xref: /freebsd/contrib/llvm-project/lld/ELF/InputSection.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 using namespace llvm::sys;
39 
40 namespace lld {
41 // Returns a string to construct an error message.
42 std::string toString(const elf::InputSectionBase *sec) {
43   return (toString(sec->file) + ":(" + sec->name + ")").str();
44 }
45 
46 namespace elf {
47 std::vector<InputSectionBase *> inputSections;
48 
49 template <class ELFT>
50 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
51                                             const typename ELFT::Shdr &hdr) {
52   if (hdr.sh_type == SHT_NOBITS)
53     return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
54   return check(file.getObj().getSectionContents(&hdr));
55 }
56 
57 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
58                                    uint32_t type, uint64_t entsize,
59                                    uint32_t link, uint32_t info,
60                                    uint32_t alignment, ArrayRef<uint8_t> data,
61                                    StringRef name, Kind sectionKind)
62     : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
63                   link),
64       file(file), rawData(data) {
65   // In order to reduce memory allocation, we assume that mergeable
66   // sections are smaller than 4 GiB, which is not an unreasonable
67   // assumption as of 2017.
68   if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
69     error(toString(this) + ": section too large");
70 
71   numRelocations = 0;
72   areRelocsRela = false;
73 
74   // The ELF spec states that a value of 0 means the section has
75   // no alignment constraints.
76   uint32_t v = std::max<uint32_t>(alignment, 1);
77   if (!isPowerOf2_64(v))
78     fatal(toString(this) + ": sh_addralign is not a power of 2");
79   this->alignment = v;
80 
81   // In ELF, each section can be compressed by zlib, and if compressed,
82   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
83   // If that's the case, demangle section name so that we can handle a
84   // section as if it weren't compressed.
85   if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
86     if (!zlib::isAvailable())
87       error(toString(file) + ": contains a compressed section, " +
88             "but zlib is not available");
89     parseCompressedHeader();
90   }
91 }
92 
93 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
94 // SHF_GROUP is a marker that a section belongs to some comdat group.
95 // That flag doesn't make sense in an executable.
96 static uint64_t getFlags(uint64_t flags) {
97   flags &= ~(uint64_t)SHF_INFO_LINK;
98   if (!config->relocatable)
99     flags &= ~(uint64_t)SHF_GROUP;
100   return flags;
101 }
102 
103 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
104 // March 2017) fail to infer section types for sections starting with
105 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
106 // SHF_INIT_ARRAY. As a result, the following assembler directive
107 // creates ".init_array.100" with SHT_PROGBITS, for example.
108 //
109 //   .section .init_array.100, "aw"
110 //
111 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
112 // incorrect inputs as if they were correct from the beginning.
113 static uint64_t getType(uint64_t type, StringRef name) {
114   if (type == SHT_PROGBITS && name.startswith(".init_array."))
115     return SHT_INIT_ARRAY;
116   if (type == SHT_PROGBITS && name.startswith(".fini_array."))
117     return SHT_FINI_ARRAY;
118   return type;
119 }
120 
121 template <class ELFT>
122 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
123                                    const typename ELFT::Shdr &hdr,
124                                    StringRef name, Kind sectionKind)
125     : InputSectionBase(&file, getFlags(hdr.sh_flags),
126                        getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
127                        hdr.sh_info, hdr.sh_addralign,
128                        getSectionContents(file, hdr), name, sectionKind) {
129   // We reject object files having insanely large alignments even though
130   // they are allowed by the spec. I think 4GB is a reasonable limitation.
131   // We might want to relax this in the future.
132   if (hdr.sh_addralign > UINT32_MAX)
133     fatal(toString(&file) + ": section sh_addralign is too large");
134 }
135 
136 size_t InputSectionBase::getSize() const {
137   if (auto *s = dyn_cast<SyntheticSection>(this))
138     return s->getSize();
139   if (uncompressedSize >= 0)
140     return uncompressedSize;
141   return rawData.size();
142 }
143 
144 void InputSectionBase::uncompress() const {
145   size_t size = uncompressedSize;
146   char *uncompressedBuf;
147   {
148     static std::mutex mu;
149     std::lock_guard<std::mutex> lock(mu);
150     uncompressedBuf = bAlloc.Allocate<char>(size);
151   }
152 
153   if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
154     fatal(toString(this) +
155           ": uncompress failed: " + llvm::toString(std::move(e)));
156   rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
157   uncompressedSize = -1;
158 }
159 
160 uint64_t InputSectionBase::getOffsetInFile() const {
161   const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
162   const uint8_t *secStart = data().begin();
163   return secStart - fileStart;
164 }
165 
166 uint64_t SectionBase::getOffset(uint64_t offset) const {
167   switch (kind()) {
168   case Output: {
169     auto *os = cast<OutputSection>(this);
170     // For output sections we treat offset -1 as the end of the section.
171     return offset == uint64_t(-1) ? os->size : offset;
172   }
173   case Regular:
174   case Synthetic:
175     return cast<InputSection>(this)->getOffset(offset);
176   case EHFrame:
177     // The file crtbeginT.o has relocations pointing to the start of an empty
178     // .eh_frame that is known to be the first in the link. It does that to
179     // identify the start of the output .eh_frame.
180     return offset;
181   case Merge:
182     const MergeInputSection *ms = cast<MergeInputSection>(this);
183     if (InputSection *isec = ms->getParent())
184       return isec->getOffset(ms->getParentOffset(offset));
185     return ms->getParentOffset(offset);
186   }
187   llvm_unreachable("invalid section kind");
188 }
189 
190 uint64_t SectionBase::getVA(uint64_t offset) const {
191   const OutputSection *out = getOutputSection();
192   return (out ? out->addr : 0) + getOffset(offset);
193 }
194 
195 OutputSection *SectionBase::getOutputSection() {
196   InputSection *sec;
197   if (auto *isec = dyn_cast<InputSection>(this))
198     sec = isec;
199   else if (auto *ms = dyn_cast<MergeInputSection>(this))
200     sec = ms->getParent();
201   else if (auto *eh = dyn_cast<EhInputSection>(this))
202     sec = eh->getParent();
203   else
204     return cast<OutputSection>(this);
205   return sec ? sec->getParent() : nullptr;
206 }
207 
208 // When a section is compressed, `rawData` consists with a header followed
209 // by zlib-compressed data. This function parses a header to initialize
210 // `uncompressedSize` member and remove the header from `rawData`.
