1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <optional> 26 #include <vector> 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::support; 32 using namespace llvm::support::endian; 33 using namespace llvm::sys; 34 using namespace lld; 35 using namespace lld::elf; 36 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return ArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t addralign, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info, 58 link), 59 file(file), content_(data.data()), size(data.size()) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(addralign, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->addralign = v; 72 73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no 74 // longer supported. 75 if (flags & SHF_COMPRESSED) 76 invokeELFT(parseCompressedHeader,); 77 } 78 79 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 80 // SHF_GROUP is a marker that a section belongs to some comdat group. 81 // That flag doesn't make sense in an executable. 82 static uint64_t getFlags(uint64_t flags) { 83 flags &= ~(uint64_t)SHF_INFO_LINK; 84 if (!config->relocatable) 85 flags &= ~(uint64_t)SHF_GROUP; 86 return flags; 87 } 88 89 template <class ELFT> 90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 91 const typename ELFT::Shdr &hdr, 92 StringRef name, Kind sectionKind) 93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 95 hdr.sh_addralign, getSectionContents(file, hdr), name, 96 sectionKind) { 97 // We reject object files having insanely large alignments even though 98 // they are allowed by the spec. I think 4GB is a reasonable limitation. 99 // We might want to relax this in the future. 100 if (hdr.sh_addralign > UINT32_MAX) 101 fatal(toString(&file) + ": section sh_addralign is too large"); 102 } 103 104 size_t InputSectionBase::getSize() const { 105 if (auto *s = dyn_cast<SyntheticSection>(this)) 106 return s->getSize(); 107 return size - bytesDropped; 108 } 109 110 template <class ELFT> 111 static void decompressAux(const InputSectionBase &sec, uint8_t *out, 112 size_t size) { 113 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); 114 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) 115 .slice(sizeof(typename ELFT::Chdr)); 116 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 117 ? compression::zlib::decompress(compressed, out, size) 118 : compression::zstd::decompress(compressed, out, size)) 119 fatal(toString(&sec) + 120 ": decompress failed: " + llvm::toString(std::move(e))); 121 } 122 123 void InputSectionBase::decompress() const { 124 uint8_t *uncompressedBuf; 125 { 126 static std::mutex mu; 127 std::lock_guard<std::mutex> lock(mu); 128 uncompressedBuf = bAlloc().Allocate<uint8_t>(size); 129 } 130 131 invokeELFT(decompressAux, *this, uncompressedBuf, size); 132 content_ = uncompressedBuf; 133 compressed = false; 134 } 135 136 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 137 if (relSecIdx == 0) 138 return {}; 139 RelsOrRelas<ELFT> ret; 140 typename ELFT::Shdr shdr = 141 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 142 if (shdr.sh_type == SHT_REL) { 143 ret.rels = ArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 144 file->mb.getBufferStart() + shdr.sh_offset), 145 shdr.sh_size / sizeof(typename ELFT::Rel)); 146 } else { 147 assert(shdr.sh_type == SHT_RELA); 148 ret.relas = ArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 149 file->mb.getBufferStart() + shdr.sh_offset), 150 shdr.sh_size / sizeof(typename ELFT::Rela)); 151 } 152 return ret; 153 } 154 155 uint64_t SectionBase::getOffset(uint64_t offset) const { 156 switch (kind()) { 157 case Output: { 158 auto *os = cast<OutputSection>(this); 159 // For output sections we treat offset -1 as the end of the section. 160 return offset == uint64_t(-1) ? os->size : offset; 161 } 162 case Regular: 163 case Synthetic: 164 return cast<InputSection>(this)->outSecOff + offset; 165 case EHFrame: { 166 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 167 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 168 // start of the output .eh_frame. Just return offset. 169 // 170 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 171 // discarded due to GC/ICF. We should compute the output section offset. 172 const EhInputSection *es = cast<EhInputSection>(this); 173 if (!es->content().empty()) 174 if (InputSection *isec = es->getParent()) 175 return isec->outSecOff + es->getParentOffset(offset); 176 return offset; 177 } 178 case Merge: 179 const MergeInputSection *ms = cast<MergeInputSection>(this); 180 if (InputSection *isec = ms->getParent()) 181 return isec->outSecOff + ms->getParentOffset(offset); 182 return ms->getParentOffset(offset); 183 } 184 llvm_unreachable("invalid section kind"); 185 } 186 187 uint64_t SectionBase::getVA(uint64_t offset) const { 188 const OutputSection *out = getOutputSection(); 189 return (out ? out->addr : 0) + getOffset(offset); 190 } 191 192 OutputSection *SectionBase::getOutputSection() { 193 InputSection *sec; 194 if (auto *isec = dyn_cast<InputSection>(this)) 195 sec = isec; 196 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 197 sec = ms->getParent(); 198 else if (auto *eh = dyn_cast<EhInputSection>(this)) 199 sec = eh->getParent(); 200 else 201 return cast<OutputSection>(this); 202 return sec ? sec->getParent() : nullptr; 203 } 204 205 // When a section is compressed, `rawData` consists with a header followed 206 // by zlib-compressed data. This function parses a header to initialize 207 // `uncompressedSize` member and remove the header from `rawData`. 208 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 209 flags &= ~(uint64_t)SHF_COMPRESSED; 210 211 // New-style header 212 if (content().size() < sizeof(typename ELFT::Chdr)) { 213 error(toString(this) + ": corrupted compressed section"); 214 return; 215 } 216 217 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); 218 if (hdr->ch_type == ELFCOMPRESS_ZLIB) { 219 if (!compression::zlib::isAvailable()) 220 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " 221 "not built with zlib support"); 222 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { 223 if (!compression::zstd::isAvailable()) 224 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is " 225 "not built with zstd support"); 226 } else { 227 error(toString(this) + ": unsupported compression type (" + 228 Twine(hdr->ch_type) + ")"); 229 return; 230 } 231 232 compressed = true; 233 compressedSize = size; 234 size = hdr->ch_size; 235 addralign = std::max<uint32_t>(hdr->ch_addralign, 1); 236 } 237 238 InputSection *InputSectionBase::getLinkOrderDep() const { 239 assert(flags & SHF_LINK_ORDER); 240 if (!link) 241 return nullptr; 242 return cast<InputSection>(file->getSections()[link]); 243 } 244 245 // Find a symbol that encloses a given location. 