1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 numRelocations = 0; 74 areRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraints. 78 uint32_t v = std::max<uint32_t>(alignment, 1); 79 if (!isPowerOf2_64(v)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->alignment = v; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(file) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 switch (config->ekind) { 92 case ELF32LEKind: 93 parseCompressedHeader<ELF32LE>(); 94 break; 95 case ELF32BEKind: 96 parseCompressedHeader<ELF32BE>(); 97 break; 98 case ELF64LEKind: 99 parseCompressedHeader<ELF64LE>(); 100 break; 101 case ELF64BEKind: 102 parseCompressedHeader<ELF64BE>(); 103 break; 104 default: 105 llvm_unreachable("unknown ELFT"); 106 } 107 } 108 } 109 110 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 111 // SHF_GROUP is a marker that a section belongs to some comdat group. 112 // That flag doesn't make sense in an executable. 113 static uint64_t getFlags(uint64_t flags) { 114 flags &= ~(uint64_t)SHF_INFO_LINK; 115 if (!config->relocatable) 116 flags &= ~(uint64_t)SHF_GROUP; 117 return flags; 118 } 119 120 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 121 // March 2017) fail to infer section types for sections starting with 122 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 123 // SHF_INIT_ARRAY. As a result, the following assembler directive 124 // creates ".init_array.100" with SHT_PROGBITS, for example. 125 // 126 // .section .init_array.100, "aw" 127 // 128 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 129 // incorrect inputs as if they were correct from the beginning. 130 static uint64_t getType(uint64_t type, StringRef name) { 131 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 132 return SHT_INIT_ARRAY; 133 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 134 return SHT_FINI_ARRAY; 135 return type; 136 } 137 138 template <class ELFT> 139 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 140 const typename ELFT::Shdr &hdr, 141 StringRef name, Kind sectionKind) 142 : InputSectionBase(&file, getFlags(hdr.sh_flags), 143 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 144 hdr.sh_info, hdr.sh_addralign, 145 getSectionContents(file, hdr), name, sectionKind) { 146 // We reject object files having insanely large alignments even though 147 // they are allowed by the spec. I think 4GB is a reasonable limitation. 148 // We might want to relax this in the future. 149 if (hdr.sh_addralign > UINT32_MAX) 150 fatal(toString(&file) + ": section sh_addralign is too large"); 151 } 152 153 size_t InputSectionBase::getSize() const { 154 if (auto *s = dyn_cast<SyntheticSection>(this)) 155 return s->getSize(); 156 if (uncompressedSize >= 0) 157 return uncompressedSize; 158 return rawData.size() - bytesDropped; 159 } 160 161 void InputSectionBase::uncompress() const { 162 size_t size = uncompressedSize; 163 char *uncompressedBuf; 164 { 165 static std::mutex mu; 166 std::lock_guard<std::mutex> lock(mu); 167 uncompressedBuf = bAlloc.Allocate<char>(size); 168 } 169 170 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 171 fatal(toString(this) + 172 ": uncompress failed: " + llvm::toString(std::move(e))); 173 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 174 uncompressedSize = -1; 175 } 176 177 uint64_t InputSectionBase::getOffsetInFile() const { 178 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 179 const uint8_t *secStart = data().begin(); 180 return secStart - fileStart; 181 } 182 183 uint64_t SectionBase::getOffset(uint64_t offset) const { 184 switch (kind()) { 185 case Output: { 186 auto *os = cast<OutputSection>(this); 187 // For output sections we treat offset -1 as the end of the section. 188 return offset == uint64_t(-1) ? os->size : offset; 189 } 190 case Regular: 191 case Synthetic: 192 return cast<InputSection>(this)->getOffset(offset); 193 case EHFrame: 194 // The file crtbeginT.o has relocations pointing to the start of an empty 195 // .eh_frame that is known to be the first in the link. It does that to 196 // identify the start of the output .eh_frame. 