { return s->kind() != Output; }
116 
117   // Relocations that refer to this section.
118   unsigned numRelocations : 31;
119   unsigned areRelocsRela : 1;
120   const void *firstRelocation = nullptr;
121 
122   // The file which contains this section. Its dynamic type is always
123   // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
124   // its static type.
125   InputFile *file;
126 
127   template <class ELFT> ObjFile<ELFT> *getFile() const {
128     return cast_or_null<ObjFile<ELFT>>(file);
129   }
130 
131   // If basic block sections are enabled, many code sections could end up with
132   // one or two jump instructions at the end that could be relaxed to a smaller
133   // instruction. The members below help trimming the trailing jump instruction
134   // and shrinking a section.
135   unsigned bytesDropped = 0;
136 
137   // Whether the section needs to be padded with a NOP filler due to
138   // deleteFallThruJmpInsn.
139   bool nopFiller = false;
140 
141   void drop_back(uint64_t num) { bytesDropped += num; }
142 
143   void push_back(uint64_t num) {
144     assert(bytesDropped >= num);
145     bytesDropped -= num;
146   }
147 
148   void trim() {
149     if (bytesDropped) {
150       rawData = rawData.drop_back(bytesDropped);
151       bytesDropped = 0;
152     }
153   }
154 
155   ArrayRef<uint8_t> data() const {
156     if (uncompressedSize >= 0)
157       uncompress();
158     return rawData;
159   }
160 
161   uint64_t getOffsetInFile() const;
162 
163   // Input sections are part of an output section. Special sections
164   // like .eh_frame and merge sections are first combined into a
165   // synthetic section that is then added to an output section. In all
166   // cases this points one level up.
167   SectionBase *parent = nullptr;
168 
169   // The next member in the section group if this section is in a group. This is
170   // used by --gc-sections.
171   InputSectionBase *nextInSectionGroup = nullptr;
172 
173   template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const {
174     assert(!areRelocsRela);
175     return llvm::makeArrayRef(
176         static_cast<const typename ELFT::Rel *>(firstRelocation),
177         numRelocations);
178   }
179 
180   template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const {
181     assert(areRelocsRela);
182     return llvm::makeArrayRef(
183         static_cast<const typename ELFT::Rela *>(firstRelocation),
184         numRelocations);
185   }
186 
187   // InputSections that are dependent on us (reverse dependency for GC)
188   llvm::TinyPtrVector<InputSection *> dependentSections;
189 
190   // Returns the size of this section (even if this is a common or BSS.)
191   size_t getSize() const;
192 
193   InputSection *getLinkOrderDep() const;
194 
195   // Get the function symbol that encloses this offset from within the
196   // section.
197   template <class ELFT>
198   Defined *getEnclosingFunction(uint64_t offset);
199 
200   // Returns a source location string. Used to construct an error message.
201   template <class ELFT> std::string getLocation(uint64_t offset);
202   std::string getSrcMsg(const Symbol &sym, uint64_t offset);
203   std::string getObjMsg(uint64_t offset);
204 
205   // Each section knows how to relocate itself. These functions apply
206   // relocations, assuming that Buf points to this section's copy in
207   // the mmap'ed output buffer.
208   template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
209   void relocateAlloc(uint8_t *buf, uint8_t *bufEnd);
210   static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
211                                    int64_t A, uint64_t P, const Symbol &Sym,
212                                    RelExpr Expr);
213 
214   // The native ELF reloc data type is not very convenient to handle.
215   // So we convert ELF reloc records to our own records in Relocations.cpp.
216   // This vector contains such "cooked" relocations.
217   SmallVector<Relocation, 0> relocations;
218 
219   // These are modifiers to jump instructions that are necessary when basic
220   // block sections are enabled.  Basic block sections creates opportunities to
221   // relax jump instructions at basic block boundaries after reordering the
222   // basic blocks.
223   SmallVector<JumpInstrMod, 0> jumpInstrMods;
224 
225   // A function compiled with -fsplit-stack calling a function
226   // compiled without -fsplit-stack needs its prologue adjusted. Find
227   // such functions and adjust their prologues.  This is very similar
228   // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
229   // information.
230   template <typename ELFT>
231   void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
232 
233 
234   template <typename T> llvm::ArrayRef<T> getDataAs() const {
235     size_t s = data().size();
236     assert(s % sizeof(T) == 0);
237     return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T));
238   }
239 
240 protected:
241   template <typename ELFT>
242   void parseCompressedHeader();
243   void uncompress() const;
244 
245   mutable ArrayRef<uint8_t> rawData;
246 
247   // This field stores the uncompressed size of the compressed data in rawData,
248   // or -1 if rawData is not compressed (either because the section wasn't
249   // compressed in the first place, or because we ended up uncompressing it).
250   // Since the feature is not used often, this is usually -1.
251   mutable int64_t uncompressedSize = -1;
252 };
253 
254 // SectionPiece represents a piece of splittable section contents.
