1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 // The ELF spec states that a value of 0 means the section has 74 // no alignment constraints. 75 uint32_t v = std::max<uint32_t>(alignment, 1); 76 if (!isPowerOf2_64(v)) 77 fatal(toString(this) + ": sh_addralign is not a power of 2"); 78 this->alignment = v; 79 80 // In ELF, each section can be compressed by zlib, and if compressed, 81 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 82 // If that's the case, demangle section name so that we can handle a 83 // section as if it weren't compressed. 84 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 85 if (!zlib::isAvailable()) 86 error(toString(file) + ": contains a compressed section, " + 87 "but zlib is not available"); 88 switch (config->ekind) { 89 case ELF32LEKind: 90 parseCompressedHeader<ELF32LE>(); 91 break; 92 case ELF32BEKind: 93 parseCompressedHeader<ELF32BE>(); 94 break; 95 case ELF64LEKind: 96 parseCompressedHeader<ELF64LE>(); 97 break; 98 case ELF64BEKind: 99 parseCompressedHeader<ELF64BE>(); 100 break; 101 default: 102 llvm_unreachable("unknown ELFT"); 103 } 104 } 105 } 106 107 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 108 // SHF_GROUP is a marker that a section belongs to some comdat group. 109 // That flag doesn't make sense in an executable. 110 static uint64_t getFlags(uint64_t flags) { 111 flags &= ~(uint64_t)SHF_INFO_LINK; 112 if (!config->relocatable) 113 flags &= ~(uint64_t)SHF_GROUP; 114 return flags; 115 } 116 117 template <class ELFT> 118 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 119 const typename ELFT::Shdr &hdr, 120 StringRef name, Kind sectionKind) 121 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 122 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 123 hdr.sh_addralign, getSectionContents(file, hdr), name, 124 sectionKind) { 125 // We reject object files having insanely large alignments even though 126 // they are allowed by the spec. I think 4GB is a reasonable limitation. 127 // We might want to relax this in the future. 128 if (hdr.sh_addralign > UINT32_MAX) 129 fatal(toString(&file) + ": section sh_addralign is too large"); 130 } 131 132 size_t InputSectionBase::getSize() const { 133 if (auto *s = dyn_cast<SyntheticSection>(this)) 134 return s->getSize(); 135 if (uncompressedSize >= 0) 136 return uncompressedSize; 137 return rawData.size() - bytesDropped; 138 } 139 140 void InputSectionBase::uncompress() const { 141 size_t size = uncompressedSize; 142 char *uncompressedBuf; 143 { 144 static std::mutex mu; 145 std::lock_guard<std::mutex> lock(mu); 146 uncompressedBuf = bAlloc.Allocate<char>(size); 147 } 148 149 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 150 fatal(toString(this) + 151 ": uncompress failed: " + llvm::toString(std::move(e))); 152 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 153 uncompressedSize = -1; 154 } 155 156 uint64_t InputSectionBase::getOffsetInFile() const { 157 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 158 const uint8_t *secStart = data().begin(); 159 return secStart - fileStart; 160 } 161 162 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 163 if (relSecIdx == 0) 164 return {}; 165 RelsOrRelas<ELFT> ret; 166 const ELFFile<ELFT> obj = cast<ELFFileBase>(file)->getObj<ELFT>(); 167 typename ELFT::Shdr shdr = cantFail(obj.sections())[relSecIdx]; 168 if (shdr.sh_type == SHT_REL) { 169 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 170 obj.base() + shdr.sh_offset), 171 shdr.sh_size / sizeof(typename ELFT::Rel)); 172 } else { 173 assert(shdr.sh_type == SHT_RELA); 174 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 175 obj.base() + shdr.sh_offset), 176 shdr.sh_size / sizeof(typename ELFT::Rela)); 177 } 178 return ret; 179 } 180 181 uint64_t SectionBase::getOffset(uint64_t offset) const { 182 switch (kind()) { 183 case Output: { 184 auto *os = cast<OutputSection>(this); 185 // For output sections we treat offset -1 as the end of the section. 186 return offset == uint64_t(-1) ? os->size : offset; 187 } 188 case Regular: 189 case Synthetic: 190 return cast<InputSection>(this)->getOffset(offset); 191 case EHFrame: 192 // The file crtbeginT.o has relocations pointing to the start of an empty 193 // .eh_frame that is known to be the first in the link. It does that to 194 // identify the start of the output .eh_frame. 195 return offset; 196 case Merge: 197 const MergeInputSection *ms = cast<MergeInputSection>(this); 198 if (InputSection *isec = ms->getParent()) 199 return isec->getOffset(ms->getParentOffset(offset)); 200 return ms->getParentOffset(offset); 201 } 202 llvm_unreachable("invalid section kind"); 203 } 204 205 uint64_t SectionBase::getVA(uint64_t offset) const { 206 const OutputSection *out = getOutputSection(); 207 return (out ? out->addr : 0) + getOffset(offset); 208 } 209 210 OutputSection *SectionBase::getOutputSection() { 211 InputSection *sec; 212 if (auto *isec = dyn_cast<InputSection>(this)) 213 sec = isec; 214 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 215 sec = ms->getParent(); 216 else if (auto *eh = dyn_cast<EhInputSection>(this)) 217 sec = eh->getParent(); 218 else 219 return cast<OutputSection>(this); 220 return sec ? sec->getParent() : nullptr; 221 } 222 223 // When a section is compressed, `rawData` consists with a header followed 224 // by zlib-compressed data. This function parses a header to initialize 225 // `uncompressedSize` member and remove the header from `rawData`. 226 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 227 // Old-style header 228 if (name.startswith(".zdebug")) { 229 if (!toStringRef(rawData).startswith("ZLIB")) { 230 error(toString(this) + ": corrupted compressed section header"); 231 return; 232 } 233 rawData = rawData.slice(4); 234 235 if (rawData.size() < 8) { 236 error(toString(this) + ": corrupted compressed section header"); 237 return; 238 } 239 240 uncompressedSize = read64be(rawData.data()); 241 rawData = rawData.slice(8); 242 243 // Restore the original section name. 244 // (e.g. ".zdebug_info" -> ".debug_info") 245 name = saver.save("." + name.substr(2)); 246 return; 247 } 248 249 assert(flags & SHF_COMPRESSED); 250 flags &= ~(uint64_t)SHF_COMPRESSED; 251 252 // New-style header 253 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 254 error(toString(this) + ": corrupted compressed section"); 255 return; 256 } 257 258 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 259 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 260 error(toString(this) + ": unsupported compression type"); 261 return; 262 } 263 264 uncompressedSize = hdr->ch_size; 265 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 266 rawData = rawData.slice(sizeof(*hdr)); 267 } 268 269 InputSection *InputSectionBase::getLinkOrderDep() const { 270 assert(flags & SHF_LINK_ORDER); 271 if (!link) 272 return nullptr; 273 return cast<InputSection>(file->getSections()[link]); 274 } 275 276 // Find a function symbol that encloses a given location. 