xref: /freebsd/contrib/llvm-project/lld/ELF/InputSection.h (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
11 
12 #include "Config.h"
13 #include "Relocations.h"
14 #include "Thunks.h"
15 #include "lld/Common/LLVM.h"
16 #include "llvm/ADT/CachedHashString.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Object/ELF.h"
20 
21 namespace lld {
22 namespace elf {
23 
24 class Symbol;
25 struct SectionPiece;
26 
27 class Defined;
28 struct Partition;
29 class SyntheticSection;
30 class MergeSyntheticSection;
31 template <class ELFT> class ObjFile;
32 class OutputSection;
33 
34 extern std::vector<Partition> partitions;
35 
36 // This is the base class of all sections that lld handles. Some are sections in
37 // input files, some are sections in the produced output file and some exist
38 // just as a convenience for implementing special ways of combining some
39 // sections.
40 class SectionBase {
41 public:
42   enum Kind { Regular, EHFrame, Merge, Synthetic, Output };
43 
44   Kind kind() const { return (Kind)sectionKind; }
45 
46   StringRef name;
47 
48   // This pointer points to the "real" instance of this instance.
49   // Usually Repl == this. However, if ICF merges two sections,
50   // Repl pointer of one section points to another section. So,
51   // if you need to get a pointer to this instance, do not use
52   // this but instead this->Repl.
53   SectionBase *repl;
54 
55   unsigned sectionKind : 3;
56 
57   // The next three bit fields are only used by InputSectionBase, but we
58   // put them here so the struct packs better.
59 
60   // True if this section has already been placed to a linker script
61   // output section. This is needed because, in a linker script, you
62   // can refer to the same section more than once. For example, in
63   // the following linker script,
64   //
65   //   .foo : { *(.text) }
66   //   .bar : { *(.text) }
67   //
68   // .foo takes all .text sections, and .bar becomes empty. To achieve
69   // this, we need to memorize whether a section has been placed or
70   // not for each input section.
71   unsigned assigned : 1;
72 
73   unsigned bss : 1;
74 
75   // Set for sections that should not be folded by ICF.
76   unsigned keepUnique : 1;
77 
78   // The 1-indexed partition that this section is assigned to by the garbage
79   // collector, or 0 if this section is dead. Normally there is only one
80   // partition, so this will either be 0 or 1.
81   uint8_t partition;
82   elf::Partition &getPartition() const;
83 
84   // These corresponds to the fields in Elf_Shdr.
85   uint32_t alignment;
86   uint64_t flags;
87   uint64_t entsize;
88   uint32_t type;
89   uint32_t link;
90   uint32_t info;
91 
92   OutputSection *getOutputSection();
93   const OutputSection *getOutputSection() const {
94     return const_cast<SectionBase *>(this)->getOutputSection();
95   }
96 
97   // Translate an offset in the input section to an offset in the output
98   // section.
99   uint64_t getOffset(uint64_t offset) const;
100 
101   uint64_t getVA(uint64_t offset = 0) const;
102 
103   bool isLive() const { return partition != 0; }
104   void markLive() { partition = 1; }
105   void markDead() { partition = 0; }
106 
107 protected:
108   SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
109               uint64_t entsize, uint64_t alignment, uint32_t type,
110               uint32_t info, uint32_t link)
111       : name(name), repl(this), sectionKind(sectionKind), assigned(false),
112         bss(false), keepUnique(false), partition(0), alignment(alignment),
113         flags(flags), entsize(entsize), type(type), link(link), info(info) {}
114 };
115 
116 // This corresponds to a section of an input file.
117 class InputSectionBase : public SectionBase {
118 public:
119   template <class ELFT>
120   InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
121                    StringRef name, Kind sectionKind);
122 
123   InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
124                    uint64_t entsize, uint32_t link, uint32_t info,
125                    uint32_t alignment, ArrayRef<uint8_t> data, StringRef name,
126                    Kind sectionKind);
127 
128   static bool classof(const SectionBase *s) { return s->kind() != Output; }
129 
130   // Relocations that refer to this section.
