1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 using namespace llvm::sys; 39 40 namespace lld { 41 // Returns a string to construct an error message. 42 std::string toString(const elf::InputSectionBase *sec) { 43 return (toString(sec->file) + ":(" + sec->name + ")").str(); 44 } 45 46 namespace elf { 47 std::vector<InputSectionBase *> inputSections; 48 49 template <class ELFT> 50 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 51 const typename ELFT::Shdr &hdr) { 52 if (hdr.sh_type == SHT_NOBITS) 53 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 54 return check(file.getObj().getSectionContents(&hdr)); 55 } 56 57 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 58 uint32_t type, uint64_t entsize, 59 uint32_t link, uint32_t info, 60 uint32_t alignment, ArrayRef<uint8_t> data, 61 StringRef name, Kind sectionKind) 62 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 63 link), 64 file(file), rawData(data) { 65 // In order to reduce memory allocation, we assume that mergeable 66 // sections are smaller than 4 GiB, which is not an unreasonable 67 // assumption as of 2017. 68 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 69 error(toString(this) + ": section too large"); 70 71 numRelocations = 0; 72 areRelocsRela = false; 73 74 // The ELF spec states that a value of 0 means the section has 75 // no alignment constraints. 76 uint32_t v = std::max<uint32_t>(alignment, 1); 77 if (!isPowerOf2_64(v)) 78 fatal(toString(this) + ": sh_addralign is not a power of 2"); 79 this->alignment = v; 80 81 // In ELF, each section can be compressed by zlib, and if compressed, 82 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 83 // If that's the case, demangle section name so that we can handle a 84 // section as if it weren't compressed. 85 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 86 if (!zlib::isAvailable()) 87 error(toString(file) + ": contains a compressed section, " + 88 "but zlib is not available"); 89 parseCompressedHeader(); 90 } 91 } 92 93 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 94 // SHF_GROUP is a marker that a section belongs to some comdat group. 95 // That flag doesn't make sense in an executable. 96 static uint64_t getFlags(uint64_t flags) { 97 flags &= ~(uint64_t)SHF_INFO_LINK; 98 if (!config->relocatable) 99 flags &= ~(uint64_t)SHF_GROUP; 100 return flags; 101 } 102 103 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 104 // March 2017) fail to infer section types for sections starting with 105 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 106 // SHF_INIT_ARRAY. As a result, the following assembler directive 107 // creates ".init_array.100" with SHT_PROGBITS, for example. 108 // 109 // .section .init_array.100, "aw" 110 // 111 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 112 // incorrect inputs as if they were correct from the beginning. 113 static uint64_t getType(uint64_t type, StringRef name) { 114 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 115 return SHT_INIT_ARRAY; 116 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 117 return SHT_FINI_ARRAY; 118 return type; 119 } 120 121 template <class ELFT> 122 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 123 const typename ELFT::Shdr &hdr, 124 StringRef name, Kind sectionKind) 125 : InputSectionBase(&file, getFlags(hdr.sh_flags), 126 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 127 hdr.sh_info, hdr.sh_addralign, 128 getSectionContents(file, hdr), name, sectionKind) { 129 // We reject object files having insanely large alignments even though 130 // they are allowed by the spec. I think 4GB is a reasonable limitation. 131 // We might want to relax this in the future. 132 if (hdr.sh_addralign > UINT32_MAX) 133 fatal(toString(&file) + ": section sh_addralign is too large"); 134 } 135 136 size_t InputSectionBase::getSize() const { 137 if (auto *s = dyn_cast<SyntheticSection>(this)) 138 return s->getSize(); 139 if (uncompressedSize >= 0) 140 return uncompressedSize; 141 return rawData.size(); 142 } 143 144 void InputSectionBase::uncompress() const { 145 size_t size = uncompressedSize; 146 char *uncompressedBuf; 147 { 148 static std::mutex mu; 149 std::lock_guard<std::mutex> lock(mu); 150 uncompressedBuf = bAlloc.Allocate<char>(size); 151 } 152 153 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 154 fatal(toString(this) + 155 ": uncompress failed: " + llvm::toString(std::move(e))); 156 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 157 uncompressedSize = -1; 158 } 159 160 uint64_t InputSectionBase::getOffsetInFile() const { 161 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 162 const uint8_t *secStart = data().begin(); 163 return secStart - fileStart; 164 } 165 166 uint64_t SectionBase::getOffset(uint64_t offset) const { 167 switch (kind()) { 168 case Output: { 169 auto *os = cast<OutputSection>(this); 170 // For output sections we treat offset -1 as the end of the section. 171 return offset == uint64_t(-1) ? os->size : offset; 172 } 173 case Regular: 174 case Synthetic: 175 return cast<InputSection>(this)->getOffset(offset); 176 case EHFrame: 177 // The file crtbeginT.o has relocations pointing to the start of an empty 178 // .eh_frame that is known to be the first in the link. It does that to 179 // identify the start of the output .eh_frame. 180 return offset; 181 case Merge: 182 const MergeInputSection *ms = cast<MergeInputSection>(this); 183 if (InputSection *isec = ms->getParent()) 184 return isec->getOffset(ms->getParentOffset(offset)); 185 return ms->getParentOffset(offset); 186 } 187 llvm_unreachable("invalid section kind"); 188 } 189 190 uint64_t SectionBase::getVA(uint64_t offset) const { 191 const OutputSection *out = getOutputSection(); 192 return (out ? out->addr : 0) + getOffset(offset); 193 } 194 195 OutputSection *SectionBase::getOutputSection() { 196 InputSection *sec; 197 if (auto *isec = dyn_cast<InputSection>(this)) 198 sec = isec; 199 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 200 sec = ms->getParent(); 201 else if (auto *eh = dyn_cast<EhInputSection>(this)) 202 sec = eh->getParent(); 203 else 204 return cast<OutputSection>(this); 205 return sec ? sec->getParent() : nullptr; 206 } 207 208 // When a section is compressed, `rawData` consists with a header followed 209 // by zlib-compressed data. This function parses a header to initialize 210 // `uncompressedSize` member and remove the header from `rawData`. 