197 return offset; 198 case Merge: 199 const MergeInputSection *ms = cast<MergeInputSection>(this); 200 if (InputSection *isec = ms->getParent()) 201 return isec->getOffset(ms->getParentOffset(offset)); 202 return ms->getParentOffset(offset); 203 } 204 llvm_unreachable("invalid section kind"); 205 } 206 207 uint64_t SectionBase::getVA(uint64_t offset) const { 208 const OutputSection *out = getOutputSection(); 209 return (out ? out->addr : 0) + getOffset(offset); 210 } 211 212 OutputSection *SectionBase::getOutputSection() { 213 InputSection *sec; 214 if (auto *isec = dyn_cast<InputSection>(this)) 215 sec = isec; 216 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 217 sec = ms->getParent(); 218 else if (auto *eh = dyn_cast<EhInputSection>(this)) 219 sec = eh->getParent(); 220 else 221 return cast<OutputSection>(this); 222 return sec ? sec->getParent() : nullptr; 223 } 224 225 // When a section is compressed, `rawData` consists with a header followed 226 // by zlib-compressed data. This function parses a header to initialize 227 // `uncompressedSize` member and remove the header from `rawData`. 228 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 229 // Old-style header 230 if (name.startswith(".zdebug")) { 231 if (!toStringRef(rawData).startswith("ZLIB")) { 232 error(toString(this) + ": corrupted compressed section header"); 233 return; 234 } 235 rawData = rawData.slice(4); 236 237 if (rawData.size() < 8) { 238 error(toString(this) + ": corrupted compressed section header"); 239 return; 240 } 241 242 uncompressedSize = read64be(rawData.data()); 243 rawData = rawData.slice(8); 244 245 // Restore the original section name. 246 // (e.g. ".zdebug_info" -> ".debug_info") 247 name = saver.save("." + name.substr(2)); 248 return; 249 } 250 251 assert(flags & SHF_COMPRESSED); 252 flags &= ~(uint64_t)SHF_COMPRESSED; 253 254 // New-style header 255 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 256 error(toString(this) + ": corrupted compressed section"); 257 return; 258 } 259 260 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 261 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 262 error(toString(this) + ": unsupported compression type"); 263 return; 264 } 265 266 uncompressedSize = hdr->ch_size; 267 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 268 rawData = rawData.slice(sizeof(*hdr)); 269 } 270 271 InputSection *InputSectionBase::getLinkOrderDep() const { 272 assert(flags & SHF_LINK_ORDER); 273 if (!link) 274 return nullptr; 275 return cast<InputSection>(file->getSections()[link]); 276 } 277 278 // Find a function symbol that encloses a given location. 279 template <class ELFT> 280 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 281 for (Symbol *b : file->getSymbols()) 282 if (Defined *d = dyn_cast<Defined>(b)) 283 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 284 offset < d->value + d->size) 285 return d; 286 return nullptr; 287 } 288 289 // Returns a source location string. Used to construct an error message. 290 template <class ELFT> 291 std::string InputSectionBase::getLocation(uint64_t offset) { 292 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 293 294 // We don't have file for synthetic sections. 295 if (getFile<ELFT>() == nullptr) 296 return (config->outputFile + ":(" + secAndOffset + ")") 297 .str(); 298 299 // First check if we can get desired values from debugging information. 300 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 301 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 302 secAndOffset + ")"; 303 304 // File->sourceFile contains STT_FILE symbol that contains a 305 // source file name. If it's missing, we use an object file name. 306 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 307 if (srcFile.empty()) 308 srcFile = toString(file); 309 310 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 311 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 312 313 // If there's no symbol, print out the offset in the section. 314 return (srcFile + ":(" + secAndOffset + ")"); 315 } 316 317 // This function is intended to be used for constructing an error message. 