1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <optional> 26 #include <vector> 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::support; 32 using namespace llvm::support::endian; 33 using namespace llvm::sys; 34 using namespace lld; 35 using namespace lld::elf; 36 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return ArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t addralign, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info, 58 link), 59 file(file), content_(data.data()), size(data.size()) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(addralign, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->addralign = v; 72 73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no 74 // longer supported. 75 if (flags & SHF_COMPRESSED) 76 invokeELFT(parseCompressedHeader,); 77 } 78 79 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 80 // SHF_GROUP is a marker that a section belongs to some comdat group. 81 // That flag doesn't make sense in an executable. 82 static uint64_t getFlags(uint64_t flags) { 83 flags &= ~(uint64_t)SHF_INFO_LINK; 84 if (!config->relocatable) 85 flags &= ~(uint64_t)SHF_GROUP; 86 return flags; 87 } 88 89 template <class ELFT> 90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 91 const typename ELFT::Shdr &hdr, 92 StringRef name, Kind sectionKind) 93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 95 hdr.sh_addralign, getSectionContents(file, hdr), name, 96 sectionKind) { 97 // We reject object files having insanely large alignments even though 98 // they are allowed by the spec. I think 4GB is a reasonable limitation. 99 // We might want to relax this in the future. 100 if (hdr.sh_addralign > UINT32_MAX) 101 fatal(toString(&file) + ": section sh_addralign is too large"); 102 } 103 104 size_t InputSectionBase::getSize() const { 105 if (auto *s = dyn_cast<SyntheticSection>(this)) 106 return s->getSize(); 107 return size - bytesDropped; 108 } 109 110 template <class ELFT> 111 static void decompressAux(const InputSectionBase &sec, uint8_t *out, 112 size_t size) { 113 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); 114 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) 115 .slice(sizeof(typename ELFT::Chdr)); 116 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 117 ? compression::zlib::decompress(compressed, out, size) 118 : compression::zstd::decompress(compressed, out, size)) 119 fatal(toString(&sec) + 120 ": decompress failed: " + llvm::toString(std::move(e))); 121 } 122 123 void InputSectionBase::decompress() const { 124 uint8_t *uncompressedBuf; 125 { 126 static std::mutex mu; 127 std::lock_guard<std::mutex> lock(mu); 128 uncompressedBuf = bAlloc().Allocate<uint8_t>(size); 129 } 130 131 invokeELFT(decompressAux, *this, uncompressedBuf, size); 132 content_ = uncompressedBuf; 133 compressed = false; 134 } 135 136 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 137 if (relSecIdx == 0) 138 return {}; 139 RelsOrRelas<ELFT> ret; 140 typename ELFT::Shdr shdr = 141 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 142 if (shdr.sh_type == SHT_REL) { 143 ret.rels = ArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 144 file->mb.getBufferStart() + shdr.sh_offset), 145 shdr.sh_size / sizeof(typename ELFT::Rel)); 146 } else { 147 assert(shdr.sh_type == SHT_RELA); 148 ret.relas = ArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 149 file->mb.getBufferStart() + shdr.sh_offset), 150 shdr.sh_size / sizeof(typename ELFT::Rela)); 151 } 152 return ret; 153 } 154 155 uint64_t SectionBase::getOffset(uint64_t offset) const { 156 switch (kind()) { 157 case Output: { 158 auto *os = cast<OutputSection>(this); 159 // For output sections we treat offset -1 as the end of the section. 160 return offset == uint64_t(-1) ? os->size : offset; 161 } 162 case Regular: 163 case Synthetic: 164 return cast<InputSection>(this)->outSecOff + offset; 165 case EHFrame: { 166 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 167 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 168 // start of the output .eh_frame. Just return offset. 169 // 170 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 171 // discarded due to GC/ICF. We should compute the output section offset. 172 const EhInputSection *es = cast<EhInputSection>(this); 173 if (!es->content().empty()) 174 if (InputSection *isec = es->getParent()) 175 return isec->outSecOff + es->getParentOffset(offset); 176 return offset; 177 } 178 case Merge: 179 const MergeInputSection *ms = cast<MergeInputSection>(this); 180 if (InputSection *isec = ms->getParent()) 181 return isec->outSecOff + ms->getParentOffset(offset); 182 return ms->getParentOffset(offset); 183 } 184 llvm_unreachable("invalid section kind"); 185 } 186 187 uint64_t SectionBase::getVA(uint64_t offset) const { 188 const OutputSection *out = getOutputSection(); 189 return (out ? out->addr : 0) + getOffset(offset); 190 } 191 192 OutputSection *SectionBase::getOutputSection() { 193 InputSection *sec; 194 if (auto *isec = dyn_cast<InputSection>(this)) 195 sec = isec; 196 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 197 sec = ms->getParent(); 198 else if (auto *eh = dyn_cast<EhInputSection>(this)) 199 sec = eh->getParent(); 200 else 201 return cast<OutputSection>(this); 202 return sec ? sec->getParent() : nullptr; 203 } 204 205 // When a section is compressed, `rawData` consists with a header followed 206 // by zlib-compressed data. This function parses a header to initialize 207 // `uncompressedSize` member and remove the header from `rawData`. 208 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 209 flags &= ~(uint64_t)SHF_COMPRESSED; 210 211 // New-style header 212 if (content().size() < sizeof(typename ELFT::Chdr)) { 213 error(toString(this) + ": corrupted compressed section"); 214 return; 215 } 216 217 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); 218 if (hdr->ch_type == ELFCOMPRESS_ZLIB) { 219 if (!compression::zlib::isAvailable()) 220 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " 221 "not built with zlib support"); 222 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { 223 if (!compression::zstd::isAvailable()) 224 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is " 225 "not built with zstd support"); 226 } else { 227 error(toString(this) + ": unsupported compression type (" + 228 Twine(hdr->ch_type) + ")"); 229 return; 230 } 231 232 compressed = true; 233 compressedSize = size; 234 size = hdr->ch_size; 235 addralign = std::max<uint32_t>(hdr->ch_addralign, 1); 236 } 237 238 InputSection *InputSectionBase::getLinkOrderDep() const { 239 assert(flags & SHF_LINK_ORDER); 240 if (!link) 241 return nullptr; 242 return cast<InputSection>(file->getSections()[link]); 243 } 244 245 // Find a symbol that encloses a given location. 