1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <optional> 26 #include <vector> 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::support; 32 using namespace llvm::support::endian; 33 using namespace llvm::sys; 34 using namespace lld; 35 using namespace lld::elf; 36 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return ArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t addralign, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info, 58 link), 59 file(file), content_(data.data()), size(data.size()) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(addralign, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->addralign = v; 72 73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no 74 // longer supported. 75 if (flags & SHF_COMPRESSED) 76 invokeELFT(parseCompressedHeader,); 77 } 78 79 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the 80 // output section. However, for relocatable linking without 81 // --force-group-allocation, the SHF_GROUP flag and section groups are retained. 82 static uint64_t getFlags(uint64_t flags) { 83 flags &= ~(uint64_t)SHF_INFO_LINK; 84 if (config->resolveGroups) 85 flags &= ~(uint64_t)SHF_GROUP; 86 return flags; 87 } 88 89 template <class ELFT> 90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 91 const typename ELFT::Shdr &hdr, 92 StringRef name, Kind sectionKind) 93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 95 hdr.sh_addralign, getSectionContents(file, hdr), name, 96 sectionKind) { 97 // We reject object files having insanely large alignments even though 98 // they are allowed by the spec. I think 4GB is a reasonable limitation. 99 // We might want to relax this in the future. 100 if (hdr.sh_addralign > UINT32_MAX) 101 fatal(toString(&file) + ": section sh_addralign is too large"); 102 } 103 104 size_t InputSectionBase::getSize() const { 105 if (auto *s = dyn_cast<SyntheticSection>(this)) 106 return s->getSize(); 107 return size - bytesDropped; 108 } 109 110 template <class ELFT> 111 static void decompressAux(const InputSectionBase &sec, uint8_t *out, 112 size_t size) { 113 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); 114 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) 115 .slice(sizeof(typename ELFT::Chdr)); 116 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 117 ? compression::zlib::decompress(compressed, out, size) 118 : compression::zstd::decompress(compressed, out, size)) 119 fatal(toString(&sec) + 120 ": decompress failed: " + llvm::toString(std::move(e))); 121 } 122 123 void InputSectionBase::decompress() const { 124 uint8_t *uncompressedBuf; 125 { 126 static std::mutex mu; 127 std::lock_guard<std::mutex> lock(mu); 128 uncompressedBuf = bAlloc().Allocate<uint8_t>(size); 129 } 130 131 invokeELFT(decompressAux, *this, uncompressedBuf, size); 132 content_ = uncompressedBuf; 133 compressed = false; 134 } 135 136 template <class ELFT> 137 RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const { 138 if (relSecIdx == 0) 139 return {}; 140 RelsOrRelas<ELFT> ret; 141 auto *f = cast<ObjFile<ELFT>>(file); 142 typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx]; 143 if (shdr.sh_type == SHT_CREL) { 144 // Return an iterator if supported by caller. 145 if (supportsCrel) { 146 ret.crels = Relocs<typename ELFT::Crel>( 147 (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset); 148 return ret; 149 } 150 InputSectionBase *const &relSec = f->getSections()[relSecIdx]; 151 // Otherwise, allocate a buffer to hold the decoded RELA relocations. When 152 // called for the first time, relSec is null (without --emit-relocs) or an 153 // InputSection with false decodedCrel. 154 if (!relSec || !cast<InputSection>(relSec)->decodedCrel) { 155 auto *sec = makeThreadLocal<InputSection>(*f, shdr, name); 156 f->cacheDecodedCrel(relSecIdx, sec); 157 sec->type = SHT_RELA; 158 sec->decodedCrel = true; 159 160 RelocsCrel<ELFT::Is64Bits> entries(sec->content_); 161 sec->size = entries.size() * sizeof(typename ELFT::Rela); 162 auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size()); 163 sec->content_ = reinterpret_cast<uint8_t *>(relas); 164 for (auto [i, r] : llvm::enumerate(entries)) { 165 relas[i].r_offset = r.r_offset; 166 relas[i].setSymbolAndType(r.r_symidx, r.r_type, false); 167 relas[i].r_addend = r.r_addend; 168 } 169 } 170 ret.relas = {ArrayRef( 171 reinterpret_cast<const typename ELFT::Rela *>(relSec->content_), 172 relSec->size / sizeof(typename ELFT::Rela))}; 173 return ret; 174 } 175 176 const void *content = f->mb.getBufferStart() + shdr.sh_offset; 177 size_t size = shdr.sh_size; 178 if (shdr.sh_type == SHT_REL) { 179 ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content), 180 size / sizeof(typename ELFT::Rel))}; 181 } else { 182 assert(shdr.sh_type == SHT_RELA); 183 ret.relas = { 184 ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content), 185 size / sizeof(typename ELFT::Rela))}; 186 } 187 return ret; 188 } 189 190 uint64_t SectionBase::getOffset(uint64_t offset) const { 191 switch (kind()) { 192 case Output: { 193 auto *os = cast<OutputSection>(this); 194 // For output sections we treat offset -1 as the end of the section. 195 return offset == uint64_t(-1) ? os->size : offset; 196 } 197 case Regular: 198 case Synthetic: 199 case Spill: 200 return cast<InputSection>(this)->outSecOff + offset; 201 case EHFrame: { 202 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 203 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 204 // start of the output .eh_frame. Just return offset. 205 // 206 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 207 // discarded due to GC/ICF. We should compute the output section offset. 208 const EhInputSection *es = cast<EhInputSection>(this); 209 if (!es->content().empty()) 210 if (InputSection *isec = es->getParent()) 211 return isec->outSecOff + es->getParentOffset(offset); 212 return offset; 213 } 214 case Merge: 215 const MergeInputSection *ms = cast<MergeInputSection>(this); 216 if (InputSection *isec = ms->getParent()) 217 return isec->outSecOff + ms->getParentOffset(offset); 218 return ms->getParentOffset(offset); 219 } 220 llvm_unreachable("invalid section kind"); 221 } 222 223 uint64_t SectionBase::getVA(uint64_t offset) const { 224 const OutputSection *out = getOutputSection(); 225 return (out ? out->addr : 0) + getOffset(offset); 226 } 227 228 OutputSection *SectionBase::getOutputSection() { 229 InputSection *sec; 230 if (auto *isec = dyn_cast<InputSection>(this)) 231 sec = isec; 232 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 233 sec = ms->getParent(); 234 else if (auto *eh = dyn_cast<EhInputSection>(this)) 235 sec = eh->getParent(); 236 else 237 return cast<OutputSection>(this); 238 return sec ? sec->getParent() : nullptr; 239 } 240 241 // When a section is compressed, `rawData` consists with a header followed 242 // by zlib-compressed data. This function parses a header to initialize 243 // `uncompressedSize` member and remove the header from `rawData`. 