277 template <class ELFT> 278 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 279 for (Symbol *b : file->getSymbols()) 280 if (Defined *d = dyn_cast<Defined>(b)) 281 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 282 offset < d->value + d->size) 283 return d; 284 return nullptr; 285 } 286 287 // Returns an object file location string. Used to construct an error message. 288 template <class ELFT> 289 std::string InputSectionBase::getLocation(uint64_t offset) { 290 std::string secAndOffset = 291 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 292 293 // We don't have file for synthetic sections. 294 if (getFile<ELFT>() == nullptr) 295 return (config->outputFile + ":(" + secAndOffset).str(); 296 297 std::string file = toString(getFile<ELFT>()); 298 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 299 return file + ":(function " + toString(*d) + ": " + secAndOffset; 300 301 return file + ":(" + secAndOffset; 302 } 303 304 // This function is intended to be used for constructing an error message. 305 // The returned message looks like this: 306 // 307 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 308 // 309 // Returns an empty string if there's no way to get line info. 310 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 311 return file->getSrcMsg(sym, *this, offset); 312 } 313 314 // Returns a filename string along with an optional section name. This 315 // function is intended to be used for constructing an error 316 // message. The returned message looks like this: 317 // 318 // path/to/foo.o:(function bar) 319 // 320 // or 321 // 322 // path/to/foo.o:(function bar) in archive path/to/bar.a 323 std::string InputSectionBase::getObjMsg(uint64_t off) { 324 std::string filename = std::string(file->getName()); 325 326 std::string archive; 327 if (!file->archiveName.empty()) 328 archive = " in archive " + file->archiveName; 329 330 // Find a symbol that encloses a given location. 331 for (Symbol *b : file->getSymbols()) 332 if (auto *d = dyn_cast<Defined>(b)) 333 if (d->section == this && d->value <= off && off < d->value + d->size) 334 return filename + ":(" + toString(*d) + ")" + archive; 335 336 // If there's no symbol, print out the offset in the section. 337 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 338 .str(); 339 } 340 341 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 342 343 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 344 uint32_t alignment, ArrayRef<uint8_t> data, 345 StringRef name, Kind k) 346 : InputSectionBase(f, flags, type, 347 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 348 name, k) {} 349 350 template <class ELFT> 351 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 352 StringRef name) 353 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 354 355 bool InputSection::classof(const SectionBase *s) { 356 return s->kind() == SectionBase::Regular || 357 s->kind() == SectionBase::Synthetic; 358 } 359 360 OutputSection *InputSection::getParent() const { 361 return cast_or_null<OutputSection>(parent); 362 } 363 364 // Copy SHT_GROUP section contents. Used only for the -r option. 365 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 366 // ELFT::Word is the 32-bit integral type in the target endianness. 367 using u32 = typename ELFT::Word; 368 ArrayRef<u32> from = getDataAs<u32>(); 369 auto *to = reinterpret_cast<u32 *>(buf); 370 371 // The first entry is not a section number but a flag. 372 *to++ = from[0]; 373 374 // Adjust section numbers because section numbers in an input object files are 375 // different in the output. We also need to handle combined or discarded 376 // members. 377 ArrayRef<InputSectionBase *> sections = file->getSections(); 378 std::unordered_set<uint32_t> seen; 379 for (uint32_t idx : from.slice(1)) { 380 OutputSection *osec = sections[idx]->getOutputSection(); 381 if (osec && seen.insert(osec->sectionIndex).second) 382 *to++ = osec->sectionIndex; 383 } 384 } 385 386 InputSectionBase *InputSection::getRelocatedSection() const { 387 if (!file || (type != SHT_RELA && type != SHT_REL)) 388 return nullptr; 389 ArrayRef<InputSectionBase *> sections = file->getSections(); 390 return sections[info]; 391 } 392 393 // This is used for -r and --emit-relocs. We can't use memcpy to copy 394 // relocations because we need to update symbol table offset and section index 395 // for each relocation. So we copy relocations one by one. 396 template <class ELFT, class RelTy> 397 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 398 InputSectionBase *sec = getRelocatedSection(); 399 400 for (const RelTy &rel : rels) { 401 RelType type = rel.getType(config->isMips64EL); 402 const ObjFile<ELFT> *file = getFile<ELFT>(); 403 Symbol &sym = file->getRelocTargetSym(rel); 404 405 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 406 buf += sizeof(RelTy); 407 408 if (RelTy::IsRela) 409 p->r_addend = getAddend<ELFT>(rel); 410 411 // Output section VA is zero for -r, so r_offset is an offset within the 412 // section, but for --emit-relocs it is a virtual address. 413 p->r_offset = sec->getVA(rel.r_offset); 414 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 415 config->isMips64EL); 416 417 if (sym.type == STT_SECTION) { 418 // We combine multiple section symbols into only one per 419 // section. This means we have to update the addend. That is 420 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 421 // section data. We do that by adding to the Relocation vector. 422 423 // .eh_frame is horribly special and can reference discarded sections. To 424 // avoid having to parse and recreate .eh_frame, we just replace any 425 // relocation in it pointing to discarded sections with R_*_NONE, which 426 // hopefully creates a frame that is ignored at runtime. Also, don't warn 427 // on .gcc_except_table and debug sections. 