246 Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, 247 uint8_t type) const { 248 if (file->isInternal()) 249 return nullptr; 250 for (Symbol *b : file->getSymbols()) 251 if (Defined *d = dyn_cast<Defined>(b)) 252 if (d->section == this && d->value <= offset && 253 offset < d->value + d->size && (type == 0 || type == d->type)) 254 return d; 255 return nullptr; 256 } 257 258 // Returns an object file location string. Used to construct an error message. 259 std::string InputSectionBase::getLocation(uint64_t offset) const { 260 std::string secAndOffset = 261 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 262 263 // We don't have file for synthetic sections. 264 if (file == nullptr) 265 return (config->outputFile + ":(" + secAndOffset).str(); 266 267 std::string filename = toString(file); 268 if (Defined *d = getEnclosingFunction(offset)) 269 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 270 271 return filename + ":(" + secAndOffset; 272 } 273 274 // This function is intended to be used for constructing an error message. 275 // The returned message looks like this: 276 // 277 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 278 // 279 // Returns an empty string if there's no way to get line info. 280 std::string InputSectionBase::getSrcMsg(const Symbol &sym, 281 uint64_t offset) const { 282 return file->getSrcMsg(sym, *this, offset); 283 } 284 285 // Returns a filename string along with an optional section name. This 286 // function is intended to be used for constructing an error 287 // message. The returned message looks like this: 288 // 289 // path/to/foo.o:(function bar) 290 // 291 // or 292 // 293 // path/to/foo.o:(function bar) in archive path/to/bar.a 294 std::string InputSectionBase::getObjMsg(uint64_t off) const { 295 std::string filename = std::string(file->getName()); 296 297 std::string archive; 298 if (!file->archiveName.empty()) 299 archive = (" in archive " + file->archiveName).str(); 300 301 // Find a symbol that encloses a given location. getObjMsg may be called 302 // before ObjFile::initSectionsAndLocalSyms where local symbols are 303 // initialized. 304 if (Defined *d = getEnclosingSymbol(off)) 305 return filename + ":(" + toString(*d) + ")" + archive; 306 307 // If there's no symbol, print out the offset in the section. 308 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 309 .str(); 310 } 311 312 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 313 314 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 315 uint32_t addralign, ArrayRef<uint8_t> data, 316 StringRef name, Kind k) 317 : InputSectionBase(f, flags, type, 318 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data, 319 name, k) {} 320 321 template <class ELFT> 322 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 323 StringRef name) 324 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 325 326 // Copy SHT_GROUP section contents. Used only for the -r option. 327 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 328 // ELFT::Word is the 32-bit integral type in the target endianness. 329 using u32 = typename ELFT::Word; 330 ArrayRef<u32> from = getDataAs<u32>(); 331 auto *to = reinterpret_cast<u32 *>(buf); 332 333 // The first entry is not a section number but a flag. 334 *to++ = from[0]; 335 336 // Adjust section numbers because section numbers in an input object files are 337 // different in the output. We also need to handle combined or discarded 338 // members. 339 ArrayRef<InputSectionBase *> sections = file->getSections(); 340 DenseSet<uint32_t> seen; 341 for (uint32_t idx : from.slice(1)) { 342 OutputSection *osec = sections[idx]->getOutputSection(); 343 if (osec && seen.insert(osec->sectionIndex).second) 344 *to++ = osec->sectionIndex; 345 } 346 } 347 348 InputSectionBase *InputSection::getRelocatedSection() const { 349 if (!file || file->isInternal() || (type != SHT_RELA && type != SHT_REL)) 350 return nullptr; 351 ArrayRef<InputSectionBase *> sections = file->getSections(); 352 return sections[info]; 353 } 354 355 template <class ELFT, class RelTy> 356 void InputSection::copyRelocations(uint8_t *buf) { 357 if (config->relax && !config->relocatable && 358 (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) { 359 // On LoongArch and RISC-V, relaxation might change relocations: copy 360 // from internal ones that are updated by relaxation. 361 InputSectionBase *sec = getRelocatedSection(); 362 copyRelocations<ELFT, RelTy>(buf, llvm::make_range(sec->relocations.begin(), 363 sec->relocations.end())); 364 } else { 365 // Convert the raw relocations in the input section into Relocation objects 366 // suitable to be used by copyRelocations below. 367 struct MapRel { 368 const ObjFile<ELFT> &file; 369 Relocation operator()(const RelTy &rel) const { 370 // RelExpr is not used so set to a dummy value. 371 return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset, 372 getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; 373 } 374 }; 375 376 using RawRels = ArrayRef<RelTy>; 377 using MapRelIter = 378 llvm::mapped_iterator<typename RawRels::iterator, MapRel>; 379 auto mapRel = MapRel{*getFile<ELFT>()}; 380 RawRels rawRels = getDataAs<RelTy>(); 381 auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), 382 MapRelIter(rawRels.end(), mapRel)); 383 copyRelocations<ELFT, RelTy>(buf, rels); 384 } 385 } 386 387 // This is used for -r and --emit-relocs. We can't use memcpy to copy 388 // relocations because we need to update symbol table offset and section index 389 // for each relocation. So we copy relocations one by one. 390 template <class ELFT, class RelTy, class RelIt> 391 void InputSection::copyRelocations(uint8_t *buf, 392 llvm::iterator_range<RelIt> rels) { 393 const TargetInfo &target = *elf::target; 394 InputSectionBase *sec = getRelocatedSection(); 395 (void)sec->contentMaybeDecompress(); // uncompress if needed 396 397 for (const Relocation &rel : rels) { 398 RelType type = rel.type; 399 const ObjFile<ELFT> *file = getFile<ELFT>(); 400 Symbol &sym = *rel.sym; 401 402 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 403 buf += sizeof(RelTy); 404 405 if (RelTy::IsRela) 406 p->r_addend = rel.addend; 407 408 // Output section VA is zero for -r, so r_offset is an offset within the 409 // section, but for --emit-relocs it is a virtual address. 