211 void InputSectionBase::parseCompressedHeader() {
212   using Chdr64 = typename ELF64LE::Chdr;
213   using Chdr32 = typename ELF32LE::Chdr;
214 
215   // Old-style header
216   if (name.startswith(".zdebug")) {
217     if (!toStringRef(rawData).startswith("ZLIB")) {
218       error(toString(this) + ": corrupted compressed section header");
219       return;
220     }
221     rawData = rawData.slice(4);
222 
223     if (rawData.size() < 8) {
224       error(toString(this) + ": corrupted compressed section header");
225       return;
226     }
227 
228     uncompressedSize = read64be(rawData.data());
229     rawData = rawData.slice(8);
230 
231     // Restore the original section name.
232     // (e.g. ".zdebug_info" -> ".debug_info")
233     name = saver.save("." + name.substr(2));
234     return;
235   }
236 
237   assert(flags & SHF_COMPRESSED);
238   flags &= ~(uint64_t)SHF_COMPRESSED;
239 
240   // New-style 64-bit header
241   if (config->is64) {
242     if (rawData.size() < sizeof(Chdr64)) {
243       error(toString(this) + ": corrupted compressed section");
244       return;
245     }
246 
247     auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
248     if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
249       error(toString(this) + ": unsupported compression type");
250       return;
251     }
252 
253     uncompressedSize = hdr->ch_size;
254     alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
255     rawData = rawData.slice(sizeof(*hdr));
256     return;
257   }
258 
259   // New-style 32-bit header
260   if (rawData.size() < sizeof(Chdr32)) {
261     error(toString(this) + ": corrupted compressed section");
262     return;
263   }
264 
265   auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
266   if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
267     error(toString(this) + ": unsupported compression type");
268     return;
269   }
270 
271   uncompressedSize = hdr->ch_size;
272   alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
273   rawData = rawData.slice(sizeof(*hdr));
274 }
275 
276 InputSection *InputSectionBase::getLinkOrderDep() const {
277   assert(link);
278   assert(flags & SHF_LINK_ORDER);
279   return cast<InputSection>(file->getSections()[link]);
280 }
281 
282 // Find a function symbol that encloses a given location.
283 template <class ELFT>
284 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
285   for (Symbol *b : file->getSymbols())
286     if (Defined *d = dyn_cast<Defined>(b))
287       if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
288           offset < d->value + d->size)
289         return d;
290   return nullptr;
291 }
292 
293 // Returns a source location string. Used to construct an error message.
294 template <class ELFT>
295 std::string InputSectionBase::getLocation(uint64_t offset) {
296   std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();
297 
298   // We don't have file for synthetic sections.
299   if (getFile<ELFT>() == nullptr)
300     return (config->outputFile + ":(" + secAndOffset + ")")
301         .str();
302 
303   // First check if we can get desired values from debugging information.
304   if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
305     return info->FileName + ":" + std::to_string(info->Line) + ":(" +
306            secAndOffset + ")";
307 
308   // File->sourceFile contains STT_FILE symbol that contains a
309   // source file name. If it's missing, we use an object file name.
310   std::string srcFile = getFile<ELFT>()->sourceFile;
311   if (srcFile.empty())
312     srcFile = toString(file);
313 
314   if (Defined *d = getEnclosingFunction<ELFT>(offset))
315     return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";
316 
317   // If there's no symbol, print out the offset in the section.
318   return (srcFile + ":(" + secAndOffset + ")");
319 }
320 
321 // This function is intended to be used for constructing an error message.
322 // The returned message looks like this:
323 //
324 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
325 //
326 //  Returns an empty string if there's no way to get line info.
327 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
328   return file->getSrcMsg(sym, *this, offset);
329 }
330 
331 // Returns a filename string along with an optional section name. This
332 // function is intended to be used for constructing an error
333 // message. The returned message looks like this:
334 //
335 //   path/to/foo.o:(function bar)
336 //
337 // or
338 //
339 //   path/to/foo.o:(function bar) in archive path/to/bar.a
340 std::string InputSectionBase::getObjMsg(uint64_t off) {
341   std::string filename = file->getName();
342 
343   std::string archive;
344   if (!file->archiveName.empty())
345     archive = " in archive " + file->archiveName;
346 
347   // Find a symbol that encloses a given location.
348   for (Symbol *b : file->getSymbols())
349     if (auto *d = dyn_cast<Defined>(b))
350       if (d->section == this && d->value <= off && off < d->value + d->size)
351         return filename + ":(" + toString(*d) + ")" + archive;
352 
353   // If there's no symbol, print out the offset in the section.
354   return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
355       .str();
356 }
357 
358 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
359 
360 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
361                            uint32_t alignment, ArrayRef<uint8_t> data,
362                            StringRef name, Kind k)
363     : InputSectionBase(f, flags, type,
364                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
365                        name, k) {}
366 
367 template <class ELFT>
368 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
369                            StringRef name)
370     : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
371 
372 bool InputSection::classof(const SectionBase *s) {
373   return s->kind() == SectionBase::Regular ||
374          s->kind() == SectionBase::Synthetic;
375 }
376 
377 OutputSection *InputSection::getParent() const {
378   return cast_or_null<OutputSection>(parent);
379 }
380 
381 // Copy SHT_GROUP section contents. Used only for the -r option.
382 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
383   // ELFT::Word is the 32-bit integral type in the target endianness.