318 // The returned message looks like this: 319 // 320 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 321 // 322 // Returns an empty string if there's no way to get line info. 323 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 324 return file->getSrcMsg(sym, *this, offset); 325 } 326 327 // Returns a filename string along with an optional section name. This 328 // function is intended to be used for constructing an error 329 // message. The returned message looks like this: 330 // 331 // path/to/foo.o:(function bar) 332 // 333 // or 334 // 335 // path/to/foo.o:(function bar) in archive path/to/bar.a 336 std::string InputSectionBase::getObjMsg(uint64_t off) { 337 std::string filename = std::string(file->getName()); 338 339 std::string archive; 340 if (!file->archiveName.empty()) 341 archive = " in archive " + file->archiveName; 342 343 // Find a symbol that encloses a given location. 344 for (Symbol *b : file->getSymbols()) 345 if (auto *d = dyn_cast<Defined>(b)) 346 if (d->section == this && d->value <= off && off < d->value + d->size) 347 return filename + ":(" + toString(*d) + ")" + archive; 348 349 // If there's no symbol, print out the offset in the section. 350 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 351 .str(); 352 } 353 354 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 355 356 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 357 uint32_t alignment, ArrayRef<uint8_t> data, 358 StringRef name, Kind k) 359 : InputSectionBase(f, flags, type, 360 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 361 name, k) {} 362 363 template <class ELFT> 364 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 365 StringRef name) 366 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 367 368 bool InputSection::classof(const SectionBase *s) { 369 return s->kind() == SectionBase::Regular || 370 s->kind() == SectionBase::Synthetic; 371 } 372 373 OutputSection *InputSection::getParent() const { 374 return cast_or_null<OutputSection>(parent); 375 } 376 377 // Copy SHT_GROUP section contents. Used only for the -r option. 378 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 379 // ELFT::Word is the 32-bit integral type in the target endianness. 380 using u32 = typename ELFT::Word; 381 ArrayRef<u32> from = getDataAs<u32>(); 382 auto *to = reinterpret_cast<u32 *>(buf); 383 384 // The first entry is not a section number but a flag. 385 *to++ = from[0]; 386 387 // Adjust section numbers because section numbers in an input object files are 388 // different in the output. We also need to handle combined or discarded 389 // members. 390 ArrayRef<InputSectionBase *> sections = file->getSections(); 391 std::unordered_set<uint32_t> seen; 392 for (uint32_t idx : from.slice(1)) { 393 OutputSection *osec = sections[idx]->getOutputSection(); 394 if (osec && seen.insert(osec->sectionIndex).second) 395 *to++ = osec->sectionIndex; 396 } 397 } 398 399 InputSectionBase *InputSection::getRelocatedSection() const { 400 if (!file || (type != SHT_RELA && type != SHT_REL)) 401 return nullptr; 402 ArrayRef<InputSectionBase *> sections = file->getSections(); 403 return sections[info]; 404 } 405 406 // This is used for -r and --emit-relocs. We can't use memcpy to copy 407 // relocations because we need to update symbol table offset and section index 408 // for each relocation. So we copy relocations one by one. 409 template <class ELFT, class RelTy> 410 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 411 InputSectionBase *sec = getRelocatedSection(); 412 413 for (const RelTy &rel : rels) { 414 RelType type = rel.getType(config->isMips64EL); 415 const ObjFile<ELFT> *file = getFile<ELFT>(); 416 Symbol &sym = file->getRelocTargetSym(rel); 417 418 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 419 buf += sizeof(RelTy); 420 421 if (RelTy::IsRela) 422 p->r_addend = getAddend<ELFT>(rel); 423 424 // Output section VA is zero for -r, so r_offset is an offset within the 425 // section, but for --emit-relocs it is a virtual address. 426 p->r_offset = sec->getVA(rel.r_offset); 427 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 428 config->isMips64EL); 429 430 if (sym.type == STT_SECTION) { 431 // We combine multiple section symbols into only one per 432 // section. This means we have to update the addend. That is 433 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 434 // section data. We do that by adding to the Relocation vector. 