410 p->r_offset = sec->getVA(rel.offset); 411 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 412 config->isMips64EL); 413 414 if (sym.type == STT_SECTION) { 415 // We combine multiple section symbols into only one per 416 // section. This means we have to update the addend. That is 417 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 418 // section data. We do that by adding to the Relocation vector. 419 420 // .eh_frame is horribly special and can reference discarded sections. To 421 // avoid having to parse and recreate .eh_frame, we just replace any 422 // relocation in it pointing to discarded sections with R_*_NONE, which 423 // hopefully creates a frame that is ignored at runtime. Also, don't warn 424 // on .gcc_except_table and debug sections. 425 // 426 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 427 auto *d = dyn_cast<Defined>(&sym); 428 if (!d) { 429 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 430 sec->name != ".gcc_except_table" && sec->name != ".got2" && 431 sec->name != ".toc") { 432 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 433 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 434 warn("relocation refers to a discarded section: " + 435 CHECK(file->getObj().getSectionName(sec), file) + 436 "\n>>> referenced by " + getObjMsg(p->r_offset)); 437 } 438 p->setSymbolAndType(0, 0, false); 439 continue; 440 } 441 SectionBase *section = d->section; 442 assert(section->isLive()); 443 444 int64_t addend = rel.addend; 445 const uint8_t *bufLoc = sec->content().begin() + rel.offset; 446 if (!RelTy::IsRela) 447 addend = target.getImplicitAddend(bufLoc, type); 448 449 if (config->emachine == EM_MIPS && 450 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 451 // Some MIPS relocations depend on "gp" value. By default, 452 // this value has 0x7ff0 offset from a .got section. But 453 // relocatable files produced by a compiler or a linker 454 // might redefine this default value and we must use it 455 // for a calculation of the relocation result. When we 456 // generate EXE or DSO it's trivial. Generating a relocatable 457 // output is more difficult case because the linker does 458 // not calculate relocations in this mode and loses 459 // individual "gp" values used by each input object file. 460 // As a workaround we add the "gp" value to the relocation 461 // addend and save it back to the file. 462 addend += sec->getFile<ELFT>()->mipsGp0; 463 } 464 465 if (RelTy::IsRela) 466 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 467 // For SHF_ALLOC sections relocated by REL, append a relocation to 468 // sec->relocations so that relocateAlloc transitively called by 469 // writeSections will update the implicit addend. Non-SHF_ALLOC sections 470 // utilize relocateNonAlloc to process raw relocations and do not need 471 // this sec->relocations change. 472 else if (config->relocatable && (sec->flags & SHF_ALLOC) && 473 type != target.noneRel) 474 sec->addReloc({R_ABS, type, rel.offset, addend, &sym}); 475 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 476 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 477 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 478 // indicates that r30 is relative to the input section .got2 479 // (r_addend>=0x8000), after linking, r30 should be relative to the output 480 // section .got2 . To compensate for the shift, adjust r_addend by 481 // ppc32Got->outSecOff. 482 p->r_addend += sec->file->ppc32Got2->outSecOff; 483 } 484 } 485 } 486 487 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 488 // references specially. The general rule is that the value of the symbol in 489 // this context is the address of the place P. A further special case is that 490 // branch relocations to an undefined weak reference resolve to the next 491 // instruction. 492 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 493 uint32_t p) { 494 switch (type) { 495 // Unresolved branch relocations to weak references resolve to next 496 // instruction, this will be either 2 or 4 bytes on from P. 497 case R_ARM_THM_JUMP8: 498 case R_ARM_THM_JUMP11: 499 return p + 2 + a; 500 case R_ARM_CALL: 501 case R_ARM_JUMP24: 502 case R_ARM_PC24: 503 case R_ARM_PLT32: 504 case R_ARM_PREL31: 505 case R_ARM_THM_JUMP19: 506 case R_ARM_THM_JUMP24: 507 return p + 4 + a; 508 case R_ARM_THM_CALL: 509 // We don't want an interworking BLX to ARM 510 return p + 5 + a; 511 // Unresolved non branch pc-relative relocations 512 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 513 // targets a weak-reference. 514 case R_ARM_MOVW_PREL_NC: 515 case R_ARM_MOVT_PREL: 516 case R_ARM_REL32: 517 case R_ARM_THM_ALU_PREL_11_0: 518 case R_ARM_THM_MOVW_PREL_NC: 519 case R_ARM_THM_MOVT_PREL: 520 case R_ARM_THM_PC12: 521 return p + a; 522 // p + a is unrepresentable as negative immediates can't be encoded. 523 case R_ARM_THM_PC8: 524 return p; 525 } 526 llvm_unreachable("ARM pc-relative relocation expected\n"); 527 } 528 529 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 530 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 531 switch (type) { 532 // Unresolved branch relocations to weak references resolve to next 533 // instruction, this is 4 bytes on from P. 534 case R_AARCH64_CALL26: 535 case R_AARCH64_CONDBR19: 536 case R_AARCH64_JUMP26: 537 case R_AARCH64_TSTBR14: 538 return p + 4; 539 // Unresolved non branch pc-relative relocations 540 case R_AARCH64_PREL16: 541 case R_AARCH64_PREL32: 542 case R_AARCH64_PREL64: 543 case R_AARCH64_ADR_PREL_LO21: 544 case R_AARCH64_LD_PREL_LO19: 545 case R_AARCH64_PLT32: 546 return p; 547 } 548 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 549 } 550 551 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 552 switch (type) { 553 case R_RISCV_BRANCH: 554 case R_RISCV_JAL: 555 case R_RISCV_CALL: 556 case R_RISCV_CALL_PLT: 557 case R_RISCV_RVC_BRANCH: 558 case R_RISCV_RVC_JUMP: 559 case R_RISCV_PLT32: 560 return p; 561 default: 562 return 0; 563 } 564 } 565 566 // ARM SBREL relocations are of the form S + A - B where B is the static base 567 // The ARM ABI defines base to be "addressing origin of the output segment 568 // defining the symbol S". We defined the "addressing origin"/static base to be 569 // the base of the PT_LOAD segment containing the Sym. 570 // The procedure call standard only defines a Read Write Position Independent 571 // RWPI variant so in practice we should expect the static base to be the base 572 // of the RW segment. 