384   using u32 = typename ELFT::Word;
385   ArrayRef<u32> from = getDataAs<u32>();
386   auto *to = reinterpret_cast<u32 *>(buf);
387 
388   // The first entry is not a section number but a flag.
389   *to++ = from[0];
390 
391   // Adjust section numbers because section numbers in an input object
392   // files are different in the output.
393   ArrayRef<InputSectionBase *> sections = file->getSections();
394   for (uint32_t idx : from.slice(1))
395     *to++ = sections[idx]->getOutputSection()->sectionIndex;
396 }
397 
398 InputSectionBase *InputSection::getRelocatedSection() const {
399   if (!file || (type != SHT_RELA && type != SHT_REL))
400     return nullptr;
401   ArrayRef<InputSectionBase *> sections = file->getSections();
402   return sections[info];
403 }
404 
405 // This is used for -r and --emit-relocs. We can't use memcpy to copy
406 // relocations because we need to update symbol table offset and section index
407 // for each relocation. So we copy relocations one by one.
408 template <class ELFT, class RelTy>
409 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
410   InputSectionBase *sec = getRelocatedSection();
411 
412   for (const RelTy &rel : rels) {
413     RelType type = rel.getType(config->isMips64EL);
414     const ObjFile<ELFT> *file = getFile<ELFT>();
415     Symbol &sym = file->getRelocTargetSym(rel);
416 
417     auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
418     buf += sizeof(RelTy);
419 
420     if (RelTy::IsRela)
421       p->r_addend = getAddend<ELFT>(rel);
422 
423     // Output section VA is zero for -r, so r_offset is an offset within the
424     // section, but for --emit-relocs it is a virtual address.
425     p->r_offset = sec->getVA(rel.r_offset);
426     p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
427                         config->isMips64EL);
428 
429     if (sym.type == STT_SECTION) {
430       // We combine multiple section symbols into only one per
431       // section. This means we have to update the addend. That is
432       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
433       // section data. We do that by adding to the Relocation vector.
434 
435       // .eh_frame is horribly special and can reference discarded sections. To
436       // avoid having to parse and recreate .eh_frame, we just replace any
437       // relocation in it pointing to discarded sections with R_*_NONE, which
438       // hopefully creates a frame that is ignored at runtime. Also, don't warn
439       // on .gcc_except_table and debug sections.
440       //
441       // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
442       auto *d = dyn_cast<Defined>(&sym);
443       if (!d) {
444         if (!sec->name.startswith(".debug") &&
445             !sec->name.startswith(".zdebug") && sec->name != ".eh_frame" &&
446             sec->name != ".gcc_except_table" && sec->name != ".got2" &&
447             sec->name != ".toc") {
448           uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
449           Elf_Shdr_Impl<ELFT> sec =
450               CHECK(file->getObj().sections(), file)[secIdx];
451           warn("relocation refers to a discarded section: " +
452                CHECK(file->getObj().getSectionName(&sec), file) +
453                "\n>>> referenced by " + getObjMsg(p->r_offset));
454         }
455         p->setSymbolAndType(0, 0, false);
456         continue;
457       }
458       SectionBase *section = d->section->repl;
459       if (!section->isLive()) {
460         p->setSymbolAndType(0, 0, false);
461         continue;
462       }
463 
464       int64_t addend = getAddend<ELFT>(rel);
465       const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
466       if (!RelTy::IsRela)
467         addend = target->getImplicitAddend(bufLoc, type);
468 
469       if (config->emachine == EM_MIPS && config->relocatable &&
470           target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
471         // Some MIPS relocations depend on "gp" value. By default,
472         // this value has 0x7ff0 offset from a .got section. But
473         // relocatable files produced by a compiler or a linker
474         // might redefine this default value and we must use it
475         // for a calculation of the relocation result. When we
476         // generate EXE or DSO it's trivial. Generating a relocatable
477         // output is more difficult case because the linker does
478         // not calculate relocations in this mode and loses
479         // individual "gp" values used by each input object file.
480         // As a workaround we add the "gp" value to the relocation
481         // addend and save it back to the file.
482         addend += sec->getFile<ELFT>()->mipsGp0;
483       }
484 
485       if (RelTy::IsRela)
486         p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
487       else if (config->relocatable && type != target->noneRel)
488         sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
489     } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
490                p->r_addend >= 0x8000) {
491       // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
492       // indicates that r30 is relative to the input section .got2
493       // (r_addend>=0x8000), after linking, r30 should be relative to the output
494       // section .got2 . To compensate for the shift, adjust r_addend by
495       // ppc32Got2OutSecOff.
496       p->r_addend += sec->file->ppc32Got2OutSecOff;
497     }
498   }
499 }
500 
501 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
502 // references specially. The general rule is that the value of the symbol in
503 // this context is the address of the place P. A further special case is that
504 // branch relocations to an undefined weak reference resolve to the next
505 // instruction.
506 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
507                                               uint32_t p) {
508   switch (type) {
509   // Unresolved branch relocations to weak references resolve to next
510   // instruction, this will be either 2 or 4 bytes on from P.
511   case R_ARM_THM_JUMP11:
512     return p + 2 + a;
513   case R_ARM_CALL:
514   case R_ARM_JUMP24:
515   case R_ARM_PC24:
516   case R_ARM_PLT32:
517   case R_ARM_PREL31:
518   case R_ARM_THM_JUMP19:
519   case R_ARM_THM_JUMP24:
520     return p + 4 + a;
521   case R_ARM_THM_CALL:
522     // We don't want an interworking BLX to ARM
523     return p + 5 + a;
524   // Unresolved non branch pc-relative relocations
525   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
526   // targets a weak-reference.