428 // 429 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 430 auto *d = dyn_cast<Defined>(&sym); 431 if (!d) { 432 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 433 sec->name != ".gcc_except_table" && sec->name != ".got2" && 434 sec->name != ".toc") { 435 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 436 Elf_Shdr_Impl<ELFT> sec = 437 CHECK(file->getObj().sections(), file)[secIdx]; 438 warn("relocation refers to a discarded section: " + 439 CHECK(file->getObj().getSectionName(sec), file) + 440 "\n>>> referenced by " + getObjMsg(p->r_offset)); 441 } 442 p->setSymbolAndType(0, 0, false); 443 continue; 444 } 445 SectionBase *section = d->section->repl; 446 if (!section->isLive()) { 447 p->setSymbolAndType(0, 0, false); 448 continue; 449 } 450 451 int64_t addend = getAddend<ELFT>(rel); 452 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 453 if (!RelTy::IsRela) 454 addend = target->getImplicitAddend(bufLoc, type); 455 456 if (config->emachine == EM_MIPS && 457 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 458 // Some MIPS relocations depend on "gp" value. By default, 459 // this value has 0x7ff0 offset from a .got section. But 460 // relocatable files produced by a compiler or a linker 461 // might redefine this default value and we must use it 462 // for a calculation of the relocation result. When we 463 // generate EXE or DSO it's trivial. Generating a relocatable 464 // output is more difficult case because the linker does 465 // not calculate relocations in this mode and loses 466 // individual "gp" values used by each input object file. 467 // As a workaround we add the "gp" value to the relocation 468 // addend and save it back to the file. 469 addend += sec->getFile<ELFT>()->mipsGp0; 470 } 471 472 if (RelTy::IsRela) 473 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 474 else if (config->relocatable && type != target->noneRel) 475 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 476 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 477 p->r_addend >= 0x8000) { 478 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 479 // indicates that r30 is relative to the input section .got2 480 // (r_addend>=0x8000), after linking, r30 should be relative to the output 481 // section .got2 . To compensate for the shift, adjust r_addend by 482 // ppc32Got2OutSecOff. 483 p->r_addend += sec->file->ppc32Got2OutSecOff; 484 } 485 } 486 } 487 488 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 489 // references specially. The general rule is that the value of the symbol in 490 // this context is the address of the place P. A further special case is that 491 // branch relocations to an undefined weak reference resolve to the next 492 // instruction. 493 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 494 uint32_t p) { 495 switch (type) { 496 // Unresolved branch relocations to weak references resolve to next 497 // instruction, this will be either 2 or 4 bytes on from P. 498 case R_ARM_THM_JUMP8: 499 case R_ARM_THM_JUMP11: 500 return p + 2 + a; 501 case R_ARM_CALL: 502 case R_ARM_JUMP24: 503 case R_ARM_PC24: 504 case R_ARM_PLT32: 505 case R_ARM_PREL31: 506 case R_ARM_THM_JUMP19: 507 case R_ARM_THM_JUMP24: 508 return p + 4 + a; 509 case R_ARM_THM_CALL: 510 // We don't want an interworking BLX to ARM 511 return p + 5 + a; 512 // Unresolved non branch pc-relative relocations 513 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 514 // targets a weak-reference. 515 case R_ARM_MOVW_PREL_NC: 516 case R_ARM_MOVT_PREL: 517 case R_ARM_REL32: 518 case R_ARM_THM_ALU_PREL_11_0: 519 case R_ARM_THM_MOVW_PREL_NC: 520 case R_ARM_THM_MOVT_PREL: 521 case R_ARM_THM_PC12: 522 return p + a; 523 // p + a is unrepresentable as negative immediates can't be encoded. 524 case R_ARM_THM_PC8: 525 return p; 526 } 527 llvm_unreachable("ARM pc-relative relocation expected\n"); 528 } 529 530 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 531 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 532 switch (type) { 533 // Unresolved branch relocations to weak references resolve to next 534 // instruction, this is 4 bytes on from P. 535 case R_AARCH64_CALL26: 536 case R_AARCH64_CONDBR19: 537 case R_AARCH64_JUMP26: 538 case R_AARCH64_TSTBR14: 539 return p + 4; 540 // Unresolved non branch pc-relative relocations 541 case R_AARCH64_PREL16: 542 case R_AARCH64_PREL32: 543 case R_AARCH64_PREL64: 544 case R_AARCH64_ADR_PREL_LO21: 545 case R_AARCH64_LD_PREL_LO19: 546 case R_AARCH64_PLT32: 547 return p; 548 } 549 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 550 } 551 552 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 553 switch (type) { 554 case R_RISCV_BRANCH: 555 case R_RISCV_JAL: 556 case R_RISCV_CALL: 557 case R_RISCV_CALL_PLT: 558 case R_RISCV_RVC_BRANCH: 559 case R_RISCV_RVC_JUMP: 560 return p; 561 default: 562 return 0; 563 } 564 } 565 566 // ARM SBREL relocations are of the form S + A - B where B is the static base 567 // The ARM ABI defines base to be "addressing origin of the output segment 568 // defining the symbol S". We defined the "addressing origin"/static base to be 569 // the base of the PT_LOAD segment containing the Sym. 570 // The procedure call standard only defines a Read Write Position Independent 571 // RWPI variant so in practice we should expect the static base to be the base 572 // of the RW segment. 573 static uint64_t getARMStaticBase(const Symbol &sym) { 574 OutputSection *os = sym.getOutputSection(); 575 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 576 fatal("SBREL relocation to " + sym.getName() + " without static base"); 577 return os->ptLoad->firstSec->addr; 578 } 579 580 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 581 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 582 // is calculated using PCREL_HI20's symbol. 583 // 584 // This function returns the R_RISCV_PCREL_HI20 relocation from 585 // R_RISCV_PCREL_LO12's symbol and addend. 586 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 587 const Defined *d = cast<Defined>(sym); 588 if (!d->section) { 589 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 590 sym->getName()); 591 return nullptr; 592 } 593 InputSection *isec = cast<InputSection>(d->section); 594 595 if (addend != 0) 596 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 597 isec->getObjMsg(d->value) + " is ignored"); 598 599 // Relocations are sorted by offset, so we can use std::equal_range to do 600 // binary search. 601 Relocation r; 602 r.offset = d->value; 603 auto range = 604 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 605 [](const Relocation &lhs, const Relocation &rhs) { 606 return lhs.offset < rhs.offset; 607 }); 608 609 for (auto it = range.first; it != range.second; ++it) 610 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 611 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 612 return &*it; 613 614 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 615 " without an associated R_RISCV_PCREL_HI20 relocation"); 616 return nullptr; 617 } 618 619 // A TLS symbol's virtual address is relative to the TLS segment. Add a 620 // target-specific adjustment to produce a thread-pointer-relative offset. 