xref: /freebsd/contrib/llvm-project/lld/ELF/InputSection.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
23 #include <algorithm>
24 #include <mutex>
25 #include <optional>
26 #include <vector>
27 
28 using namespace llvm;
29 using namespace llvm::ELF;
30 using namespace llvm::object;
31 using namespace llvm::support;
32 using namespace llvm::support::endian;
33 using namespace llvm::sys;
34 using namespace lld;
35 using namespace lld::elf;
36 
37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
38 
39 // Returns a string to construct an error message.
40 std::string lld::toString(const InputSectionBase *sec) {
41   return (toString(sec->file) + ":(" + sec->name + ")").str();
42 }
43 
44 template <class ELFT>
45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
46                                             const typename ELFT::Shdr &hdr) {
47   if (hdr.sh_type == SHT_NOBITS)
48     return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
49   return check(file.getObj().getSectionContents(hdr));
50 }
51 
52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
53                                    uint32_t type, uint64_t entsize,
54                                    uint32_t link, uint32_t info,
55                                    uint32_t addralign, ArrayRef<uint8_t> data,
56                                    StringRef name, Kind sectionKind)
57     : SectionBase(sectionKind, name, flags, entsize, addralign, type, info,
58                   link),
59       file(file), content_(data.data()), size(data.size()) {
60   // In order to reduce memory allocation, we assume that mergeable
61   // sections are smaller than 4 GiB, which is not an unreasonable
62   // assumption as of 2017.
63   if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
64     error(toString(this) + ": section too large");
65 
66   // The ELF spec states that a value of 0 means the section has
67   // no alignment constraints.
68   uint32_t v = std::max<uint32_t>(addralign, 1);
69   if (!isPowerOf2_64(v))
70     fatal(toString(this) + ": sh_addralign is not a power of 2");
71   this->addralign = v;
72 
73   // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
74   // longer supported.
75   if (flags & SHF_COMPRESSED)
76     invokeELFT(parseCompressedHeader,);
77 }
78 
79 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
80 // output section. However, for relocatable linking without
81 // --force-group-allocation, the SHF_GROUP flag and section groups are retained.
82 static uint64_t getFlags(uint64_t flags) {
83   flags &= ~(uint64_t)SHF_INFO_LINK;
84   if (config->resolveGroups)
85     flags &= ~(uint64_t)SHF_GROUP;
86   return flags;
87 }
88 
89 template <class ELFT>
90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
91                                    const typename ELFT::Shdr &hdr,
92                                    StringRef name, Kind sectionKind)
93     : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
94                        hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
95                        hdr.sh_addralign, getSectionContents(file, hdr), name,
96                        sectionKind) {
97   // We reject object files having insanely large alignments even though
98   // they are allowed by the spec. I think 4GB is a reasonable limitation.
99   // We might want to relax this in the future.
100   if (hdr.sh_addralign > UINT32_MAX)
101     fatal(toString(&file) + ": section sh_addralign is too large");
102 }
103 
104 size_t InputSectionBase::getSize() const {
105   if (auto *s = dyn_cast<SyntheticSection>(this))
106     return s->getSize();
107   return size - bytesDropped;
108 }
109 
110 template <class ELFT>
111 static void decompressAux(const InputSectionBase &sec, uint8_t *out,
112                           size_t size) {
113   auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
114   auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
115                         .slice(sizeof(typename ELFT::Chdr));
116   if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
117                     ? compression::zlib::decompress(compressed, out, size)
118                     : compression::zstd::decompress(compressed, out, size))
119     fatal(toString(&sec) +
120           ": decompress failed: " + llvm::toString(std::move(e)));
121 }
122 
123 void InputSectionBase::decompress() const {
124   uint8_t *uncompressedBuf;
125   {
126     static std::mutex mu;
127     std::lock_guard<std::mutex> lock(mu);
128     uncompressedBuf = bAlloc().Allocate<uint8_t>(size);
129   }
130 
131   invokeELFT(decompressAux, *this, uncompressedBuf, size);
132   content_ = uncompressedBuf;
133   compressed = false;
134 }
135 
136 template <class ELFT>
137 RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const {
138   if (relSecIdx == 0)
139     return {};
140   RelsOrRelas<ELFT> ret;
141   auto *f = cast<ObjFile<ELFT>>(file);
142   typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx];
143   if (shdr.sh_type == SHT_CREL) {
144     // Return an iterator if supported by caller.
145     if (supportsCrel) {
146       ret.crels = Relocs<typename ELFT::Crel>(
147           (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset);
148       return ret;
149     }
150     InputSectionBase *const &relSec = f->getSections()[relSecIdx];
151     // Otherwise, allocate a buffer to hold the decoded RELA relocations. When
152     // called for the first time, relSec is null (without --emit-relocs) or an
153     // InputSection with false decodedCrel.
154     if (!relSec || !cast<InputSection>(relSec)->decodedCrel) {
155       auto *sec = makeThreadLocal<InputSection>(*f, shdr, name);
156       f->cacheDecodedCrel(relSecIdx, sec);
157       sec->type = SHT_RELA;
158       sec->decodedCrel = true;
159 
160       RelocsCrel<ELFT::Is64Bits> entries(sec->content_);
161       sec->size = entries.size() * sizeof(typename ELFT::Rela);
162       auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size());
163       sec->content_ = reinterpret_cast<uint8_t *>(relas);
164       for (auto [i, r] : llvm::enumerate(entries)) {
165         relas[i].r_offset = r.r_offset;
166         relas[i].setSymbolAndType(r.r_symidx, r.r_type, false);
167         relas[i].r_addend = r.r_addend;
168       }
169     }
170     ret.relas = {ArrayRef(
171         reinterpret_cast<const typename ELFT::Rela *>(relSec->content_),
172         relSec->size / sizeof(typename ELFT::Rela))};
173     return ret;
174   }
175 
176   const void *content = f->mb.getBufferStart() + shdr.sh_offset;
177   size_t size = shdr.sh_size;
178   if (shdr.sh_type == SHT_REL) {
179     ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content),
180                          size / sizeof(typename ELFT::Rel))};
181   } else {
182     assert(shdr.sh_type == SHT_RELA);
183     ret.relas = {
184         ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content),
185                  size / sizeof(typename ELFT::Rela))};
186   }
187   return ret;
188 }
189 
190 uint64_t SectionBase::getOffset(uint64_t offset) const {
191   switch (kind()) {
192   case Output: {
193     auto *os = cast<OutputSection>(this);
194     // For output sections we treat offset -1 as the end of the section.
195     return offset == uint64_t(-1) ? os->size : offset;
196   }
197   case Regular:
198   case Synthetic:
199   case Spill:
200     return cast<InputSection>(this)->outSecOff + offset;
201   case EHFrame: {
202     // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
203     // crtbeginT.o may reference the start of an empty .eh_frame to identify the
204     // start of the output .eh_frame. Just return offset.