255 // We allocate a lot of these and binary search on them. This means that they
256 // have to be as compact as possible, which is why we don't store the size (can
257 // be found by looking at the next one).
258 struct SectionPiece {
259   SectionPiece(size_t off, uint32_t hash, bool live)
260       : inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {}
261 
262   uint32_t inputOff;
263   uint32_t live : 1;
264   uint32_t hash : 31;
265   uint64_t outputOff = 0;
266 };
267 
268 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
269 
270 // This corresponds to a SHF_MERGE section of an input file.
271 class MergeInputSection : public InputSectionBase {
272 public:
273   template <class ELFT>
274   MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
275                     StringRef name);
276   MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
277                     ArrayRef<uint8_t> data, StringRef name);
278 
279   static bool classof(const SectionBase *s) { return s->kind() == Merge; }
280   void splitIntoPieces();
281 
282   // Translate an offset in the input section to an offset in the parent
283   // MergeSyntheticSection.
284   uint64_t getParentOffset(uint64_t offset) const;
285 
286   // Splittable sections are handled as a sequence of data
287   // rather than a single large blob of data.
288   std::vector<SectionPiece> pieces;
289 
290   // Returns I'th piece's data. This function is very hot when
291   // string merging is enabled, so we want to inline.
292   LLVM_ATTRIBUTE_ALWAYS_INLINE
293   llvm::CachedHashStringRef getData(size_t i) const {
294     size_t begin = pieces[i].inputOff;
295     size_t end =
296         (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff;
297     return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash};
298   }
299 
300   // Returns the SectionPiece at a given input section offset.
301   SectionPiece *getSectionPiece(uint64_t offset);
302   const SectionPiece *getSectionPiece(uint64_t offset) const {
303     return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
304   }
305 
306   SyntheticSection *getParent() const;
307 
308 private:
309   void splitStrings(ArrayRef<uint8_t> a, size_t size);
310   void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
311 };
312 
313 struct EhSectionPiece {
314   EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
315                  unsigned firstRelocation)
316       : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
317 
318   ArrayRef<uint8_t> data() const {
319     return {sec->data().data() + this->inputOff, size};
320   }
321 
322   size_t inputOff;
323   ssize_t outputOff = -1;
324   InputSectionBase *sec;
325   uint32_t size;
326   unsigned firstRelocation;
327 };
328 
329 // This corresponds to a .eh_frame section of an input file.
330 class EhInputSection : public InputSectionBase {
331 public:
332   template <class ELFT>
333   EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
334                  StringRef name);
335   static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
336   template <class ELFT> void split();
337   template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
338 
339   // Splittable sections are handled as a sequence of data
340   // rather than a single large blob of data.
341   std::vector<EhSectionPiece> pieces;
342 
343   SyntheticSection *getParent() const;
344 };
345 
346 // This is a section that is added directly to an output section
347 // instead of needing special combination via a synthetic section. This
348 // includes all input sections with the exceptions of SHF_MERGE and
349 // .eh_frame. It also includes the synthetic sections themselves.
350 class InputSection : public InputSectionBase {
351 public:
352   InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment,
353                ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
354   template <class ELFT>
355   InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
356                StringRef name);
357 
358   // Write this section to a mmap'ed file, assuming Buf is pointing to
359   // beginning of the output section.
360   template <class ELFT> void writeTo(uint8_t *buf);
361 
362   uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; }
363 
364   OutputSection *getParent() const;
365 
366   // This variable has two usages. Initially, it represents an index in the
367   // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
368   // sections. After assignAddresses is called, it represents the offset from
369   // the beginning of the output section this section was assigned to.
370   uint64_t outSecOff = 0;
371 
372   static bool classof(const SectionBase *s);
373 
374   InputSectionBase *getRelocatedSection() const;
375 
376   template <class ELFT, class RelTy>
377   void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
378 
379   // Used by ICF.
380   uint32_t eqClass[2] = {0, 0};
381 
382   // Called by ICF to merge two input sections.
383   void replace(InputSection *other);
384 
385   static InputSection discarded;
386 
387 private:
388   template <class ELFT, class RelTy>
389   void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
390 
391   template <class ELFT> void copyShtGroup(uint8_t *buf);
392 };
393 
394 #ifdef _WIN32
395 static_assert(sizeof(InputSection) <= 192, "InputSection is too big");
396 #else
397 static_assert(sizeof(InputSection) <= 184, "InputSection is too big");
398 #endif
399 
400 inline bool isDebugSection(const InputSectionBase &sec) {
401   return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
402          (sec.name.startswith(".debug") || sec.name.startswith(".zdebug"));
403 }
404 
405 // The list of all input sections.
406 extern std::vector<InputSectionBase *> inputSections;
407 
408 // The set of TOC entries (.toc + addend) for which we should not apply
409 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
410 // STT_SECTION symbol associated to the .toc input section.
411 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
412 
413 } // namespace elf
414 
415 std::string toString(const elf::InputSectionBase *);
416 } // namespace lld
417 
418 #endif
419