621 static int64_t getTlsTpOffset(const Symbol &s) { 622 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 623 if (&s == ElfSym::tlsModuleBase) 624 return 0; 625 626 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 627 // while most others use Variant 1. At run time TP will be aligned to p_align. 628 629 // Variant 1. TP will be followed by an optional gap (which is the size of 2 630 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 631 // padding, then the static TLS blocks. The alignment padding is added so that 632 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 633 // 634 // Variant 2. Static TLS blocks, followed by alignment padding are placed 635 // before TP. The alignment padding is added so that (TP - padding - 636 // p_memsz) is congruent to p_vaddr modulo p_align. 637 PhdrEntry *tls = Out::tlsPhdr; 638 switch (config->emachine) { 639 // Variant 1. 640 case EM_ARM: 641 case EM_AARCH64: 642 return s.getVA(0) + config->wordsize * 2 + 643 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 644 case EM_MIPS: 645 case EM_PPC: 646 case EM_PPC64: 647 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 648 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 649 // data and 0xf000 of the program's TLS segment. 650 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 651 case EM_RISCV: 652 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 653 654 // Variant 2. 655 case EM_HEXAGON: 656 case EM_SPARCV9: 657 case EM_386: 658 case EM_X86_64: 659 return s.getVA(0) - tls->p_memsz - 660 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 661 default: 662 llvm_unreachable("unhandled Config->EMachine"); 663 } 664 } 665 666 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 667 int64_t a, uint64_t p, 668 const Symbol &sym, RelExpr expr) { 669 switch (expr) { 670 case R_ABS: 671 case R_DTPREL: 672 case R_RELAX_TLS_LD_TO_LE_ABS: 673 case R_RELAX_GOT_PC_NOPIC: 674 case R_RISCV_ADD: 675 return sym.getVA(a); 676 case R_ADDEND: 677 return a; 678 case R_ARM_SBREL: 679 return sym.getVA(a) - getARMStaticBase(sym); 680 case R_GOT: 681 case R_RELAX_TLS_GD_TO_IE_ABS: 682 return sym.getGotVA() + a; 683 case R_GOTONLY_PC: 684 return in.got->getVA() + a - p; 685 case R_GOTPLTONLY_PC: 686 return in.gotPlt->getVA() + a - p; 687 case R_GOTREL: 688 case R_PPC64_RELAX_TOC: 689 return sym.getVA(a) - in.got->getVA(); 690 case R_GOTPLTREL: 691 return sym.getVA(a) - in.gotPlt->getVA(); 692 case R_GOTPLT: 693 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 694 return sym.getGotVA() + a - in.gotPlt->getVA(); 695 case R_TLSLD_GOT_OFF: 696 case R_GOT_OFF: 697 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 698 return sym.getGotOffset() + a; 699 case R_AARCH64_GOT_PAGE_PC: 700 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 701 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 702 case R_AARCH64_GOT_PAGE: 703 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 704 case R_GOT_PC: 705 case R_RELAX_TLS_GD_TO_IE: 706 return sym.getGotVA() + a - p; 707 case R_MIPS_GOTREL: 708 return sym.getVA(a) - in.mipsGot->getGp(file); 709 case R_MIPS_GOT_GP: 710 return in.mipsGot->getGp(file) + a; 711 case R_MIPS_GOT_GP_PC: { 712 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 713 // is _gp_disp symbol. In that case we should use the following 714 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 715 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 716 // microMIPS variants of these relocations use slightly different 717 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 718 // to correctly handle less-significant bit of the microMIPS symbol. 719 uint64_t v = in.mipsGot->getGp(file) + a - p; 720 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 721 v += 4; 722 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 723 v -= 1; 724 return v; 725 } 726 case R_MIPS_GOT_LOCAL_PAGE: 727 // If relocation against MIPS local symbol requires GOT entry, this entry 728 // should be initialized by 'page address'. This address is high 16-bits 729 // of sum the symbol's value and the addend. 730 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 731 in.mipsGot->getGp(file); 732 case R_MIPS_GOT_OFF: 733 case R_MIPS_GOT_OFF32: 734 // In case of MIPS if a GOT relocation has non-zero addend this addend 735 // should be applied to the GOT entry content not to the GOT entry offset. 736 // That is why we use separate expression type. 737 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 738 in.mipsGot->getGp(file); 739 case R_MIPS_TLSGD: 740 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 741 in.mipsGot->getGp(file); 742 case R_MIPS_TLSLD: 743 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 744 in.mipsGot->getGp(file); 745 case R_AARCH64_PAGE_PC: { 746 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 747 return getAArch64Page(val) - getAArch64Page(p); 748 } 749 case R_RISCV_PC_INDIRECT: { 750 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 751 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 752 *hiRel->sym, hiRel->expr); 753 return 0; 754 } 755 case R_PC: 756 case R_ARM_PCA: { 757 uint64_t dest; 758 if (expr == R_ARM_PCA) 759 // Some PC relative ARM (Thumb) relocations align down the place. 760 p = p & 0xfffffffc; 761 if (sym.isUndefWeak()) { 762 // On ARM and AArch64 a branch to an undefined weak resolves to the next 763 // instruction, otherwise the place. On RISCV, resolve an undefined weak 764 // to the same instruction to cause an infinite loop (making the user 765 // aware of the issue) while ensuring no overflow. 766 if (config->emachine == EM_ARM) 767 dest = getARMUndefinedRelativeWeakVA(type, a, p); 768 else if (config->emachine == EM_AARCH64) 769 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 770 else if (config->emachine == EM_PPC) 771 dest = p; 772 else if (config->emachine == EM_RISCV) 773 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 774 else 775 dest = sym.getVA(a); 776 } else { 777 dest = sym.getVA(a); 778 } 779 return dest - p; 780 } 781 case R_PLT: 782 return sym.getPltVA() + a; 783 case R_PLT_PC: 784 case R_PPC64_CALL_PLT: 785 return sym.getPltVA() + a - p; 786 case R_PLT_GOTPLT: 787 return sym.getPltVA() + a - in.gotPlt->getVA(); 788 case R_PPC32_PLTREL: 789 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 790 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 791 // target VA computation. 