211 void InputSectionBase::parseCompressedHeader() { 212 using Chdr64 = typename ELF64LE::Chdr; 213 using Chdr32 = typename ELF32LE::Chdr; 214 215 // Old-style header 216 if (name.startswith(".zdebug")) { 217 if (!toStringRef(rawData).startswith("ZLIB")) { 218 error(toString(this) + ": corrupted compressed section header"); 219 return; 220 } 221 rawData = rawData.slice(4); 222 223 if (rawData.size() < 8) { 224 error(toString(this) + ": corrupted compressed section header"); 225 return; 226 } 227 228 uncompressedSize = read64be(rawData.data()); 229 rawData = rawData.slice(8); 230 231 // Restore the original section name. 232 // (e.g. ".zdebug_info" -> ".debug_info") 233 name = saver.save("." + name.substr(2)); 234 return; 235 } 236 237 assert(flags & SHF_COMPRESSED); 238 flags &= ~(uint64_t)SHF_COMPRESSED; 239 240 // New-style 64-bit header 241 if (config->is64) { 242 if (rawData.size() < sizeof(Chdr64)) { 243 error(toString(this) + ": corrupted compressed section"); 244 return; 245 } 246 247 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); 248 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 249 error(toString(this) + ": unsupported compression type"); 250 return; 251 } 252 253 uncompressedSize = hdr->ch_size; 254 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 255 rawData = rawData.slice(sizeof(*hdr)); 256 return; 257 } 258 259 // New-style 32-bit header 260 if (rawData.size() < sizeof(Chdr32)) { 261 error(toString(this) + ": corrupted compressed section"); 262 return; 263 } 264 265 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); 266 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 267 error(toString(this) + ": unsupported compression type"); 268 return; 269 } 270 271 uncompressedSize = hdr->ch_size; 272 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 273 rawData = rawData.slice(sizeof(*hdr)); 274 } 275 276 InputSection *InputSectionBase::getLinkOrderDep() const { 277 assert(link); 278 assert(flags & SHF_LINK_ORDER); 279 return cast<InputSection>(file->getSections()[link]); 280 } 281 282 // Find a function symbol that encloses a given location. 283 template <class ELFT> 284 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 285 for (Symbol *b : file->getSymbols()) 286 if (Defined *d = dyn_cast<Defined>(b)) 287 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 288 offset < d->value + d->size) 289 return d; 290 return nullptr; 291 } 292 293 // Returns a source location string. Used to construct an error message. 294 template <class ELFT> 295 std::string InputSectionBase::getLocation(uint64_t offset) { 296 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 297 298 // We don't have file for synthetic sections. 299 if (getFile<ELFT>() == nullptr) 300 return (config->outputFile + ":(" + secAndOffset + ")") 301 .str(); 302 303 // First check if we can get desired values from debugging information. 304 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 305 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 306 secAndOffset + ")"; 307 308 // File->sourceFile contains STT_FILE symbol that contains a 309 // source file name. If it's missing, we use an object file name. 310 std::string srcFile = getFile<ELFT>()->sourceFile; 311 if (srcFile.empty()) 312 srcFile = toString(file); 313 314 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 315 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 316 317 // If there's no symbol, print out the offset in the section. 318 return (srcFile + ":(" + secAndOffset + ")"); 319 } 320 321 // This function is intended to be used for constructing an error message. 322 // The returned message looks like this: 323 // 324 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 325 // 326 // Returns an empty string if there's no way to get line info. 327 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 328 return file->getSrcMsg(sym, *this, offset); 329 } 330 331 // Returns a filename string along with an optional section name. This 332 // function is intended to be used for constructing an error 333 // message. The returned message looks like this: 334 // 335 // path/to/foo.o:(function bar) 336 // 337 // or 338 // 339 // path/to/foo.o:(function bar) in archive path/to/bar.a 340 std::string InputSectionBase::getObjMsg(uint64_t off) { 341 std::string filename = file->getName(); 342 343 std::string archive; 344 if (!file->archiveName.empty()) 345 archive = " in archive " + file->archiveName; 346 347 // Find a symbol that encloses a given location. 348 for (Symbol *b : file->getSymbols()) 349 if (auto *d = dyn_cast<Defined>(b)) 350 if (d->section == this && d->value <= off && off < d->value + d->size) 351 return filename + ":(" + toString(*d) + ")" + archive; 352 353 // If there's no symbol, print out the offset in the section. 354 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 355 .str(); 356 } 357 358 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 359 360 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 361 uint32_t alignment, ArrayRef<uint8_t> data, 362 StringRef name, Kind k) 363 : InputSectionBase(f, flags, type, 364 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 365 name, k) {} 366 367 template <class ELFT> 368 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 369 StringRef name) 370 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 371 372 bool InputSection::classof(const SectionBase *s) { 373 return s->kind() == SectionBase::Regular || 374 s->kind() == SectionBase::Synthetic; 375 } 376 377 OutputSection *InputSection::getParent() const { 378 return cast_or_null<OutputSection>(parent); 379 } 380 381 // Copy SHT_GROUP section contents. Used only for the -r option. 382 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 383 // ELFT::Word is the 32-bit integral type in the target endianness. 