246 Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, 247 uint8_t type) const { 248 for (Symbol *b : file->getSymbols()) 249 if (Defined *d = dyn_cast<Defined>(b)) 250 if (d->section == this && d->value <= offset && 251 offset < d->value + d->size && (type == 0 || type == d->type)) 252 return d; 253 return nullptr; 254 } 255 256 // Returns an object file location string. Used to construct an error message. 257 std::string InputSectionBase::getLocation(uint64_t offset) const { 258 std::string secAndOffset = 259 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 260 261 // We don't have file for synthetic sections. 262 if (file == nullptr) 263 return (config->outputFile + ":(" + secAndOffset).str(); 264 265 std::string filename = toString(file); 266 if (Defined *d = getEnclosingFunction(offset)) 267 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 268 269 return filename + ":(" + secAndOffset; 270 } 271 272 // This function is intended to be used for constructing an error message. 273 // The returned message looks like this: 274 // 275 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 276 // 277 // Returns an empty string if there's no way to get line info. 278 std::string InputSectionBase::getSrcMsg(const Symbol &sym, 279 uint64_t offset) const { 280 return file->getSrcMsg(sym, *this, offset); 281 } 282 283 // Returns a filename string along with an optional section name. This 284 // function is intended to be used for constructing an error 285 // message. The returned message looks like this: 286 // 287 // path/to/foo.o:(function bar) 288 // 289 // or 290 // 291 // path/to/foo.o:(function bar) in archive path/to/bar.a 292 std::string InputSectionBase::getObjMsg(uint64_t off) const { 293 std::string filename = std::string(file->getName()); 294 295 std::string archive; 296 if (!file->archiveName.empty()) 297 archive = (" in archive " + file->archiveName).str(); 298 299 // Find a symbol that encloses a given location. getObjMsg may be called 300 // before ObjFile::initSectionsAndLocalSyms where local symbols are 301 // initialized. 302 if (Defined *d = getEnclosingSymbol(off)) 303 return filename + ":(" + toString(*d) + ")" + archive; 304 305 // If there's no symbol, print out the offset in the section. 306 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 307 .str(); 308 } 309 310 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 311 312 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 313 uint32_t addralign, ArrayRef<uint8_t> data, 314 StringRef name, Kind k) 315 : InputSectionBase(f, flags, type, 316 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data, 317 name, k) {} 318 319 template <class ELFT> 320 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 321 StringRef name) 322 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 323 324 // Copy SHT_GROUP section contents. Used only for the -r option. 325 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 326 // ELFT::Word is the 32-bit integral type in the target endianness. 327 using u32 = typename ELFT::Word; 328 ArrayRef<u32> from = getDataAs<u32>(); 329 auto *to = reinterpret_cast<u32 *>(buf); 330 331 // The first entry is not a section number but a flag. 332 *to++ = from[0]; 333 334 // Adjust section numbers because section numbers in an input object files are 335 // different in the output. We also need to handle combined or discarded 336 // members. 337 ArrayRef<InputSectionBase *> sections = file->getSections(); 338 DenseSet<uint32_t> seen; 339 for (uint32_t idx : from.slice(1)) { 340 OutputSection *osec = sections[idx]->getOutputSection(); 341 if (osec && seen.insert(osec->sectionIndex).second) 342 *to++ = osec->sectionIndex; 343 } 344 } 345 346 InputSectionBase *InputSection::getRelocatedSection() const { 347 if (!file || (type != SHT_RELA && type != SHT_REL)) 348 return nullptr; 349 ArrayRef<InputSectionBase *> sections = file->getSections(); 350 return sections[info]; 351 } 352 353 template <class ELFT, class RelTy> 354 void InputSection::copyRelocations(uint8_t *buf) { 355 if (config->relax && !config->relocatable && config->emachine == EM_RISCV) { 356 // On RISC-V, relaxation might change relocations: copy from internal ones 357 // that are updated by relaxation. 358 InputSectionBase *sec = getRelocatedSection(); 359 copyRelocations<ELFT, RelTy>(buf, llvm::make_range(sec->relocations.begin(), 360 sec->relocations.end())); 361 } else { 362 // Convert the raw relocations in the input section into Relocation objects 363 // suitable to be used by copyRelocations below. 364 struct MapRel { 365 const ObjFile<ELFT> &file; 366 Relocation operator()(const RelTy &rel) const { 367 // RelExpr is not used so set to a dummy value. 368 return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset, 369 getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; 370 } 371 }; 372 373 using RawRels = ArrayRef<RelTy>; 374 using MapRelIter = 375 llvm::mapped_iterator<typename RawRels::iterator, MapRel>; 376 auto mapRel = MapRel{*getFile<ELFT>()}; 377 RawRels rawRels = getDataAs<RelTy>(); 378 auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), 379 MapRelIter(rawRels.end(), mapRel)); 380 copyRelocations<ELFT, RelTy>(buf, rels); 381 } 382 } 383 384 // This is used for -r and --emit-relocs. We can't use memcpy to copy 385 // relocations because we need to update symbol table offset and section index 386 // for each relocation. So we copy relocations one by one. 387 template <class ELFT, class RelTy, class RelIt> 388 void InputSection::copyRelocations(uint8_t *buf, 389 llvm::iterator_range<RelIt> rels) { 390 const TargetInfo &target = *elf::target; 391 InputSectionBase *sec = getRelocatedSection(); 392 (void)sec->contentMaybeDecompress(); // uncompress if needed 393 394 for (const Relocation &rel : rels) { 395 RelType type = rel.type; 396 const ObjFile<ELFT> *file = getFile<ELFT>(); 397 Symbol &sym = *rel.sym; 398 399 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 400 buf += sizeof(RelTy); 401 402 if (RelTy::IsRela) 403 p->r_addend = rel.addend; 404 405 // Output section VA is zero for -r, so r_offset is an offset within the 406 // section, but for --emit-relocs it is a virtual address. 