435 436 // .eh_frame is horribly special and can reference discarded sections. To 437 // avoid having to parse and recreate .eh_frame, we just replace any 438 // relocation in it pointing to discarded sections with R_*_NONE, which 439 // hopefully creates a frame that is ignored at runtime. Also, don't warn 440 // on .gcc_except_table and debug sections. 441 // 442 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 443 auto *d = dyn_cast<Defined>(&sym); 444 if (!d) { 445 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 446 sec->name != ".gcc_except_table" && sec->name != ".got2" && 447 sec->name != ".toc") { 448 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 449 Elf_Shdr_Impl<ELFT> sec = 450 CHECK(file->getObj().sections(), file)[secIdx]; 451 warn("relocation refers to a discarded section: " + 452 CHECK(file->getObj().getSectionName(sec), file) + 453 "\n>>> referenced by " + getObjMsg(p->r_offset)); 454 } 455 p->setSymbolAndType(0, 0, false); 456 continue; 457 } 458 SectionBase *section = d->section->repl; 459 if (!section->isLive()) { 460 p->setSymbolAndType(0, 0, false); 461 continue; 462 } 463 464 int64_t addend = getAddend<ELFT>(rel); 465 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 466 if (!RelTy::IsRela) 467 addend = target->getImplicitAddend(bufLoc, type); 468 469 if (config->emachine == EM_MIPS && 470 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 471 // Some MIPS relocations depend on "gp" value. By default, 472 // this value has 0x7ff0 offset from a .got section. But 473 // relocatable files produced by a compiler or a linker 474 // might redefine this default value and we must use it 475 // for a calculation of the relocation result. When we 476 // generate EXE or DSO it's trivial. Generating a relocatable 477 // output is more difficult case because the linker does 478 // not calculate relocations in this mode and loses 479 // individual "gp" values used by each input object file. 480 // As a workaround we add the "gp" value to the relocation 481 // addend and save it back to the file. 482 addend += sec->getFile<ELFT>()->mipsGp0; 483 } 484 485 if (RelTy::IsRela) 486 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 487 else if (config->relocatable && type != target->noneRel) 488 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 489 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 490 p->r_addend >= 0x8000) { 491 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 492 // indicates that r30 is relative to the input section .got2 493 // (r_addend>=0x8000), after linking, r30 should be relative to the output 494 // section .got2 . To compensate for the shift, adjust r_addend by 495 // ppc32Got2OutSecOff. 496 p->r_addend += sec->file->ppc32Got2OutSecOff; 497 } 498 } 499 } 500 501 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 502 // references specially. The general rule is that the value of the symbol in 503 // this context is the address of the place P. A further special case is that 504 // branch relocations to an undefined weak reference resolve to the next 505 // instruction. 506 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 507 uint32_t p) { 508 switch (type) { 509 // Unresolved branch relocations to weak references resolve to next 510 // instruction, this will be either 2 or 4 bytes on from P. 511 case R_ARM_THM_JUMP11: 512 return p + 2 + a; 513 case R_ARM_CALL: 514 case R_ARM_JUMP24: 515 case R_ARM_PC24: 516 case R_ARM_PLT32: 517 case R_ARM_PREL31: 518 case R_ARM_THM_JUMP19: 519 case R_ARM_THM_JUMP24: 520 return p + 4 + a; 521 case R_ARM_THM_CALL: 522 // We don't want an interworking BLX to ARM 523 return p + 5 + a; 524 // Unresolved non branch pc-relative relocations 525 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 526 // targets a weak-reference. 527 case R_ARM_MOVW_PREL_NC: 528 case R_ARM_MOVT_PREL: 529 case R_ARM_REL32: 530 case R_ARM_THM_ALU_PREL_11_0: 531 case R_ARM_THM_MOVW_PREL_NC: 532 case R_ARM_THM_MOVT_PREL: 533 case R_ARM_THM_PC12: 534 return p + a; 535 // p + a is unrepresentable as negative immediates can't be encoded. 