244 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 245 flags &= ~(uint64_t)SHF_COMPRESSED; 246 247 // New-style header 248 if (content().size() < sizeof(typename ELFT::Chdr)) { 249 error(toString(this) + ": corrupted compressed section"); 250 return; 251 } 252 253 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); 254 if (hdr->ch_type == ELFCOMPRESS_ZLIB) { 255 if (!compression::zlib::isAvailable()) 256 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " 257 "not built with zlib support"); 258 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { 259 if (!compression::zstd::isAvailable()) 260 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is " 261 "not built with zstd support"); 262 } else { 263 error(toString(this) + ": unsupported compression type (" + 264 Twine(hdr->ch_type) + ")"); 265 return; 266 } 267 268 compressed = true; 269 compressedSize = size; 270 size = hdr->ch_size; 271 addralign = std::max<uint32_t>(hdr->ch_addralign, 1); 272 } 273 274 InputSection *InputSectionBase::getLinkOrderDep() const { 275 assert(flags & SHF_LINK_ORDER); 276 if (!link) 277 return nullptr; 278 return cast<InputSection>(file->getSections()[link]); 279 } 280 281 // Find a symbol that encloses a given location. 282 Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, 283 uint8_t type) const { 284 if (file->isInternal()) 285 return nullptr; 286 for (Symbol *b : file->getSymbols()) 287 if (Defined *d = dyn_cast<Defined>(b)) 288 if (d->section == this && d->value <= offset && 289 offset < d->value + d->size && (type == 0 || type == d->type)) 290 return d; 291 return nullptr; 292 } 293 294 // Returns an object file location string. Used to construct an error message. 295 std::string InputSectionBase::getLocation(uint64_t offset) const { 296 std::string secAndOffset = 297 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 298 299 // We don't have file for synthetic sections. 300 if (file == nullptr) 301 return (config->outputFile + ":(" + secAndOffset).str(); 302 303 std::string filename = toString(file); 304 if (Defined *d = getEnclosingFunction(offset)) 305 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 306 307 return filename + ":(" + secAndOffset; 308 } 309 310 // This function is intended to be used for constructing an error message. 311 // The returned message looks like this: 312 // 313 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 314 // 315 // Returns an empty string if there's no way to get line info. 316 std::string InputSectionBase::getSrcMsg(const Symbol &sym, 317 uint64_t offset) const { 318 return file->getSrcMsg(sym, *this, offset); 319 } 320 321 // Returns a filename string along with an optional section name. This 322 // function is intended to be used for constructing an error 323 // message. The returned message looks like this: 324 // 325 // path/to/foo.o:(function bar) 326 // 327 // or 328 // 329 // path/to/foo.o:(function bar) in archive path/to/bar.a 330 std::string InputSectionBase::getObjMsg(uint64_t off) const { 331 std::string filename = std::string(file->getName()); 332 333 std::string archive; 334 if (!file->archiveName.empty()) 335 archive = (" in archive " + file->archiveName).str(); 336 337 // Find a symbol that encloses a given location. getObjMsg may be called 338 // before ObjFile::initSectionsAndLocalSyms where local symbols are 339 // initialized. 340 if (Defined *d = getEnclosingSymbol(off)) 341 return filename + ":(" + toString(*d) + ")" + archive; 342 343 // If there's no symbol, print out the offset in the section. 344 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 345 .str(); 346 } 347 348 PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source, 349 InputSectionDescription &isd) 350 : InputSection(source.file, source.flags, source.type, source.addralign, {}, 351 source.name, SectionBase::Spill), 352 isd(&isd) {} 353 354 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 355 356 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 357 uint32_t addralign, ArrayRef<uint8_t> data, 358 StringRef name, Kind k) 359 : InputSectionBase(f, flags, type, 360 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data, 361 name, k) { 362 assert(f || this == &InputSection::discarded); 363 } 364 365 template <class ELFT> 366 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 367 StringRef name) 368 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 369 370 // Copy SHT_GROUP section contents. Used only for the -r option. 371 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 372 // ELFT::Word is the 32-bit integral type in the target endianness. 373 using u32 = typename ELFT::Word; 374 ArrayRef<u32> from = getDataAs<u32>(); 375 auto *to = reinterpret_cast<u32 *>(buf); 376 377 // The first entry is not a section number but a flag. 378 *to++ = from[0]; 379 380 // Adjust section numbers because section numbers in an input object files are 381 // different in the output. We also need to handle combined or discarded 382 // members. 383 ArrayRef<InputSectionBase *> sections = file->getSections(); 384 DenseSet<uint32_t> seen; 385 for (uint32_t idx : from.slice(1)) { 386 OutputSection *osec = sections[idx]->getOutputSection(); 387 if (osec && seen.insert(osec->sectionIndex).second) 388 *to++ = osec->sectionIndex; 389 } 390 } 391 392 InputSectionBase *InputSection::getRelocatedSection() const { 393 if (file->isInternal() || !isStaticRelSecType(type)) 394 return nullptr; 395 ArrayRef<InputSectionBase *> sections = file->getSections(); 396 return sections[info]; 397 } 398 399 template <class ELFT, class RelTy> 400 void InputSection::copyRelocations(uint8_t *buf) { 401 if (config->relax && !config->relocatable && 402 (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) { 403 // On LoongArch and RISC-V, relaxation might change relocations: copy 404 // from internal ones that are updated by relaxation. 405 InputSectionBase *sec = getRelocatedSection(); 406 copyRelocations<ELFT, RelTy>(buf, llvm::make_range(sec->relocations.begin(), 407 sec->relocations.end())); 408 } else { 409 // Convert the raw relocations in the input section into Relocation objects 410 // suitable to be used by copyRelocations below. 411 struct MapRel { 412 const ObjFile<ELFT> &file; 413 Relocation operator()(const RelTy &rel) const { 414 // RelExpr is not used so set to a dummy value. 