407 p->r_offset = sec->getVA(rel.offset); 408 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 409 config->isMips64EL); 410 411 if (sym.type == STT_SECTION) { 412 // We combine multiple section symbols into only one per 413 // section. This means we have to update the addend. That is 414 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 415 // section data. We do that by adding to the Relocation vector. 416 417 // .eh_frame is horribly special and can reference discarded sections. To 418 // avoid having to parse and recreate .eh_frame, we just replace any 419 // relocation in it pointing to discarded sections with R_*_NONE, which 420 // hopefully creates a frame that is ignored at runtime. Also, don't warn 421 // on .gcc_except_table and debug sections. 422 // 423 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 424 auto *d = dyn_cast<Defined>(&sym); 425 if (!d) { 426 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 427 sec->name != ".gcc_except_table" && sec->name != ".got2" && 428 sec->name != ".toc") { 429 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 430 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 431 warn("relocation refers to a discarded section: " + 432 CHECK(file->getObj().getSectionName(sec), file) + 433 "\n>>> referenced by " + getObjMsg(p->r_offset)); 434 } 435 p->setSymbolAndType(0, 0, false); 436 continue; 437 } 438 SectionBase *section = d->section; 439 assert(section->isLive()); 440 441 int64_t addend = rel.addend; 442 const uint8_t *bufLoc = sec->content().begin() + rel.offset; 443 if (!RelTy::IsRela) 444 addend = target.getImplicitAddend(bufLoc, type); 445 446 if (config->emachine == EM_MIPS && 447 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 448 // Some MIPS relocations depend on "gp" value. By default, 449 // this value has 0x7ff0 offset from a .got section. But 450 // relocatable files produced by a compiler or a linker 451 // might redefine this default value and we must use it 452 // for a calculation of the relocation result. When we 453 // generate EXE or DSO it's trivial. Generating a relocatable 454 // output is more difficult case because the linker does 455 // not calculate relocations in this mode and loses 456 // individual "gp" values used by each input object file. 457 // As a workaround we add the "gp" value to the relocation 458 // addend and save it back to the file. 459 addend += sec->getFile<ELFT>()->mipsGp0; 460 } 461 462 if (RelTy::IsRela) 463 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 464 // For SHF_ALLOC sections relocated by REL, append a relocation to 465 // sec->relocations so that relocateAlloc transitively called by 466 // writeSections will update the implicit addend. Non-SHF_ALLOC sections 467 // utilize relocateNonAlloc to process raw relocations and do not need 468 // this sec->relocations change. 469 else if (config->relocatable && (sec->flags & SHF_ALLOC) && 470 type != target.noneRel) 471 sec->addReloc({R_ABS, type, rel.offset, addend, &sym}); 472 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 473 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 474 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 475 // indicates that r30 is relative to the input section .got2 476 // (r_addend>=0x8000), after linking, r30 should be relative to the output 477 // section .got2 . To compensate for the shift, adjust r_addend by 478 // ppc32Got->outSecOff. 479 p->r_addend += sec->file->ppc32Got2->outSecOff; 480 } 481 } 482 } 483 484 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 485 // references specially. The general rule is that the value of the symbol in 486 // this context is the address of the place P. A further special case is that 487 // branch relocations to an undefined weak reference resolve to the next 488 // instruction. 489 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 490 uint32_t p) { 491 switch (type) { 492 // Unresolved branch relocations to weak references resolve to next 493 // instruction, this will be either 2 or 4 bytes on from P. 494 case R_ARM_THM_JUMP8: 495 case R_ARM_THM_JUMP11: 496 return p + 2 + a; 497 case R_ARM_CALL: 498 case R_ARM_JUMP24: 499 case R_ARM_PC24: 500 case R_ARM_PLT32: 501 case R_ARM_PREL31: 502 case R_ARM_THM_JUMP19: 503 case R_ARM_THM_JUMP24: 504 return p + 4 + a; 505 case R_ARM_THM_CALL: 506 // We don't want an interworking BLX to ARM 507 return p + 5 + a; 508 // Unresolved non branch pc-relative relocations 509 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 510 // targets a weak-reference. 511 case R_ARM_MOVW_PREL_NC: 512 case R_ARM_MOVT_PREL: 513 case R_ARM_REL32: 514 case R_ARM_THM_ALU_PREL_11_0: 515 case R_ARM_THM_MOVW_PREL_NC: 516 case R_ARM_THM_MOVT_PREL: 517 case R_ARM_THM_PC12: 518 return p + a; 519 // p + a is unrepresentable as negative immediates can't be encoded. 520 case R_ARM_THM_PC8: 521 return p; 522 } 523 llvm_unreachable("ARM pc-relative relocation expected\n"); 524 } 525 526 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 527 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 528 switch (type) { 529 // Unresolved branch relocations to weak references resolve to next 530 // instruction, this is 4 bytes on from P. 531 case R_AARCH64_CALL26: 532 case R_AARCH64_CONDBR19: 533 case R_AARCH64_JUMP26: 534 case R_AARCH64_TSTBR14: 535 return p + 4; 536 // Unresolved non branch pc-relative relocations 537 case R_AARCH64_PREL16: 538 case R_AARCH64_PREL32: 539 case R_AARCH64_PREL64: 540 case R_AARCH64_ADR_PREL_LO21: 541 case R_AARCH64_LD_PREL_LO19: 542 case R_AARCH64_PLT32: 543 return p; 544 } 545 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 546 } 547 548 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 549 switch (type) { 550 case R_RISCV_BRANCH: 551 case R_RISCV_JAL: 552 case R_RISCV_CALL: 553 case R_RISCV_CALL_PLT: 554 case R_RISCV_RVC_BRANCH: 555 case R_RISCV_RVC_JUMP: 556 case R_RISCV_PLT32: 557 return p; 558 default: 559 return 0; 560 } 561 } 562 563 // ARM SBREL relocations are of the form S + A - B where B is the static base 564 // The ARM ABI defines base to be "addressing origin of the output segment 565 // defining the symbol S". We defined the "addressing origin"/static base to be 566 // the base of the PT_LOAD segment containing the Sym. 567 // The procedure call standard only defines a Read Write Position Independent 568 // RWPI variant so in practice we should expect the static base to be the base 569 // of the RW segment. 