205     //
206     // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
207     // discarded due to GC/ICF. We should compute the output section offset.
208     const EhInputSection *es = cast<EhInputSection>(this);
209     if (!es->content().empty())
210       if (InputSection *isec = es->getParent())
211         return isec->outSecOff + es->getParentOffset(offset);
212     return offset;
213   }
214   case Merge:
215     const MergeInputSection *ms = cast<MergeInputSection>(this);
216     if (InputSection *isec = ms->getParent())
217       return isec->outSecOff + ms->getParentOffset(offset);
218     return ms->getParentOffset(offset);
219   }
220   llvm_unreachable("invalid section kind");
221 }
222 
223 uint64_t SectionBase::getVA(uint64_t offset) const {
224   const OutputSection *out = getOutputSection();
225   return (out ? out->addr : 0) + getOffset(offset);
226 }
227 
228 OutputSection *SectionBase::getOutputSection() {
229   InputSection *sec;
230   if (auto *isec = dyn_cast<InputSection>(this))
231     sec = isec;
232   else if (auto *ms = dyn_cast<MergeInputSection>(this))
233     sec = ms->getParent();
234   else if (auto *eh = dyn_cast<EhInputSection>(this))
235     sec = eh->getParent();
236   else
237     return cast<OutputSection>(this);
238   return sec ? sec->getParent() : nullptr;
239 }
240 
241 // When a section is compressed, `rawData` consists with a header followed
242 // by zlib-compressed data. This function parses a header to initialize
243 // `uncompressedSize` member and remove the header from `rawData`.
244 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
245   flags &= ~(uint64_t)SHF_COMPRESSED;
246 
247   // New-style header
248   if (content().size() < sizeof(typename ELFT::Chdr)) {
249     error(toString(this) + ": corrupted compressed section");
250     return;
251   }
252 
253   auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
254   if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
255     if (!compression::zlib::isAvailable())
256       error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
257                              "not built with zlib support");
258   } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
259     if (!compression::zstd::isAvailable())
260       error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
261                              "not built with zstd support");
262   } else {
263     error(toString(this) + ": unsupported compression type (" +
264           Twine(hdr->ch_type) + ")");
265     return;
266   }
267 
268   compressed = true;
269   compressedSize = size;
270   size = hdr->ch_size;
271   addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
272 }
273 
274 InputSection *InputSectionBase::getLinkOrderDep() const {
275   assert(flags & SHF_LINK_ORDER);
276   if (!link)
277     return nullptr;
278   return cast<InputSection>(file->getSections()[link]);
279 }
280 
281 // Find a symbol that encloses a given location.
282 Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset,
283                                               uint8_t type) const {
284   if (file->isInternal())
285     return nullptr;
286   for (Symbol *b : file->getSymbols())
287     if (Defined *d = dyn_cast<Defined>(b))
288       if (d->section == this && d->value <= offset &&
289           offset < d->value + d->size && (type == 0 || type == d->type))
290         return d;
291   return nullptr;
292 }
293 
294 // Returns an object file location string. Used to construct an error message.
295 std::string InputSectionBase::getLocation(uint64_t offset) const {
296   std::string secAndOffset =
297       (name + "+0x" + Twine::utohexstr(offset) + ")").str();
298 
299   // We don't have file for synthetic sections.
300   if (file == nullptr)
301     return (config->outputFile + ":(" + secAndOffset).str();
302 
303   std::string filename = toString(file);
304   if (Defined *d = getEnclosingFunction(offset))
305     return filename + ":(function " + toString(*d) + ": " + secAndOffset;
306 
307   return filename + ":(" + secAndOffset;
308 }
309 
310 // This function is intended to be used for constructing an error message.
311 // The returned message looks like this:
312 //
313 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
314 //
315 //  Returns an empty string if there's no way to get line info.
316 std::string InputSectionBase::getSrcMsg(const Symbol &sym,
317                                         uint64_t offset) const {
318   return file->getSrcMsg(sym, *this, offset);
319 }
320 
321 // Returns a filename string along with an optional section name. This
322 // function is intended to be used for constructing an error
323 // message. The returned message looks like this:
324 //
325 //   path/to/foo.o:(function bar)
326 //
327 // or
328 //
329 //   path/to/foo.o:(function bar) in archive path/to/bar.a
330 std::string InputSectionBase::getObjMsg(uint64_t off) const {
331   std::string filename = std::string(file->getName());
332 
333   std::string archive;
334   if (!file->archiveName.empty())
335     archive = (" in archive " + file->archiveName).str();
336 
337   // Find a symbol that encloses a given location. getObjMsg may be called
338   // before ObjFile::initSectionsAndLocalSyms where local symbols are
339   // initialized.
340   if (Defined *d = getEnclosingSymbol(off))
341     return filename + ":(" + toString(*d) + ")" + archive;
342 
343   // If there's no symbol, print out the offset in the section.
344   return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
345       .str();
346 }
347 
348 PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source,
349                                              InputSectionDescription &isd)
350     : InputSection(source.file, source.flags, source.type, source.addralign, {},
351                    source.name, SectionBase::Spill),
352       isd(&isd) {}
353 
354 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
355 
356 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
357                            uint32_t addralign, ArrayRef<uint8_t> data,
358                            StringRef name, Kind k)
359     : InputSectionBase(f, flags, type,
360                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data,
361                        name, k) {
362   assert(f || this == &InputSection::discarded);
363 }
364 
365 template <class ELFT>
366 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
367                            StringRef name)
368     : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
369 
370 // Copy SHT_GROUP section contents. Used only for the -r option.
371 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
372   // ELFT::Word is the 32-bit integral type in the target endianness.
373   using u32 = typename ELFT::Word;
374   ArrayRef<u32> from = getDataAs<u32>();
375   auto *to = reinterpret_cast<u32 *>(buf);
376 
377   // The first entry is not a section number but a flag.
378   *to++ = from[0];
379 
380   // Adjust section numbers because section numbers in an input object files are
381   // different in the output. We also need to handle combined or discarded
382   // members.
383   ArrayRef<InputSectionBase *> sections = file->getSections();
384   DenseSet<uint32_t> seen;
385   for (uint32_t idx : from.slice(1)) {
386     OutputSection *osec = sections[idx]->getOutputSection();
387     if (osec && seen.insert(osec->sectionIndex).second)
388       *to++ = osec->sectionIndex;
389   }
390 }
391 
392 InputSectionBase *InputSection::getRelocatedSection() const {
393   if (file->isInternal() || !isStaticRelSecType(type))
394     return nullptr;
395   ArrayRef<InputSectionBase *> sections = file->getSections();
396   return sections[info];
397 }
398 
399 template <class ELFT, class RelTy>
400 void InputSection::copyRelocations(uint8_t *buf) {
401   if (config->relax && !config->relocatable &&
402       (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) {
403     // On LoongArch and RISC-V, relaxation might change relocations: copy
404     // from internal ones that are updated by relaxation.