527   case R_ARM_MOVW_PREL_NC:
528   case R_ARM_MOVT_PREL:
529   case R_ARM_REL32:
530   case R_ARM_THM_MOVW_PREL_NC:
531   case R_ARM_THM_MOVT_PREL:
532     return p + a;
533   }
534   llvm_unreachable("ARM pc-relative relocation expected\n");
535 }
536 
537 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
538 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
539                                                   uint64_t p) {
540   switch (type) {
541   // Unresolved branch relocations to weak references resolve to next
542   // instruction, this is 4 bytes on from P.
543   case R_AARCH64_CALL26:
544   case R_AARCH64_CONDBR19:
545   case R_AARCH64_JUMP26:
546   case R_AARCH64_TSTBR14:
547     return p + 4 + a;
548   // Unresolved non branch pc-relative relocations
549   case R_AARCH64_PREL16:
550   case R_AARCH64_PREL32:
551   case R_AARCH64_PREL64:
552   case R_AARCH64_ADR_PREL_LO21:
553   case R_AARCH64_LD_PREL_LO19:
554     return p + a;
555   }
556   llvm_unreachable("AArch64 pc-relative relocation expected\n");
557 }
558 
559 // ARM SBREL relocations are of the form S + A - B where B is the static base
560 // The ARM ABI defines base to be "addressing origin of the output segment
561 // defining the symbol S". We defined the "addressing origin"/static base to be
562 // the base of the PT_LOAD segment containing the Sym.
563 // The procedure call standard only defines a Read Write Position Independent
564 // RWPI variant so in practice we should expect the static base to be the base
565 // of the RW segment.
566 static uint64_t getARMStaticBase(const Symbol &sym) {
567   OutputSection *os = sym.getOutputSection();
568   if (!os || !os->ptLoad || !os->ptLoad->firstSec)
569     fatal("SBREL relocation to " + sym.getName() + " without static base");
570   return os->ptLoad->firstSec->addr;
571 }
572 
573 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
574 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
575 // is calculated using PCREL_HI20's symbol.
576 //
577 // This function returns the R_RISCV_PCREL_HI20 relocation from
578 // R_RISCV_PCREL_LO12's symbol and addend.
579 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
580   const Defined *d = cast<Defined>(sym);
581   if (!d->section) {
582     error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
583           sym->getName());
584     return nullptr;
585   }
586   InputSection *isec = cast<InputSection>(d->section);
587 
588   if (addend != 0)
589     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
590          isec->getObjMsg(d->value) + " is ignored");
591 
592   // Relocations are sorted by offset, so we can use std::equal_range to do
593   // binary search.
594   Relocation r;
595   r.offset = d->value;
596   auto range =
597       std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
598                        [](const Relocation &lhs, const Relocation &rhs) {
599                          return lhs.offset < rhs.offset;
600                        });
601 
602   for (auto it = range.first; it != range.second; ++it)
603     if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
604         it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
605       return &*it;
606 
607   error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
608         " without an associated R_RISCV_PCREL_HI20 relocation");
609   return nullptr;
610 }
611 
612 // A TLS symbol's virtual address is relative to the TLS segment. Add a
613 // target-specific adjustment to produce a thread-pointer-relative offset.
614 static int64_t getTlsTpOffset(const Symbol &s) {
615   // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
616   if (&s == ElfSym::tlsModuleBase)
617     return 0;
618 
619   // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
620   // while most others use Variant 1. At run time TP will be aligned to p_align.
621 
622   // Variant 1. TP will be followed by an optional gap (which is the size of 2
623   // pointers on ARM/AArch64, 0 on other targets), followed by alignment
624   // padding, then the static TLS blocks. The alignment padding is added so that
625   // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
626   //
627   // Variant 2. Static TLS blocks, followed by alignment padding are placed
628   // before TP. The alignment padding is added so that (TP - padding -
629   // p_memsz) is congruent to p_vaddr modulo p_align.
630   PhdrEntry *tls = Out::tlsPhdr;
631   switch (config->emachine) {
632     // Variant 1.
633   case EM_ARM:
634   case EM_AARCH64:
635     return s.getVA(0) + config->wordsize * 2 +
636            ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
637   case EM_MIPS:
638   case EM_PPC:
639   case EM_PPC64:
640     // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
641     // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
642     // data and 0xf000 of the program's TLS segment.
643     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
644   case EM_RISCV:
645     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
646 
647     // Variant 2.
648   case EM_HEXAGON:
649   case EM_386:
650   case EM_X86_64:
651     return s.getVA(0) - tls->p_memsz -
652            ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
653   default:
654     llvm_unreachable("unhandled Config->EMachine");
655   }
656 }
657 
658 static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a,
659                                  uint64_t p, const Symbol &sym, RelExpr expr) {
660   switch (expr) {
661   case R_ABS:
662   case R_DTPREL:
663   case R_RELAX_TLS_LD_TO_LE_ABS:
664   case R_RELAX_GOT_PC_NOPIC:
665   case R_RISCV_ADD:
666     return sym.getVA(a);
667   case R_ADDEND:
668     return a;
669   case R_ARM_SBREL:
670     return sym.getVA(a) - getARMStaticBase(sym);
671   case R_GOT:
672   case R_RELAX_TLS_GD_TO_IE_ABS:
673     return sym.getGotVA() + a;
674   case R_GOTONLY_PC:
675     return in.got->getVA() + a - p;
676   case R_GOTPLTONLY_PC:
677     return in.gotPlt->getVA() + a - p;
678   case R_GOTREL:
679   case R_PPC64_RELAX_TOC:
680     return sym.getVA(a) - in.got->getVA();
681   case R_GOTPLTREL:
682     return sym.getVA(a) - in.gotPlt->getVA();
683   case R_GOTPLT:
684   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
685     return sym.getGotVA() + a - in.gotPlt->getVA();
686   case R_TLSLD_GOT_OFF:
687   case R_GOT_OFF:
688   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
689     return sym.getGotOffset() + a;
690   case R_AARCH64_GOT_PAGE_PC:
691   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
692     return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
693   case R_GOT_PC:
694   case R_RELAX_TLS_GD_TO_IE:
695     return sym.getGotVA() + a - p;
696   case R_MIPS_GOTREL:
697     return sym.getVA(a) - in.mipsGot->getGp(file);
698   case R_MIPS_GOT_GP:
699     return in.mipsGot->getGp(file) + a;
700   case R_MIPS_GOT_GP_PC: {
701     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
702     // is _gp_disp symbol. In that case we should use the following
703     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
704     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
705     // microMIPS variants of these relocations use slightly different
706     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
707     // to correctly handle less-sugnificant bit of the microMIPS symbol.