570 static uint64_t getARMStaticBase(const Symbol &sym) { 571 OutputSection *os = sym.getOutputSection(); 572 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 573 fatal("SBREL relocation to " + sym.getName() + " without static base"); 574 return os->ptLoad->firstSec->addr; 575 } 576 577 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 578 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 579 // is calculated using PCREL_HI20's symbol. 580 // 581 // This function returns the R_RISCV_PCREL_HI20 relocation from 582 // R_RISCV_PCREL_LO12's symbol and addend. 583 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 584 const Defined *d = cast<Defined>(sym); 585 if (!d->section) { 586 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 587 sym->getName()); 588 return nullptr; 589 } 590 InputSection *isec = cast<InputSection>(d->section); 591 592 if (addend != 0) 593 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 594 isec->getObjMsg(d->value) + " is ignored"); 595 596 // Relocations are sorted by offset, so we can use std::equal_range to do 597 // binary search. 598 Relocation r; 599 r.offset = d->value; 600 auto range = 601 std::equal_range(isec->relocs().begin(), isec->relocs().end(), r, 602 [](const Relocation &lhs, const Relocation &rhs) { 603 return lhs.offset < rhs.offset; 604 }); 605 606 for (auto it = range.first; it != range.second; ++it) 607 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 608 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 609 return &*it; 610 611 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + 612 isec->getObjMsg(d->value) + 613 " without an associated R_RISCV_PCREL_HI20 relocation"); 614 return nullptr; 615 } 616 617 // A TLS symbol's virtual address is relative to the TLS segment. Add a 618 // target-specific adjustment to produce a thread-pointer-relative offset. 619 static int64_t getTlsTpOffset(const Symbol &s) { 620 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 621 if (&s == ElfSym::tlsModuleBase) 622 return 0; 623 624 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 625 // while most others use Variant 1. At run time TP will be aligned to p_align. 626 627 // Variant 1. TP will be followed by an optional gap (which is the size of 2 628 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 629 // padding, then the static TLS blocks. The alignment padding is added so that 630 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 631 // 632 // Variant 2. Static TLS blocks, followed by alignment padding are placed 633 // before TP. The alignment padding is added so that (TP - padding - 634 // p_memsz) is congruent to p_vaddr modulo p_align. 635 PhdrEntry *tls = Out::tlsPhdr; 636 switch (config->emachine) { 637 // Variant 1. 638 case EM_ARM: 639 case EM_AARCH64: 640 return s.getVA(0) + config->wordsize * 2 + 641 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 642 case EM_MIPS: 643 case EM_PPC: 644 case EM_PPC64: 645 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 646 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 647 // data and 0xf000 of the program's TLS segment. 648 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 649 case EM_LOONGARCH: 650 case EM_RISCV: 651 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 652 653 // Variant 2. 654 case EM_HEXAGON: 655 case EM_SPARCV9: 656 case EM_386: 657 case EM_X86_64: 658 return s.getVA(0) - tls->p_memsz - 659 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 660 default: 661 llvm_unreachable("unhandled Config->EMachine"); 662 } 663 } 664 665 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 666 int64_t a, uint64_t p, 667 const Symbol &sym, RelExpr expr) { 668 switch (expr) { 669 case R_ABS: 670 case R_DTPREL: 671 case R_RELAX_TLS_LD_TO_LE_ABS: 672 case R_RELAX_GOT_PC_NOPIC: 673 case R_RISCV_ADD: 674 case R_RISCV_LEB128: 675 return sym.getVA(a); 676 case R_ADDEND: 677 return a; 678 case R_RELAX_HINT: 679 return 0; 680 case R_ARM_SBREL: 681 return sym.getVA(a) - getARMStaticBase(sym); 682 case R_GOT: 683 case R_RELAX_TLS_GD_TO_IE_ABS: 684 return sym.getGotVA() + a; 685 case R_LOONGARCH_GOT: 686 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type 687 // for their page offsets. The arithmetics are different in the TLS case 688 // so we have to duplicate some logic here. 689 if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12) 690 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. 691 return in.got->getGlobalDynAddr(sym) + a; 692 return getRelocTargetVA(file, type, a, p, sym, R_GOT); 693 case R_GOTONLY_PC: 694 return in.got->getVA() + a - p; 695 case R_GOTPLTONLY_PC: 696 return in.gotPlt->getVA() + a - p; 697 case R_GOTREL: 698 case R_PPC64_RELAX_TOC: 699 return sym.getVA(a) - in.got->getVA(); 700 case R_GOTPLTREL: 701 return sym.getVA(a) - in.gotPlt->getVA(); 702 case R_GOTPLT: 703 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 704 return sym.getGotVA() + a - in.gotPlt->getVA(); 705 case R_TLSLD_GOT_OFF: 706 case R_GOT_OFF: 707 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 708 return sym.getGotOffset() + a; 709 case R_AARCH64_GOT_PAGE_PC: 710 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 711 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 712 case R_AARCH64_GOT_PAGE: 713 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 714 case R_GOT_PC: 715 case R_RELAX_TLS_GD_TO_IE: 716 return sym.getGotVA() + a - p; 717 case R_LOONGARCH_GOT_PAGE_PC: 718 if (sym.hasFlag(NEEDS_TLSGD)) 719 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p); 720 return getLoongArchPageDelta(sym.getGotVA() + a, p); 721 case R_MIPS_GOTREL: 722 return sym.getVA(a) - in.mipsGot->getGp(file); 723 case R_MIPS_GOT_GP: 724 return in.mipsGot->getGp(file) + a; 725 case R_MIPS_GOT_GP_PC: { 726 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 727 // is _gp_disp symbol. In that case we should use the following 728 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 729 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 730 // microMIPS variants of these relocations use slightly different 731 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 732 // to correctly handle less-significant bit of the microMIPS symbol. 733 uint64_t v = in.mipsGot->getGp(file) + a - p; 734 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 735 v += 4; 736 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 737 v -= 1; 738 return v; 739 } 740 case R_MIPS_GOT_LOCAL_PAGE: 741 // If relocation against MIPS local symbol requires GOT entry, this entry 742 // should be initialized by 'page address'. This address is high 16-bits 743 // of sum the symbol's value and the addend. 