536 case R_ARM_THM_PC8: 537 return p; 538 } 539 llvm_unreachable("ARM pc-relative relocation expected\n"); 540 } 541 542 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 543 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, 544 uint64_t p) { 545 switch (type) { 546 // Unresolved branch relocations to weak references resolve to next 547 // instruction, this is 4 bytes on from P. 548 case R_AARCH64_CALL26: 549 case R_AARCH64_CONDBR19: 550 case R_AARCH64_JUMP26: 551 case R_AARCH64_TSTBR14: 552 return p + 4 + a; 553 // Unresolved non branch pc-relative relocations 554 case R_AARCH64_PREL16: 555 case R_AARCH64_PREL32: 556 case R_AARCH64_PREL64: 557 case R_AARCH64_ADR_PREL_LO21: 558 case R_AARCH64_LD_PREL_LO19: 559 case R_AARCH64_PLT32: 560 return p + a; 561 } 562 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 563 } 564 565 // ARM SBREL relocations are of the form S + A - B where B is the static base 566 // The ARM ABI defines base to be "addressing origin of the output segment 567 // defining the symbol S". We defined the "addressing origin"/static base to be 568 // the base of the PT_LOAD segment containing the Sym. 569 // The procedure call standard only defines a Read Write Position Independent 570 // RWPI variant so in practice we should expect the static base to be the base 571 // of the RW segment. 572 static uint64_t getARMStaticBase(const Symbol &sym) { 573 OutputSection *os = sym.getOutputSection(); 574 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 575 fatal("SBREL relocation to " + sym.getName() + " without static base"); 576 return os->ptLoad->firstSec->addr; 577 } 578 579 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 580 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 581 // is calculated using PCREL_HI20's symbol. 582 // 583 // This function returns the R_RISCV_PCREL_HI20 relocation from 584 // R_RISCV_PCREL_LO12's symbol and addend. 585 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 586 const Defined *d = cast<Defined>(sym); 587 if (!d->section) { 588 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 589 sym->getName()); 590 return nullptr; 591 } 592 InputSection *isec = cast<InputSection>(d->section); 593 594 if (addend != 0) 595 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 596 isec->getObjMsg(d->value) + " is ignored"); 597 598 // Relocations are sorted by offset, so we can use std::equal_range to do 599 // binary search. 600 Relocation r; 601 r.offset = d->value; 602 auto range = 603 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 604 [](const Relocation &lhs, const Relocation &rhs) { 605 return lhs.offset < rhs.offset; 606 }); 607 608 for (auto it = range.first; it != range.second; ++it) 609 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 610 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 611 return &*it; 612 613 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 614 " without an associated R_RISCV_PCREL_HI20 relocation"); 615 return nullptr; 616 } 617 618 // A TLS symbol's virtual address is relative to the TLS segment. Add a 619 // target-specific adjustment to produce a thread-pointer-relative offset. 620 static int64_t getTlsTpOffset(const Symbol &s) { 621 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 622 if (&s == ElfSym::tlsModuleBase) 623 return 0; 624 625 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 626 // while most others use Variant 1. At run time TP will be aligned to p_align. 627 628 // Variant 1. TP will be followed by an optional gap (which is the size of 2 629 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 630 // padding, then the static TLS blocks. The alignment padding is added so that 631 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 632 // 633 // Variant 2. Static TLS blocks, followed by alignment padding are placed 634 // before TP. The alignment padding is added so that (TP - padding - 635 // p_memsz) is congruent to p_vaddr modulo p_align. 636 PhdrEntry *tls = Out::tlsPhdr; 637 switch (config->emachine) { 638 // Variant 1. 639 case EM_ARM: 640 case EM_AARCH64: 641 return s.getVA(0) + config->wordsize * 2 + 642 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 643 case EM_MIPS: 644 case EM_PPC: 645 case EM_PPC64: 646 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 647 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 648 // data and 0xf000 of the program's TLS segment. 