384 using u32 = typename ELFT::Word; 385 ArrayRef<u32> from = getDataAs<u32>(); 386 auto *to = reinterpret_cast<u32 *>(buf); 387 388 // The first entry is not a section number but a flag. 389 *to++ = from[0]; 390 391 // Adjust section numbers because section numbers in an input object 392 // files are different in the output. 393 ArrayRef<InputSectionBase *> sections = file->getSections(); 394 for (uint32_t idx : from.slice(1)) 395 *to++ = sections[idx]->getOutputSection()->sectionIndex; 396 } 397 398 InputSectionBase *InputSection::getRelocatedSection() const { 399 if (!file || (type != SHT_RELA && type != SHT_REL)) 400 return nullptr; 401 ArrayRef<InputSectionBase *> sections = file->getSections(); 402 return sections[info]; 403 } 404 405 // This is used for -r and --emit-relocs. We can't use memcpy to copy 406 // relocations because we need to update symbol table offset and section index 407 // for each relocation. So we copy relocations one by one. 408 template <class ELFT, class RelTy> 409 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 410 InputSectionBase *sec = getRelocatedSection(); 411 412 for (const RelTy &rel : rels) { 413 RelType type = rel.getType(config->isMips64EL); 414 const ObjFile<ELFT> *file = getFile<ELFT>(); 415 Symbol &sym = file->getRelocTargetSym(rel); 416 417 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 418 buf += sizeof(RelTy); 419 420 if (RelTy::IsRela) 421 p->r_addend = getAddend<ELFT>(rel); 422 423 // Output section VA is zero for -r, so r_offset is an offset within the 424 // section, but for --emit-relocs it is a virtual address. 425 p->r_offset = sec->getVA(rel.r_offset); 426 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 427 config->isMips64EL); 428 429 if (sym.type == STT_SECTION) { 430 // We combine multiple section symbols into only one per 431 // section. This means we have to update the addend. That is 432 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 433 // section data. We do that by adding to the Relocation vector. 434 435 // .eh_frame is horribly special and can reference discarded sections. To 436 // avoid having to parse and recreate .eh_frame, we just replace any 437 // relocation in it pointing to discarded sections with R_*_NONE, which 438 // hopefully creates a frame that is ignored at runtime. Also, don't warn 439 // on .gcc_except_table and debug sections. 440 // 441 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 442 auto *d = dyn_cast<Defined>(&sym); 443 if (!d) { 444 if (!sec->name.startswith(".debug") && 445 !sec->name.startswith(".zdebug") && sec->name != ".eh_frame" && 446 sec->name != ".gcc_except_table" && sec->name != ".got2" && 447 sec->name != ".toc") { 448 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 449 Elf_Shdr_Impl<ELFT> sec = 450 CHECK(file->getObj().sections(), file)[secIdx]; 451 warn("relocation refers to a discarded section: " + 452 CHECK(file->getObj().getSectionName(&sec), file) + 453 "\n>>> referenced by " + getObjMsg(p->r_offset)); 454 } 455 p->setSymbolAndType(0, 0, false); 456 continue; 457 } 458 SectionBase *section = d->section->repl; 459 if (!section->isLive()) { 460 p->setSymbolAndType(0, 0, false); 461 continue; 462 } 463 464 int64_t addend = getAddend<ELFT>(rel); 465 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 466 if (!RelTy::IsRela) 467 addend = target->getImplicitAddend(bufLoc, type); 468 469 if (config->emachine == EM_MIPS && config->relocatable && 470 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 471 // Some MIPS relocations depend on "gp" value. By default, 472 // this value has 0x7ff0 offset from a .got section. But 473 // relocatable files produced by a compiler or a linker 474 // might redefine this default value and we must use it 475 // for a calculation of the relocation result. When we 476 // generate EXE or DSO it's trivial. Generating a relocatable 477 // output is more difficult case because the linker does 478 // not calculate relocations in this mode and loses 479 // individual "gp" values used by each input object file. 480 // As a workaround we add the "gp" value to the relocation 481 // addend and save it back to the file. 482 addend += sec->getFile<ELFT>()->mipsGp0; 483 } 484 485 if (RelTy::IsRela) 486 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 487 else if (config->relocatable && type != target->noneRel) 488 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 489 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 490 p->r_addend >= 0x8000) { 491 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 492 // indicates that r30 is relative to the input section .got2 493 // (r_addend>=0x8000), after linking, r30 should be relative to the output 494 // section .got2 . To compensate for the shift, adjust r_addend by 495 // ppc32Got2OutSecOff. 496 p->r_addend += sec->file->ppc32Got2OutSecOff; 497 } 498 } 499 } 500 501 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 502 // references specially. The general rule is that the value of the symbol in 503 // this context is the address of the place P. A further special case is that 504 // branch relocations to an undefined weak reference resolve to the next 505 // instruction. 506 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 507 uint32_t p) { 508 switch (type) { 509 // Unresolved branch relocations to weak references resolve to next 510 // instruction, this will be either 2 or 4 bytes on from P. 511 case R_ARM_THM_JUMP11: 512 return p + 2 + a; 513 case R_ARM_CALL: 514 case R_ARM_JUMP24: 515 case R_ARM_PC24: 516 case R_ARM_PLT32: 517 case R_ARM_PREL31: 518 case R_ARM_THM_JUMP19: 519 case R_ARM_THM_JUMP24: 520 return p + 4 + a; 521 case R_ARM_THM_CALL: 522 // We don't want an interworking BLX to ARM 523 return p + 5 + a; 524 // Unresolved non branch pc-relative relocations 525 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 526 // targets a weak-reference. 