708     uint64_t v = in.mipsGot->getGp(file) + a - p;
709     if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
710       v += 4;
711     if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
712       v -= 1;
713     return v;
714   }
715   case R_MIPS_GOT_LOCAL_PAGE:
716     // If relocation against MIPS local symbol requires GOT entry, this entry
717     // should be initialized by 'page address'. This address is high 16-bits
718     // of sum the symbol's value and the addend.
719     return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
720            in.mipsGot->getGp(file);
721   case R_MIPS_GOT_OFF:
722   case R_MIPS_GOT_OFF32:
723     // In case of MIPS if a GOT relocation has non-zero addend this addend
724     // should be applied to the GOT entry content not to the GOT entry offset.
725     // That is why we use separate expression type.
726     return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
727            in.mipsGot->getGp(file);
728   case R_MIPS_TLSGD:
729     return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
730            in.mipsGot->getGp(file);
731   case R_MIPS_TLSLD:
732     return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
733            in.mipsGot->getGp(file);
734   case R_AARCH64_PAGE_PC: {
735     uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
736     return getAArch64Page(val) - getAArch64Page(p);
737   }
738   case R_RISCV_PC_INDIRECT: {
739     if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
740       return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
741                               *hiRel->sym, hiRel->expr);
742     return 0;
743   }
744   case R_PC: {
745     uint64_t dest;
746     if (sym.isUndefWeak()) {
747       // On ARM and AArch64 a branch to an undefined weak resolves to the
748       // next instruction, otherwise the place.
749       if (config->emachine == EM_ARM)
750         dest = getARMUndefinedRelativeWeakVA(type, a, p);
751       else if (config->emachine == EM_AARCH64)
752         dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
753       else if (config->emachine == EM_PPC)
754         dest = p;
755       else
756         dest = sym.getVA(a);
757     } else {
758       dest = sym.getVA(a);
759     }
760     return dest - p;
761   }
762   case R_PLT:
763     return sym.getPltVA() + a;
764   case R_PLT_PC:
765   case R_PPC64_CALL_PLT:
766     return sym.getPltVA() + a - p;
767   case R_PPC32_PLTREL:
768     // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
769     // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
770     // target VA computation.
771     return sym.getPltVA() - p;
772   case R_PPC64_CALL: {
773     uint64_t symVA = sym.getVA(a);
774     // If we have an undefined weak symbol, we might get here with a symbol
775     // address of zero. That could overflow, but the code must be unreachable,
776     // so don't bother doing anything at all.
777     if (!symVA)
778       return 0;
779 
780     // PPC64 V2 ABI describes two entry points to a function. The global entry
781     // point is used for calls where the caller and callee (may) have different
782     // TOC base pointers and r2 needs to be modified to hold the TOC base for
783     // the callee. For local calls the caller and callee share the same
784     // TOC base and so the TOC pointer initialization code should be skipped by
785     // branching to the local entry point.
786     return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
787   }
788   case R_PPC64_TOCBASE:
789     return getPPC64TocBase() + a;
790   case R_RELAX_GOT_PC:
791     return sym.getVA(a) - p;
792   case R_RELAX_TLS_GD_TO_LE:
793   case R_RELAX_TLS_IE_TO_LE:
794   case R_RELAX_TLS_LD_TO_LE:
795   case R_TLS:
796     // It is not very clear what to return if the symbol is undefined. With
797     // --noinhibit-exec, even a non-weak undefined reference may reach here.
798     // Just return A, which matches R_ABS, and the behavior of some dynamic
799     // loaders.
800     if (sym.isUndefined())
801       return a;
802     return getTlsTpOffset(sym) + a;
803   case R_RELAX_TLS_GD_TO_LE_NEG:
804   case R_NEG_TLS:
805     if (sym.isUndefined())
806       return a;
807     return -getTlsTpOffset(sym) + a;
808   case R_SIZE:
809     return sym.getSize() + a;
810   case R_TLSDESC:
811     return in.got->getGlobalDynAddr(sym) + a;
812   case R_TLSDESC_PC:
813     return in.got->getGlobalDynAddr(sym) + a - p;
814   case R_AARCH64_TLSDESC_PAGE:
815     return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
816            getAArch64Page(p);
817   case R_TLSGD_GOT:
818     return in.got->getGlobalDynOffset(sym) + a;
819   case R_TLSGD_GOTPLT:
820     return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
821   case R_TLSGD_PC:
822     return in.got->getGlobalDynAddr(sym) + a - p;
823   case R_TLSLD_GOTPLT:
824     return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
825   case R_TLSLD_GOT:
826     return in.got->getTlsIndexOff() + a;
827   case R_TLSLD_PC:
828     return in.got->getTlsIndexVA() + a - p;
829   default:
830     llvm_unreachable("invalid expression");
831   }
832 }
833 
834 // This function applies relocations to sections without SHF_ALLOC bit.
835 // Such sections are never mapped to memory at runtime. Debug sections are
836 // an example. Relocations in non-alloc sections are much easier to
837 // handle than in allocated sections because it will never need complex
838 // treatment such as GOT or PLT (because at runtime no one refers them).
839 // So, we handle relocations for non-alloc sections directly in this
840 // function as a performance optimization.
841 template <class ELFT, class RelTy>
842 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
843   const unsigned bits = sizeof(typename ELFT::uint) * 8;
844 
845   for (const RelTy &rel : rels) {
846     RelType type = rel.getType(config->isMips64EL);
847 
848     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
849     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
850     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
851     // need to keep this bug-compatible code for a while.