649 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 650 case EM_RISCV: 651 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 652 653 // Variant 2. 654 case EM_HEXAGON: 655 case EM_SPARCV9: 656 case EM_386: 657 case EM_X86_64: 658 return s.getVA(0) - tls->p_memsz - 659 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 660 default: 661 llvm_unreachable("unhandled Config->EMachine"); 662 } 663 } 664 665 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 666 int64_t a, uint64_t p, 667 const Symbol &sym, RelExpr expr) { 668 switch (expr) { 669 case R_ABS: 670 case R_DTPREL: 671 case R_RELAX_TLS_LD_TO_LE_ABS: 672 case R_RELAX_GOT_PC_NOPIC: 673 case R_RISCV_ADD: 674 return sym.getVA(a); 675 case R_ADDEND: 676 return a; 677 case R_ARM_SBREL: 678 return sym.getVA(a) - getARMStaticBase(sym); 679 case R_GOT: 680 case R_RELAX_TLS_GD_TO_IE_ABS: 681 return sym.getGotVA() + a; 682 case R_GOTONLY_PC: 683 return in.got->getVA() + a - p; 684 case R_GOTPLTONLY_PC: 685 return in.gotPlt->getVA() + a - p; 686 case R_GOTREL: 687 case R_PPC64_RELAX_TOC: 688 return sym.getVA(a) - in.got->getVA(); 689 case R_GOTPLTREL: 690 return sym.getVA(a) - in.gotPlt->getVA(); 691 case R_GOTPLT: 692 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 693 return sym.getGotVA() + a - in.gotPlt->getVA(); 694 case R_TLSLD_GOT_OFF: 695 case R_GOT_OFF: 696 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 697 return sym.getGotOffset() + a; 698 case R_AARCH64_GOT_PAGE_PC: 699 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 700 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 701 case R_AARCH64_GOT_PAGE: 702 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 703 case R_GOT_PC: 704 case R_RELAX_TLS_GD_TO_IE: 705 return sym.getGotVA() + a - p; 706 case R_MIPS_GOTREL: 707 return sym.getVA(a) - in.mipsGot->getGp(file); 708 case R_MIPS_GOT_GP: 709 return in.mipsGot->getGp(file) + a; 710 case R_MIPS_GOT_GP_PC: { 711 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 712 // is _gp_disp symbol. In that case we should use the following 713 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 714 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 715 // microMIPS variants of these relocations use slightly different 716 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 717 // to correctly handle less-significant bit of the microMIPS symbol. 718 uint64_t v = in.mipsGot->getGp(file) + a - p; 719 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 720 v += 4; 721 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 722 v -= 1; 723 return v; 724 } 725 case R_MIPS_GOT_LOCAL_PAGE: 726 // If relocation against MIPS local symbol requires GOT entry, this entry 727 // should be initialized by 'page address'. This address is high 16-bits 728 // of sum the symbol's value and the addend. 729 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 730 in.mipsGot->getGp(file); 731 case R_MIPS_GOT_OFF: 732 case R_MIPS_GOT_OFF32: 733 // In case of MIPS if a GOT relocation has non-zero addend this addend 734 // should be applied to the GOT entry content not to the GOT entry offset. 735 // That is why we use separate expression type. 736 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 737 in.mipsGot->getGp(file); 738 case R_MIPS_TLSGD: 739 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 740 in.mipsGot->getGp(file); 741 case R_MIPS_TLSLD: 742 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 743 in.mipsGot->getGp(file); 744 case R_AARCH64_PAGE_PC: { 745 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 746 return getAArch64Page(val) - getAArch64Page(p); 747 } 748 case R_RISCV_PC_INDIRECT: { 749 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 750 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 751 *hiRel->sym, hiRel->expr); 752 return 0; 753 } 754 case R_PC: 755 case R_ARM_PCA: { 756 uint64_t dest; 757 if (expr == R_ARM_PCA) 758 // Some PC relative ARM (Thumb) relocations align down the place. 759 p = p & 0xfffffffc; 760 if (sym.isUndefWeak()) { 761 // On ARM and AArch64 a branch to an undefined weak resolves to the 762 // next instruction, otherwise the place. 