527 case R_ARM_MOVW_PREL_NC: 528 case R_ARM_MOVT_PREL: 529 case R_ARM_REL32: 530 case R_ARM_THM_MOVW_PREL_NC: 531 case R_ARM_THM_MOVT_PREL: 532 return p + a; 533 } 534 llvm_unreachable("ARM pc-relative relocation expected\n"); 535 } 536 537 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 538 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, 539 uint64_t p) { 540 switch (type) { 541 // Unresolved branch relocations to weak references resolve to next 542 // instruction, this is 4 bytes on from P. 543 case R_AARCH64_CALL26: 544 case R_AARCH64_CONDBR19: 545 case R_AARCH64_JUMP26: 546 case R_AARCH64_TSTBR14: 547 return p + 4 + a; 548 // Unresolved non branch pc-relative relocations 549 case R_AARCH64_PREL16: 550 case R_AARCH64_PREL32: 551 case R_AARCH64_PREL64: 552 case R_AARCH64_ADR_PREL_LO21: 553 case R_AARCH64_LD_PREL_LO19: 554 return p + a; 555 } 556 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 557 } 558 559 // ARM SBREL relocations are of the form S + A - B where B is the static base 560 // The ARM ABI defines base to be "addressing origin of the output segment 561 // defining the symbol S". We defined the "addressing origin"/static base to be 562 // the base of the PT_LOAD segment containing the Sym. 563 // The procedure call standard only defines a Read Write Position Independent 564 // RWPI variant so in practice we should expect the static base to be the base 565 // of the RW segment. 566 static uint64_t getARMStaticBase(const Symbol &sym) { 567 OutputSection *os = sym.getOutputSection(); 568 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 569 fatal("SBREL relocation to " + sym.getName() + " without static base"); 570 return os->ptLoad->firstSec->addr; 571 } 572 573 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 574 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 575 // is calculated using PCREL_HI20's symbol. 576 // 577 // This function returns the R_RISCV_PCREL_HI20 relocation from 578 // R_RISCV_PCREL_LO12's symbol and addend. 579 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 580 const Defined *d = cast<Defined>(sym); 581 if (!d->section) { 582 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 583 sym->getName()); 584 return nullptr; 585 } 586 InputSection *isec = cast<InputSection>(d->section); 587 588 if (addend != 0) 589 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 590 isec->getObjMsg(d->value) + " is ignored"); 591 592 // Relocations are sorted by offset, so we can use std::equal_range to do 593 // binary search. 594 Relocation r; 595 r.offset = d->value; 596 auto range = 597 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 598 [](const Relocation &lhs, const Relocation &rhs) { 599 return lhs.offset < rhs.offset; 600 }); 601 602 for (auto it = range.first; it != range.second; ++it) 603 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 604 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 605 return &*it; 606 607 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 608 " without an associated R_RISCV_PCREL_HI20 relocation"); 609 return nullptr; 610 } 611 612 // A TLS symbol's virtual address is relative to the TLS segment. Add a 613 // target-specific adjustment to produce a thread-pointer-relative offset. 614 static int64_t getTlsTpOffset(const Symbol &s) { 615 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 616 if (&s == ElfSym::tlsModuleBase) 617 return 0; 618 619 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 620 // while most others use Variant 1. At run time TP will be aligned to p_align. 621 622 // Variant 1. TP will be followed by an optional gap (which is the size of 2 623 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 624 // padding, then the static TLS blocks. The alignment padding is added so that 625 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 626 // 627 // Variant 2. Static TLS blocks, followed by alignment padding are placed 628 // before TP. The alignment padding is added so that (TP - padding - 629 // p_memsz) is congruent to p_vaddr modulo p_align. 630 PhdrEntry *tls = Out::tlsPhdr; 631 switch (config->emachine) { 632 // Variant 1. 633 case EM_ARM: 634 case EM_AARCH64: 635 return s.getVA(0) + config->wordsize * 2 + 636 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 637 case EM_MIPS: 638 case EM_PPC: 639 case EM_PPC64: 640 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 641 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 642 // data and 0xf000 of the program's TLS segment. 643 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 644 case EM_RISCV: 645 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 646 647 // Variant 2. 648 case EM_HEXAGON: 649 case EM_386: 650 case EM_X86_64: 651 return s.getVA(0) - tls->p_memsz - 652 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 653 default: 654 llvm_unreachable("unhandled Config->EMachine"); 655 } 656 } 657 658 static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a, 659 uint64_t p, const Symbol &sym, RelExpr expr) { 660 switch (expr) { 661 case R_ABS: 662 case R_DTPREL: 663 case R_RELAX_TLS_LD_TO_LE_ABS: 664 case R_RELAX_GOT_PC_NOPIC: 665 case R_RISCV_ADD: 666 return sym.getVA(a); 667 case R_ADDEND: 668 return a; 669 case R_ARM_SBREL: 670 return sym.getVA(a) - getARMStaticBase(sym); 671 case R_GOT: 672 case R_RELAX_TLS_GD_TO_IE_ABS: 673 return sym.getGotVA() + a; 674 case R_GOTONLY_PC: 675 return in.got->getVA() + a - p; 676 case R_GOTPLTONLY_PC: 677 return in.gotPlt->getVA() + a - p; 678 case R_GOTREL: 679 case R_PPC64_RELAX_TOC: 680 return sym.getVA(a) - in.got->getVA(); 681 case R_GOTPLTREL: 682 return sym.getVA(a) - in.gotPlt->getVA(); 683 case R_GOTPLT: 684 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 685 return sym.getGotVA() + a - in.gotPlt->getVA(); 686 case R_TLSLD_GOT_OFF: 687 case R_GOT_OFF: 688 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 689 return sym.getGotOffset() + a; 690 case R_AARCH64_GOT_PAGE_PC: 691 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 692 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 693 case R_GOT_PC: 694 case R_RELAX_TLS_GD_TO_IE: 695 return sym.getGotVA() + a - p; 696 case R_MIPS_GOTREL: 697 return sym.getVA(a) - in.mipsGot->getGp(file); 698 case R_MIPS_GOT_GP: 699 return in.mipsGot->getGp(file) + a; 700 case R_MIPS_GOT_GP_PC: { 701 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 702 // is _gp_disp symbol. In that case we should use the following 703 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 704 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 705 // microMIPS variants of these relocations use slightly different 706 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 707 // to correctly handle less-sugnificant bit of the microMIPS symbol. 