792 return sym.getPltVA() - p; 793 case R_PPC64_CALL: { 794 uint64_t symVA = sym.getVA(a); 795 // If we have an undefined weak symbol, we might get here with a symbol 796 // address of zero. That could overflow, but the code must be unreachable, 797 // so don't bother doing anything at all. 798 if (!symVA) 799 return 0; 800 801 // PPC64 V2 ABI describes two entry points to a function. The global entry 802 // point is used for calls where the caller and callee (may) have different 803 // TOC base pointers and r2 needs to be modified to hold the TOC base for 804 // the callee. For local calls the caller and callee share the same 805 // TOC base and so the TOC pointer initialization code should be skipped by 806 // branching to the local entry point. 807 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 808 } 809 case R_PPC64_TOCBASE: 810 return getPPC64TocBase() + a; 811 case R_RELAX_GOT_PC: 812 case R_PPC64_RELAX_GOT_PC: 813 return sym.getVA(a) - p; 814 case R_RELAX_TLS_GD_TO_LE: 815 case R_RELAX_TLS_IE_TO_LE: 816 case R_RELAX_TLS_LD_TO_LE: 817 case R_TPREL: 818 // It is not very clear what to return if the symbol is undefined. With 819 // --noinhibit-exec, even a non-weak undefined reference may reach here. 820 // Just return A, which matches R_ABS, and the behavior of some dynamic 821 // loaders. 822 if (sym.isUndefined()) 823 return a; 824 return getTlsTpOffset(sym) + a; 825 case R_RELAX_TLS_GD_TO_LE_NEG: 826 case R_TPREL_NEG: 827 if (sym.isUndefined()) 828 return a; 829 return -getTlsTpOffset(sym) + a; 830 case R_SIZE: 831 return sym.getSize() + a; 832 case R_TLSDESC: 833 return in.got->getGlobalDynAddr(sym) + a; 834 case R_TLSDESC_PC: 835 return in.got->getGlobalDynAddr(sym) + a - p; 836 case R_TLSDESC_GOTPLT: 837 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 838 case R_AARCH64_TLSDESC_PAGE: 839 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 840 getAArch64Page(p); 841 case R_TLSGD_GOT: 842 return in.got->getGlobalDynOffset(sym) + a; 843 case R_TLSGD_GOTPLT: 844 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 845 case R_TLSGD_PC: 846 return in.got->getGlobalDynAddr(sym) + a - p; 847 case R_TLSLD_GOTPLT: 848 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 849 case R_TLSLD_GOT: 850 return in.got->getTlsIndexOff() + a; 851 case R_TLSLD_PC: 852 return in.got->getTlsIndexVA() + a - p; 853 default: 854 llvm_unreachable("invalid expression"); 855 } 856 } 857 858 // This function applies relocations to sections without SHF_ALLOC bit. 859 // Such sections are never mapped to memory at runtime. Debug sections are 860 // an example. Relocations in non-alloc sections are much easier to 861 // handle than in allocated sections because it will never need complex 862 // treatment such as GOT or PLT (because at runtime no one refers them). 863 // So, we handle relocations for non-alloc sections directly in this 864 // function as a performance optimization. 865 template <class ELFT, class RelTy> 866 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 867 const unsigned bits = sizeof(typename ELFT::uint) * 8; 868 const bool isDebug = isDebugSection(*this); 869 const bool isDebugLocOrRanges = 870 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 871 const bool isDebugLine = isDebug && name == ".debug_line"; 872 Optional<uint64_t> tombstone; 873 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 874 if (patAndValue.first.match(this->name)) { 875 tombstone = patAndValue.second; 876 break; 877 } 878 879 for (const RelTy &rel : rels) { 880 RelType type = rel.getType(config->isMips64EL); 881 882 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 883 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 884 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 885 // need to keep this bug-compatible code for a while. 886 if (config->emachine == EM_386 && type == R_386_GOTPC) 887 continue; 888 889 uint64_t offset = rel.r_offset; 890 uint8_t *bufLoc = buf + offset; 891 int64_t addend = getAddend<ELFT>(rel); 892 if (!RelTy::IsRela) 893 addend += target->getImplicitAddend(bufLoc, type); 894 895 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 896 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 897 if (expr == R_NONE) 898 continue; 899 900 if (expr == R_SIZE) { 901 target->relocateNoSym(bufLoc, type, 902 SignExtend64<bits>(sym.getSize() + addend)); 903 continue; 904 } 905 906 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 907 // sections. 908 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && 909 expr != R_RISCV_ADD) { 910 std::string msg = getLocation<ELFT>(offset) + 911 ": has non-ABS relocation " + toString(type) + 912 " against symbol '" + toString(sym) + "'"; 913 if (expr != R_PC && expr != R_ARM_PCA) { 914 error(msg); 915 return; 916 } 917 918 // If the control reaches here, we found a PC-relative relocation in a 919 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 920 // at runtime, the notion of PC-relative doesn't make sense here. So, 921 // this is a usage error. However, GNU linkers historically accept such 922 // relocations without any errors and relocate them as if they were at 923 // address 0. For bug-compatibilty, we accept them with warnings. We 924 // know Steel Bank Common Lisp as of 2018 have this bug. 925 warn(msg); 926 target->relocateNoSym( 927 bufLoc, type, 928 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 929 continue; 930 } 931 932 if (tombstone || 933 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 934 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 935 // folded section symbols) to a tombstone value. Resolving to addend is 936 // unsatisfactory because the result address range may collide with a 937 // valid range of low address, or leave multiple CUs claiming ownership of 938 // the same range of code, which may confuse consumers. 939 // 940 // To address the problems, we use -1 as a tombstone value for most 941 // .debug_* sections. We have to ignore the addend because we don't want 942 // to resolve an address attribute (which may have a non-zero addend) to 943 // -1+addend (wrap around to a low address). 944 // 945 // R_DTPREL type relocations represent an offset into the dynamic thread 946 // vector. The computed value is st_value plus a non-negative offset. 947 // Negative values are invalid, so -1 can be used as the tombstone value. 948 // 949 // If the referenced symbol is discarded (made Undefined), or the 950 // section defining the referenced symbol is garbage collected, 951 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 952 // catches the ICF folded case. However, resolving a relocation in 953 // .debug_line to -1 would stop debugger users from setting breakpoints on 954 // the folded-in function, so exclude .debug_line. 955 // 956 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 957 // (base address selection entry), use 1 (which is used by GNU ld for 958 // .debug_ranges). 