852     if (config->emachine == EM_386 && type == R_386_GOTPC)
853       continue;
854 
855     uint64_t offset = getOffset(rel.r_offset);
856     uint8_t *bufLoc = buf + offset;
857     int64_t addend = getAddend<ELFT>(rel);
858     if (!RelTy::IsRela)
859       addend += target->getImplicitAddend(bufLoc, type);
860 
861     Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
862     RelExpr expr = target->getRelExpr(type, sym, bufLoc);
863     if (expr == R_NONE)
864       continue;
865 
866     if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) {
867       std::string msg = getLocation<ELFT>(offset) +
868                         ": has non-ABS relocation " + toString(type) +
869                         " against symbol '" + toString(sym) + "'";
870       if (expr != R_PC) {
871         error(msg);
872         return;
873       }
874 
875       // If the control reaches here, we found a PC-relative relocation in a
876       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
877       // at runtime, the notion of PC-relative doesn't make sense here. So,
878       // this is a usage error. However, GNU linkers historically accept such
879       // relocations without any errors and relocate them as if they were at
880       // address 0. For bug-compatibilty, we accept them with warnings. We
881       // know Steel Bank Common Lisp as of 2018 have this bug.
882       warn(msg);
883       target->relocateOne(bufLoc, type,
884                           SignExtend64<bits>(sym.getVA(addend - offset)));
885       continue;
886     }
887 
888     if (sym.isTls() && !Out::tlsPhdr)
889       target->relocateOne(bufLoc, type, 0);
890     else
891       target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
892   }
893 }
894 
895 // This is used when '-r' is given.
896 // For REL targets, InputSection::copyRelocations() may store artificial
897 // relocations aimed to update addends. They are handled in relocateAlloc()
898 // for allocatable sections, and this function does the same for
899 // non-allocatable sections, such as sections with debug information.
900 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
901   const unsigned bits = config->is64 ? 64 : 32;
902 
903   for (const Relocation &rel : sec->relocations) {
904     // InputSection::copyRelocations() adds only R_ABS relocations.
905     assert(rel.expr == R_ABS);
906     uint8_t *bufLoc = buf + rel.offset + sec->outSecOff;
907     uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
908     target->relocateOne(bufLoc, rel.type, targetVA);
909   }
910 }
911 
912 template <class ELFT>
913 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
914   if (flags & SHF_EXECINSTR)
915     adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
916 
917   if (flags & SHF_ALLOC) {
918     relocateAlloc(buf, bufEnd);
919     return;
920   }
921 
922   auto *sec = cast<InputSection>(this);
923   if (config->relocatable)
924     relocateNonAllocForRelocatable(sec, buf);
925   else if (sec->areRelocsRela)
926     sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
927   else
928     sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
929 }
930 
931 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
932   assert(flags & SHF_ALLOC);
933   const unsigned bits = config->wordsize * 8;
934 
935   for (const Relocation &rel : relocations) {
936     uint64_t offset = rel.offset;
937     if (auto *sec = dyn_cast<InputSection>(this))
938       offset += sec->outSecOff;
939     uint8_t *bufLoc = buf + offset;
940     RelType type = rel.type;
941 
942     uint64_t addrLoc = getOutputSection()->addr + offset;
943     RelExpr expr = rel.expr;
944     uint64_t targetVA = SignExtend64(
945         getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
946         bits);
947 
948     switch (expr) {
949     case R_RELAX_GOT_PC:
950     case R_RELAX_GOT_PC_NOPIC:
951       target->relaxGot(bufLoc, type, targetVA);
952       break;
953     case R_PPC64_RELAX_TOC:
954       if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc))
955         target->relocateOne(bufLoc, type, targetVA);
956       break;
957     case R_RELAX_TLS_IE_TO_LE:
958       target->relaxTlsIeToLe(bufLoc, type, targetVA);
959       break;
960     case R_RELAX_TLS_LD_TO_LE:
961     case R_RELAX_TLS_LD_TO_LE_ABS:
962       target->relaxTlsLdToLe(bufLoc, type, targetVA);
963       break;
964     case R_RELAX_TLS_GD_TO_LE:
965     case R_RELAX_TLS_GD_TO_LE_NEG:
966       target->relaxTlsGdToLe(bufLoc, type, targetVA);
967       break;
968     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
969     case R_RELAX_TLS_GD_TO_IE:
970     case R_RELAX_TLS_GD_TO_IE_ABS:
971     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
972     case R_RELAX_TLS_GD_TO_IE_GOTPLT:
973       target->relaxTlsGdToIe(bufLoc, type, targetVA);
974       break;
975     case R_PPC64_CALL:
976       // If this is a call to __tls_get_addr, it may be part of a TLS
977       // sequence that has been relaxed and turned into a nop. In this
978       // case, we don't want to handle it as a call.
979       if (read32(bufLoc) == 0x60000000) // nop
980         break;
981 
982       // Patch a nop (0x60000000) to a ld.
983       if (rel.sym->needsTocRestore) {
984         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
985         // recursive calls even if the function is preemptible. This is not
986         // wrong in the common case where the function is not preempted at
987         // runtime. Just ignore.
988         if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
989             rel.sym->file != file) {
990           // Use substr(6) to remove the "__plt_" prefix.
991           errorOrWarn(getErrorLocation(bufLoc) + "call to " +
992                       lld::toString(*rel.sym).substr(6) +
993                       " lacks nop, can't restore toc");
994           break;
995         }
996         write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
997       }
998       target->relocateOne(bufLoc, type, targetVA);
999       break;
1000     default:
1001       target->relocateOne(bufLoc, type, targetVA);
1002       break;
1003     }
1004   }
1005 }
1006 
1007 // For each function-defining prologue, find any calls to __morestack,
1008 // and replace them with calls to __morestack_non_split.