744 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 745 in.mipsGot->getGp(file); 746 case R_MIPS_GOT_OFF: 747 case R_MIPS_GOT_OFF32: 748 // In case of MIPS if a GOT relocation has non-zero addend this addend 749 // should be applied to the GOT entry content not to the GOT entry offset. 750 // That is why we use separate expression type. 751 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 752 in.mipsGot->getGp(file); 753 case R_MIPS_TLSGD: 754 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 755 in.mipsGot->getGp(file); 756 case R_MIPS_TLSLD: 757 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 758 in.mipsGot->getGp(file); 759 case R_AARCH64_PAGE_PC: { 760 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 761 return getAArch64Page(val) - getAArch64Page(p); 762 } 763 case R_RISCV_PC_INDIRECT: { 764 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 765 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 766 *hiRel->sym, hiRel->expr); 767 return 0; 768 } 769 case R_LOONGARCH_PAGE_PC: 770 return getLoongArchPageDelta(sym.getVA(a), p); 771 case R_PC: 772 case R_ARM_PCA: { 773 uint64_t dest; 774 if (expr == R_ARM_PCA) 775 // Some PC relative ARM (Thumb) relocations align down the place. 776 p = p & 0xfffffffc; 777 if (sym.isUndefined()) { 778 // On ARM and AArch64 a branch to an undefined weak resolves to the next 779 // instruction, otherwise the place. On RISC-V, resolve an undefined weak 780 // to the same instruction to cause an infinite loop (making the user 781 // aware of the issue) while ensuring no overflow. 782 // Note: if the symbol is hidden, its binding has been converted to local, 783 // so we just check isUndefined() here. 784 if (config->emachine == EM_ARM) 785 dest = getARMUndefinedRelativeWeakVA(type, a, p); 786 else if (config->emachine == EM_AARCH64) 787 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 788 else if (config->emachine == EM_PPC) 789 dest = p; 790 else if (config->emachine == EM_RISCV) 791 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 792 else 793 dest = sym.getVA(a); 794 } else { 795 dest = sym.getVA(a); 796 } 797 return dest - p; 798 } 799 case R_PLT: 800 return sym.getPltVA() + a; 801 case R_PLT_PC: 802 case R_PPC64_CALL_PLT: 803 return sym.getPltVA() + a - p; 804 case R_LOONGARCH_PLT_PAGE_PC: 805 return getLoongArchPageDelta(sym.getPltVA() + a, p); 806 case R_PLT_GOTPLT: 807 return sym.getPltVA() + a - in.gotPlt->getVA(); 808 case R_PPC32_PLTREL: 809 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 810 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 811 // target VA computation. 812 return sym.getPltVA() - p; 813 case R_PPC64_CALL: { 814 uint64_t symVA = sym.getVA(a); 815 // If we have an undefined weak symbol, we might get here with a symbol 816 // address of zero. That could overflow, but the code must be unreachable, 817 // so don't bother doing anything at all. 818 if (!symVA) 819 return 0; 820 821 // PPC64 V2 ABI describes two entry points to a function. The global entry 822 // point is used for calls where the caller and callee (may) have different 823 // TOC base pointers and r2 needs to be modified to hold the TOC base for 824 // the callee. For local calls the caller and callee share the same 825 // TOC base and so the TOC pointer initialization code should be skipped by 826 // branching to the local entry point. 827 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 828 } 829 case R_PPC64_TOCBASE: 830 return getPPC64TocBase() + a; 831 case R_RELAX_GOT_PC: 832 case R_PPC64_RELAX_GOT_PC: 833 return sym.getVA(a) - p; 834 case R_RELAX_TLS_GD_TO_LE: 835 case R_RELAX_TLS_IE_TO_LE: 836 case R_RELAX_TLS_LD_TO_LE: 837 case R_TPREL: 838 // It is not very clear what to return if the symbol is undefined. With 839 // --noinhibit-exec, even a non-weak undefined reference may reach here. 840 // Just return A, which matches R_ABS, and the behavior of some dynamic 841 // loaders. 842 if (sym.isUndefined()) 843 return a; 844 return getTlsTpOffset(sym) + a; 845 case R_RELAX_TLS_GD_TO_LE_NEG: 846 case R_TPREL_NEG: 847 if (sym.isUndefined()) 848 return a; 849 return -getTlsTpOffset(sym) + a; 850 case R_SIZE: 851 return sym.getSize() + a; 852 case R_TLSDESC: 853 return in.got->getTlsDescAddr(sym) + a; 854 case R_TLSDESC_PC: 855 return in.got->getTlsDescAddr(sym) + a - p; 856 case R_TLSDESC_GOTPLT: 857 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 858 case R_AARCH64_TLSDESC_PAGE: 859 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 860 case R_TLSGD_GOT: 861 return in.got->getGlobalDynOffset(sym) + a; 862 case R_TLSGD_GOTPLT: 863 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 864 case R_TLSGD_PC: 865 return in.got->getGlobalDynAddr(sym) + a - p; 866 case R_LOONGARCH_TLSGD_PAGE_PC: 867 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p); 868 case R_TLSLD_GOTPLT: 869 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 870 case R_TLSLD_GOT: 871 return in.got->getTlsIndexOff() + a; 872 case R_TLSLD_PC: 873 return in.got->getTlsIndexVA() + a - p; 874 default: 875 llvm_unreachable("invalid expression"); 876 } 877 } 878 879 // This function applies relocations to sections without SHF_ALLOC bit. 880 // Such sections are never mapped to memory at runtime. Debug sections are 881 // an example. Relocations in non-alloc sections are much easier to 882 // handle than in allocated sections because it will never need complex 883 // treatment such as GOT or PLT (because at runtime no one refers them). 884 // So, we handle relocations for non-alloc sections directly in this 885 // function as a performance optimization. 