405     InputSectionBase *sec = getRelocatedSection();
406     copyRelocations<ELFT, RelTy>(buf, llvm::make_range(sec->relocations.begin(),
407                                                        sec->relocations.end()));
408   } else {
409     // Convert the raw relocations in the input section into Relocation objects
410     // suitable to be used by copyRelocations below.
411     struct MapRel {
412       const ObjFile<ELFT> &file;
413       Relocation operator()(const RelTy &rel) const {
414         // RelExpr is not used so set to a dummy value.
415         return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset,
416                           getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)};
417       }
418     };
419 
420     using RawRels = ArrayRef<RelTy>;
421     using MapRelIter =
422         llvm::mapped_iterator<typename RawRels::iterator, MapRel>;
423     auto mapRel = MapRel{*getFile<ELFT>()};
424     RawRels rawRels = getDataAs<RelTy>();
425     auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel),
426                                  MapRelIter(rawRels.end(), mapRel));
427     copyRelocations<ELFT, RelTy>(buf, rels);
428   }
429 }
430 
431 // This is used for -r and --emit-relocs. We can't use memcpy to copy
432 // relocations because we need to update symbol table offset and section index
433 // for each relocation. So we copy relocations one by one.
434 template <class ELFT, class RelTy, class RelIt>
435 void InputSection::copyRelocations(uint8_t *buf,
436                                    llvm::iterator_range<RelIt> rels) {
437   const TargetInfo &target = *elf::target;
438   InputSectionBase *sec = getRelocatedSection();
439   (void)sec->contentMaybeDecompress(); // uncompress if needed
440 
441   for (const Relocation &rel : rels) {
442     RelType type = rel.type;
443     const ObjFile<ELFT> *file = getFile<ELFT>();
444     Symbol &sym = *rel.sym;
445 
446     auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
447     buf += sizeof(RelTy);
448 
449     if (RelTy::HasAddend)
450       p->r_addend = rel.addend;
451 
452     // Output section VA is zero for -r, so r_offset is an offset within the
453     // section, but for --emit-relocs it is a virtual address.
454     p->r_offset = sec->getVA(rel.offset);
455     p->setSymbolAndType(in.symTab->getSymbolIndex(sym), type,
456                         config->isMips64EL);
457 
458     if (sym.type == STT_SECTION) {
459       // We combine multiple section symbols into only one per
460       // section. This means we have to update the addend. That is
461       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
462       // section data. We do that by adding to the Relocation vector.
463 
464       // .eh_frame is horribly special and can reference discarded sections. To
465       // avoid having to parse and recreate .eh_frame, we just replace any
466       // relocation in it pointing to discarded sections with R_*_NONE, which
467       // hopefully creates a frame that is ignored at runtime. Also, don't warn
468       // on .gcc_except_table and debug sections.
469       //
470       // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
471       auto *d = dyn_cast<Defined>(&sym);
472       if (!d) {
473         if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
474             sec->name != ".gcc_except_table" && sec->name != ".got2" &&
475             sec->name != ".toc") {
476           uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
477           Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
478           warn("relocation refers to a discarded section: " +
479                CHECK(file->getObj().getSectionName(sec), file) +
480                "\n>>> referenced by " + getObjMsg(p->r_offset));
481         }
482         p->setSymbolAndType(0, 0, false);
483         continue;
484       }
485       SectionBase *section = d->section;
486       assert(section->isLive());
487 
488       int64_t addend = rel.addend;
489       const uint8_t *bufLoc = sec->content().begin() + rel.offset;
490       if (!RelTy::HasAddend)
491         addend = target.getImplicitAddend(bufLoc, type);
492 
493       if (config->emachine == EM_MIPS &&
494           target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
495         // Some MIPS relocations depend on "gp" value. By default,
496         // this value has 0x7ff0 offset from a .got section. But
497         // relocatable files produced by a compiler or a linker
498         // might redefine this default value and we must use it
499         // for a calculation of the relocation result. When we
500         // generate EXE or DSO it's trivial. Generating a relocatable
501         // output is more difficult case because the linker does
502         // not calculate relocations in this mode and loses
503         // individual "gp" values used by each input object file.
504         // As a workaround we add the "gp" value to the relocation
505         // addend and save it back to the file.
506         addend += sec->getFile<ELFT>()->mipsGp0;
507       }
508 
509       if (RelTy::HasAddend)
510         p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
511       // For SHF_ALLOC sections relocated by REL, append a relocation to
512       // sec->relocations so that relocateAlloc transitively called by
513       // writeSections will update the implicit addend. Non-SHF_ALLOC sections
514       // utilize relocateNonAlloc to process raw relocations and do not need
515       // this sec->relocations change.
516       else if (config->relocatable && (sec->flags & SHF_ALLOC) &&
517                type != target.noneRel)
518         sec->addReloc({R_ABS, type, rel.offset, addend, &sym});
519     } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
520                p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
521       // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
522       // indicates that r30 is relative to the input section .got2
523       // (r_addend>=0x8000), after linking, r30 should be relative to the output
524       // section .got2 . To compensate for the shift, adjust r_addend by
525       // ppc32Got->outSecOff.
526       p->r_addend += sec->file->ppc32Got2->outSecOff;
527     }
528   }
529 }
530 
531 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
532 // references specially. The general rule is that the value of the symbol in
533 // this context is the address of the place P. A further special case is that
534 // branch relocations to an undefined weak reference resolve to the next
535 // instruction.
536 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
537                                               uint32_t p) {
538   switch (type) {
539   // Unresolved branch relocations to weak references resolve to next
540   // instruction, this will be either 2 or 4 bytes on from P.
541   case R_ARM_THM_JUMP8:
542   case R_ARM_THM_JUMP11:
543     return p + 2 + a;
544   case R_ARM_CALL:
545   case R_ARM_JUMP24:
546   case R_ARM_PC24:
547   case R_ARM_PLT32:
548   case R_ARM_PREL31:
549   case R_ARM_THM_JUMP19:
550   case R_ARM_THM_JUMP24:
551     return p + 4 + a;
552   case R_ARM_THM_CALL:
553     // We don't want an interworking BLX to ARM
554     return p + 5 + a;
555   // Unresolved non branch pc-relative relocations
556   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
557   // targets a weak-reference.
558   case R_ARM_MOVW_PREL_NC:
559   case R_ARM_MOVT_PREL:
560   case R_ARM_REL32:
561   case R_ARM_THM_ALU_PREL_11_0:
562   case R_ARM_THM_MOVW_PREL_NC:
563   case R_ARM_THM_MOVT_PREL:
564   case R_ARM_THM_PC12:
565     return p + a;
566   // p + a is unrepresentable as negative immediates can't be encoded.