573 static uint64_t getARMStaticBase(const Symbol &sym) { 574 OutputSection *os = sym.getOutputSection(); 575 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 576 fatal("SBREL relocation to " + sym.getName() + " without static base"); 577 return os->ptLoad->firstSec->addr; 578 } 579 580 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 581 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 582 // is calculated using PCREL_HI20's symbol. 583 // 584 // This function returns the R_RISCV_PCREL_HI20 relocation from 585 // R_RISCV_PCREL_LO12's symbol and addend. 586 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 587 const Defined *d = cast<Defined>(sym); 588 if (!d->section) { 589 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 590 sym->getName()); 591 return nullptr; 592 } 593 InputSection *isec = cast<InputSection>(d->section); 594 595 if (addend != 0) 596 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 597 isec->getObjMsg(d->value) + " is ignored"); 598 599 // Relocations are sorted by offset, so we can use std::equal_range to do 600 // binary search. 601 Relocation r; 602 r.offset = d->value; 603 auto range = 604 std::equal_range(isec->relocs().begin(), isec->relocs().end(), r, 605 [](const Relocation &lhs, const Relocation &rhs) { 606 return lhs.offset < rhs.offset; 607 }); 608 609 for (auto it = range.first; it != range.second; ++it) 610 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 611 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 612 return &*it; 613 614 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + 615 isec->getObjMsg(d->value) + 616 " without an associated R_RISCV_PCREL_HI20 relocation"); 617 return nullptr; 618 } 619 620 // A TLS symbol's virtual address is relative to the TLS segment. Add a 621 // target-specific adjustment to produce a thread-pointer-relative offset. 622 static int64_t getTlsTpOffset(const Symbol &s) { 623 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 624 if (&s == ElfSym::tlsModuleBase) 625 return 0; 626 627 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 628 // while most others use Variant 1. At run time TP will be aligned to p_align. 629 630 // Variant 1. TP will be followed by an optional gap (which is the size of 2 631 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 632 // padding, then the static TLS blocks. The alignment padding is added so that 633 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 634 // 635 // Variant 2. Static TLS blocks, followed by alignment padding are placed 636 // before TP. The alignment padding is added so that (TP - padding - 637 // p_memsz) is congruent to p_vaddr modulo p_align. 638 PhdrEntry *tls = Out::tlsPhdr; 639 switch (config->emachine) { 640 // Variant 1. 641 case EM_ARM: 642 case EM_AARCH64: 643 return s.getVA(0) + config->wordsize * 2 + 644 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 645 case EM_MIPS: 646 case EM_PPC: 647 case EM_PPC64: 648 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 649 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 650 // data and 0xf000 of the program's TLS segment. 651 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 652 case EM_LOONGARCH: 653 case EM_RISCV: 654 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 655 656 // Variant 2. 657 case EM_HEXAGON: 658 case EM_S390: 659 case EM_SPARCV9: 660 case EM_386: 661 case EM_X86_64: 662 return s.getVA(0) - tls->p_memsz - 663 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 664 default: 665 llvm_unreachable("unhandled Config->EMachine"); 666 } 667 } 668 669 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 670 int64_t a, uint64_t p, 671 const Symbol &sym, RelExpr expr) { 672 switch (expr) { 673 case R_ABS: 674 case R_DTPREL: 675 case R_RELAX_TLS_LD_TO_LE_ABS: 676 case R_RELAX_GOT_PC_NOPIC: 677 case R_RISCV_ADD: 678 case R_RISCV_LEB128: 679 return sym.getVA(a); 680 case R_ADDEND: 681 return a; 682 case R_RELAX_HINT: 683 return 0; 684 case R_ARM_SBREL: 685 return sym.getVA(a) - getARMStaticBase(sym); 686 case R_GOT: 687 case R_RELAX_TLS_GD_TO_IE_ABS: 688 return sym.getGotVA() + a; 689 case R_LOONGARCH_GOT: 690 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type 691 // for their page offsets. The arithmetics are different in the TLS case 692 // so we have to duplicate some logic here. 693 if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12) 694 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. 695 return in.got->getGlobalDynAddr(sym) + a; 696 return getRelocTargetVA(file, type, a, p, sym, R_GOT); 697 case R_GOTONLY_PC: 698 return in.got->getVA() + a - p; 699 case R_GOTPLTONLY_PC: 700 return in.gotPlt->getVA() + a - p; 701 case R_GOTREL: 702 case R_PPC64_RELAX_TOC: 703 return sym.getVA(a) - in.got->getVA(); 704 case R_GOTPLTREL: 705 return sym.getVA(a) - in.gotPlt->getVA(); 706 case R_GOTPLT: 707 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 708 return sym.getGotVA() + a - in.gotPlt->getVA(); 709 case R_TLSLD_GOT_OFF: 710 case R_GOT_OFF: 711 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 712 return sym.getGotOffset() + a; 713 case R_AARCH64_GOT_PAGE_PC: 714 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 715 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 716 case R_AARCH64_GOT_PAGE: 717 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 718 case R_GOT_PC: 719 case R_RELAX_TLS_GD_TO_IE: 720 return sym.getGotVA() + a - p; 721 case R_GOTPLT_GOTREL: 722 return sym.getGotPltVA() + a - in.got->getVA(); 723 case R_GOTPLT_PC: 724 return sym.getGotPltVA() + a - p; 725 case R_LOONGARCH_GOT_PAGE_PC: 726 if (sym.hasFlag(NEEDS_TLSGD)) 727 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type); 728 return getLoongArchPageDelta(sym.getGotVA() + a, p, type); 729 case R_MIPS_GOTREL: 730 return sym.getVA(a) - in.mipsGot->getGp(file); 731 case R_MIPS_GOT_GP: 732 return in.mipsGot->getGp(file) + a; 733 case R_MIPS_GOT_GP_PC: { 734 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 735 // is _gp_disp symbol. In that case we should use the following 736 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 737 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 738 // microMIPS variants of these relocations use slightly different 739 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 740 // to correctly handle less-significant bit of the microMIPS symbol. 741 uint64_t v = in.mipsGot->getGp(file) + a - p; 742 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 743 v += 4; 744 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 745 v -= 1; 746 return v; 747 } 748 case R_MIPS_GOT_LOCAL_PAGE: 749 // If relocation against MIPS local symbol requires GOT entry, this entry 750 // should be initialized by 'page address'. This address is high 16-bits 751 // of sum the symbol's value and the addend. 