708 uint64_t v = in.mipsGot->getGp(file) + a - p; 709 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 710 v += 4; 711 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 712 v -= 1; 713 return v; 714 } 715 case R_MIPS_GOT_LOCAL_PAGE: 716 // If relocation against MIPS local symbol requires GOT entry, this entry 717 // should be initialized by 'page address'. This address is high 16-bits 718 // of sum the symbol's value and the addend. 719 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 720 in.mipsGot->getGp(file); 721 case R_MIPS_GOT_OFF: 722 case R_MIPS_GOT_OFF32: 723 // In case of MIPS if a GOT relocation has non-zero addend this addend 724 // should be applied to the GOT entry content not to the GOT entry offset. 725 // That is why we use separate expression type. 726 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 727 in.mipsGot->getGp(file); 728 case R_MIPS_TLSGD: 729 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 730 in.mipsGot->getGp(file); 731 case R_MIPS_TLSLD: 732 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 733 in.mipsGot->getGp(file); 734 case R_AARCH64_PAGE_PC: { 735 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 736 return getAArch64Page(val) - getAArch64Page(p); 737 } 738 case R_RISCV_PC_INDIRECT: { 739 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 740 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 741 *hiRel->sym, hiRel->expr); 742 return 0; 743 } 744 case R_PC: { 745 uint64_t dest; 746 if (sym.isUndefWeak()) { 747 // On ARM and AArch64 a branch to an undefined weak resolves to the 748 // next instruction, otherwise the place. 749 if (config->emachine == EM_ARM) 750 dest = getARMUndefinedRelativeWeakVA(type, a, p); 751 else if (config->emachine == EM_AARCH64) 752 dest = getAArch64UndefinedRelativeWeakVA(type, a, p); 753 else if (config->emachine == EM_PPC) 754 dest = p; 755 else 756 dest = sym.getVA(a); 757 } else { 758 dest = sym.getVA(a); 759 } 760 return dest - p; 761 } 762 case R_PLT: 763 return sym.getPltVA() + a; 764 case R_PLT_PC: 765 case R_PPC64_CALL_PLT: 766 return sym.getPltVA() + a - p; 767 case R_PPC32_PLTREL: 768 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 769 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 770 // target VA computation. 771 return sym.getPltVA() - p; 772 case R_PPC64_CALL: { 773 uint64_t symVA = sym.getVA(a); 774 // If we have an undefined weak symbol, we might get here with a symbol 775 // address of zero. That could overflow, but the code must be unreachable, 776 // so don't bother doing anything at all. 777 if (!symVA) 778 return 0; 779 780 // PPC64 V2 ABI describes two entry points to a function. The global entry 781 // point is used for calls where the caller and callee (may) have different 782 // TOC base pointers and r2 needs to be modified to hold the TOC base for 783 // the callee. For local calls the caller and callee share the same 784 // TOC base and so the TOC pointer initialization code should be skipped by 785 // branching to the local entry point. 786 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 787 } 788 case R_PPC64_TOCBASE: 789 return getPPC64TocBase() + a; 790 case R_RELAX_GOT_PC: 791 return sym.getVA(a) - p; 792 case R_RELAX_TLS_GD_TO_LE: 793 case R_RELAX_TLS_IE_TO_LE: 794 case R_RELAX_TLS_LD_TO_LE: 795 case R_TLS: 796 // It is not very clear what to return if the symbol is undefined. With 797 // --noinhibit-exec, even a non-weak undefined reference may reach here. 798 // Just return A, which matches R_ABS, and the behavior of some dynamic 799 // loaders. 800 if (sym.isUndefined()) 801 return a; 802 return getTlsTpOffset(sym) + a; 803 case R_RELAX_TLS_GD_TO_LE_NEG: 804 case R_NEG_TLS: 805 if (sym.isUndefined()) 806 return a; 807 return -getTlsTpOffset(sym) + a; 808 case R_SIZE: 809 return sym.getSize() + a; 810 case R_TLSDESC: 811 return in.got->getGlobalDynAddr(sym) + a; 812 case R_TLSDESC_PC: 813 return in.got->getGlobalDynAddr(sym) + a - p; 814 case R_AARCH64_TLSDESC_PAGE: 815 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 816 getAArch64Page(p); 817 case R_TLSGD_GOT: 818 return in.got->getGlobalDynOffset(sym) + a; 819 case R_TLSGD_GOTPLT: 820 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); 821 case R_TLSGD_PC: 822 return in.got->getGlobalDynAddr(sym) + a - p; 823 case R_TLSLD_GOTPLT: 824 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 825 case R_TLSLD_GOT: 826 return in.got->getTlsIndexOff() + a; 827 case R_TLSLD_PC: 828 return in.got->getTlsIndexVA() + a - p; 829 default: 830 llvm_unreachable("invalid expression"); 831 } 832 } 833 834 // This function applies relocations to sections without SHF_ALLOC bit. 835 // Such sections are never mapped to memory at runtime. Debug sections are 836 // an example. Relocations in non-alloc sections are much easier to 837 // handle than in allocated sections because it will never need complex 838 // treatment such as GOT or PLT (because at runtime no one refers them). 839 // So, we handle relocations for non-alloc sections directly in this 840 // function as a performance optimization. 841 template <class ELFT, class RelTy> 842 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 843 const unsigned bits = sizeof(typename ELFT::uint) * 8; 844 845 for (const RelTy &rel : rels) { 846 RelType type = rel.getType(config->isMips64EL); 847 848 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 849 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 850 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 851 // need to keep this bug-compatible code for a while. 