567   case R_ARM_THM_PC8:
568     return p;
569   }
570   llvm_unreachable("ARM pc-relative relocation expected\n");
571 }
572 
573 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
574 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
575   switch (type) {
576   // Unresolved branch relocations to weak references resolve to next
577   // instruction, this is 4 bytes on from P.
578   case R_AARCH64_CALL26:
579   case R_AARCH64_CONDBR19:
580   case R_AARCH64_JUMP26:
581   case R_AARCH64_TSTBR14:
582     return p + 4;
583   // Unresolved non branch pc-relative relocations
584   case R_AARCH64_PREL16:
585   case R_AARCH64_PREL32:
586   case R_AARCH64_PREL64:
587   case R_AARCH64_ADR_PREL_LO21:
588   case R_AARCH64_LD_PREL_LO19:
589   case R_AARCH64_PLT32:
590     return p;
591   }
592   llvm_unreachable("AArch64 pc-relative relocation expected\n");
593 }
594 
595 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
596   switch (type) {
597   case R_RISCV_BRANCH:
598   case R_RISCV_JAL:
599   case R_RISCV_CALL:
600   case R_RISCV_CALL_PLT:
601   case R_RISCV_RVC_BRANCH:
602   case R_RISCV_RVC_JUMP:
603   case R_RISCV_PLT32:
604     return p;
605   default:
606     return 0;
607   }
608 }
609 
610 // ARM SBREL relocations are of the form S + A - B where B is the static base
611 // The ARM ABI defines base to be "addressing origin of the output segment
612 // defining the symbol S". We defined the "addressing origin"/static base to be
613 // the base of the PT_LOAD segment containing the Sym.
614 // The procedure call standard only defines a Read Write Position Independent
615 // RWPI variant so in practice we should expect the static base to be the base
616 // of the RW segment.
617 static uint64_t getARMStaticBase(const Symbol &sym) {
618   OutputSection *os = sym.getOutputSection();
619   if (!os || !os->ptLoad || !os->ptLoad->firstSec)
620     fatal("SBREL relocation to " + sym.getName() + " without static base");
621   return os->ptLoad->firstSec->addr;
622 }
623 
624 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
625 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
626 // is calculated using PCREL_HI20's symbol.
627 //
628 // This function returns the R_RISCV_PCREL_HI20 relocation from
629 // R_RISCV_PCREL_LO12's symbol and addend.
630 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
631   const Defined *d = cast<Defined>(sym);
632   if (!d->section) {
633     errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
634                 sym->getName());
635     return nullptr;
636   }
637   InputSection *isec = cast<InputSection>(d->section);
638 
639   if (addend != 0)
640     warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
641          isec->getObjMsg(d->value) + " is ignored");
642 
643   // Relocations are sorted by offset, so we can use std::equal_range to do
644   // binary search.
645   Relocation r;
646   r.offset = d->value;
647   auto range =
648       std::equal_range(isec->relocs().begin(), isec->relocs().end(), r,
649                        [](const Relocation &lhs, const Relocation &rhs) {
650                          return lhs.offset < rhs.offset;
651                        });
652 
653   for (auto it = range.first; it != range.second; ++it)
654     if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
655         it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
656       return &*it;
657 
658   errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
659               isec->getObjMsg(d->value) +
660               " without an associated R_RISCV_PCREL_HI20 relocation");
661   return nullptr;
662 }
663 
664 // A TLS symbol's virtual address is relative to the TLS segment. Add a
665 // target-specific adjustment to produce a thread-pointer-relative offset.
666 static int64_t getTlsTpOffset(const Symbol &s) {
667   // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
668   if (&s == ElfSym::tlsModuleBase)
669     return 0;
670 
671   // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
672   // while most others use Variant 1. At run time TP will be aligned to p_align.
673 
674   // Variant 1. TP will be followed by an optional gap (which is the size of 2
675   // pointers on ARM/AArch64, 0 on other targets), followed by alignment
676   // padding, then the static TLS blocks. The alignment padding is added so that
677   // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
678   //
679   // Variant 2. Static TLS blocks, followed by alignment padding are placed
680   // before TP. The alignment padding is added so that (TP - padding -
681   // p_memsz) is congruent to p_vaddr modulo p_align.
682   PhdrEntry *tls = Out::tlsPhdr;
683   switch (config->emachine) {
684     // Variant 1.
685   case EM_ARM:
686   case EM_AARCH64:
687     return s.getVA(0) + config->wordsize * 2 +
688            ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
689   case EM_MIPS:
690   case EM_PPC:
691   case EM_PPC64:
692     // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
693     // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
694     // data and 0xf000 of the program's TLS segment.
695     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
696   case EM_LOONGARCH:
697   case EM_RISCV:
698     // See the comment in handleTlsRelocation. For TLSDESC=>IE,
699     // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While
700     // `tls` may be null, the return value is ignored.
701     if (s.type != STT_TLS)
702       return 0;
703     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
704 
705     // Variant 2.
706   case EM_HEXAGON:
707   case EM_S390:
708   case EM_SPARCV9:
709   case EM_386:
710   case EM_X86_64:
711     return s.getVA(0) - tls->p_memsz -
712            ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
713   default:
714     llvm_unreachable("unhandled Config->EMachine");
715   }
716 }
717 
718 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
719                                             int64_t a, uint64_t p,
720                                             const Symbol &sym, RelExpr expr) {
721   switch (expr) {
722   case R_ABS:
723   case R_DTPREL:
724   case R_RELAX_TLS_LD_TO_LE_ABS:
725   case R_RELAX_GOT_PC_NOPIC:
726   case R_AARCH64_AUTH:
727   case R_RISCV_ADD:
728   case R_RISCV_LEB128:
729     return sym.getVA(a);
730   case R_ADDEND:
731     return a;
732   case R_RELAX_HINT:
733     return 0;
734   case R_ARM_SBREL:
735     return sym.getVA(a) - getARMStaticBase(sym);
736   case R_GOT:
737   case R_RELAX_TLS_GD_TO_IE_ABS:
738     return sym.getGotVA() + a;
739   case R_LOONGARCH_GOT:
740     // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type
741     // for their page offsets. The arithmetics are different in the TLS case
742     // so we have to duplicate some logic here.