752 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 753 in.mipsGot->getGp(file); 754 case R_MIPS_GOT_OFF: 755 case R_MIPS_GOT_OFF32: 756 // In case of MIPS if a GOT relocation has non-zero addend this addend 757 // should be applied to the GOT entry content not to the GOT entry offset. 758 // That is why we use separate expression type. 759 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 760 in.mipsGot->getGp(file); 761 case R_MIPS_TLSGD: 762 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 763 in.mipsGot->getGp(file); 764 case R_MIPS_TLSLD: 765 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 766 in.mipsGot->getGp(file); 767 case R_AARCH64_PAGE_PC: { 768 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 769 return getAArch64Page(val) - getAArch64Page(p); 770 } 771 case R_RISCV_PC_INDIRECT: { 772 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 773 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 774 *hiRel->sym, hiRel->expr); 775 return 0; 776 } 777 case R_LOONGARCH_PAGE_PC: 778 return getLoongArchPageDelta(sym.getVA(a), p, type); 779 case R_PC: 780 case R_ARM_PCA: { 781 uint64_t dest; 782 if (expr == R_ARM_PCA) 783 // Some PC relative ARM (Thumb) relocations align down the place. 784 p = p & 0xfffffffc; 785 if (sym.isUndefined()) { 786 // On ARM and AArch64 a branch to an undefined weak resolves to the next 787 // instruction, otherwise the place. On RISC-V, resolve an undefined weak 788 // to the same instruction to cause an infinite loop (making the user 789 // aware of the issue) while ensuring no overflow. 790 // Note: if the symbol is hidden, its binding has been converted to local, 791 // so we just check isUndefined() here. 792 if (config->emachine == EM_ARM) 793 dest = getARMUndefinedRelativeWeakVA(type, a, p); 794 else if (config->emachine == EM_AARCH64) 795 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 796 else if (config->emachine == EM_PPC) 797 dest = p; 798 else if (config->emachine == EM_RISCV) 799 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 800 else 801 dest = sym.getVA(a); 802 } else { 803 dest = sym.getVA(a); 804 } 805 return dest - p; 806 } 807 case R_PLT: 808 return sym.getPltVA() + a; 809 case R_PLT_PC: 810 case R_PPC64_CALL_PLT: 811 return sym.getPltVA() + a - p; 812 case R_LOONGARCH_PLT_PAGE_PC: 813 return getLoongArchPageDelta(sym.getPltVA() + a, p, type); 814 case R_PLT_GOTPLT: 815 return sym.getPltVA() + a - in.gotPlt->getVA(); 816 case R_PLT_GOTREL: 817 return sym.getPltVA() + a - in.got->getVA(); 818 case R_PPC32_PLTREL: 819 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 820 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 821 // target VA computation. 822 return sym.getPltVA() - p; 823 case R_PPC64_CALL: { 824 uint64_t symVA = sym.getVA(a); 825 // If we have an undefined weak symbol, we might get here with a symbol 826 // address of zero. That could overflow, but the code must be unreachable, 827 // so don't bother doing anything at all. 828 if (!symVA) 829 return 0; 830 831 // PPC64 V2 ABI describes two entry points to a function. The global entry 832 // point is used for calls where the caller and callee (may) have different 833 // TOC base pointers and r2 needs to be modified to hold the TOC base for 834 // the callee. For local calls the caller and callee share the same 835 // TOC base and so the TOC pointer initialization code should be skipped by 836 // branching to the local entry point. 837 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 838 } 839 case R_PPC64_TOCBASE: 840 return getPPC64TocBase() + a; 841 case R_RELAX_GOT_PC: 842 case R_PPC64_RELAX_GOT_PC: 843 return sym.getVA(a) - p; 844 case R_RELAX_TLS_GD_TO_LE: 845 case R_RELAX_TLS_IE_TO_LE: 846 case R_RELAX_TLS_LD_TO_LE: 847 case R_TPREL: 848 // It is not very clear what to return if the symbol is undefined. With 849 // --noinhibit-exec, even a non-weak undefined reference may reach here. 850 // Just return A, which matches R_ABS, and the behavior of some dynamic 851 // loaders. 852 if (sym.isUndefined()) 853 return a; 854 return getTlsTpOffset(sym) + a; 855 case R_RELAX_TLS_GD_TO_LE_NEG: 856 case R_TPREL_NEG: 857 if (sym.isUndefined()) 858 return a; 859 return -getTlsTpOffset(sym) + a; 860 case R_SIZE: 861 return sym.getSize() + a; 862 case R_TLSDESC: 863 return in.got->getTlsDescAddr(sym) + a; 864 case R_TLSDESC_PC: 865 return in.got->getTlsDescAddr(sym) + a - p; 866 case R_TLSDESC_GOTPLT: 867 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 868 case R_AARCH64_TLSDESC_PAGE: 869 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 870 case R_TLSGD_GOT: 871 return in.got->getGlobalDynOffset(sym) + a; 872 case R_TLSGD_GOTPLT: 873 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 874 case R_TLSGD_PC: 875 return in.got->getGlobalDynAddr(sym) + a - p; 876 case R_LOONGARCH_TLSGD_PAGE_PC: 877 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type); 878 case R_TLSLD_GOTPLT: 879 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 880 case R_TLSLD_GOT: 881 return in.got->getTlsIndexOff() + a; 882 case R_TLSLD_PC: 883 return in.got->getTlsIndexVA() + a - p; 884 default: 885 llvm_unreachable("invalid expression"); 886 } 887 } 888 889 // This function applies relocations to sections without SHF_ALLOC bit. 890 // Such sections are never mapped to memory at runtime. Debug sections are 891 // an example. Relocations in non-alloc sections are much easier to 892 // handle than in allocated sections because it will never need complex 893 // treatment such as GOT or PLT (because at runtime no one refers them). 894 // So, we handle relocations for non-alloc sections directly in this 895 // function as a performance optimization. 