415 return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset, 416 getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; 417 } 418 }; 419 420 using RawRels = ArrayRef<RelTy>; 421 using MapRelIter = 422 llvm::mapped_iterator<typename RawRels::iterator, MapRel>; 423 auto mapRel = MapRel{*getFile<ELFT>()}; 424 RawRels rawRels = getDataAs<RelTy>(); 425 auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), 426 MapRelIter(rawRels.end(), mapRel)); 427 copyRelocations<ELFT, RelTy>(buf, rels); 428 } 429 } 430 431 // This is used for -r and --emit-relocs. We can't use memcpy to copy 432 // relocations because we need to update symbol table offset and section index 433 // for each relocation. So we copy relocations one by one. 434 template <class ELFT, class RelTy, class RelIt> 435 void InputSection::copyRelocations(uint8_t *buf, 436 llvm::iterator_range<RelIt> rels) { 437 const TargetInfo &target = *elf::target; 438 InputSectionBase *sec = getRelocatedSection(); 439 (void)sec->contentMaybeDecompress(); // uncompress if needed 440 441 for (const Relocation &rel : rels) { 442 RelType type = rel.type; 443 const ObjFile<ELFT> *file = getFile<ELFT>(); 444 Symbol &sym = *rel.sym; 445 446 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 447 buf += sizeof(RelTy); 448 449 if (RelTy::HasAddend) 450 p->r_addend = rel.addend; 451 452 // Output section VA is zero for -r, so r_offset is an offset within the 453 // section, but for --emit-relocs it is a virtual address. 454 p->r_offset = sec->getVA(rel.offset); 455 p->setSymbolAndType(in.symTab->getSymbolIndex(sym), type, 456 config->isMips64EL); 457 458 if (sym.type == STT_SECTION) { 459 // We combine multiple section symbols into only one per 460 // section. This means we have to update the addend. That is 461 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 462 // section data. We do that by adding to the Relocation vector. 463 464 // .eh_frame is horribly special and can reference discarded sections. To 465 // avoid having to parse and recreate .eh_frame, we just replace any 466 // relocation in it pointing to discarded sections with R_*_NONE, which 467 // hopefully creates a frame that is ignored at runtime. Also, don't warn 468 // on .gcc_except_table and debug sections. 469 // 470 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 471 auto *d = dyn_cast<Defined>(&sym); 472 if (!d) { 473 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 474 sec->name != ".gcc_except_table" && sec->name != ".got2" && 475 sec->name != ".toc") { 476 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 477 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 478 warn("relocation refers to a discarded section: " + 479 CHECK(file->getObj().getSectionName(sec), file) + 480 "\n>>> referenced by " + getObjMsg(p->r_offset)); 481 } 482 p->setSymbolAndType(0, 0, false); 483 continue; 484 } 485 SectionBase *section = d->section; 486 assert(section->isLive()); 487 488 int64_t addend = rel.addend; 489 const uint8_t *bufLoc = sec->content().begin() + rel.offset; 490 if (!RelTy::HasAddend) 491 addend = target.getImplicitAddend(bufLoc, type); 492 493 if (config->emachine == EM_MIPS && 494 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 495 // Some MIPS relocations depend on "gp" value. By default, 496 // this value has 0x7ff0 offset from a .got section. But 497 // relocatable files produced by a compiler or a linker 498 // might redefine this default value and we must use it 499 // for a calculation of the relocation result. When we 500 // generate EXE or DSO it's trivial. Generating a relocatable 501 // output is more difficult case because the linker does 502 // not calculate relocations in this mode and loses 503 // individual "gp" values used by each input object file. 504 // As a workaround we add the "gp" value to the relocation 505 // addend and save it back to the file. 506 addend += sec->getFile<ELFT>()->mipsGp0; 507 } 508 509 if (RelTy::HasAddend) 510 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 511 // For SHF_ALLOC sections relocated by REL, append a relocation to 512 // sec->relocations so that relocateAlloc transitively called by 513 // writeSections will update the implicit addend. Non-SHF_ALLOC sections 514 // utilize relocateNonAlloc to process raw relocations and do not need 515 // this sec->relocations change. 516 else if (config->relocatable && (sec->flags & SHF_ALLOC) && 517 type != target.noneRel) 518 sec->addReloc({R_ABS, type, rel.offset, addend, &sym}); 519 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 520 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 521 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 522 // indicates that r30 is relative to the input section .got2 523 // (r_addend>=0x8000), after linking, r30 should be relative to the output 524 // section .got2 . To compensate for the shift, adjust r_addend by 525 // ppc32Got->outSecOff. 526 p->r_addend += sec->file->ppc32Got2->outSecOff; 527 } 528 } 529 } 530 531 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 532 // references specially. The general rule is that the value of the symbol in 533 // this context is the address of the place P. A further special case is that 534 // branch relocations to an undefined weak reference resolve to the next 535 // instruction. 536 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 537 uint32_t p) { 538 switch (type) { 539 // Unresolved branch relocations to weak references resolve to next 540 // instruction, this will be either 2 or 4 bytes on from P. 541 case R_ARM_THM_JUMP8: 542 case R_ARM_THM_JUMP11: 543 return p + 2 + a; 544 case R_ARM_CALL: 545 case R_ARM_JUMP24: 546 case R_ARM_PC24: 547 case R_ARM_PLT32: 548 case R_ARM_PREL31: 549 case R_ARM_THM_JUMP19: 550 case R_ARM_THM_JUMP24: 551 return p + 4 + a; 552 case R_ARM_THM_CALL: 553 // We don't want an interworking BLX to ARM 554 return p + 5 + a; 555 // Unresolved non branch pc-relative relocations 556 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 557 // targets a weak-reference. 558 case R_ARM_MOVW_PREL_NC: 559 case R_ARM_MOVT_PREL: 560 case R_ARM_REL32: 561 case R_ARM_THM_ALU_PREL_11_0: 562 case R_ARM_THM_MOVW_PREL_NC: 563 case R_ARM_THM_MOVT_PREL: 564 case R_ARM_THM_PC12: 565 return p + a; 566 // p + a is unrepresentable as negative immediates can't be encoded. 567 case R_ARM_THM_PC8: 568 return p; 569 } 570 llvm_unreachable("ARM pc-relative relocation expected\n"); 571 } 572 573 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 574 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 575 switch (type) { 576 // Unresolved branch relocations to weak references resolve to next 577 // instruction, this is 4 bytes on from P. 578 case R_AARCH64_CALL26: 579 case R_AARCH64_CONDBR19: 580 case R_AARCH64_JUMP26: 581 case R_AARCH64_TSTBR14: 582 return p + 4; 583 // Unresolved non branch pc-relative relocations 584 case R_AARCH64_PREL16: 585 case R_AARCH64_PREL32: 586 case R_AARCH64_PREL64: 587 case R_AARCH64_ADR_PREL_LO21: 588 case R_AARCH64_LD_PREL_LO19: 589 case R_AARCH64_PLT32: 590 return p; 591 } 592 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 593 } 594 595 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 596 switch (type) { 597 case R_RISCV_BRANCH: 598 case R_RISCV_JAL: 599 case R_RISCV_CALL: 600 case R_RISCV_CALL_PLT: 601 case R_RISCV_RVC_BRANCH: 602 case R_RISCV_RVC_JUMP: 603 case R_RISCV_PLT32: 604 return p; 605 default: 606 return 0; 607 } 608 } 609 610 // ARM SBREL relocations are of the form S + A - B where B is the static base 611 // The ARM ABI defines base to be "addressing origin of the output segment 612 // defining the symbol S". We defined the "addressing origin"/static base to be 613 // the base of the PT_LOAD segment containing the Sym. 614 // The procedure call standard only defines a Read Write Position Independent 615 // RWPI variant so in practice we should expect the static base to be the base 616 // of the RW segment. 