1009 static void switchMorestackCallsToMorestackNonSplit(
1010     DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1011 
1012   // If the target adjusted a function's prologue, all calls to
1013   // __morestack inside that function should be switched to
1014   // __morestack_non_split.
1015   Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1016   if (!moreStackNonSplit) {
1017     error("Mixing split-stack objects requires a definition of "
1018           "__morestack_non_split");
1019     return;
1020   }
1021 
1022   // Sort both collections to compare addresses efficiently.
1023   llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1024     return l->offset < r->offset;
1025   });
1026   std::vector<Defined *> functions(prologues.begin(), prologues.end());
1027   llvm::sort(functions, [](const Defined *l, const Defined *r) {
1028     return l->value < r->value;
1029   });
1030 
1031   auto it = morestackCalls.begin();
1032   for (Defined *f : functions) {
1033     // Find the first call to __morestack within the function.
1034     while (it != morestackCalls.end() && (*it)->offset < f->value)
1035       ++it;
1036     // Adjust all calls inside the function.
1037     while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1038       (*it)->sym = moreStackNonSplit;
1039       ++it;
1040     }
1041   }
1042 }
1043 
1044 static bool enclosingPrologueAttempted(uint64_t offset,
1045                                        const DenseSet<Defined *> &prologues) {
1046   for (Defined *f : prologues)
1047     if (f->value <= offset && offset < f->value + f->size)
1048       return true;
1049   return false;
1050 }
1051 
1052 // If a function compiled for split stack calls a function not
1053 // compiled for split stack, then the caller needs its prologue
1054 // adjusted to ensure that the called function will have enough stack
1055 // available. Find those functions, and adjust their prologues.
1056 template <class ELFT>
1057 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1058                                                          uint8_t *end) {
1059   if (!getFile<ELFT>()->splitStack)
1060     return;
1061   DenseSet<Defined *> prologues;
1062   std::vector<Relocation *> morestackCalls;
1063 
1064   for (Relocation &rel : relocations) {
1065     // Local symbols can't possibly be cross-calls, and should have been
1066     // resolved long before this line.
1067     if (rel.sym->isLocal())
1068       continue;
1069 
1070     // Ignore calls into the split-stack api.
1071     if (rel.sym->getName().startswith("__morestack")) {
1072       if (rel.sym->getName().equals("__morestack"))
1073         morestackCalls.push_back(&rel);
1074       continue;
1075     }
1076 
1077     // A relocation to non-function isn't relevant. Sometimes
1078     // __morestack is not marked as a function, so this check comes
1079     // after the name check.
1080     if (rel.sym->type != STT_FUNC)
1081       continue;
1082 
1083     // If the callee's-file was compiled with split stack, nothing to do.  In
1084     // this context, a "Defined" symbol is one "defined by the binary currently
1085     // being produced". So an "undefined" symbol might be provided by a shared
1086     // library. It is not possible to tell how such symbols were compiled, so be
1087     // conservative.
1088     if (Defined *d = dyn_cast<Defined>(rel.sym))
1089       if (InputSection *isec = cast_or_null<InputSection>(d->section))
1090         if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1091           continue;
1092 
1093     if (enclosingPrologueAttempted(rel.offset, prologues))
1094       continue;
1095 
1096     if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1097       prologues.insert(f);
1098       if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value),
1099                                                    end, f->stOther))
1100         continue;
1101       if (!getFile<ELFT>()->someNoSplitStack)
1102         error(toString(this) + ": " + f->getName() +
1103               " (with -fsplit-stack) calls " + rel.sym->getName() +
1104               " (without -fsplit-stack), but couldn't adjust its prologue");
1105     }
1106   }
1107 
1108   if (target->needsMoreStackNonSplit)
1109     switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1110 }
1111 
1112 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1113   if (type == SHT_NOBITS)
1114     return;
1115 
1116   if (auto *s = dyn_cast<SyntheticSection>(this)) {
1117     s->writeTo(buf + outSecOff);
1118     return;
1119   }
1120 
1121   // If -r or --emit-relocs is given, then an InputSection
1122   // may be a relocation section.
1123   if (type == SHT_RELA) {
1124     copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1125     return;
1126   }
1127   if (type == SHT_REL) {
1128     copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1129     return;
1130   }
1131 
1132   // If -r is given, we may have a SHT_GROUP section.
1133   if (type == SHT_GROUP) {
1134     copyShtGroup<ELFT>(buf + outSecOff);
1135     return;
1136   }
1137 
1138   // If this is a compressed section, uncompress section contents directly
1139   // to the buffer.
1140   if (uncompressedSize >= 0) {
1141     size_t size = uncompressedSize;
1142     if (Error e = zlib::uncompress(toStringRef(rawData),
1143                                    (char *)(buf + outSecOff), size))
1144       fatal(toString(this) +
1145             ": uncompress failed: " + llvm::toString(std::move(e)));
1146     uint8_t *bufEnd = buf + outSecOff + size;
1147     relocate<ELFT>(buf, bufEnd);
1148     return;
1149   }
1150 
1151   // Copy section contents from source object file to output file
1152   // and then apply relocations.
1153   memcpy(buf + outSecOff, data().data(), data().size());
1154   uint8_t *bufEnd = buf + outSecOff + data().size();
1155   relocate<ELFT>(buf, bufEnd);
1156 }
1157 
1158 void InputSection::replace(InputSection *other) {
1159   alignment = std::max(alignment, other->alignment);
1160 
1161   // When a section is replaced with another section that was allocated to
1162   // another partition, the replacement section (and its associated sections)
1163   // need to be placed in the main partition so that both partitions will be
1164   // able to access it.