896 template <class ELFT, class RelTy> 897 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 898 const unsigned bits = sizeof(typename ELFT::uint) * 8; 899 const TargetInfo &target = *elf::target; 900 const auto emachine = config->emachine; 901 const bool isDebug = isDebugSection(*this); 902 const bool isDebugLine = isDebug && name == ".debug_line"; 903 std::optional<uint64_t> tombstone; 904 if (isDebug) { 905 if (name == ".debug_loc" || name == ".debug_ranges") 906 tombstone = 1; 907 else if (name == ".debug_names") 908 tombstone = UINT64_MAX; // tombstone value 909 else 910 tombstone = 0; 911 } 912 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 913 if (patAndValue.first.match(this->name)) { 914 tombstone = patAndValue.second; 915 break; 916 } 917 918 for (size_t i = 0, relsSize = rels.size(); i != relsSize; ++i) { 919 const RelTy &rel = rels[i]; 920 const RelType type = rel.getType(config->isMips64EL); 921 const uint64_t offset = rel.r_offset; 922 uint8_t *bufLoc = buf + offset; 923 int64_t addend = getAddend<ELFT>(rel); 924 if (!RelTy::IsRela) 925 addend += target.getImplicitAddend(bufLoc, type); 926 927 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 928 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 929 if (expr == R_NONE) 930 continue; 931 auto *ds = dyn_cast<Defined>(&sym); 932 933 if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { 934 if (++i < relsSize && 935 rels[i].getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && 936 rels[i].r_offset == offset) { 937 uint64_t val; 938 if (!ds && tombstone) { 939 val = *tombstone; 940 } else { 941 val = sym.getVA(addend) - 942 (getFile<ELFT>()->getRelocTargetSym(rels[i]).getVA(0) + 943 getAddend<ELFT>(rels[i])); 944 } 945 if (overwriteULEB128(bufLoc, val) >= 0x80) 946 errorOrWarn(getLocation(offset) + ": ULEB128 value " + Twine(val) + 947 " exceeds available space; references '" + 948 lld::toString(sym) + "'"); 949 continue; 950 } 951 errorOrWarn(getLocation(offset) + 952 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128"); 953 return; 954 } 955 956 if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { 957 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 958 // folded section symbols) to a tombstone value. Resolving to addend is 959 // unsatisfactory because the result address range may collide with a 960 // valid range of low address, or leave multiple CUs claiming ownership of 961 // the same range of code, which may confuse consumers. 962 // 963 // To address the problems, we use -1 as a tombstone value for most 964 // .debug_* sections. We have to ignore the addend because we don't want 965 // to resolve an address attribute (which may have a non-zero addend) to 966 // -1+addend (wrap around to a low address). 967 // 968 // R_DTPREL type relocations represent an offset into the dynamic thread 969 // vector. The computed value is st_value plus a non-negative offset. 970 // Negative values are invalid, so -1 can be used as the tombstone value. 971 // 972 // If the referenced symbol is relative to a discarded section (due to 973 // --gc-sections, COMDAT, etc), it has been converted to a Undefined. 974 // `ds->folded` catches the ICF folded case. However, resolving a 975 // relocation in .debug_line to -1 would stop debugger users from setting 976 // breakpoints on the folded-in function, so exclude .debug_line. 977 // 978 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 979 // (base address selection entry), use 1 (which is used by GNU ld for 980 // .debug_ranges). 981 // 982 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 983 // value. Enable -1 in a future release. 984 if (!ds || (ds->folded && !isDebugLine)) { 985 // If -z dead-reloc-in-nonalloc= is specified, respect it. 986 uint64_t value = SignExtend64<bits>(*tombstone); 987 // For a 32-bit local TU reference in .debug_names, X86_64::relocate 988 // requires that the unsigned value for R_X86_64_32 is truncated to 989 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit 990 // absolute relocations and do not need this change. 991 if (emachine == EM_X86_64 && type == R_X86_64_32) 992 value = static_cast<uint32_t>(value); 993 target.relocateNoSym(bufLoc, type, value); 994 continue; 995 } 996 } 997 998 // For a relocatable link, content relocated by RELA remains unchanged and 999 // we can stop here, while content relocated by REL referencing STT_SECTION 1000 // needs updating implicit addends. 1001 if (config->relocatable && (RelTy::IsRela || sym.type != STT_SECTION)) 1002 continue; 1003 1004 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 1005 // sections. 1006 if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || 1007 expr == R_RISCV_ADD) { 1008 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 1009 continue; 1010 } 1011 1012 if (expr == R_SIZE) { 1013 target.relocateNoSym(bufLoc, type, 1014 SignExtend64<bits>(sym.getSize() + addend)); 1015 continue; 1016 } 1017 1018 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 1019 toString(type) + " against symbol '" + toString(sym) + 1020 "'"; 1021 if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) { 1022 errorOrWarn(msg); 1023 return; 1024 } 1025 1026 // If the control reaches here, we found a PC-relative relocation in a 1027 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 1028 // at runtime, the notion of PC-relative doesn't make sense here. So, 1029 // this is a usage error. However, GNU linkers historically accept such 1030 // relocations without any errors and relocate them as if they were at 1031 // address 0. For bug-compatibility, we accept them with warnings. We 1032 // know Steel Bank Common Lisp as of 2018 have this bug. 1033 // 1034 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 1035 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in 1036 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to 1037 // keep this bug-compatible code for a while. 1038 warn(msg); 1039 target.relocateNoSym( 1040 bufLoc, type, 1041 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 1042 } 1043 } 1044 1045 template <class ELFT> 1046 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 1047 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 1048 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 1049 1050 if (flags & SHF_ALLOC) { 1051 target->relocateAlloc(*this, buf); 1052 return; 1053 } 1054 1055 auto *sec = cast<InputSection>(this); 1056 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1057 // locations with tombstone values. 1058 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1059 if (rels.areRelocsRel()) 1060 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1061 else 1062 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1063 } 1064 1065 // For each function-defining prologue, find any calls to __morestack, 1066 // and replace them with calls to __morestack_non_split. 1067 static void switchMorestackCallsToMorestackNonSplit( 1068 DenseSet<Defined *> &prologues, 1069 SmallVector<Relocation *, 0> &morestackCalls) { 1070 1071 // If the target adjusted a function's prologue, all calls to 1072 // __morestack inside that function should be switched to 1073 // __morestack_non_split. 1074 Symbol *moreStackNonSplit = symtab.find("__morestack_non_split"); 1075 if (!moreStackNonSplit) { 1076 error("mixing split-stack objects requires a definition of " 1077 "__morestack_non_split"); 1078 return; 1079 } 1080 1081 // Sort both collections to compare addresses efficiently. 