886 template <class ELFT, class RelTy> 887 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 888 const unsigned bits = sizeof(typename ELFT::uint) * 8; 889 const TargetInfo &target = *elf::target; 890 const auto emachine = config->emachine; 891 const bool isDebug = isDebugSection(*this); 892 const bool isDebugLine = isDebug && name == ".debug_line"; 893 std::optional<uint64_t> tombstone; 894 if (isDebug) { 895 if (name == ".debug_loc" || name == ".debug_ranges") 896 tombstone = 1; 897 else if (name == ".debug_names") 898 tombstone = UINT64_MAX; // tombstone value 899 else 900 tombstone = 0; 901 } 902 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 903 if (patAndValue.first.match(this->name)) { 904 tombstone = patAndValue.second; 905 break; 906 } 907 908 for (size_t i = 0, relsSize = rels.size(); i != relsSize; ++i) { 909 const RelTy &rel = rels[i]; 910 const RelType type = rel.getType(config->isMips64EL); 911 const uint64_t offset = rel.r_offset; 912 uint8_t *bufLoc = buf + offset; 913 int64_t addend = getAddend<ELFT>(rel); 914 if (!RelTy::IsRela) 915 addend += target.getImplicitAddend(bufLoc, type); 916 917 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 918 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 919 if (expr == R_NONE) 920 continue; 921 auto *ds = dyn_cast<Defined>(&sym); 922 923 if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { 924 if (++i < relsSize && 925 rels[i].getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && 926 rels[i].r_offset == offset) { 927 uint64_t val; 928 if (!ds && tombstone) { 929 val = *tombstone; 930 } else { 931 val = sym.getVA(addend) - 932 (getFile<ELFT>()->getRelocTargetSym(rels[i]).getVA(0) + 933 getAddend<ELFT>(rels[i])); 934 } 935 if (overwriteULEB128(bufLoc, val) >= 0x80) 936 errorOrWarn(getLocation(offset) + ": ULEB128 value " + Twine(val) + 937 " exceeds available space; references '" + 938 lld::toString(sym) + "'"); 939 continue; 940 } 941 errorOrWarn(getLocation(offset) + 942 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128"); 943 return; 944 } 945 946 if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { 947 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 948 // folded section symbols) to a tombstone value. Resolving to addend is 949 // unsatisfactory because the result address range may collide with a 950 // valid range of low address, or leave multiple CUs claiming ownership of 951 // the same range of code, which may confuse consumers. 952 // 953 // To address the problems, we use -1 as a tombstone value for most 954 // .debug_* sections. We have to ignore the addend because we don't want 955 // to resolve an address attribute (which may have a non-zero addend) to 956 // -1+addend (wrap around to a low address). 957 // 958 // R_DTPREL type relocations represent an offset into the dynamic thread 959 // vector. The computed value is st_value plus a non-negative offset. 960 // Negative values are invalid, so -1 can be used as the tombstone value. 961 // 962 // If the referenced symbol is discarded (made Undefined), or the 963 // section defining the referenced symbol is garbage collected, 964 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 965 // case. However, resolving a relocation in .debug_line to -1 would stop 966 // debugger users from setting breakpoints on the folded-in function, so 967 // exclude .debug_line. 968 // 969 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 970 // (base address selection entry), use 1 (which is used by GNU ld for 971 // .debug_ranges). 972 // 973 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 974 // value. Enable -1 in a future release. 975 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 976 // If -z dead-reloc-in-nonalloc= is specified, respect it. 977 uint64_t value = SignExtend64<bits>(*tombstone); 978 // For a 32-bit local TU reference in .debug_names, X86_64::relocate 979 // requires that the unsigned value for R_X86_64_32 is truncated to 980 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit 981 // absolute relocations and do not need this change. 982 if (emachine == EM_X86_64 && type == R_X86_64_32) 983 value = static_cast<uint32_t>(value); 984 target.relocateNoSym(bufLoc, type, value); 985 continue; 986 } 987 } 988 989 // For a relocatable link, content relocated by RELA remains unchanged and 990 // we can stop here, while content relocated by REL referencing STT_SECTION 991 // needs updating implicit addends. 992 if (config->relocatable && (RelTy::IsRela || sym.type != STT_SECTION)) 993 continue; 994 995 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 996 // sections. 997 if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || 998 expr == R_RISCV_ADD) { 999 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 1000 continue; 1001 } 1002 1003 if (expr == R_SIZE) { 1004 target.relocateNoSym(bufLoc, type, 1005 SignExtend64<bits>(sym.getSize() + addend)); 1006 continue; 1007 } 1008 1009 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 1010 toString(type) + " against symbol '" + toString(sym) + 1011 "'"; 1012 if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) { 1013 errorOrWarn(msg); 1014 return; 1015 } 1016 1017 // If the control reaches here, we found a PC-relative relocation in a 1018 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 1019 // at runtime, the notion of PC-relative doesn't make sense here. So, 1020 // this is a usage error. However, GNU linkers historically accept such 1021 // relocations without any errors and relocate them as if they were at 1022 // address 0. For bug-compatibility, we accept them with warnings. We 1023 // know Steel Bank Common Lisp as of 2018 have this bug. 1024 // 1025 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 1026 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in 1027 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to 1028 // keep this bug-compatible code for a while. 1029 warn(msg); 1030 target.relocateNoSym( 1031 bufLoc, type, 1032 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 1033 } 1034 } 1035 1036 template <class ELFT> 1037 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 1038 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 1039 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 1040 1041 if (flags & SHF_ALLOC) { 1042 target->relocateAlloc(*this, buf); 1043 return; 1044 } 1045 1046 auto *sec = cast<InputSection>(this); 1047 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1048 // locations with tombstone values. 1049 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1050 if (rels.areRelocsRel()) 1051 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1052 else 1053 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1054 } 1055 1056 // For each function-defining prologue, find any calls to __morestack, 1057 // and replace them with calls to __morestack_non_split. 1058 static void switchMorestackCallsToMorestackNonSplit( 1059 DenseSet<Defined *> &prologues, 1060 SmallVector<Relocation *, 0> &morestackCalls) { 1061 1062 // If the target adjusted a function's prologue, all calls to 1063 // __morestack inside that function should be switched to 1064 // __morestack_non_split. 1065 Symbol *moreStackNonSplit = symtab.find("__morestack_non_split"); 1066 if (!moreStackNonSplit) { 1067 error("mixing split-stack objects requires a definition of " 1068 "__morestack_non_split"); 1069 return; 1070 } 1071 1072 // Sort both collections to compare addresses efficiently. 