617 static uint64_t getARMStaticBase(const Symbol &sym) { 618 OutputSection *os = sym.getOutputSection(); 619 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 620 fatal("SBREL relocation to " + sym.getName() + " without static base"); 621 return os->ptLoad->firstSec->addr; 622 } 623 624 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 625 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 626 // is calculated using PCREL_HI20's symbol. 627 // 628 // This function returns the R_RISCV_PCREL_HI20 relocation from 629 // R_RISCV_PCREL_LO12's symbol and addend. 630 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 631 const Defined *d = cast<Defined>(sym); 632 if (!d->section) { 633 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 634 sym->getName()); 635 return nullptr; 636 } 637 InputSection *isec = cast<InputSection>(d->section); 638 639 if (addend != 0) 640 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 641 isec->getObjMsg(d->value) + " is ignored"); 642 643 // Relocations are sorted by offset, so we can use std::equal_range to do 644 // binary search. 645 Relocation r; 646 r.offset = d->value; 647 auto range = 648 std::equal_range(isec->relocs().begin(), isec->relocs().end(), r, 649 [](const Relocation &lhs, const Relocation &rhs) { 650 return lhs.offset < rhs.offset; 651 }); 652 653 for (auto it = range.first; it != range.second; ++it) 654 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 655 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 656 return &*it; 657 658 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + 659 isec->getObjMsg(d->value) + 660 " without an associated R_RISCV_PCREL_HI20 relocation"); 661 return nullptr; 662 } 663 664 // A TLS symbol's virtual address is relative to the TLS segment. Add a 665 // target-specific adjustment to produce a thread-pointer-relative offset. 666 static int64_t getTlsTpOffset(const Symbol &s) { 667 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 668 if (&s == ElfSym::tlsModuleBase) 669 return 0; 670 671 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 672 // while most others use Variant 1. At run time TP will be aligned to p_align. 673 674 // Variant 1. TP will be followed by an optional gap (which is the size of 2 675 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 676 // padding, then the static TLS blocks. The alignment padding is added so that 677 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 678 // 679 // Variant 2. Static TLS blocks, followed by alignment padding are placed 680 // before TP. The alignment padding is added so that (TP - padding - 681 // p_memsz) is congruent to p_vaddr modulo p_align. 682 PhdrEntry *tls = Out::tlsPhdr; 683 switch (config->emachine) { 684 // Variant 1. 685 case EM_ARM: 686 case EM_AARCH64: 687 return s.getVA(0) + config->wordsize * 2 + 688 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 689 case EM_MIPS: 690 case EM_PPC: 691 case EM_PPC64: 692 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 693 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 694 // data and 0xf000 of the program's TLS segment. 695 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 696 case EM_LOONGARCH: 697 case EM_RISCV: 698 // See the comment in handleTlsRelocation. For TLSDESC=>IE, 699 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While 700 // `tls` may be null, the return value is ignored. 701 if (s.type != STT_TLS) 702 return 0; 703 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 704 705 // Variant 2. 706 case EM_HEXAGON: 707 case EM_S390: 708 case EM_SPARCV9: 709 case EM_386: 710 case EM_X86_64: 711 return s.getVA(0) - tls->p_memsz - 712 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 713 default: 714 llvm_unreachable("unhandled Config->EMachine"); 715 } 716 } 717 718 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 719 int64_t a, uint64_t p, 720 const Symbol &sym, RelExpr expr) { 721 switch (expr) { 722 case R_ABS: 723 case R_DTPREL: 724 case R_RELAX_TLS_LD_TO_LE_ABS: 725 case R_RELAX_GOT_PC_NOPIC: 726 case R_AARCH64_AUTH: 727 case R_RISCV_ADD: 728 case R_RISCV_LEB128: 729 return sym.getVA(a); 730 case R_ADDEND: 731 return a; 732 case R_RELAX_HINT: 733 return 0; 734 case R_ARM_SBREL: 735 return sym.getVA(a) - getARMStaticBase(sym); 736 case R_GOT: 737 case R_RELAX_TLS_GD_TO_IE_ABS: 738 return sym.getGotVA() + a; 739 case R_LOONGARCH_GOT: 740 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type 741 // for their page offsets. The arithmetics are different in the TLS case 742 // so we have to duplicate some logic here. 743 if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12) 744 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. 745 return in.got->getGlobalDynAddr(sym) + a; 746 return getRelocTargetVA(file, type, a, p, sym, R_GOT); 747 case R_GOTONLY_PC: 748 return in.got->getVA() + a - p; 749 case R_GOTPLTONLY_PC: 750 return in.gotPlt->getVA() + a - p; 751 case R_GOTREL: 752 case R_PPC64_RELAX_TOC: 753 return sym.getVA(a) - in.got->getVA(); 754 case R_GOTPLTREL: 755 return sym.getVA(a) - in.gotPlt->getVA(); 756 case R_GOTPLT: 757 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 758 return sym.getGotVA() + a - in.gotPlt->getVA(); 759 case R_TLSLD_GOT_OFF: 760 case R_GOT_OFF: 761 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 762 return sym.getGotOffset() + a; 763 case R_AARCH64_GOT_PAGE_PC: 764 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 765 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 766 case R_AARCH64_GOT_PAGE: 767 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 768 case R_GOT_PC: 769 case R_RELAX_TLS_GD_TO_IE: 770 return sym.getGotVA() + a - p; 771 case R_GOTPLT_GOTREL: 772 return sym.getGotPltVA() + a - in.got->getVA(); 773 case R_GOTPLT_PC: 774 return sym.getGotPltVA() + a - p; 775 case R_LOONGARCH_GOT_PAGE_PC: 776 if (sym.hasFlag(NEEDS_TLSGD)) 777 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type); 778 return getLoongArchPageDelta(sym.getGotVA() + a, p, type); 779 case R_MIPS_GOTREL: 780 return sym.getVA(a) - in.mipsGot->getGp(file); 781 case R_MIPS_GOT_GP: 782 return in.mipsGot->getGp(file) + a; 783 case R_MIPS_GOT_GP_PC: { 784 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 785 // is _gp_disp symbol. In that case we should use the following 786 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 787 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 788 // microMIPS variants of these relocations use slightly different 789 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 790 // to correctly handle less-significant bit of the microMIPS symbol. 