743     if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12)
744       // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
745       return in.got->getGlobalDynAddr(sym) + a;
746     return getRelocTargetVA(file, type, a, p, sym, R_GOT);
747   case R_GOTONLY_PC:
748     return in.got->getVA() + a - p;
749   case R_GOTPLTONLY_PC:
750     return in.gotPlt->getVA() + a - p;
751   case R_GOTREL:
752   case R_PPC64_RELAX_TOC:
753     return sym.getVA(a) - in.got->getVA();
754   case R_GOTPLTREL:
755     return sym.getVA(a) - in.gotPlt->getVA();
756   case R_GOTPLT:
757   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
758     return sym.getGotVA() + a - in.gotPlt->getVA();
759   case R_TLSLD_GOT_OFF:
760   case R_GOT_OFF:
761   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
762     return sym.getGotOffset() + a;
763   case R_AARCH64_GOT_PAGE_PC:
764   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
765     return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
766   case R_AARCH64_GOT_PAGE:
767     return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
768   case R_GOT_PC:
769   case R_RELAX_TLS_GD_TO_IE:
770     return sym.getGotVA() + a - p;
771   case R_GOTPLT_GOTREL:
772     return sym.getGotPltVA() + a - in.got->getVA();
773   case R_GOTPLT_PC:
774     return sym.getGotPltVA() + a - p;
775   case R_LOONGARCH_GOT_PAGE_PC:
776     if (sym.hasFlag(NEEDS_TLSGD))
777       return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type);
778     return getLoongArchPageDelta(sym.getGotVA() + a, p, type);
779   case R_MIPS_GOTREL:
780     return sym.getVA(a) - in.mipsGot->getGp(file);
781   case R_MIPS_GOT_GP:
782     return in.mipsGot->getGp(file) + a;
783   case R_MIPS_GOT_GP_PC: {
784     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
785     // is _gp_disp symbol. In that case we should use the following
786     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
787     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
788     // microMIPS variants of these relocations use slightly different
789     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
790     // to correctly handle less-significant bit of the microMIPS symbol.
791     uint64_t v = in.mipsGot->getGp(file) + a - p;
792     if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
793       v += 4;
794     if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
795       v -= 1;
796     return v;
797   }
798   case R_MIPS_GOT_LOCAL_PAGE:
799     // If relocation against MIPS local symbol requires GOT entry, this entry
800     // should be initialized by 'page address'. This address is high 16-bits
801     // of sum the symbol's value and the addend.
802     return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
803            in.mipsGot->getGp(file);
804   case R_MIPS_GOT_OFF:
805   case R_MIPS_GOT_OFF32:
806     // In case of MIPS if a GOT relocation has non-zero addend this addend
807     // should be applied to the GOT entry content not to the GOT entry offset.
808     // That is why we use separate expression type.
809     return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
810            in.mipsGot->getGp(file);
811   case R_MIPS_TLSGD:
812     return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
813            in.mipsGot->getGp(file);
814   case R_MIPS_TLSLD:
815     return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
816            in.mipsGot->getGp(file);
817   case R_AARCH64_PAGE_PC: {
818     uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
819     return getAArch64Page(val) - getAArch64Page(p);
820   }
821   case R_RISCV_PC_INDIRECT: {
822     if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
823       return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
824                               *hiRel->sym, hiRel->expr);
825     return 0;
826   }
827   case R_LOONGARCH_PAGE_PC:
828     return getLoongArchPageDelta(sym.getVA(a), p, type);
829   case R_PC:
830   case R_ARM_PCA: {
831     uint64_t dest;
832     if (expr == R_ARM_PCA)
833       // Some PC relative ARM (Thumb) relocations align down the place.
834       p = p & 0xfffffffc;
835     if (sym.isUndefined()) {
836       // On ARM and AArch64 a branch to an undefined weak resolves to the next
837       // instruction, otherwise the place. On RISC-V, resolve an undefined weak
838       // to the same instruction to cause an infinite loop (making the user
839       // aware of the issue) while ensuring no overflow.
840       // Note: if the symbol is hidden, its binding has been converted to local,
841       // so we just check isUndefined() here.
842       if (config->emachine == EM_ARM)
843         dest = getARMUndefinedRelativeWeakVA(type, a, p);
844       else if (config->emachine == EM_AARCH64)
845         dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
846       else if (config->emachine == EM_PPC)
847         dest = p;
848       else if (config->emachine == EM_RISCV)
849         dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
850       else
851         dest = sym.getVA(a);
852     } else {
853       dest = sym.getVA(a);
854     }
855     return dest - p;
856   }
857   case R_PLT:
858     return sym.getPltVA() + a;
859   case R_PLT_PC:
860   case R_PPC64_CALL_PLT:
861     return sym.getPltVA() + a - p;
862   case R_LOONGARCH_PLT_PAGE_PC:
863     return getLoongArchPageDelta(sym.getPltVA() + a, p, type);
864   case R_PLT_GOTPLT:
865     return sym.getPltVA() + a - in.gotPlt->getVA();
866   case R_PLT_GOTREL:
867     return sym.getPltVA() + a - in.got->getVA();
868   case R_PPC32_PLTREL:
869     // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
870     // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
871     // target VA computation.
872     return sym.getPltVA() - p;
873   case R_PPC64_CALL: {
874     uint64_t symVA = sym.getVA(a);
875     // If we have an undefined weak symbol, we might get here with a symbol
876     // address of zero. That could overflow, but the code must be unreachable,
877     // so don't bother doing anything at all.
878     if (!symVA)
879       return 0;
880 
881     // PPC64 V2 ABI describes two entry points to a function. The global entry
882     // point is used for calls where the caller and callee (may) have different
883     // TOC base pointers and r2 needs to be modified to hold the TOC base for
884     // the callee. For local calls the caller and callee share the same
885     // TOC base and so the TOC pointer initialization code should be skipped by
886     // branching to the local entry point.
887     return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
888   }
889   case R_PPC64_TOCBASE:
890     return getPPC64TocBase() + a;
891   case R_RELAX_GOT_PC:
892   case R_PPC64_RELAX_GOT_PC:
893     return sym.getVA(a) - p;
894   case R_RELAX_TLS_GD_TO_LE:
895   case R_RELAX_TLS_IE_TO_LE:
896   case R_RELAX_TLS_LD_TO_LE:
897   case R_TPREL:
898     // It is not very clear what to return if the symbol is undefined. With
899     // --noinhibit-exec, even a non-weak undefined reference may reach here.
900     // Just return A, which matches R_ABS, and the behavior of some dynamic
901     // loaders.
902     if (sym.isUndefined())
903       return a;
904     return getTlsTpOffset(sym) + a;
905   case R_RELAX_TLS_GD_TO_LE_NEG:
906   case R_TPREL_NEG:
907     if (sym.isUndefined())
908       return a;
909     return -getTlsTpOffset(sym) + a;
910   case R_SIZE:
911     return sym.getSize() + a;
912   case R_TLSDESC:
913     return in.got->getTlsDescAddr(sym) + a;
914   case R_TLSDESC_PC:
915     return in.got->getTlsDescAddr(sym) + a - p;
916   case R_TLSDESC_GOTPLT:
917     return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
918   case R_AARCH64_TLSDESC_PAGE:
919     return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p);
920   case R_LOONGARCH_TLSDESC_PAGE_PC:
921     return getLoongArchPageDelta(in.got->getTlsDescAddr(sym) + a, p, type);
922   case R_TLSGD_GOT:
923     return in.got->getGlobalDynOffset(sym) + a;
924   case R_TLSGD_GOTPLT:
925     return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
926   case R_TLSGD_PC:
927     return in.got->getGlobalDynAddr(sym) + a - p;
928   case R_LOONGARCH_TLSGD_PAGE_PC:
929     return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type);
930   case R_TLSLD_GOTPLT:
931     return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
932   case R_TLSLD_GOT:
933     return in.got->getTlsIndexOff() + a;
934   case R_TLSLD_PC:
935     return in.got->getTlsIndexVA() + a - p;
936   default:
937     llvm_unreachable("invalid expression");
938   }
939 }
940 
941 // This function applies relocations to sections without SHF_ALLOC bit.