959 // 960 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 961 // value. Enable -1 in a future release. 962 auto *ds = dyn_cast<Defined>(&sym); 963 if (!sym.getOutputSection() || 964 (ds && ds->section->repl != ds->section && !isDebugLine)) { 965 // If -z dead-reloc-in-nonalloc= is specified, respect it. 966 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 967 : (isDebugLocOrRanges ? 1 : 0); 968 target->relocateNoSym(bufLoc, type, value); 969 continue; 970 } 971 } 972 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 973 } 974 } 975 976 // This is used when '-r' is given. 977 // For REL targets, InputSection::copyRelocations() may store artificial 978 // relocations aimed to update addends. They are handled in relocateAlloc() 979 // for allocatable sections, and this function does the same for 980 // non-allocatable sections, such as sections with debug information. 981 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 982 const unsigned bits = config->is64 ? 64 : 32; 983 984 for (const Relocation &rel : sec->relocations) { 985 // InputSection::copyRelocations() adds only R_ABS relocations. 986 assert(rel.expr == R_ABS); 987 uint8_t *bufLoc = buf + rel.offset; 988 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 989 target->relocate(bufLoc, rel, targetVA); 990 } 991 } 992 993 template <class ELFT> 994 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 995 if (flags & SHF_EXECINSTR) 996 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 997 998 if (flags & SHF_ALLOC) { 999 relocateAlloc(buf, bufEnd); 1000 return; 1001 } 1002 1003 auto *sec = cast<InputSection>(this); 1004 if (config->relocatable) { 1005 relocateNonAllocForRelocatable(sec, buf); 1006 } else { 1007 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1008 if (rels.areRelocsRel()) 1009 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1010 else 1011 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1012 } 1013 } 1014 1015 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1016 assert(flags & SHF_ALLOC); 1017 const unsigned bits = config->wordsize * 8; 1018 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1019 1020 for (const Relocation &rel : relocations) { 1021 if (rel.expr == R_NONE) 1022 continue; 1023 uint64_t offset = rel.offset; 1024 uint8_t *bufLoc = buf + offset; 1025 RelType type = rel.type; 1026 1027 uint64_t addrLoc = getOutputSection()->addr + offset; 1028 if (auto *sec = dyn_cast<InputSection>(this)) 1029 addrLoc += sec->outSecOff; 1030 RelExpr expr = rel.expr; 1031 uint64_t targetVA = SignExtend64( 1032 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1033 bits); 1034 1035 switch (expr) { 1036 case R_RELAX_GOT_PC: 1037 case R_RELAX_GOT_PC_NOPIC: 1038 target->relaxGot(bufLoc, rel, targetVA); 1039 break; 1040 case R_PPC64_RELAX_GOT_PC: { 1041 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1042 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1043 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1044 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1045 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1046 // and only relax the other if the saved offset matches. 1047 if (type == R_PPC64_GOT_PCREL34) 1048 lastPPCRelaxedRelocOff = offset; 1049 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1050 break; 1051 target->relaxGot(bufLoc, rel, targetVA); 1052 break; 1053 } 1054 case R_PPC64_RELAX_TOC: 1055 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1056 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1057 // entry, there may be R_PPC64_TOC16_HA not paired with 1058 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1059 // opportunities but is safe. 1060 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1061 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1062 target->relocate(bufLoc, rel, targetVA); 1063 break; 1064 case R_RELAX_TLS_IE_TO_LE: 1065 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1066 break; 1067 case R_RELAX_TLS_LD_TO_LE: 1068 case R_RELAX_TLS_LD_TO_LE_ABS: 1069 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1070 break; 1071 case R_RELAX_TLS_GD_TO_LE: 1072 case R_RELAX_TLS_GD_TO_LE_NEG: 1073 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1074 break; 1075 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1076 case R_RELAX_TLS_GD_TO_IE: 1077 case R_RELAX_TLS_GD_TO_IE_ABS: 1078 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1079 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1080 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1081 break; 1082 case R_PPC64_CALL: 1083 // If this is a call to __tls_get_addr, it may be part of a TLS 1084 // sequence that has been relaxed and turned into a nop. In this 1085 // case, we don't want to handle it as a call. 1086 if (read32(bufLoc) == 0x60000000) // nop 1087 break; 1088 1089 // Patch a nop (0x60000000) to a ld. 1090 if (rel.sym->needsTocRestore) { 1091 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1092 // recursive calls even if the function is preemptible. This is not 1093 // wrong in the common case where the function is not preempted at 1094 // runtime. Just ignore. 1095 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1096 rel.sym->file != file) { 1097 // Use substr(6) to remove the "__plt_" prefix. 1098 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1099 lld::toString(*rel.sym).substr(6) + 1100 " lacks nop, can't restore toc"); 1101 break; 1102 } 1103 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1104 } 1105 target->relocate(bufLoc, rel, targetVA); 1106 break; 1107 default: 1108 target->relocate(bufLoc, rel, targetVA); 1109 break; 1110 } 1111 } 1112 1113 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1114 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1115 // insn. This is primarily used to relax and optimize jumps created with 1116 // basic block sections. 1117 if (isa<InputSection>(this)) { 1118 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1119 uint64_t offset = jumpMod.offset; 1120 uint8_t *bufLoc = buf + offset; 1121 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1122 } 1123 } 1124 } 1125 1126 // For each function-defining prologue, find any calls to __morestack, 1127 // and replace them with calls to __morestack_non_split. 