791 uint64_t v = in.mipsGot->getGp(file) + a - p; 792 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 793 v += 4; 794 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 795 v -= 1; 796 return v; 797 } 798 case R_MIPS_GOT_LOCAL_PAGE: 799 // If relocation against MIPS local symbol requires GOT entry, this entry 800 // should be initialized by 'page address'. This address is high 16-bits 801 // of sum the symbol's value and the addend. 802 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 803 in.mipsGot->getGp(file); 804 case R_MIPS_GOT_OFF: 805 case R_MIPS_GOT_OFF32: 806 // In case of MIPS if a GOT relocation has non-zero addend this addend 807 // should be applied to the GOT entry content not to the GOT entry offset. 808 // That is why we use separate expression type. 809 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 810 in.mipsGot->getGp(file); 811 case R_MIPS_TLSGD: 812 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 813 in.mipsGot->getGp(file); 814 case R_MIPS_TLSLD: 815 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 816 in.mipsGot->getGp(file); 817 case R_AARCH64_PAGE_PC: { 818 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 819 return getAArch64Page(val) - getAArch64Page(p); 820 } 821 case R_RISCV_PC_INDIRECT: { 822 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 823 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 824 *hiRel->sym, hiRel->expr); 825 return 0; 826 } 827 case R_LOONGARCH_PAGE_PC: 828 return getLoongArchPageDelta(sym.getVA(a), p, type); 829 case R_PC: 830 case R_ARM_PCA: { 831 uint64_t dest; 832 if (expr == R_ARM_PCA) 833 // Some PC relative ARM (Thumb) relocations align down the place. 834 p = p & 0xfffffffc; 835 if (sym.isUndefined()) { 836 // On ARM and AArch64 a branch to an undefined weak resolves to the next 837 // instruction, otherwise the place. On RISC-V, resolve an undefined weak 838 // to the same instruction to cause an infinite loop (making the user 839 // aware of the issue) while ensuring no overflow. 840 // Note: if the symbol is hidden, its binding has been converted to local, 841 // so we just check isUndefined() here. 842 if (config->emachine == EM_ARM) 843 dest = getARMUndefinedRelativeWeakVA(type, a, p); 844 else if (config->emachine == EM_AARCH64) 845 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 846 else if (config->emachine == EM_PPC) 847 dest = p; 848 else if (config->emachine == EM_RISCV) 849 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 850 else 851 dest = sym.getVA(a); 852 } else { 853 dest = sym.getVA(a); 854 } 855 return dest - p; 856 } 857 case R_PLT: 858 return sym.getPltVA() + a; 859 case R_PLT_PC: 860 case R_PPC64_CALL_PLT: 861 return sym.getPltVA() + a - p; 862 case R_LOONGARCH_PLT_PAGE_PC: 863 return getLoongArchPageDelta(sym.getPltVA() + a, p, type); 864 case R_PLT_GOTPLT: 865 return sym.getPltVA() + a - in.gotPlt->getVA(); 866 case R_PLT_GOTREL: 867 return sym.getPltVA() + a - in.got->getVA(); 868 case R_PPC32_PLTREL: 869 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 870 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 871 // target VA computation. 872 return sym.getPltVA() - p; 873 case R_PPC64_CALL: { 874 uint64_t symVA = sym.getVA(a); 875 // If we have an undefined weak symbol, we might get here with a symbol 876 // address of zero. That could overflow, but the code must be unreachable, 877 // so don't bother doing anything at all. 878 if (!symVA) 879 return 0; 880 881 // PPC64 V2 ABI describes two entry points to a function. The global entry 882 // point is used for calls where the caller and callee (may) have different 883 // TOC base pointers and r2 needs to be modified to hold the TOC base for 884 // the callee. For local calls the caller and callee share the same 885 // TOC base and so the TOC pointer initialization code should be skipped by 886 // branching to the local entry point. 887 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 888 } 889 case R_PPC64_TOCBASE: 890 return getPPC64TocBase() + a; 891 case R_RELAX_GOT_PC: 892 case R_PPC64_RELAX_GOT_PC: 893 return sym.getVA(a) - p; 894 case R_RELAX_TLS_GD_TO_LE: 895 case R_RELAX_TLS_IE_TO_LE: 896 case R_RELAX_TLS_LD_TO_LE: 897 case R_TPREL: 898 // It is not very clear what to return if the symbol is undefined. With 899 // --noinhibit-exec, even a non-weak undefined reference may reach here. 900 // Just return A, which matches R_ABS, and the behavior of some dynamic 901 // loaders. 902 if (sym.isUndefined()) 903 return a; 904 return getTlsTpOffset(sym) + a; 905 case R_RELAX_TLS_GD_TO_LE_NEG: 906 case R_TPREL_NEG: 907 if (sym.isUndefined()) 908 return a; 909 return -getTlsTpOffset(sym) + a; 910 case R_SIZE: 911 return sym.getSize() + a; 912 case R_TLSDESC: 913 return in.got->getTlsDescAddr(sym) + a; 914 case R_TLSDESC_PC: 915 return in.got->getTlsDescAddr(sym) + a - p; 916 case R_TLSDESC_GOTPLT: 917 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 918 case R_AARCH64_TLSDESC_PAGE: 919 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 920 case R_LOONGARCH_TLSDESC_PAGE_PC: 921 return getLoongArchPageDelta(in.got->getTlsDescAddr(sym) + a, p, type); 922 case R_TLSGD_GOT: 923 return in.got->getGlobalDynOffset(sym) + a; 924 case R_TLSGD_GOTPLT: 925 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 926 case R_TLSGD_PC: 927 return in.got->getGlobalDynAddr(sym) + a - p; 928 case R_LOONGARCH_TLSGD_PAGE_PC: 929 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type); 930 case R_TLSLD_GOTPLT: 931 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 932 case R_TLSLD_GOT: 933 return in.got->getTlsIndexOff() + a; 934 case R_TLSLD_PC: 935 return in.got->getTlsIndexVA() + a - p; 936 default: 937 llvm_unreachable("invalid expression"); 938 } 939 } 940 941 // This function applies relocations to sections without SHF_ALLOC bit. 942 // Such sections are never mapped to memory at runtime. Debug sections are 943 // an example. Relocations in non-alloc sections are much easier to 944 // handle than in allocated sections because it will never need complex 945 // treatment such as GOT or PLT (because at runtime no one refers them). 946 // So, we handle relocations for non-alloc sections directly in this 947 // function as a performance optimization. 