763 if (config->emachine == EM_ARM) 764 dest = getARMUndefinedRelativeWeakVA(type, a, p); 765 else if (config->emachine == EM_AARCH64) 766 dest = getAArch64UndefinedRelativeWeakVA(type, a, p); 767 else if (config->emachine == EM_PPC) 768 dest = p; 769 else 770 dest = sym.getVA(a); 771 } else { 772 dest = sym.getVA(a); 773 } 774 return dest - p; 775 } 776 case R_PLT: 777 return sym.getPltVA() + a; 778 case R_PLT_PC: 779 case R_PPC64_CALL_PLT: 780 return sym.getPltVA() + a - p; 781 case R_PPC32_PLTREL: 782 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 783 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 784 // target VA computation. 785 return sym.getPltVA() - p; 786 case R_PPC64_CALL: { 787 uint64_t symVA = sym.getVA(a); 788 // If we have an undefined weak symbol, we might get here with a symbol 789 // address of zero. That could overflow, but the code must be unreachable, 790 // so don't bother doing anything at all. 791 if (!symVA) 792 return 0; 793 794 // PPC64 V2 ABI describes two entry points to a function. The global entry 795 // point is used for calls where the caller and callee (may) have different 796 // TOC base pointers and r2 needs to be modified to hold the TOC base for 797 // the callee. For local calls the caller and callee share the same 798 // TOC base and so the TOC pointer initialization code should be skipped by 799 // branching to the local entry point. 800 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 801 } 802 case R_PPC64_TOCBASE: 803 return getPPC64TocBase() + a; 804 case R_RELAX_GOT_PC: 805 case R_PPC64_RELAX_GOT_PC: 806 return sym.getVA(a) - p; 807 case R_RELAX_TLS_GD_TO_LE: 808 case R_RELAX_TLS_IE_TO_LE: 809 case R_RELAX_TLS_LD_TO_LE: 810 case R_TPREL: 811 // It is not very clear what to return if the symbol is undefined. With 812 // --noinhibit-exec, even a non-weak undefined reference may reach here. 813 // Just return A, which matches R_ABS, and the behavior of some dynamic 814 // loaders. 815 if (sym.isUndefined() || sym.isLazy()) 816 return a; 817 return getTlsTpOffset(sym) + a; 818 case R_RELAX_TLS_GD_TO_LE_NEG: 819 case R_TPREL_NEG: 820 if (sym.isUndefined()) 821 return a; 822 return -getTlsTpOffset(sym) + a; 823 case R_SIZE: 824 return sym.getSize() + a; 825 case R_TLSDESC: 826 return in.got->getGlobalDynAddr(sym) + a; 827 case R_TLSDESC_PC: 828 return in.got->getGlobalDynAddr(sym) + a - p; 829 case R_AARCH64_TLSDESC_PAGE: 830 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 831 getAArch64Page(p); 832 case R_TLSGD_GOT: 833 return in.got->getGlobalDynOffset(sym) + a; 834 case R_TLSGD_GOTPLT: 835 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); 836 case R_TLSGD_PC: 837 return in.got->getGlobalDynAddr(sym) + a - p; 838 case R_TLSLD_GOTPLT: 839 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 840 case R_TLSLD_GOT: 841 return in.got->getTlsIndexOff() + a; 842 case R_TLSLD_PC: 843 return in.got->getTlsIndexVA() + a - p; 844 default: 845 llvm_unreachable("invalid expression"); 846 } 847 } 848 849 // This function applies relocations to sections without SHF_ALLOC bit. 850 // Such sections are never mapped to memory at runtime. Debug sections are 851 // an example. Relocations in non-alloc sections are much easier to 852 // handle than in allocated sections because it will never need complex 853 // treatment such as GOT or PLT (because at runtime no one refers them). 854 // So, we handle relocations for non-alloc sections directly in this 855 // function as a performance optimization. 856 template <class ELFT, class RelTy> 857 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 858 const unsigned bits = sizeof(typename ELFT::uint) * 8; 859 const bool isDebug = isDebugSection(*this); 860 const bool isDebugLocOrRanges = 861 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 862 const bool isDebugLine = isDebug && name == ".debug_line"; 863 Optional<uint64_t> tombstone; 864 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 865 if (patAndValue.first.match(this->name)) { 866 tombstone = patAndValue.second; 867 break; 868 } 869 870 for (const RelTy &rel : rels) { 871 RelType type = rel.getType(config->isMips64EL); 872 873 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 874 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 875 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 876 // need to keep this bug-compatible code for a while. 