852 if (config->emachine == EM_386 && type == R_386_GOTPC) 853 continue; 854 855 uint64_t offset = getOffset(rel.r_offset); 856 uint8_t *bufLoc = buf + offset; 857 int64_t addend = getAddend<ELFT>(rel); 858 if (!RelTy::IsRela) 859 addend += target->getImplicitAddend(bufLoc, type); 860 861 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 862 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 863 if (expr == R_NONE) 864 continue; 865 866 if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) { 867 std::string msg = getLocation<ELFT>(offset) + 868 ": has non-ABS relocation " + toString(type) + 869 " against symbol '" + toString(sym) + "'"; 870 if (expr != R_PC) { 871 error(msg); 872 return; 873 } 874 875 // If the control reaches here, we found a PC-relative relocation in a 876 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 877 // at runtime, the notion of PC-relative doesn't make sense here. So, 878 // this is a usage error. However, GNU linkers historically accept such 879 // relocations without any errors and relocate them as if they were at 880 // address 0. For bug-compatibilty, we accept them with warnings. We 881 // know Steel Bank Common Lisp as of 2018 have this bug. 882 warn(msg); 883 target->relocateOne(bufLoc, type, 884 SignExtend64<bits>(sym.getVA(addend - offset))); 885 continue; 886 } 887 888 if (sym.isTls() && !Out::tlsPhdr) 889 target->relocateOne(bufLoc, type, 0); 890 else 891 target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 892 } 893 } 894 895 // This is used when '-r' is given. 896 // For REL targets, InputSection::copyRelocations() may store artificial 897 // relocations aimed to update addends. They are handled in relocateAlloc() 898 // for allocatable sections, and this function does the same for 899 // non-allocatable sections, such as sections with debug information. 900 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 901 const unsigned bits = config->is64 ? 64 : 32; 902 903 for (const Relocation &rel : sec->relocations) { 904 // InputSection::copyRelocations() adds only R_ABS relocations. 905 assert(rel.expr == R_ABS); 906 uint8_t *bufLoc = buf + rel.offset + sec->outSecOff; 907 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 908 target->relocateOne(bufLoc, rel.type, targetVA); 909 } 910 } 911 912 template <class ELFT> 913 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 914 if (flags & SHF_EXECINSTR) 915 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 916 917 if (flags & SHF_ALLOC) { 918 relocateAlloc(buf, bufEnd); 919 return; 920 } 921 922 auto *sec = cast<InputSection>(this); 923 if (config->relocatable) 924 relocateNonAllocForRelocatable(sec, buf); 925 else if (sec->areRelocsRela) 926 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 927 else 928 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 929 } 930 931 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 932 assert(flags & SHF_ALLOC); 933 const unsigned bits = config->wordsize * 8; 934 935 for (const Relocation &rel : relocations) { 936 uint64_t offset = rel.offset; 937 if (auto *sec = dyn_cast<InputSection>(this)) 938 offset += sec->outSecOff; 939 uint8_t *bufLoc = buf + offset; 940 RelType type = rel.type; 941 942 uint64_t addrLoc = getOutputSection()->addr + offset; 943 RelExpr expr = rel.expr; 944 uint64_t targetVA = SignExtend64( 945 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 946 bits); 947 948 switch (expr) { 949 case R_RELAX_GOT_PC: 950 case R_RELAX_GOT_PC_NOPIC: 951 target->relaxGot(bufLoc, type, targetVA); 952 break; 953 case R_PPC64_RELAX_TOC: 954 if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc)) 955 target->relocateOne(bufLoc, type, targetVA); 956 break; 957 case R_RELAX_TLS_IE_TO_LE: 958 target->relaxTlsIeToLe(bufLoc, type, targetVA); 959 break; 960 case R_RELAX_TLS_LD_TO_LE: 961 case R_RELAX_TLS_LD_TO_LE_ABS: 962 target->relaxTlsLdToLe(bufLoc, type, targetVA); 963 break; 964 case R_RELAX_TLS_GD_TO_LE: 965 case R_RELAX_TLS_GD_TO_LE_NEG: 966 target->relaxTlsGdToLe(bufLoc, type, targetVA); 967 break; 968 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 969 case R_RELAX_TLS_GD_TO_IE: 970 case R_RELAX_TLS_GD_TO_IE_ABS: 971 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 972 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 973 target->relaxTlsGdToIe(bufLoc, type, targetVA); 974 break; 975 case R_PPC64_CALL: 976 // If this is a call to __tls_get_addr, it may be part of a TLS 977 // sequence that has been relaxed and turned into a nop. In this 978 // case, we don't want to handle it as a call. 979 if (read32(bufLoc) == 0x60000000) // nop 980 break; 981 982 // Patch a nop (0x60000000) to a ld. 983 if (rel.sym->needsTocRestore) { 984 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 985 // recursive calls even if the function is preemptible. This is not 986 // wrong in the common case where the function is not preempted at 987 // runtime. Just ignore. 988 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 989 rel.sym->file != file) { 990 // Use substr(6) to remove the "__plt_" prefix. 991 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 992 lld::toString(*rel.sym).substr(6) + 993 " lacks nop, can't restore toc"); 994 break; 995 } 996 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 997 } 998 target->relocateOne(bufLoc, type, targetVA); 999 break; 1000 default: 1001 target->relocateOne(bufLoc, type, targetVA); 1002 break; 1003 } 1004 } 1005 } 1006 1007 // For each function-defining prologue, find any calls to __morestack, 1008 // and replace them with calls to __morestack_non_split. 1009 static void switchMorestackCallsToMorestackNonSplit( 1010 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1011 1012 // If the target adjusted a function's prologue, all calls to 1013 // __morestack inside that function should be switched to 1014 // __morestack_non_split. 1015 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1016 if (!moreStackNonSplit) { 1017 error("Mixing split-stack objects requires a definition of " 1018 "__morestack_non_split"); 1019 return; 1020 } 1021 1022 // Sort both collections to compare addresses efficiently. 