1082 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1083 return l->offset < r->offset; 1084 }); 1085 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1086 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1087 return l->value < r->value; 1088 }); 1089 1090 auto it = morestackCalls.begin(); 1091 for (Defined *f : functions) { 1092 // Find the first call to __morestack within the function. 1093 while (it != morestackCalls.end() && (*it)->offset < f->value) 1094 ++it; 1095 // Adjust all calls inside the function. 1096 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1097 (*it)->sym = moreStackNonSplit; 1098 ++it; 1099 } 1100 } 1101 } 1102 1103 static bool enclosingPrologueAttempted(uint64_t offset, 1104 const DenseSet<Defined *> &prologues) { 1105 for (Defined *f : prologues) 1106 if (f->value <= offset && offset < f->value + f->size) 1107 return true; 1108 return false; 1109 } 1110 1111 // If a function compiled for split stack calls a function not 1112 // compiled for split stack, then the caller needs its prologue 1113 // adjusted to ensure that the called function will have enough stack 1114 // available. Find those functions, and adjust their prologues. 1115 template <class ELFT> 1116 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1117 uint8_t *end) { 1118 DenseSet<Defined *> prologues; 1119 SmallVector<Relocation *, 0> morestackCalls; 1120 1121 for (Relocation &rel : relocs()) { 1122 // Ignore calls into the split-stack api. 1123 if (rel.sym->getName().starts_with("__morestack")) { 1124 if (rel.sym->getName().equals("__morestack")) 1125 morestackCalls.push_back(&rel); 1126 continue; 1127 } 1128 1129 // A relocation to non-function isn't relevant. Sometimes 1130 // __morestack is not marked as a function, so this check comes 1131 // after the name check. 1132 if (rel.sym->type != STT_FUNC) 1133 continue; 1134 1135 // If the callee's-file was compiled with split stack, nothing to do. In 1136 // this context, a "Defined" symbol is one "defined by the binary currently 1137 // being produced". So an "undefined" symbol might be provided by a shared 1138 // library. It is not possible to tell how such symbols were compiled, so be 1139 // conservative. 1140 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1141 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1142 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1143 continue; 1144 1145 if (enclosingPrologueAttempted(rel.offset, prologues)) 1146 continue; 1147 1148 if (Defined *f = getEnclosingFunction(rel.offset)) { 1149 prologues.insert(f); 1150 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1151 f->stOther)) 1152 continue; 1153 if (!getFile<ELFT>()->someNoSplitStack) 1154 error(lld::toString(this) + ": " + f->getName() + 1155 " (with -fsplit-stack) calls " + rel.sym->getName() + 1156 " (without -fsplit-stack), but couldn't adjust its prologue"); 1157 } 1158 } 1159 1160 if (target->needsMoreStackNonSplit) 1161 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1162 } 1163 1164 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1165 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1166 return; 1167 // If -r or --emit-relocs is given, then an InputSection 1168 // may be a relocation section. 1169 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1170 copyRelocations<ELFT, typename ELFT::Rela>(buf); 1171 return; 1172 } 1173 if (LLVM_UNLIKELY(type == SHT_REL)) { 1174 copyRelocations<ELFT, typename ELFT::Rel>(buf); 1175 return; 1176 } 1177 1178 // If -r is given, we may have a SHT_GROUP section. 1179 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1180 copyShtGroup<ELFT>(buf); 1181 return; 1182 } 1183 1184 // If this is a compressed section, uncompress section contents directly 1185 // to the buffer. 1186 if (compressed) { 1187 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); 1188 auto compressed = ArrayRef<uint8_t>(content_, compressedSize) 1189 .slice(sizeof(typename ELFT::Chdr)); 1190 size_t size = this->size; 1191 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 1192 ? compression::zlib::decompress(compressed, buf, size) 1193 : compression::zstd::decompress(compressed, buf, size)) 1194 fatal(toString(this) + 1195 ": decompress failed: " + llvm::toString(std::move(e))); 1196 uint8_t *bufEnd = buf + size; 1197 relocate<ELFT>(buf, bufEnd); 1198 return; 1199 } 1200 1201 // Copy section contents from source object file to output file 1202 // and then apply relocations. 1203 memcpy(buf, content().data(), content().size()); 1204 relocate<ELFT>(buf, buf + content().size()); 1205 } 1206 1207 void InputSection::replace(InputSection *other) { 1208 addralign = std::max(addralign, other->addralign); 1209 1210 // When a section is replaced with another section that was allocated to 1211 // another partition, the replacement section (and its associated sections) 1212 // need to be placed in the main partition so that both partitions will be 1213 // able to access it. 1214 if (partition != other->partition) { 1215 partition = 1; 1216 for (InputSection *isec : dependentSections) 1217 isec->partition = 1; 1218 } 1219 1220 other->repl = repl; 1221 other->markDead(); 1222 } 1223 1224 template <class ELFT> 1225 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1226 const typename ELFT::Shdr &header, 1227 StringRef name) 1228 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1229 1230 SyntheticSection *EhInputSection::getParent() const { 1231 return cast_or_null<SyntheticSection>(parent); 1232 } 1233 1234 // .eh_frame is a sequence of CIE or FDE records. 1235 // This function splits an input section into records and returns them. 1236 template <class ELFT> void EhInputSection::split() { 1237 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1238 // getReloc expects the relocations to be sorted by r_offset. See the comment 1239 // in scanRelocs. 1240 if (rels.areRelocsRel()) { 1241 SmallVector<typename ELFT::Rel, 0> storage; 1242 split<ELFT>(sortRels(rels.rels, storage)); 1243 } else { 1244 SmallVector<typename ELFT::Rela, 0> storage; 1245 split<ELFT>(sortRels(rels.relas, storage)); 1246 } 1247 } 1248 1249 template <class ELFT, class RelTy> 1250 void EhInputSection::split(ArrayRef<RelTy> rels) { 1251 ArrayRef<uint8_t> d = content(); 1252 const char *msg = nullptr; 1253 unsigned relI = 0; 1254 while (!d.empty()) { 1255 if (d.size() < 4) { 1256 msg = "CIE/FDE too small"; 1257 break; 1258 } 1259 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1260 if (size == 0) // ZERO terminator 1261 break; 1262 uint32_t id = endian::read32<ELFT::TargetEndianness>(d.data() + 4); 1263 size += 4; 1264 if (LLVM_UNLIKELY(size > d.size())) { 1265 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1266 // but we do not support that format yet. 1267 msg = size == UINT32_MAX + uint64_t(4) 1268 ? "CIE/FDE too large" 1269 : "CIE/FDE ends past the end of the section"; 1270 break; 1271 } 1272 1273 // Find the first relocation that points to [off,off+size). Relocations 1274 // have been sorted by r_offset. 