131   unsigned numRelocations : 31;
132   unsigned areRelocsRela : 1;
133   const void *firstRelocation = nullptr;
134 
135   // The file which contains this section. Its dynamic type is always
136   // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
137   // its static type.
138   InputFile *file;
139 
140   template <class ELFT> ObjFile<ELFT> *getFile() const {
141     return cast_or_null<ObjFile<ELFT>>(file);
142   }
143 
144   ArrayRef<uint8_t> data() const {
145     if (uncompressedSize >= 0)
146       uncompress();
147     return rawData;
148   }
149 
150   uint64_t getOffsetInFile() const;
151 
152   // Input sections are part of an output section. Special sections
153   // like .eh_frame and merge sections are first combined into a
154   // synthetic section that is then added to an output section. In all
155   // cases this points one level up.
156   SectionBase *parent = nullptr;
157 
158   template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const {
159     assert(!areRelocsRela);
160     return llvm::makeArrayRef(
161         static_cast<const typename ELFT::Rel *>(firstRelocation),
162         numRelocations);
163   }
164 
165   template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const {
166     assert(areRelocsRela);
167     return llvm::makeArrayRef(
168         static_cast<const typename ELFT::Rela *>(firstRelocation),
169         numRelocations);
170   }
171 
172   // InputSections that are dependent on us (reverse dependency for GC)
173   llvm::TinyPtrVector<InputSection *> dependentSections;
174 
175   // Returns the size of this section (even if this is a common or BSS.)
176   size_t getSize() const;
177 
178   InputSection *getLinkOrderDep() const;
179 
180   // Get the function symbol that encloses this offset from within the
181   // section.
182   template <class ELFT>
183   Defined *getEnclosingFunction(uint64_t offset);
184 
185   // Returns a source location string. Used to construct an error message.
186   template <class ELFT> std::string getLocation(uint64_t offset);
187   std::string getSrcMsg(const Symbol &sym, uint64_t offset);
188   std::string getObjMsg(uint64_t offset);
189 
190   // Each section knows how to relocate itself. These functions apply
191   // relocations, assuming that Buf points to this section's copy in
192   // the mmap'ed output buffer.
193   template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
194   void relocateAlloc(uint8_t *buf, uint8_t *bufEnd);
195 
196   // The native ELF reloc data type is not very convenient to handle.
197   // So we convert ELF reloc records to our own records in Relocations.cpp.
198   // This vector contains such "cooked" relocations.
199   std::vector<Relocation> relocations;
200 
201   // A function compiled with -fsplit-stack calling a function
202   // compiled without -fsplit-stack needs its prologue adjusted. Find
203   // such functions and adjust their prologues.  This is very similar
204   // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
205   // information.
206   template <typename ELFT>
207   void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
208 
209 
210   template <typename T> llvm::ArrayRef<T> getDataAs() const {
211     size_t s = data().size();
212     assert(s % sizeof(T) == 0);
213     return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T));
214   }
215 
216 protected:
217   void parseCompressedHeader();
218   void uncompress() const;
219 
220   mutable ArrayRef<uint8_t> rawData;
221 
222   // This field stores the uncompressed size of the compressed data in rawData,
223   // or -1 if rawData is not compressed (either because the section wasn't
224   // compressed in the first place, or because we ended up uncompressing it).
225   // Since the feature is not used often, this is usually -1.
226   mutable int64_t uncompressedSize = -1;
227 };
228 
229 // SectionPiece represents a piece of splittable section contents.
230 // We allocate a lot of these and binary search on them. This means that they
231 // have to be as compact as possible, which is why we don't store the size (can
232 // be found by looking at the next one).
233 struct SectionPiece {
234   SectionPiece(size_t off, uint32_t hash, bool live)
235       : inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {}
236 
237   uint32_t inputOff;
238   uint32_t live : 1;
239   uint32_t hash : 31;
240   uint64_t outputOff = 0;
241 };
242 
243 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
244 
245 // This corresponds to a SHF_MERGE section of an input file.