1023 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1024 return l->offset < r->offset; 1025 }); 1026 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1027 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1028 return l->value < r->value; 1029 }); 1030 1031 auto it = morestackCalls.begin(); 1032 for (Defined *f : functions) { 1033 // Find the first call to __morestack within the function. 1034 while (it != morestackCalls.end() && (*it)->offset < f->value) 1035 ++it; 1036 // Adjust all calls inside the function. 1037 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1038 (*it)->sym = moreStackNonSplit; 1039 ++it; 1040 } 1041 } 1042 } 1043 1044 static bool enclosingPrologueAttempted(uint64_t offset, 1045 const DenseSet<Defined *> &prologues) { 1046 for (Defined *f : prologues) 1047 if (f->value <= offset && offset < f->value + f->size) 1048 return true; 1049 return false; 1050 } 1051 1052 // If a function compiled for split stack calls a function not 1053 // compiled for split stack, then the caller needs its prologue 1054 // adjusted to ensure that the called function will have enough stack 1055 // available. Find those functions, and adjust their prologues. 1056 template <class ELFT> 1057 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1058 uint8_t *end) { 1059 if (!getFile<ELFT>()->splitStack) 1060 return; 1061 DenseSet<Defined *> prologues; 1062 std::vector<Relocation *> morestackCalls; 1063 1064 for (Relocation &rel : relocations) { 1065 // Local symbols can't possibly be cross-calls, and should have been 1066 // resolved long before this line. 1067 if (rel.sym->isLocal()) 1068 continue; 1069 1070 // Ignore calls into the split-stack api. 1071 if (rel.sym->getName().startswith("__morestack")) { 1072 if (rel.sym->getName().equals("__morestack")) 1073 morestackCalls.push_back(&rel); 1074 continue; 1075 } 1076 1077 // A relocation to non-function isn't relevant. Sometimes 1078 // __morestack is not marked as a function, so this check comes 1079 // after the name check. 1080 if (rel.sym->type != STT_FUNC) 1081 continue; 1082 1083 // If the callee's-file was compiled with split stack, nothing to do. In 1084 // this context, a "Defined" symbol is one "defined by the binary currently 1085 // being produced". So an "undefined" symbol might be provided by a shared 1086 // library. It is not possible to tell how such symbols were compiled, so be 1087 // conservative. 1088 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1089 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1090 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1091 continue; 1092 1093 if (enclosingPrologueAttempted(rel.offset, prologues)) 1094 continue; 1095 1096 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1097 prologues.insert(f); 1098 if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value), 1099 end, f->stOther)) 1100 continue; 1101 if (!getFile<ELFT>()->someNoSplitStack) 1102 error(toString(this) + ": " + f->getName() + 1103 " (with -fsplit-stack) calls " + rel.sym->getName() + 1104 " (without -fsplit-stack), but couldn't adjust its prologue"); 1105 } 1106 } 1107 1108 if (target->needsMoreStackNonSplit) 1109 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1110 } 1111 1112 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1113 if (type == SHT_NOBITS) 1114 return; 1115 1116 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1117 s->writeTo(buf + outSecOff); 1118 return; 1119 } 1120 1121 // If -r or --emit-relocs is given, then an InputSection 1122 // may be a relocation section. 1123 if (type == SHT_RELA) { 1124 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1125 return; 1126 } 1127 if (type == SHT_REL) { 1128 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1129 return; 1130 } 1131 1132 // If -r is given, we may have a SHT_GROUP section. 1133 if (type == SHT_GROUP) { 1134 copyShtGroup<ELFT>(buf + outSecOff); 1135 return; 1136 } 1137 1138 // If this is a compressed section, uncompress section contents directly 1139 // to the buffer. 1140 if (uncompressedSize >= 0) { 1141 size_t size = uncompressedSize; 1142 if (Error e = zlib::uncompress(toStringRef(rawData), 1143 (char *)(buf + outSecOff), size)) 1144 fatal(toString(this) + 1145 ": uncompress failed: " + llvm::toString(std::move(e))); 1146 uint8_t *bufEnd = buf + outSecOff + size; 1147 relocate<ELFT>(buf, bufEnd); 1148 return; 1149 } 1150 1151 // Copy section contents from source object file to output file 1152 // and then apply relocations. 1153 memcpy(buf + outSecOff, data().data(), data().size()); 1154 uint8_t *bufEnd = buf + outSecOff + data().size(); 1155 relocate<ELFT>(buf, bufEnd); 1156 } 1157 1158 void InputSection::replace(InputSection *other) { 1159 alignment = std::max(alignment, other->alignment); 1160 1161 // When a section is replaced with another section that was allocated to 1162 // another partition, the replacement section (and its associated sections) 1163 // need to be placed in the main partition so that both partitions will be 1164 // able to access it. 1165 if (partition != other->partition) { 1166 partition = 1; 1167 for (InputSection *isec : dependentSections) 1168 isec->partition = 1; 1169 } 1170 1171 other->repl = repl; 1172 other->markDead(); 1173 } 1174 1175 template <class ELFT> 1176 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1177 const typename ELFT::Shdr &header, 1178 StringRef name) 1179 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1180 1181 SyntheticSection *EhInputSection::getParent() const { 1182 return cast_or_null<SyntheticSection>(parent); 1183 } 1184 1185 // Returns the index of the first relocation that points to a region between 1186 // Begin and Begin+Size. 1187 template <class IntTy, class RelTy> 1188 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1189 unsigned &relocI) { 1190 // Start search from RelocI for fast access. That works because the 1191 // relocations are sorted in .eh_frame. 1192 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1193 const RelTy &rel = rels[relocI]; 1194 if (rel.r_offset < begin) 1195 continue; 1196 1197 if (rel.r_offset < begin + size) 1198 return relocI; 1199 return -1; 1200 } 1201 return -1; 1202 } 1203 1204 // .eh_frame is a sequence of CIE or FDE records. 