942 // Such sections are never mapped to memory at runtime. Debug sections are
943 // an example. Relocations in non-alloc sections are much easier to
944 // handle than in allocated sections because it will never need complex
945 // treatment such as GOT or PLT (because at runtime no one refers them).
946 // So, we handle relocations for non-alloc sections directly in this
947 // function as a performance optimization.
948 template <class ELFT, class RelTy>
949 void InputSection::relocateNonAlloc(uint8_t *buf, Relocs<RelTy> rels) {
950   const unsigned bits = sizeof(typename ELFT::uint) * 8;
951   const TargetInfo &target = *elf::target;
952   const auto emachine = config->emachine;
953   const bool isDebug = isDebugSection(*this);
954   const bool isDebugLine = isDebug && name == ".debug_line";
955   std::optional<uint64_t> tombstone;
956   if (isDebug) {
957     if (name == ".debug_loc" || name == ".debug_ranges")
958       tombstone = 1;
959     else if (name == ".debug_names")
960       tombstone = UINT64_MAX; // tombstone value
961     else
962       tombstone = 0;
963   }
964   for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
965     if (patAndValue.first.match(this->name)) {
966       tombstone = patAndValue.second;
967       break;
968     }
969 
970   const InputFile *f = this->file;
971   for (auto it = rels.begin(), end = rels.end(); it != end; ++it) {
972     const RelTy &rel = *it;
973     const RelType type = rel.getType(config->isMips64EL);
974     const uint64_t offset = rel.r_offset;
975     uint8_t *bufLoc = buf + offset;
976     int64_t addend = getAddend<ELFT>(rel);
977     if (!RelTy::HasAddend)
978       addend += target.getImplicitAddend(bufLoc, type);
979 
980     Symbol &sym = f->getRelocTargetSym(rel);
981     RelExpr expr = target.getRelExpr(type, sym, bufLoc);
982     if (expr == R_NONE)
983       continue;
984     auto *ds = dyn_cast<Defined>(&sym);
985 
986     if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) {
987       if (++it != end &&
988           it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 &&
989           it->r_offset == offset) {
990         uint64_t val;
991         if (!ds && tombstone) {
992           val = *tombstone;
993         } else {
994           val = sym.getVA(addend) -
995                 (f->getRelocTargetSym(*it).getVA(0) + getAddend<ELFT>(*it));
996         }
997         if (overwriteULEB128(bufLoc, val) >= 0x80)
998           errorOrWarn(getLocation(offset) + ": ULEB128 value " + Twine(val) +
999                       " exceeds available space; references '" +
1000                       lld::toString(sym) + "'");
1001         continue;
1002       }
1003       errorOrWarn(getLocation(offset) +
1004                   ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128");
1005       return;
1006     }
1007 
1008     if (tombstone && (expr == R_ABS || expr == R_DTPREL)) {
1009       // Resolve relocations in .debug_* referencing (discarded symbols or ICF
1010       // folded section symbols) to a tombstone value. Resolving to addend is
1011       // unsatisfactory because the result address range may collide with a
1012       // valid range of low address, or leave multiple CUs claiming ownership of
1013       // the same range of code, which may confuse consumers.
1014       //
1015       // To address the problems, we use -1 as a tombstone value for most
1016       // .debug_* sections. We have to ignore the addend because we don't want
1017       // to resolve an address attribute (which may have a non-zero addend) to
1018       // -1+addend (wrap around to a low address).
1019       //
1020       // R_DTPREL type relocations represent an offset into the dynamic thread
1021       // vector. The computed value is st_value plus a non-negative offset.
1022       // Negative values are invalid, so -1 can be used as the tombstone value.
1023       //
1024       // If the referenced symbol is relative to a discarded section (due to
1025       // --gc-sections, COMDAT, etc), it has been converted to a Undefined.
1026       // `ds->folded` catches the ICF folded case. However, resolving a
1027       // relocation in .debug_line to -1 would stop debugger users from setting
1028       // breakpoints on the folded-in function, so exclude .debug_line.
1029       //
1030       // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
1031       // (base address selection entry), use 1 (which is used by GNU ld for
1032       // .debug_ranges).
1033       //
1034       // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
1035       // value. Enable -1 in a future release.
1036       if (!ds || (ds->folded && !isDebugLine)) {
1037         // If -z dead-reloc-in-nonalloc= is specified, respect it.
1038         uint64_t value = SignExtend64<bits>(*tombstone);
1039         // For a 32-bit local TU reference in .debug_names, X86_64::relocate
1040         // requires that the unsigned value for R_X86_64_32 is truncated to
1041         // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
1042         // absolute relocations and do not need this change.
1043         if (emachine == EM_X86_64 && type == R_X86_64_32)
1044           value = static_cast<uint32_t>(value);
1045         target.relocateNoSym(bufLoc, type, value);
1046         continue;
1047       }
1048     }
1049 
1050     // For a relocatable link, content relocated by relocation types with an
1051     // explicit addend, such as RELA, remain unchanged and we can stop here.
1052     // While content relocated by relocation types with an implicit addend, such
1053     // as REL, needs the implicit addend updated.
1054     if (config->relocatable && (RelTy::HasAddend || sym.type != STT_SECTION))
1055       continue;
1056 
1057     // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
1058     // sections.
1059     if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL ||
1060         expr == R_RISCV_ADD) {
1061       target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
1062       continue;
1063     }
1064 
1065     if (expr == R_SIZE) {
1066       target.relocateNoSym(bufLoc, type,
1067                            SignExtend64<bits>(sym.getSize() + addend));
1068       continue;
1069     }
1070 
1071     std::string msg = getLocation(offset) + ": has non-ABS relocation " +
1072                       toString(type) + " against symbol '" + toString(sym) +
1073                       "'";
1074     if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) {
1075       errorOrWarn(msg);
1076       return;
1077     }
1078 
1079     // If the control reaches here, we found a PC-relative relocation in a
1080     // non-ALLOC section. Since non-ALLOC section is not loaded into memory
1081     // at runtime, the notion of PC-relative doesn't make sense here. So,
1082     // this is a usage error. However, GNU linkers historically accept such
1083     // relocations without any errors and relocate them as if they were at
1084     // address 0. For bug-compatibility, we accept them with warnings. We
1085     // know Steel Bank Common Lisp as of 2018 have this bug.