1073 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1074 return l->offset < r->offset; 1075 }); 1076 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1077 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1078 return l->value < r->value; 1079 }); 1080 1081 auto it = morestackCalls.begin(); 1082 for (Defined *f : functions) { 1083 // Find the first call to __morestack within the function. 1084 while (it != morestackCalls.end() && (*it)->offset < f->value) 1085 ++it; 1086 // Adjust all calls inside the function. 1087 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1088 (*it)->sym = moreStackNonSplit; 1089 ++it; 1090 } 1091 } 1092 } 1093 1094 static bool enclosingPrologueAttempted(uint64_t offset, 1095 const DenseSet<Defined *> &prologues) { 1096 for (Defined *f : prologues) 1097 if (f->value <= offset && offset < f->value + f->size) 1098 return true; 1099 return false; 1100 } 1101 1102 // If a function compiled for split stack calls a function not 1103 // compiled for split stack, then the caller needs its prologue 1104 // adjusted to ensure that the called function will have enough stack 1105 // available. Find those functions, and adjust their prologues. 1106 template <class ELFT> 1107 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1108 uint8_t *end) { 1109 DenseSet<Defined *> prologues; 1110 SmallVector<Relocation *, 0> morestackCalls; 1111 1112 for (Relocation &rel : relocs()) { 1113 // Ignore calls into the split-stack api. 1114 if (rel.sym->getName().starts_with("__morestack")) { 1115 if (rel.sym->getName().equals("__morestack")) 1116 morestackCalls.push_back(&rel); 1117 continue; 1118 } 1119 1120 // A relocation to non-function isn't relevant. Sometimes 1121 // __morestack is not marked as a function, so this check comes 1122 // after the name check. 1123 if (rel.sym->type != STT_FUNC) 1124 continue; 1125 1126 // If the callee's-file was compiled with split stack, nothing to do. In 1127 // this context, a "Defined" symbol is one "defined by the binary currently 1128 // being produced". So an "undefined" symbol might be provided by a shared 1129 // library. It is not possible to tell how such symbols were compiled, so be 1130 // conservative. 1131 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1132 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1133 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1134 continue; 1135 1136 if (enclosingPrologueAttempted(rel.offset, prologues)) 1137 continue; 1138 1139 if (Defined *f = getEnclosingFunction(rel.offset)) { 1140 prologues.insert(f); 1141 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1142 f->stOther)) 1143 continue; 1144 if (!getFile<ELFT>()->someNoSplitStack) 1145 error(lld::toString(this) + ": " + f->getName() + 1146 " (with -fsplit-stack) calls " + rel.sym->getName() + 1147 " (without -fsplit-stack), but couldn't adjust its prologue"); 1148 } 1149 } 1150 1151 if (target->needsMoreStackNonSplit) 1152 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1153 } 1154 1155 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1156 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1157 return; 1158 // If -r or --emit-relocs is given, then an InputSection 1159 // may be a relocation section. 1160 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1161 copyRelocations<ELFT, typename ELFT::Rela>(buf); 1162 return; 1163 } 1164 if (LLVM_UNLIKELY(type == SHT_REL)) { 1165 copyRelocations<ELFT, typename ELFT::Rel>(buf); 1166 return; 1167 } 1168 1169 // If -r is given, we may have a SHT_GROUP section. 1170 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1171 copyShtGroup<ELFT>(buf); 1172 return; 1173 } 1174 1175 // If this is a compressed section, uncompress section contents directly 1176 // to the buffer. 1177 if (compressed) { 1178 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); 1179 auto compressed = ArrayRef<uint8_t>(content_, compressedSize) 1180 .slice(sizeof(typename ELFT::Chdr)); 1181 size_t size = this->size; 1182 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 1183 ? compression::zlib::decompress(compressed, buf, size) 1184 : compression::zstd::decompress(compressed, buf, size)) 1185 fatal(toString(this) + 1186 ": decompress failed: " + llvm::toString(std::move(e))); 1187 uint8_t *bufEnd = buf + size; 1188 relocate<ELFT>(buf, bufEnd); 1189 return; 1190 } 1191 1192 // Copy section contents from source object file to output file 1193 // and then apply relocations. 1194 memcpy(buf, content().data(), content().size()); 1195 relocate<ELFT>(buf, buf + content().size()); 1196 } 1197 1198 void InputSection::replace(InputSection *other) { 1199 addralign = std::max(addralign, other->addralign); 1200 1201 // When a section is replaced with another section that was allocated to 1202 // another partition, the replacement section (and its associated sections) 1203 // need to be placed in the main partition so that both partitions will be 1204 // able to access it. 1205 if (partition != other->partition) { 1206 partition = 1; 1207 for (InputSection *isec : dependentSections) 1208 isec->partition = 1; 1209 } 1210 1211 other->repl = repl; 1212 other->markDead(); 1213 } 1214 1215 template <class ELFT> 1216 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1217 const typename ELFT::Shdr &header, 1218 StringRef name) 1219 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1220 1221 SyntheticSection *EhInputSection::getParent() const { 1222 return cast_or_null<SyntheticSection>(parent); 1223 } 1224 1225 // .eh_frame is a sequence of CIE or FDE records. 1226 // This function splits an input section into records and returns them. 1227 template <class ELFT> void EhInputSection::split() { 1228 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1229 // getReloc expects the relocations to be sorted by r_offset. See the comment 1230 // in scanRelocs. 1231 if (rels.areRelocsRel()) { 1232 SmallVector<typename ELFT::Rel, 0> storage; 1233 split<ELFT>(sortRels(rels.rels, storage)); 1234 } else { 1235 SmallVector<typename ELFT::Rela, 0> storage; 1236 split<ELFT>(sortRels(rels.relas, storage)); 1237 } 1238 } 1239 1240 template <class ELFT, class RelTy> 1241 void EhInputSection::split(ArrayRef<RelTy> rels) { 1242 ArrayRef<uint8_t> d = content(); 1243 const char *msg = nullptr; 1244 unsigned relI = 0; 1245 while (!d.empty()) { 1246 if (d.size() < 4) { 1247 msg = "CIE/FDE too small"; 1248 break; 1249 } 1250 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1251 if (size == 0) // ZERO terminator 1252 break; 1253 uint32_t id = endian::read32<ELFT::TargetEndianness>(d.data() + 4); 1254 size += 4; 1255 if (LLVM_UNLIKELY(size > d.size())) { 1256 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1257 // but we do not support that format yet. 1258 msg = size == UINT32_MAX + uint64_t(4) 1259 ? "CIE/FDE too large" 1260 : "CIE/FDE ends past the end of the section"; 1261 break; 1262 } 1263 1264 // Find the first relocation that points to [off,off+size). Relocations 1265 // have been sorted by r_offset. 