948 template <class ELFT, class RelTy> 949 void InputSection::relocateNonAlloc(uint8_t *buf, Relocs<RelTy> rels) { 950 const unsigned bits = sizeof(typename ELFT::uint) * 8; 951 const TargetInfo &target = *elf::target; 952 const auto emachine = config->emachine; 953 const bool isDebug = isDebugSection(*this); 954 const bool isDebugLine = isDebug && name == ".debug_line"; 955 std::optional<uint64_t> tombstone; 956 if (isDebug) { 957 if (name == ".debug_loc" || name == ".debug_ranges") 958 tombstone = 1; 959 else if (name == ".debug_names") 960 tombstone = UINT64_MAX; // tombstone value 961 else 962 tombstone = 0; 963 } 964 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 965 if (patAndValue.first.match(this->name)) { 966 tombstone = patAndValue.second; 967 break; 968 } 969 970 const InputFile *f = this->file; 971 for (auto it = rels.begin(), end = rels.end(); it != end; ++it) { 972 const RelTy &rel = *it; 973 const RelType type = rel.getType(config->isMips64EL); 974 const uint64_t offset = rel.r_offset; 975 uint8_t *bufLoc = buf + offset; 976 int64_t addend = getAddend<ELFT>(rel); 977 if (!RelTy::HasAddend) 978 addend += target.getImplicitAddend(bufLoc, type); 979 980 Symbol &sym = f->getRelocTargetSym(rel); 981 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 982 if (expr == R_NONE) 983 continue; 984 auto *ds = dyn_cast<Defined>(&sym); 985 986 if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { 987 if (++it != end && 988 it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && 989 it->r_offset == offset) { 990 uint64_t val; 991 if (!ds && tombstone) { 992 val = *tombstone; 993 } else { 994 val = sym.getVA(addend) - 995 (f->getRelocTargetSym(*it).getVA(0) + getAddend<ELFT>(*it)); 996 } 997 if (overwriteULEB128(bufLoc, val) >= 0x80) 998 errorOrWarn(getLocation(offset) + ": ULEB128 value " + Twine(val) + 999 " exceeds available space; references '" + 1000 lld::toString(sym) + "'"); 1001 continue; 1002 } 1003 errorOrWarn(getLocation(offset) + 1004 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128"); 1005 return; 1006 } 1007 1008 if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { 1009 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 1010 // folded section symbols) to a tombstone value. Resolving to addend is 1011 // unsatisfactory because the result address range may collide with a 1012 // valid range of low address, or leave multiple CUs claiming ownership of 1013 // the same range of code, which may confuse consumers. 1014 // 1015 // To address the problems, we use -1 as a tombstone value for most 1016 // .debug_* sections. We have to ignore the addend because we don't want 1017 // to resolve an address attribute (which may have a non-zero addend) to 1018 // -1+addend (wrap around to a low address). 1019 // 1020 // R_DTPREL type relocations represent an offset into the dynamic thread 1021 // vector. The computed value is st_value plus a non-negative offset. 1022 // Negative values are invalid, so -1 can be used as the tombstone value. 1023 // 1024 // If the referenced symbol is relative to a discarded section (due to 1025 // --gc-sections, COMDAT, etc), it has been converted to a Undefined. 1026 // `ds->folded` catches the ICF folded case. However, resolving a 1027 // relocation in .debug_line to -1 would stop debugger users from setting 1028 // breakpoints on the folded-in function, so exclude .debug_line. 1029 // 1030 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 1031 // (base address selection entry), use 1 (which is used by GNU ld for 1032 // .debug_ranges). 1033 // 1034 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 1035 // value. Enable -1 in a future release. 1036 if (!ds || (ds->folded && !isDebugLine)) { 1037 // If -z dead-reloc-in-nonalloc= is specified, respect it. 1038 uint64_t value = SignExtend64<bits>(*tombstone); 1039 // For a 32-bit local TU reference in .debug_names, X86_64::relocate 1040 // requires that the unsigned value for R_X86_64_32 is truncated to 1041 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit 1042 // absolute relocations and do not need this change. 1043 if (emachine == EM_X86_64 && type == R_X86_64_32) 1044 value = static_cast<uint32_t>(value); 1045 target.relocateNoSym(bufLoc, type, value); 1046 continue; 1047 } 1048 } 1049 1050 // For a relocatable link, content relocated by relocation types with an 1051 // explicit addend, such as RELA, remain unchanged and we can stop here. 1052 // While content relocated by relocation types with an implicit addend, such 1053 // as REL, needs the implicit addend updated. 1054 if (config->relocatable && (RelTy::HasAddend || sym.type != STT_SECTION)) 1055 continue; 1056 1057 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 1058 // sections. 1059 if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || 1060 expr == R_RISCV_ADD) { 1061 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 1062 continue; 1063 } 1064 1065 if (expr == R_SIZE) { 1066 target.relocateNoSym(bufLoc, type, 1067 SignExtend64<bits>(sym.getSize() + addend)); 1068 continue; 1069 } 1070 1071 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 1072 toString(type) + " against symbol '" + toString(sym) + 1073 "'"; 1074 if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) { 1075 errorOrWarn(msg); 1076 return; 1077 } 1078 1079 // If the control reaches here, we found a PC-relative relocation in a 1080 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 1081 // at runtime, the notion of PC-relative doesn't make sense here. So, 1082 // this is a usage error. However, GNU linkers historically accept such 1083 // relocations without any errors and relocate them as if they were at 1084 // address 0. For bug-compatibility, we accept them with warnings. We 1085 // know Steel Bank Common Lisp as of 2018 have this bug. 1086 // 1087 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 1088 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in 1089 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to 1090 // keep this bug-compatible code for a while. 1091 warn(msg); 1092 target.relocateNoSym( 1093 bufLoc, type, 1094 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 1095 } 1096 } 1097 1098 template <class ELFT> 1099 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 1100 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 1101 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 1102 1103 if (flags & SHF_ALLOC) { 1104 target->relocateAlloc(*this, buf); 1105 return; 1106 } 1107 1108 auto *sec = cast<InputSection>(this); 1109 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1110 // locations with tombstone values. 1111 invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, buf); 1112 } 1113 1114 // For each function-defining prologue, find any calls to __morestack, 1115 // and replace them with calls to __morestack_non_split. 