1086     //
1087     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
1088     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
1089     // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
1090     // keep this bug-compatible code for a while.
1091     warn(msg);
1092     target.relocateNoSym(
1093         bufLoc, type,
1094         SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
1095   }
1096 }
1097 
1098 template <class ELFT>
1099 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
1100   if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
1101     adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
1102 
1103   if (flags & SHF_ALLOC) {
1104     target->relocateAlloc(*this, buf);
1105     return;
1106   }
1107 
1108   auto *sec = cast<InputSection>(this);
1109   // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1110   // locations with tombstone values.
1111   invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, buf);
1112 }
1113 
1114 // For each function-defining prologue, find any calls to __morestack,
1115 // and replace them with calls to __morestack_non_split.
1116 static void switchMorestackCallsToMorestackNonSplit(
1117     DenseSet<Defined *> &prologues,
1118     SmallVector<Relocation *, 0> &morestackCalls) {
1119 
1120   // If the target adjusted a function's prologue, all calls to
1121   // __morestack inside that function should be switched to
1122   // __morestack_non_split.
1123   Symbol *moreStackNonSplit = symtab.find("__morestack_non_split");
1124   if (!moreStackNonSplit) {
1125     error("mixing split-stack objects requires a definition of "
1126           "__morestack_non_split");
1127     return;
1128   }
1129 
1130   // Sort both collections to compare addresses efficiently.
1131   llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1132     return l->offset < r->offset;
1133   });
1134   std::vector<Defined *> functions(prologues.begin(), prologues.end());
1135   llvm::sort(functions, [](const Defined *l, const Defined *r) {
1136     return l->value < r->value;
1137   });
1138 
1139   auto it = morestackCalls.begin();
1140   for (Defined *f : functions) {
1141     // Find the first call to __morestack within the function.
1142     while (it != morestackCalls.end() && (*it)->offset < f->value)
1143       ++it;
1144     // Adjust all calls inside the function.
1145     while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1146       (*it)->sym = moreStackNonSplit;
1147       ++it;
1148     }
1149   }
1150 }
1151 
1152 static bool enclosingPrologueAttempted(uint64_t offset,
1153                                        const DenseSet<Defined *> &prologues) {
1154   for (Defined *f : prologues)
1155     if (f->value <= offset && offset < f->value + f->size)
1156       return true;
1157   return false;
1158 }
1159 
1160 // If a function compiled for split stack calls a function not
1161 // compiled for split stack, then the caller needs its prologue
1162 // adjusted to ensure that the called function will have enough stack
1163 // available. Find those functions, and adjust their prologues.
1164 template <class ELFT>
1165 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1166                                                          uint8_t *end) {
1167   DenseSet<Defined *> prologues;
1168   SmallVector<Relocation *, 0> morestackCalls;
1169 
1170   for (Relocation &rel : relocs()) {
1171     // Ignore calls into the split-stack api.
1172     if (rel.sym->getName().starts_with("__morestack")) {
1173       if (rel.sym->getName() == "__morestack")
1174         morestackCalls.push_back(&rel);
1175       continue;
1176     }
1177 
1178     // A relocation to non-function isn't relevant. Sometimes
1179     // __morestack is not marked as a function, so this check comes
1180     // after the name check.
1181     if (rel.sym->type != STT_FUNC)
1182       continue;
1183 
1184     // If the callee's-file was compiled with split stack, nothing to do.  In
1185     // this context, a "Defined" symbol is one "defined by the binary currently
1186     // being produced". So an "undefined" symbol might be provided by a shared
1187     // library. It is not possible to tell how such symbols were compiled, so be
1188     // conservative.
1189     if (Defined *d = dyn_cast<Defined>(rel.sym))
1190       if (InputSection *isec = cast_or_null<InputSection>(d->section))
1191         if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1192           continue;
1193 
1194     if (enclosingPrologueAttempted(rel.offset, prologues))
1195       continue;
1196 
1197     if (Defined *f = getEnclosingFunction(rel.offset)) {
1198       prologues.insert(f);
1199       if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1200                                                    f->stOther))
1201         continue;
1202       if (!getFile<ELFT>()->someNoSplitStack)
1203         error(lld::toString(this) + ": " + f->getName() +
1204               " (with -fsplit-stack) calls " + rel.sym->getName() +
1205               " (without -fsplit-stack), but couldn't adjust its prologue");
1206     }
1207   }
1208 
1209   if (target->needsMoreStackNonSplit)
1210     switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1211 }
1212 
1213 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1214   if (LLVM_UNLIKELY(type == SHT_NOBITS))
1215     return;
1216   // If -r or --emit-relocs is given, then an InputSection
1217   // may be a relocation section.
1218   if (LLVM_UNLIKELY(type == SHT_RELA)) {
1219     copyRelocations<ELFT, typename ELFT::Rela>(buf);
1220     return;
1221   }
1222   if (LLVM_UNLIKELY(type == SHT_REL)) {
1223     copyRelocations<ELFT, typename ELFT::Rel>(buf);
1224     return;
1225   }
1226 
1227   // If -r is given, we may have a SHT_GROUP section.
1228   if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1229     copyShtGroup<ELFT>(buf);
1230     return;
1231   }
1232 
1233   // If this is a compressed section, uncompress section contents directly
1234   // to the buffer.
1235   if (compressed) {
1236     auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
1237     auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
1238                           .slice(sizeof(typename ELFT::Chdr));
1239     size_t size = this->size;
1240     if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
1241                       ? compression::zlib::decompress(compressed, buf, size)
1242                       : compression::zstd::decompress(compressed, buf, size))
1243       fatal(toString(this) +
1244             ": decompress failed: " + llvm::toString(std::move(e)));
1245     uint8_t *bufEnd = buf + size;
1246     relocate<ELFT>(buf, bufEnd);
1247     return;
1248   }
1249 
1250   // Copy section contents from source object file to output file
1251   // and then apply relocations.
1252   memcpy(buf, content().data(), content().size());
1253   relocate<ELFT>(buf, buf + content().size());
1254 }
1255 
1256 void InputSection::replace(InputSection *other) {
1257   addralign = std::max(addralign, other->addralign);
1258 
1259   // When a section is replaced with another section that was allocated to
1260   // another partition, the replacement section (and its associated sections)
1261   // need to be placed in the main partition so that both partitions will be
1262   // able to access it.
1263   if (partition != other->partition) {
1264     partition = 1;
1265     for (InputSection *isec : dependentSections)
1266       isec->partition = 1;
1267   }
1268 
1269   other->repl = repl;
1270   other->markDead();
1271 }
1272 
1273 template <class ELFT>
1274 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1275                                const typename ELFT::Shdr &header,
1276                                StringRef name)
1277     : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1278 
1279 SyntheticSection *EhInputSection::getParent() const {
1280   return cast_or_null<SyntheticSection>(parent);
1281 }
1282 
1283 // .eh_frame is a sequence of CIE or FDE records.