1165   if (partition != other->partition) {
1166     partition = 1;
1167     for (InputSection *isec : dependentSections)
1168       isec->partition = 1;
1169   }
1170 
1171   other->repl = repl;
1172   other->markDead();
1173 }
1174 
1175 template <class ELFT>
1176 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1177                                const typename ELFT::Shdr &header,
1178                                StringRef name)
1179     : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1180 
1181 SyntheticSection *EhInputSection::getParent() const {
1182   return cast_or_null<SyntheticSection>(parent);
1183 }
1184 
1185 // Returns the index of the first relocation that points to a region between
1186 // Begin and Begin+Size.
1187 template <class IntTy, class RelTy>
1188 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1189                          unsigned &relocI) {
1190   // Start search from RelocI for fast access. That works because the
1191   // relocations are sorted in .eh_frame.
1192   for (unsigned n = rels.size(); relocI < n; ++relocI) {
1193     const RelTy &rel = rels[relocI];
1194     if (rel.r_offset < begin)
1195       continue;
1196 
1197     if (rel.r_offset < begin + size)
1198       return relocI;
1199     return -1;
1200   }
1201   return -1;
1202 }
1203 
1204 // .eh_frame is a sequence of CIE or FDE records.
1205 // This function splits an input section into records and returns them.
1206 template <class ELFT> void EhInputSection::split() {
1207   if (areRelocsRela)
1208     split<ELFT>(relas<ELFT>());
1209   else
1210     split<ELFT>(rels<ELFT>());
1211 }
1212 
1213 template <class ELFT, class RelTy>
1214 void EhInputSection::split(ArrayRef<RelTy> rels) {
1215   unsigned relI = 0;
1216   for (size_t off = 0, end = data().size(); off != end;) {
1217     size_t size = readEhRecordSize(this, off);
1218     pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1219     // The empty record is the end marker.
1220     if (size == 4)
1221       break;
1222     off += size;
1223   }
1224 }
1225 
1226 static size_t findNull(StringRef s, size_t entSize) {
1227   // Optimize the common case.
1228   if (entSize == 1)
1229     return s.find(0);
1230 
1231   for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1232     const char *b = s.begin() + i;
1233     if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1234       return i;
1235   }
1236   return StringRef::npos;
1237 }
1238 
1239 SyntheticSection *MergeInputSection::getParent() const {
1240   return cast_or_null<SyntheticSection>(parent);
1241 }
1242 
1243 // Split SHF_STRINGS section. Such section is a sequence of
1244 // null-terminated strings.
1245 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1246   size_t off = 0;
1247   bool isAlloc = flags & SHF_ALLOC;
1248   StringRef s = toStringRef(data);
1249 
1250   while (!s.empty()) {
1251     size_t end = findNull(s, entSize);
1252     if (end == StringRef::npos)
1253       fatal(toString(this) + ": string is not null terminated");
1254     size_t size = end + entSize;
1255 
1256     pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1257     s = s.substr(size);
1258     off += size;
1259   }
1260 }
1261 
1262 // Split non-SHF_STRINGS section. Such section is a sequence of
1263 // fixed size records.
1264 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1265                                         size_t entSize) {
1266   size_t size = data.size();
1267   assert((size % entSize) == 0);
1268   bool isAlloc = flags & SHF_ALLOC;
1269 
1270   for (size_t i = 0; i != size; i += entSize)
1271     pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1272 }
1273 
1274 template <class ELFT>
1275 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1276                                      const typename ELFT::Shdr &header,
1277                                      StringRef name)
1278     : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1279 
1280 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1281                                      uint64_t entsize, ArrayRef<uint8_t> data,
1282                                      StringRef name)
1283     : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1284                        /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1285 
1286 // This function is called after we obtain a complete list of input sections
1287 // that need to be linked. This is responsible to split section contents
1288 // into small chunks for further processing.
1289 //
1290 // Note that this function is called from parallelForEach. This must be
1291 // thread-safe (i.e. no memory allocation from the pools).
1292 void MergeInputSection::splitIntoPieces() {
1293   assert(pieces.empty());
1294 
1295   if (flags & SHF_STRINGS)
1296     splitStrings(data(), entsize);
1297   else
1298     splitNonStrings(data(), entsize);
1299 }
1300 
1301 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1302   if (this->data().size() <= offset)
1303     fatal(toString(this) + ": offset is outside the section");
1304 
1305   // If Offset is not at beginning of a section piece, it is not in the map.
1306   // In that case we need to  do a binary search of the original section piece vector.
1307   auto it = partition_point(
1308       pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1309   return &it[-1];
1310 }
1311 
1312 // Returns the offset in an output section for a given input offset.
1313 // Because contents of a mergeable section is not contiguous in output,
1314 // it is not just an addition to a base output offset.
1315 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1316   // If Offset is not at beginning of a section piece, it is not in the map.
1317   // In that case we need to search from the original section piece vector.
1318   const SectionPiece &piece =
1319       *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
1320   uint64_t addend = offset - piece.inputOff;
1321   return piece.outputOff + addend;
1322 }
1323 
1324 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1325                                     StringRef);
1326 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1327                                     StringRef);
1328 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1329                                     StringRef);
1330 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1331                                     StringRef);
1332 
1333 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1334 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1335 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1336 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1337 
1338 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1339 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1340 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1341 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1342 
1343 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1344                                               const ELF32LE::Shdr &, StringRef);
1345 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1346                                               const ELF32BE::Shdr &, StringRef);
1347 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1348                                               const ELF64LE::Shdr &, StringRef);
1349 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1350                                               const ELF64BE::Shdr &, StringRef);
1351 
1352 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1353                                         const ELF32LE::Shdr &, StringRef);
1354 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1355                                         const ELF32BE::Shdr &, StringRef);
1356 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1357                                         const ELF64LE::Shdr &, StringRef);
1358 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1359                                         const ELF64BE::Shdr &, StringRef);
1360 
1361 template void EhInputSection::split<ELF32LE>();
1362 template void EhInputSection::split<ELF32BE>();
1363 template void EhInputSection::split<ELF64LE>();
1364 template void EhInputSection::split<ELF64BE>();
1365 
1366 } // namespace elf
1367 } // namespace lld
1368