1116 static void switchMorestackCallsToMorestackNonSplit( 1117 DenseSet<Defined *> &prologues, 1118 SmallVector<Relocation *, 0> &morestackCalls) { 1119 1120 // If the target adjusted a function's prologue, all calls to 1121 // __morestack inside that function should be switched to 1122 // __morestack_non_split. 1123 Symbol *moreStackNonSplit = symtab.find("__morestack_non_split"); 1124 if (!moreStackNonSplit) { 1125 error("mixing split-stack objects requires a definition of " 1126 "__morestack_non_split"); 1127 return; 1128 } 1129 1130 // Sort both collections to compare addresses efficiently. 1131 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1132 return l->offset < r->offset; 1133 }); 1134 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1135 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1136 return l->value < r->value; 1137 }); 1138 1139 auto it = morestackCalls.begin(); 1140 for (Defined *f : functions) { 1141 // Find the first call to __morestack within the function. 1142 while (it != morestackCalls.end() && (*it)->offset < f->value) 1143 ++it; 1144 // Adjust all calls inside the function. 1145 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1146 (*it)->sym = moreStackNonSplit; 1147 ++it; 1148 } 1149 } 1150 } 1151 1152 static bool enclosingPrologueAttempted(uint64_t offset, 1153 const DenseSet<Defined *> &prologues) { 1154 for (Defined *f : prologues) 1155 if (f->value <= offset && offset < f->value + f->size) 1156 return true; 1157 return false; 1158 } 1159 1160 // If a function compiled for split stack calls a function not 1161 // compiled for split stack, then the caller needs its prologue 1162 // adjusted to ensure that the called function will have enough stack 1163 // available. Find those functions, and adjust their prologues. 1164 template <class ELFT> 1165 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1166 uint8_t *end) { 1167 DenseSet<Defined *> prologues; 1168 SmallVector<Relocation *, 0> morestackCalls; 1169 1170 for (Relocation &rel : relocs()) { 1171 // Ignore calls into the split-stack api. 1172 if (rel.sym->getName().starts_with("__morestack")) { 1173 if (rel.sym->getName() == "__morestack") 1174 morestackCalls.push_back(&rel); 1175 continue; 1176 } 1177 1178 // A relocation to non-function isn't relevant. Sometimes 1179 // __morestack is not marked as a function, so this check comes 1180 // after the name check. 1181 if (rel.sym->type != STT_FUNC) 1182 continue; 1183 1184 // If the callee's-file was compiled with split stack, nothing to do. In 1185 // this context, a "Defined" symbol is one "defined by the binary currently 1186 // being produced". So an "undefined" symbol might be provided by a shared 1187 // library. It is not possible to tell how such symbols were compiled, so be 1188 // conservative. 1189 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1190 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1191 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1192 continue; 1193 1194 if (enclosingPrologueAttempted(rel.offset, prologues)) 1195 continue; 1196 1197 if (Defined *f = getEnclosingFunction(rel.offset)) { 1198 prologues.insert(f); 1199 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1200 f->stOther)) 1201 continue; 1202 if (!getFile<ELFT>()->someNoSplitStack) 1203 error(lld::toString(this) + ": " + f->getName() + 1204 " (with -fsplit-stack) calls " + rel.sym->getName() + 1205 " (without -fsplit-stack), but couldn't adjust its prologue"); 1206 } 1207 } 1208 1209 if (target->needsMoreStackNonSplit) 1210 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1211 } 1212 1213 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1214 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1215 return; 1216 // If -r or --emit-relocs is given, then an InputSection 1217 // may be a relocation section. 1218 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1219 copyRelocations<ELFT, typename ELFT::Rela>(buf); 1220 return; 1221 } 1222 if (LLVM_UNLIKELY(type == SHT_REL)) { 1223 copyRelocations<ELFT, typename ELFT::Rel>(buf); 1224 return; 1225 } 1226 1227 // If -r is given, we may have a SHT_GROUP section. 1228 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1229 copyShtGroup<ELFT>(buf); 1230 return; 1231 } 1232 1233 // If this is a compressed section, uncompress section contents directly 1234 // to the buffer. 1235 if (compressed) { 1236 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); 1237 auto compressed = ArrayRef<uint8_t>(content_, compressedSize) 1238 .slice(sizeof(typename ELFT::Chdr)); 1239 size_t size = this->size; 1240 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 1241 ? compression::zlib::decompress(compressed, buf, size) 1242 : compression::zstd::decompress(compressed, buf, size)) 1243 fatal(toString(this) + 1244 ": decompress failed: " + llvm::toString(std::move(e))); 1245 uint8_t *bufEnd = buf + size; 1246 relocate<ELFT>(buf, bufEnd); 1247 return; 1248 } 1249 1250 // Copy section contents from source object file to output file 1251 // and then apply relocations. 1252 memcpy(buf, content().data(), content().size()); 1253 relocate<ELFT>(buf, buf + content().size()); 1254 } 1255 1256 void InputSection::replace(InputSection *other) { 1257 addralign = std::max(addralign, other->addralign); 1258 1259 // When a section is replaced with another section that was allocated to 1260 // another partition, the replacement section (and its associated sections) 1261 // need to be placed in the main partition so that both partitions will be 1262 // able to access it. 1263 if (partition != other->partition) { 1264 partition = 1; 1265 for (InputSection *isec : dependentSections) 1266 isec->partition = 1; 1267 } 1268 1269 other->repl = repl; 1270 other->markDead(); 1271 } 1272 1273 template <class ELFT> 1274 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1275 const typename ELFT::Shdr &header, 1276 StringRef name) 1277 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1278 1279 SyntheticSection *EhInputSection::getParent() const { 1280 return cast_or_null<SyntheticSection>(parent); 1281 } 1282 1283 // .eh_frame is a sequence of CIE or FDE records. 1284 // This function splits an input section into records and returns them. 1285 template <class ELFT> void EhInputSection::split() { 1286 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false); 1287 // getReloc expects the relocations to be sorted by r_offset. See the comment 1288 // in scanRelocs. 