1284 // This function splits an input section into records and returns them.
1285 template <class ELFT> void EhInputSection::split() {
1286   const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false);
1287   // getReloc expects the relocations to be sorted by r_offset. See the comment
1288   // in scanRelocs.
1289   if (rels.areRelocsRel()) {
1290     SmallVector<typename ELFT::Rel, 0> storage;
1291     split<ELFT>(sortRels(rels.rels, storage));
1292   } else {
1293     SmallVector<typename ELFT::Rela, 0> storage;
1294     split<ELFT>(sortRels(rels.relas, storage));
1295   }
1296 }
1297 
1298 template <class ELFT, class RelTy>
1299 void EhInputSection::split(ArrayRef<RelTy> rels) {
1300   ArrayRef<uint8_t> d = content();
1301   const char *msg = nullptr;
1302   unsigned relI = 0;
1303   while (!d.empty()) {
1304     if (d.size() < 4) {
1305       msg = "CIE/FDE too small";
1306       break;
1307     }
1308     uint64_t size = endian::read32<ELFT::Endianness>(d.data());
1309     if (size == 0) // ZERO terminator
1310       break;
1311     uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4);
1312     size += 4;
1313     if (LLVM_UNLIKELY(size > d.size())) {
1314       // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1315       // but we do not support that format yet.
1316       msg = size == UINT32_MAX + uint64_t(4)
1317                 ? "CIE/FDE too large"
1318                 : "CIE/FDE ends past the end of the section";
1319       break;
1320     }
1321 
1322     // Find the first relocation that points to [off,off+size). Relocations
1323     // have been sorted by r_offset.
1324     const uint64_t off = d.data() - content().data();
1325     while (relI != rels.size() && rels[relI].r_offset < off)
1326       ++relI;
1327     unsigned firstRel = -1;
1328     if (relI != rels.size() && rels[relI].r_offset < off + size)
1329       firstRel = relI;
1330     (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel);
1331     d = d.slice(size);
1332   }
1333   if (msg)
1334     errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1335                 getObjMsg(d.data() - content().data()));
1336 }
1337 
1338 // Return the offset in an output section for a given input offset.
1339 uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1340   auto it = partition_point(
1341       fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1342   if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
1343     it = partition_point(
1344         cies, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1345     if (it == cies.begin()) // invalid piece
1346       return offset;
1347   }
1348   if (it[-1].outputOff == -1) // invalid piece
1349     return offset - it[-1].inputOff;
1350   return it[-1].outputOff + (offset - it[-1].inputOff);
1351 }
1352 
1353 static size_t findNull(StringRef s, size_t entSize) {
1354   for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1355     const char *b = s.begin() + i;
1356     if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1357       return i;
1358   }
1359   llvm_unreachable("");
1360 }
1361 
1362 // Split SHF_STRINGS section. Such section is a sequence of
1363 // null-terminated strings.
1364 void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1365   const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1366   const char *p = s.data(), *end = s.data() + s.size();
1367   if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
1368     fatal(toString(this) + ": string is not null terminated");
1369   if (entSize == 1) {
1370     // Optimize the common case.
1371     do {
1372       size_t size = strlen(p);
1373       pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
1374       p += size + 1;
1375     } while (p != end);
1376   } else {
1377     do {
1378       size_t size = findNull(StringRef(p, end - p), entSize);
1379       pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
1380       p += size + entSize;
1381     } while (p != end);
1382   }
1383 }
1384 
1385 // Split non-SHF_STRINGS section. Such section is a sequence of
1386 // fixed size records.
1387 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1388                                         size_t entSize) {
1389   size_t size = data.size();
1390   assert((size % entSize) == 0);
1391   const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1392 
1393   pieces.resize_for_overwrite(size / entSize);
1394   for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1395     pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live};
1396 }
1397 
1398 template <class ELFT>
1399 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1400                                      const typename ELFT::Shdr &header,
1401                                      StringRef name)
1402     : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1403 
1404 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1405                                      uint64_t entsize, ArrayRef<uint8_t> data,
1406                                      StringRef name)
1407     : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1408                        /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1409 
1410 // This function is called after we obtain a complete list of input sections
1411 // that need to be linked. This is responsible to split section contents
1412 // into small chunks for further processing.
1413 //
1414 // Note that this function is called from parallelForEach. This must be
1415 // thread-safe (i.e. no memory allocation from the pools).
1416 void MergeInputSection::splitIntoPieces() {
1417   assert(pieces.empty());
1418 
1419   if (flags & SHF_STRINGS)
1420     splitStrings(toStringRef(contentMaybeDecompress()), entsize);
1421   else
1422     splitNonStrings(contentMaybeDecompress(), entsize);
1423 }
1424 
1425 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1426   if (content().size() <= offset)
1427     fatal(toString(this) + ": offset is outside the section");
1428   return partition_point(
1429       pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1430 }
1431 
1432 // Return the offset in an output section for a given input offset.
1433 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1434   const SectionPiece &piece = getSectionPiece(offset);
1435   return piece.outputOff + (offset - piece.inputOff);
1436 }
1437 
1438 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1439                                     StringRef);
1440 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1441                                     StringRef);
1442 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1443                                     StringRef);
1444 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1445                                     StringRef);
1446 
1447 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1448 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1449 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1450 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1451 
1452 template RelsOrRelas<ELF32LE>
1453 InputSectionBase::relsOrRelas<ELF32LE>(bool) const;
1454 template RelsOrRelas<ELF32BE>
1455 InputSectionBase::relsOrRelas<ELF32BE>(bool) const;
1456 template RelsOrRelas<ELF64LE>
1457 InputSectionBase::relsOrRelas<ELF64LE>(bool) const;
1458 template RelsOrRelas<ELF64BE>
1459 InputSectionBase::relsOrRelas<ELF64BE>(bool) const;
1460 
1461 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1462                                               const ELF32LE::Shdr &, StringRef);
1463 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1464                                               const ELF32BE::Shdr &, StringRef);
1465 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1466                                               const ELF64LE::Shdr &, StringRef);
1467 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1468                                               const ELF64BE::Shdr &, StringRef);
1469 
1470 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1471                                         const ELF32LE::Shdr &, StringRef);
1472 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1473                                         const ELF32BE::Shdr &, StringRef);
1474 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1475                                         const ELF64LE::Shdr &, StringRef);
1476 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1477                                         const ELF64BE::Shdr &, StringRef);
1478 
1479 template void EhInputSection::split<ELF32LE>();
1480 template void EhInputSection::split<ELF32BE>();
1481 template void EhInputSection::split<ELF64LE>();
1482 template void EhInputSection::split<ELF64BE>();
1483