1128 static void switchMorestackCallsToMorestackNonSplit( 1129 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1130 1131 // If the target adjusted a function's prologue, all calls to 1132 // __morestack inside that function should be switched to 1133 // __morestack_non_split. 1134 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1135 if (!moreStackNonSplit) { 1136 error("Mixing split-stack objects requires a definition of " 1137 "__morestack_non_split"); 1138 return; 1139 } 1140 1141 // Sort both collections to compare addresses efficiently. 1142 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1143 return l->offset < r->offset; 1144 }); 1145 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1146 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1147 return l->value < r->value; 1148 }); 1149 1150 auto it = morestackCalls.begin(); 1151 for (Defined *f : functions) { 1152 // Find the first call to __morestack within the function. 1153 while (it != morestackCalls.end() && (*it)->offset < f->value) 1154 ++it; 1155 // Adjust all calls inside the function. 1156 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1157 (*it)->sym = moreStackNonSplit; 1158 ++it; 1159 } 1160 } 1161 } 1162 1163 static bool enclosingPrologueAttempted(uint64_t offset, 1164 const DenseSet<Defined *> &prologues) { 1165 for (Defined *f : prologues) 1166 if (f->value <= offset && offset < f->value + f->size) 1167 return true; 1168 return false; 1169 } 1170 1171 // If a function compiled for split stack calls a function not 1172 // compiled for split stack, then the caller needs its prologue 1173 // adjusted to ensure that the called function will have enough stack 1174 // available. Find those functions, and adjust their prologues. 1175 template <class ELFT> 1176 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1177 uint8_t *end) { 1178 if (!getFile<ELFT>()->splitStack) 1179 return; 1180 DenseSet<Defined *> prologues; 1181 std::vector<Relocation *> morestackCalls; 1182 1183 for (Relocation &rel : relocations) { 1184 // Local symbols can't possibly be cross-calls, and should have been 1185 // resolved long before this line. 1186 if (rel.sym->isLocal()) 1187 continue; 1188 1189 // Ignore calls into the split-stack api. 1190 if (rel.sym->getName().startswith("__morestack")) { 1191 if (rel.sym->getName().equals("__morestack")) 1192 morestackCalls.push_back(&rel); 1193 continue; 1194 } 1195 1196 // A relocation to non-function isn't relevant. Sometimes 1197 // __morestack is not marked as a function, so this check comes 1198 // after the name check. 1199 if (rel.sym->type != STT_FUNC) 1200 continue; 1201 1202 // If the callee's-file was compiled with split stack, nothing to do. In 1203 // this context, a "Defined" symbol is one "defined by the binary currently 1204 // being produced". So an "undefined" symbol might be provided by a shared 1205 // library. It is not possible to tell how such symbols were compiled, so be 1206 // conservative. 1207 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1208 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1209 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1210 continue; 1211 1212 if (enclosingPrologueAttempted(rel.offset, prologues)) 1213 continue; 1214 1215 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1216 prologues.insert(f); 1217 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1218 f->stOther)) 1219 continue; 1220 if (!getFile<ELFT>()->someNoSplitStack) 1221 error(lld::toString(this) + ": " + f->getName() + 1222 " (with -fsplit-stack) calls " + rel.sym->getName() + 1223 " (without -fsplit-stack), but couldn't adjust its prologue"); 1224 } 1225 } 1226 1227 if (target->needsMoreStackNonSplit) 1228 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1229 } 1230 1231 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1232 if (type == SHT_NOBITS) 1233 return; 1234 1235 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1236 s->writeTo(buf + outSecOff); 1237 return; 1238 } 1239 1240 // If -r or --emit-relocs is given, then an InputSection 1241 // may be a relocation section. 1242 if (type == SHT_RELA) { 1243 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1244 return; 1245 } 1246 if (type == SHT_REL) { 1247 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1248 return; 1249 } 1250 1251 // If -r is given, we may have a SHT_GROUP section. 1252 if (type == SHT_GROUP) { 1253 copyShtGroup<ELFT>(buf + outSecOff); 1254 return; 1255 } 1256 1257 // If this is a compressed section, uncompress section contents directly 1258 // to the buffer. 1259 if (uncompressedSize >= 0) { 1260 size_t size = uncompressedSize; 1261 if (Error e = zlib::uncompress(toStringRef(rawData), 1262 (char *)(buf + outSecOff), size)) 1263 fatal(toString(this) + 1264 ": uncompress failed: " + llvm::toString(std::move(e))); 1265 uint8_t *bufEnd = buf + outSecOff + size; 1266 relocate<ELFT>(buf + outSecOff, bufEnd); 1267 return; 1268 } 1269 1270 // Copy section contents from source object file to output file 1271 // and then apply relocations. 1272 memcpy(buf + outSecOff, data().data(), data().size()); 1273 uint8_t *bufEnd = buf + outSecOff + data().size(); 1274 relocate<ELFT>(buf + outSecOff, bufEnd); 1275 } 1276 1277 void InputSection::replace(InputSection *other) { 1278 alignment = std::max(alignment, other->alignment); 1279 1280 // When a section is replaced with another section that was allocated to 1281 // another partition, the replacement section (and its associated sections) 1282 // need to be placed in the main partition so that both partitions will be 1283 // able to access it. 1284 if (partition != other->partition) { 1285 partition = 1; 1286 for (InputSection *isec : dependentSections) 1287 isec->partition = 1; 1288 } 1289 1290 other->repl = repl; 1291 other->markDead(); 1292 } 1293 1294 template <class ELFT> 1295 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1296 const typename ELFT::Shdr &header, 1297 StringRef name) 1298 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1299 1300 SyntheticSection *EhInputSection::getParent() const { 1301 return cast_or_null<SyntheticSection>(parent); 1302 } 1303 1304 // Returns the index of the first relocation that points to a region between 1305 // Begin and Begin+Size. 1306 template <class IntTy, class RelTy> 1307 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1308 unsigned &relocI) { 1309 // Start search from RelocI for fast access. That works because the 1310 // relocations are sorted in .eh_frame. 1311 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1312 const RelTy &rel = rels[relocI]; 1313 if (rel.r_offset < begin) 1314 continue; 1315 1316 if (rel.r_offset < begin + size) 1317 return relocI; 1318 return -1; 1319 } 1320 return -1; 1321 } 1322 1323 // .eh_frame is a sequence of CIE or FDE records. 