1289 if (rels.areRelocsRel()) { 1290 SmallVector<typename ELFT::Rel, 0> storage; 1291 split<ELFT>(sortRels(rels.rels, storage)); 1292 } else { 1293 SmallVector<typename ELFT::Rela, 0> storage; 1294 split<ELFT>(sortRels(rels.relas, storage)); 1295 } 1296 } 1297 1298 template <class ELFT, class RelTy> 1299 void EhInputSection::split(ArrayRef<RelTy> rels) { 1300 ArrayRef<uint8_t> d = content(); 1301 const char *msg = nullptr; 1302 unsigned relI = 0; 1303 while (!d.empty()) { 1304 if (d.size() < 4) { 1305 msg = "CIE/FDE too small"; 1306 break; 1307 } 1308 uint64_t size = endian::read32<ELFT::Endianness>(d.data()); 1309 if (size == 0) // ZERO terminator 1310 break; 1311 uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4); 1312 size += 4; 1313 if (LLVM_UNLIKELY(size > d.size())) { 1314 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1315 // but we do not support that format yet. 1316 msg = size == UINT32_MAX + uint64_t(4) 1317 ? "CIE/FDE too large" 1318 : "CIE/FDE ends past the end of the section"; 1319 break; 1320 } 1321 1322 // Find the first relocation that points to [off,off+size). Relocations 1323 // have been sorted by r_offset. 1324 const uint64_t off = d.data() - content().data(); 1325 while (relI != rels.size() && rels[relI].r_offset < off) 1326 ++relI; 1327 unsigned firstRel = -1; 1328 if (relI != rels.size() && rels[relI].r_offset < off + size) 1329 firstRel = relI; 1330 (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); 1331 d = d.slice(size); 1332 } 1333 if (msg) 1334 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1335 getObjMsg(d.data() - content().data())); 1336 } 1337 1338 // Return the offset in an output section for a given input offset. 1339 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1340 auto it = partition_point( 1341 fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1342 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { 1343 it = partition_point( 1344 cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1345 if (it == cies.begin()) // invalid piece 1346 return offset; 1347 } 1348 if (it[-1].outputOff == -1) // invalid piece 1349 return offset - it[-1].inputOff; 1350 return it[-1].outputOff + (offset - it[-1].inputOff); 1351 } 1352 1353 static size_t findNull(StringRef s, size_t entSize) { 1354 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1355 const char *b = s.begin() + i; 1356 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1357 return i; 1358 } 1359 llvm_unreachable(""); 1360 } 1361 1362 // Split SHF_STRINGS section. Such section is a sequence of 1363 // null-terminated strings. 1364 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1365 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1366 const char *p = s.data(), *end = s.data() + s.size(); 1367 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1368 fatal(toString(this) + ": string is not null terminated"); 1369 if (entSize == 1) { 1370 // Optimize the common case. 1371 do { 1372 size_t size = strlen(p); 1373 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1374 p += size + 1; 1375 } while (p != end); 1376 } else { 1377 do { 1378 size_t size = findNull(StringRef(p, end - p), entSize); 1379 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1380 p += size + entSize; 1381 } while (p != end); 1382 } 1383 } 1384 1385 // Split non-SHF_STRINGS section. Such section is a sequence of 1386 // fixed size records. 1387 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1388 size_t entSize) { 1389 size_t size = data.size(); 1390 assert((size % entSize) == 0); 1391 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1392 1393 pieces.resize_for_overwrite(size / entSize); 1394 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1395 pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; 1396 } 1397 1398 template <class ELFT> 1399 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1400 const typename ELFT::Shdr &header, 1401 StringRef name) 1402 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1403 1404 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1405 uint64_t entsize, ArrayRef<uint8_t> data, 1406 StringRef name) 1407 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1408 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1409 1410 // This function is called after we obtain a complete list of input sections 1411 // that need to be linked. This is responsible to split section contents 1412 // into small chunks for further processing. 1413 // 1414 // Note that this function is called from parallelForEach. This must be 1415 // thread-safe (i.e. no memory allocation from the pools). 1416 void MergeInputSection::splitIntoPieces() { 1417 assert(pieces.empty()); 1418 1419 if (flags & SHF_STRINGS) 1420 splitStrings(toStringRef(contentMaybeDecompress()), entsize); 1421 else 1422 splitNonStrings(contentMaybeDecompress(), entsize); 1423 } 1424 1425 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1426 if (content().size() <= offset) 1427 fatal(toString(this) + ": offset is outside the section"); 1428 return partition_point( 1429 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1430 } 1431 1432 // Return the offset in an output section for a given input offset. 1433 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1434 const SectionPiece &piece = getSectionPiece(offset); 1435 return piece.outputOff + (offset - piece.inputOff); 1436 } 1437 1438 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1439 StringRef); 1440 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1441 StringRef); 1442 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1443 StringRef); 1444 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1445 StringRef); 1446 1447 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1448 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1449 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1450 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1451 1452 template RelsOrRelas<ELF32LE> 1453 InputSectionBase::relsOrRelas<ELF32LE>(bool) const; 1454 template RelsOrRelas<ELF32BE> 1455 InputSectionBase::relsOrRelas<ELF32BE>(bool) const; 1456 template RelsOrRelas<ELF64LE> 1457 InputSectionBase::relsOrRelas<ELF64LE>(bool) const; 1458 template RelsOrRelas<ELF64BE> 1459 InputSectionBase::relsOrRelas<ELF64BE>(bool) const; 1460 1461 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1462 const ELF32LE::Shdr &, StringRef); 1463 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1464 const ELF32BE::Shdr &, StringRef); 1465 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1466 const ELF64LE::Shdr &, StringRef); 1467 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1468 const ELF64BE::Shdr &, StringRef); 1469 1470 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1471 const ELF32LE::Shdr &, StringRef); 1472 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1473 const ELF32BE::Shdr &, StringRef); 1474 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1475 const ELF64LE::Shdr &, StringRef); 1476 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1477 const ELF64BE::Shdr &, StringRef); 1478 1479 template void EhInputSection::split<ELF32LE>(); 1480 template void EhInputSection::split<ELF32BE>(); 1481 template void EhInputSection::split<ELF64LE>(); 1482 template void EhInputSection::split<ELF64BE>(); 1483