1205 // This function splits an input section into records and returns them. 1206 template <class ELFT> void EhInputSection::split() { 1207 if (areRelocsRela) 1208 split<ELFT>(relas<ELFT>()); 1209 else 1210 split<ELFT>(rels<ELFT>()); 1211 } 1212 1213 template <class ELFT, class RelTy> 1214 void EhInputSection::split(ArrayRef<RelTy> rels) { 1215 unsigned relI = 0; 1216 for (size_t off = 0, end = data().size(); off != end;) { 1217 size_t size = readEhRecordSize(this, off); 1218 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1219 // The empty record is the end marker. 1220 if (size == 4) 1221 break; 1222 off += size; 1223 } 1224 } 1225 1226 static size_t findNull(StringRef s, size_t entSize) { 1227 // Optimize the common case. 1228 if (entSize == 1) 1229 return s.find(0); 1230 1231 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1232 const char *b = s.begin() + i; 1233 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1234 return i; 1235 } 1236 return StringRef::npos; 1237 } 1238 1239 SyntheticSection *MergeInputSection::getParent() const { 1240 return cast_or_null<SyntheticSection>(parent); 1241 } 1242 1243 // Split SHF_STRINGS section. Such section is a sequence of 1244 // null-terminated strings. 1245 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1246 size_t off = 0; 1247 bool isAlloc = flags & SHF_ALLOC; 1248 StringRef s = toStringRef(data); 1249 1250 while (!s.empty()) { 1251 size_t end = findNull(s, entSize); 1252 if (end == StringRef::npos) 1253 fatal(toString(this) + ": string is not null terminated"); 1254 size_t size = end + entSize; 1255 1256 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1257 s = s.substr(size); 1258 off += size; 1259 } 1260 } 1261 1262 // Split non-SHF_STRINGS section. Such section is a sequence of 1263 // fixed size records. 1264 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1265 size_t entSize) { 1266 size_t size = data.size(); 1267 assert((size % entSize) == 0); 1268 bool isAlloc = flags & SHF_ALLOC; 1269 1270 for (size_t i = 0; i != size; i += entSize) 1271 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1272 } 1273 1274 template <class ELFT> 1275 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1276 const typename ELFT::Shdr &header, 1277 StringRef name) 1278 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1279 1280 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1281 uint64_t entsize, ArrayRef<uint8_t> data, 1282 StringRef name) 1283 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1284 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1285 1286 // This function is called after we obtain a complete list of input sections 1287 // that need to be linked. This is responsible to split section contents 1288 // into small chunks for further processing. 1289 // 1290 // Note that this function is called from parallelForEach. This must be 1291 // thread-safe (i.e. no memory allocation from the pools). 1292 void MergeInputSection::splitIntoPieces() { 1293 assert(pieces.empty()); 1294 1295 if (flags & SHF_STRINGS) 1296 splitStrings(data(), entsize); 1297 else 1298 splitNonStrings(data(), entsize); 1299 } 1300 1301 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1302 if (this->data().size() <= offset) 1303 fatal(toString(this) + ": offset is outside the section"); 1304 1305 // If Offset is not at beginning of a section piece, it is not in the map. 1306 // In that case we need to do a binary search of the original section piece vector. 1307 auto it = partition_point( 1308 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1309 return &it[-1]; 1310 } 1311 1312 // Returns the offset in an output section for a given input offset. 1313 // Because contents of a mergeable section is not contiguous in output, 1314 // it is not just an addition to a base output offset. 1315 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1316 // If Offset is not at beginning of a section piece, it is not in the map. 1317 // In that case we need to search from the original section piece vector. 1318 const SectionPiece &piece = 1319 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); 1320 uint64_t addend = offset - piece.inputOff; 1321 return piece.outputOff + addend; 1322 } 1323 1324 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1325 StringRef); 1326 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1327 StringRef); 1328 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1329 StringRef); 1330 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1331 StringRef); 1332 1333 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1334 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1335 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1336 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1337 1338 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1339 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1340 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1341 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1342 1343 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1344 const ELF32LE::Shdr &, StringRef); 1345 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1346 const ELF32BE::Shdr &, StringRef); 1347 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1348 const ELF64LE::Shdr &, StringRef); 1349 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1350 const ELF64BE::Shdr &, StringRef); 1351 1352 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1353 const ELF32LE::Shdr &, StringRef); 1354 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1355 const ELF32BE::Shdr &, StringRef); 1356 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1357 const ELF64LE::Shdr &, StringRef); 1358 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1359 const ELF64BE::Shdr &, StringRef); 1360 1361 template void EhInputSection::split<ELF32LE>(); 1362 template void EhInputSection::split<ELF32BE>(); 1363 template void EhInputSection::split<ELF64LE>(); 1364 template void EhInputSection::split<ELF64BE>(); 1365 1366 } // namespace elf 1367 } // namespace lld 1368