1324 // This function splits an input section into records and returns them. 1325 template <class ELFT> void EhInputSection::split() { 1326 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1327 if (rels.areRelocsRel()) 1328 split<ELFT>(rels.rels); 1329 else 1330 split<ELFT>(rels.relas); 1331 } 1332 1333 template <class ELFT, class RelTy> 1334 void EhInputSection::split(ArrayRef<RelTy> rels) { 1335 // getReloc expects the relocations to be sorted by r_offset. See the comment 1336 // in scanRelocs. 1337 SmallVector<RelTy, 0> storage; 1338 rels = sortRels(rels, storage); 1339 1340 unsigned relI = 0; 1341 for (size_t off = 0, end = data().size(); off != end;) { 1342 size_t size = readEhRecordSize(this, off); 1343 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1344 // The empty record is the end marker. 1345 if (size == 4) 1346 break; 1347 off += size; 1348 } 1349 } 1350 1351 static size_t findNull(StringRef s, size_t entSize) { 1352 // Optimize the common case. 1353 if (entSize == 1) 1354 return s.find(0); 1355 1356 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1357 const char *b = s.begin() + i; 1358 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1359 return i; 1360 } 1361 return StringRef::npos; 1362 } 1363 1364 SyntheticSection *MergeInputSection::getParent() const { 1365 return cast_or_null<SyntheticSection>(parent); 1366 } 1367 1368 // Split SHF_STRINGS section. Such section is a sequence of 1369 // null-terminated strings. 1370 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1371 size_t off = 0; 1372 bool isAlloc = flags & SHF_ALLOC; 1373 StringRef s = toStringRef(data); 1374 1375 while (!s.empty()) { 1376 size_t end = findNull(s, entSize); 1377 if (end == StringRef::npos) 1378 fatal(toString(this) + ": string is not null terminated"); 1379 size_t size = end + entSize; 1380 1381 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1382 s = s.substr(size); 1383 off += size; 1384 } 1385 } 1386 1387 // Split non-SHF_STRINGS section. Such section is a sequence of 1388 // fixed size records. 1389 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1390 size_t entSize) { 1391 size_t size = data.size(); 1392 assert((size % entSize) == 0); 1393 bool isAlloc = flags & SHF_ALLOC; 1394 1395 for (size_t i = 0; i != size; i += entSize) 1396 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1397 } 1398 1399 template <class ELFT> 1400 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1401 const typename ELFT::Shdr &header, 1402 StringRef name) 1403 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1404 1405 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1406 uint64_t entsize, ArrayRef<uint8_t> data, 1407 StringRef name) 1408 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1409 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1410 1411 // This function is called after we obtain a complete list of input sections 1412 // that need to be linked. This is responsible to split section contents 1413 // into small chunks for further processing. 1414 // 1415 // Note that this function is called from parallelForEach. This must be 1416 // thread-safe (i.e. no memory allocation from the pools). 1417 void MergeInputSection::splitIntoPieces() { 1418 assert(pieces.empty()); 1419 1420 if (flags & SHF_STRINGS) 1421 splitStrings(data(), entsize); 1422 else 1423 splitNonStrings(data(), entsize); 1424 } 1425 1426 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1427 if (this->data().size() <= offset) 1428 fatal(toString(this) + ": offset is outside the section"); 1429 1430 // If Offset is not at beginning of a section piece, it is not in the map. 1431 // In that case we need to do a binary search of the original section piece vector. 1432 auto it = partition_point( 1433 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1434 return &it[-1]; 1435 } 1436 1437 // Returns the offset in an output section for a given input offset. 1438 // Because contents of a mergeable section is not contiguous in output, 1439 // it is not just an addition to a base output offset. 1440 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1441 // If Offset is not at beginning of a section piece, it is not in the map. 1442 // In that case we need to search from the original section piece vector. 1443 const SectionPiece &piece = *getSectionPiece(offset); 1444 uint64_t addend = offset - piece.inputOff; 1445 return piece.outputOff + addend; 1446 } 1447 1448 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1449 StringRef); 1450 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1451 StringRef); 1452 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1453 StringRef); 1454 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1455 StringRef); 1456 1457 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1458 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1459 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1460 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1461 1462 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1463 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1464 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1465 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1466 1467 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1468 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1469 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1470 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1471 1472 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1473 const ELF32LE::Shdr &, StringRef); 1474 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1475 const ELF32BE::Shdr &, StringRef); 1476 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1477 const ELF64LE::Shdr &, StringRef); 1478 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1479 const ELF64BE::Shdr &, StringRef); 1480 1481 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1482 const ELF32LE::Shdr &, StringRef); 1483 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1484 const ELF32BE::Shdr &, StringRef); 1485 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1486 const ELF64LE::Shdr &, StringRef); 1487 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1488 const ELF64BE::Shdr &, StringRef); 1489 1490 template void EhInputSection::split<ELF32LE>(); 1491 template void EhInputSection::split<ELF32BE>(); 1492 template void EhInputSection::split<ELF64LE>(); 1493 template void EhInputSection::split<ELF64BE>(); 1494