1266 const uint64_t off = d.data() - content().data(); 1267 while (relI != rels.size() && rels[relI].r_offset < off) 1268 ++relI; 1269 unsigned firstRel = -1; 1270 if (relI != rels.size() && rels[relI].r_offset < off + size) 1271 firstRel = relI; 1272 (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); 1273 d = d.slice(size); 1274 } 1275 if (msg) 1276 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1277 getObjMsg(d.data() - content().data())); 1278 } 1279 1280 // Return the offset in an output section for a given input offset. 1281 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1282 auto it = partition_point( 1283 fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1284 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { 1285 it = partition_point( 1286 cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1287 if (it == cies.begin()) // invalid piece 1288 return offset; 1289 } 1290 if (it[-1].outputOff == -1) // invalid piece 1291 return offset - it[-1].inputOff; 1292 return it[-1].outputOff + (offset - it[-1].inputOff); 1293 } 1294 1295 static size_t findNull(StringRef s, size_t entSize) { 1296 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1297 const char *b = s.begin() + i; 1298 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1299 return i; 1300 } 1301 llvm_unreachable(""); 1302 } 1303 1304 // Split SHF_STRINGS section. Such section is a sequence of 1305 // null-terminated strings. 1306 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1307 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1308 const char *p = s.data(), *end = s.data() + s.size(); 1309 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1310 fatal(toString(this) + ": string is not null terminated"); 1311 if (entSize == 1) { 1312 // Optimize the common case. 1313 do { 1314 size_t size = strlen(p); 1315 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1316 p += size + 1; 1317 } while (p != end); 1318 } else { 1319 do { 1320 size_t size = findNull(StringRef(p, end - p), entSize); 1321 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1322 p += size + entSize; 1323 } while (p != end); 1324 } 1325 } 1326 1327 // Split non-SHF_STRINGS section. Such section is a sequence of 1328 // fixed size records. 1329 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1330 size_t entSize) { 1331 size_t size = data.size(); 1332 assert((size % entSize) == 0); 1333 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1334 1335 pieces.resize_for_overwrite(size / entSize); 1336 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1337 pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; 1338 } 1339 1340 template <class ELFT> 1341 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1342 const typename ELFT::Shdr &header, 1343 StringRef name) 1344 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1345 1346 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1347 uint64_t entsize, ArrayRef<uint8_t> data, 1348 StringRef name) 1349 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1350 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1351 1352 // This function is called after we obtain a complete list of input sections 1353 // that need to be linked. This is responsible to split section contents 1354 // into small chunks for further processing. 1355 // 1356 // Note that this function is called from parallelForEach. This must be 1357 // thread-safe (i.e. no memory allocation from the pools). 1358 void MergeInputSection::splitIntoPieces() { 1359 assert(pieces.empty()); 1360 1361 if (flags & SHF_STRINGS) 1362 splitStrings(toStringRef(contentMaybeDecompress()), entsize); 1363 else 1364 splitNonStrings(contentMaybeDecompress(), entsize); 1365 } 1366 1367 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1368 if (content().size() <= offset) 1369 fatal(toString(this) + ": offset is outside the section"); 1370 return partition_point( 1371 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1372 } 1373 1374 // Return the offset in an output section for a given input offset. 1375 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1376 const SectionPiece &piece = getSectionPiece(offset); 1377 return piece.outputOff + (offset - piece.inputOff); 1378 } 1379 1380 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1381 StringRef); 1382 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1383 StringRef); 1384 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1385 StringRef); 1386 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1387 StringRef); 1388 1389 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1390 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1391 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1392 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1393 1394 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1395 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1396 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1397 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1398 1399 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1400 const ELF32LE::Shdr &, StringRef); 1401 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1402 const ELF32BE::Shdr &, StringRef); 1403 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1404 const ELF64LE::Shdr &, StringRef); 1405 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1406 const ELF64BE::Shdr &, StringRef); 1407 1408 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1409 const ELF32LE::Shdr &, StringRef); 1410 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1411 const ELF32BE::Shdr &, StringRef); 1412 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1413 const ELF64LE::Shdr &, StringRef); 1414 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1415 const ELF64BE::Shdr &, StringRef); 1416 1417 template void EhInputSection::split<ELF32LE>(); 1418 template void EhInputSection::split<ELF32BE>(); 1419 template void EhInputSection::split<ELF64LE>(); 1420 template void EhInputSection::split<ELF64BE>(); 1421