246 class MergeInputSection : public InputSectionBase {
247 public:
248   template <class ELFT>
249   MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
250                     StringRef name);
251   MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
252                     ArrayRef<uint8_t> data, StringRef name);
253 
254   static bool classof(const SectionBase *s) { return s->kind() == Merge; }
255   void splitIntoPieces();
256 
257   // Translate an offset in the input section to an offset in the parent
258   // MergeSyntheticSection.
259   uint64_t getParentOffset(uint64_t offset) const;
260 
261   // Splittable sections are handled as a sequence of data
262   // rather than a single large blob of data.
263   std::vector<SectionPiece> pieces;
264 
265   // Returns I'th piece's data. This function is very hot when
266   // string merging is enabled, so we want to inline.
267   LLVM_ATTRIBUTE_ALWAYS_INLINE
268   llvm::CachedHashStringRef getData(size_t i) const {
269     size_t begin = pieces[i].inputOff;
270     size_t end =
271         (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff;
272     return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash};
273   }
274 
275   // Returns the SectionPiece at a given input section offset.
276   SectionPiece *getSectionPiece(uint64_t offset);
277   const SectionPiece *getSectionPiece(uint64_t offset) const {
278     return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
279   }
280 
281   SyntheticSection *getParent() const;
282 
283 private:
284   void splitStrings(ArrayRef<uint8_t> a, size_t size);
285   void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
286 };
287 
288 struct EhSectionPiece {
289   EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
290                  unsigned firstRelocation)
291       : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
292 
293   ArrayRef<uint8_t> data() {
294     return {sec->data().data() + this->inputOff, size};
295   }
296 
297   size_t inputOff;
298   ssize_t outputOff = -1;
299   InputSectionBase *sec;
300   uint32_t size;
301   unsigned firstRelocation;
302 };
303 
304 // This corresponds to a .eh_frame section of an input file.
305 class EhInputSection : public InputSectionBase {
306 public:
307   template <class ELFT>
308   EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
309                  StringRef name);
310   static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
311   template <class ELFT> void split();
312   template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
313 
314   // Splittable sections are handled as a sequence of data
315   // rather than a single large blob of data.
316   std::vector<EhSectionPiece> pieces;
317 
318   SyntheticSection *getParent() const;
319 };
320 
321 // This is a section that is added directly to an output section
322 // instead of needing special combination via a synthetic section. This
323 // includes all input sections with the exceptions of SHF_MERGE and
324 // .eh_frame. It also includes the synthetic sections themselves.
325 class InputSection : public InputSectionBase {
326 public:
327   InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment,
328                ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
329   template <class ELFT>
330   InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
331                StringRef name);
332 
333   // Write this section to a mmap'ed file, assuming Buf is pointing to
334   // beginning of the output section.
335   template <class ELFT> void writeTo(uint8_t *buf);
336 
337   uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; }
338 
339   OutputSection *getParent() const;
340 
341   // This variable has two usages. Initially, it represents an index in the
342   // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
343   // sections. After assignAddresses is called, it represents the offset from
344   // the beginning of the output section this section was assigned to.
345   uint64_t outSecOff = 0;
346 
347   static bool classof(const SectionBase *s);
348 
349   InputSectionBase *getRelocatedSection() const;
350 
351   template <class ELFT, class RelTy>
352   void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
353 
354   // Used by ICF.
355   uint32_t eqClass[2] = {0, 0};
356 
357   // Called by ICF to merge two input sections.
358   void replace(InputSection *other);
359 
360   static InputSection discarded;
361 
362 private:
363   template <class ELFT, class RelTy>
364   void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
365 
366   template <class ELFT> void copyShtGroup(uint8_t *buf);
367 };
368 
369 // The list of all input sections.
370 extern std::vector<InputSectionBase *> inputSections;
371 
372 } // namespace elf
373 
374 std::string toString(const elf::InputSectionBase *);
375 } // namespace lld
376 
377 #endif
378