1275 const uint64_t off = d.data() - content().data(); 1276 while (relI != rels.size() && rels[relI].r_offset < off) 1277 ++relI; 1278 unsigned firstRel = -1; 1279 if (relI != rels.size() && rels[relI].r_offset < off + size) 1280 firstRel = relI; 1281 (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); 1282 d = d.slice(size); 1283 } 1284 if (msg) 1285 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1286 getObjMsg(d.data() - content().data())); 1287 } 1288 1289 // Return the offset in an output section for a given input offset. 1290 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1291 auto it = partition_point( 1292 fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1293 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { 1294 it = partition_point( 1295 cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1296 if (it == cies.begin()) // invalid piece 1297 return offset; 1298 } 1299 if (it[-1].outputOff == -1) // invalid piece 1300 return offset - it[-1].inputOff; 1301 return it[-1].outputOff + (offset - it[-1].inputOff); 1302 } 1303 1304 static size_t findNull(StringRef s, size_t entSize) { 1305 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1306 const char *b = s.begin() + i; 1307 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1308 return i; 1309 } 1310 llvm_unreachable(""); 1311 } 1312 1313 // Split SHF_STRINGS section. Such section is a sequence of 1314 // null-terminated strings. 1315 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1316 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1317 const char *p = s.data(), *end = s.data() + s.size(); 1318 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1319 fatal(toString(this) + ": string is not null terminated"); 1320 if (entSize == 1) { 1321 // Optimize the common case. 1322 do { 1323 size_t size = strlen(p); 1324 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1325 p += size + 1; 1326 } while (p != end); 1327 } else { 1328 do { 1329 size_t size = findNull(StringRef(p, end - p), entSize); 1330 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1331 p += size + entSize; 1332 } while (p != end); 1333 } 1334 } 1335 1336 // Split non-SHF_STRINGS section. Such section is a sequence of 1337 // fixed size records. 1338 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1339 size_t entSize) { 1340 size_t size = data.size(); 1341 assert((size % entSize) == 0); 1342 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1343 1344 pieces.resize_for_overwrite(size / entSize); 1345 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1346 pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; 1347 } 1348 1349 template <class ELFT> 1350 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1351 const typename ELFT::Shdr &header, 1352 StringRef name) 1353 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1354 1355 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1356 uint64_t entsize, ArrayRef<uint8_t> data, 1357 StringRef name) 1358 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1359 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1360 1361 // This function is called after we obtain a complete list of input sections 1362 // that need to be linked. This is responsible to split section contents 1363 // into small chunks for further processing. 1364 // 1365 // Note that this function is called from parallelForEach. This must be 1366 // thread-safe (i.e. no memory allocation from the pools). 1367 void MergeInputSection::splitIntoPieces() { 1368 assert(pieces.empty()); 1369 1370 if (flags & SHF_STRINGS) 1371 splitStrings(toStringRef(contentMaybeDecompress()), entsize); 1372 else 1373 splitNonStrings(contentMaybeDecompress(), entsize); 1374 } 1375 1376 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1377 if (content().size() <= offset) 1378 fatal(toString(this) + ": offset is outside the section"); 1379 return partition_point( 1380 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1381 } 1382 1383 // Return the offset in an output section for a given input offset. 1384 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1385 const SectionPiece &piece = getSectionPiece(offset); 1386 return piece.outputOff + (offset - piece.inputOff); 1387 } 1388 1389 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1390 StringRef); 1391 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1392 StringRef); 1393 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1394 StringRef); 1395 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1396 StringRef); 1397 1398 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1399 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1400 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1401 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1402 1403 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1404 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1405 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1406 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1407 1408 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1409 const ELF32LE::Shdr &, StringRef); 1410 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1411 const ELF32BE::Shdr &, StringRef); 1412 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1413 const ELF64LE::Shdr &, StringRef); 1414 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1415 const ELF64BE::Shdr &, StringRef); 1416 1417 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1418 const ELF32LE::Shdr &, StringRef); 1419 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1420 const ELF32BE::Shdr &, StringRef); 1421 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1422 const ELF64LE::Shdr &, StringRef); 1423 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1424 const ELF64BE::Shdr &, StringRef); 1425 1426 template void EhInputSection::split<ELF32LE>(); 1427 template void EhInputSection::split<ELF32BE>(); 1428 template void EhInputSection::split<ELF64LE>(); 1429 template void EhInputSection::split<ELF64BE>(); 1430