877 if (config->emachine == EM_386 && type == R_386_GOTPC) 878 continue; 879 880 uint64_t offset = rel.r_offset; 881 uint8_t *bufLoc = buf + offset; 882 int64_t addend = getAddend<ELFT>(rel); 883 if (!RelTy::IsRela) 884 addend += target->getImplicitAddend(bufLoc, type); 885 886 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 887 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 888 if (expr == R_NONE) 889 continue; 890 891 if (expr == R_SIZE) { 892 target->relocateNoSym(bufLoc, type, 893 SignExtend64<bits>(sym.getSize() + addend)); 894 continue; 895 } 896 897 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 898 // sections. 899 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && 900 expr != R_RISCV_ADD) { 901 std::string msg = getLocation<ELFT>(offset) + 902 ": has non-ABS relocation " + toString(type) + 903 " against symbol '" + toString(sym) + "'"; 904 if (expr != R_PC && expr != R_ARM_PCA) { 905 error(msg); 906 return; 907 } 908 909 // If the control reaches here, we found a PC-relative relocation in a 910 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 911 // at runtime, the notion of PC-relative doesn't make sense here. So, 912 // this is a usage error. However, GNU linkers historically accept such 913 // relocations without any errors and relocate them as if they were at 914 // address 0. For bug-compatibilty, we accept them with warnings. We 915 // know Steel Bank Common Lisp as of 2018 have this bug. 916 warn(msg); 917 target->relocateNoSym( 918 bufLoc, type, 919 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 920 continue; 921 } 922 923 if (tombstone || 924 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 925 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 926 // folded section symbols) to a tombstone value. Resolving to addend is 927 // unsatisfactory because the result address range may collide with a 928 // valid range of low address, or leave multiple CUs claiming ownership of 929 // the same range of code, which may confuse consumers. 930 // 931 // To address the problems, we use -1 as a tombstone value for most 932 // .debug_* sections. We have to ignore the addend because we don't want 933 // to resolve an address attribute (which may have a non-zero addend) to 934 // -1+addend (wrap around to a low address). 935 // 936 // R_DTPREL type relocations represent an offset into the dynamic thread 937 // vector. The computed value is st_value plus a non-negative offset. 938 // Negative values are invalid, so -1 can be used as the tombstone value. 939 // 940 // If the referenced symbol is discarded (made Undefined), or the 941 // section defining the referenced symbol is garbage collected, 942 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 943 // catches the ICF folded case. However, resolving a relocation in 944 // .debug_line to -1 would stop debugger users from setting breakpoints on 945 // the folded-in function, so exclude .debug_line. 946 // 947 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 948 // (base address selection entry), use 1 (which is used by GNU ld for 949 // .debug_ranges). 950 // 951 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 952 // value. Enable -1 in a future release. 953 auto *ds = dyn_cast<Defined>(&sym); 954 if (!sym.getOutputSection() || 955 (ds && ds->section->repl != ds->section && !isDebugLine)) { 956 // If -z dead-reloc-in-nonalloc= is specified, respect it. 957 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 958 : (isDebugLocOrRanges ? 1 : 0); 959 target->relocateNoSym(bufLoc, type, value); 960 continue; 961 } 962 } 963 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 964 } 965 } 966 967 // This is used when '-r' is given. 968 // For REL targets, InputSection::copyRelocations() may store artificial 969 // relocations aimed to update addends. They are handled in relocateAlloc() 970 // for allocatable sections, and this function does the same for 971 // non-allocatable sections, such as sections with debug information. 972 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 973 const unsigned bits = config->is64 ? 64 : 32; 974 975 for (const Relocation &rel : sec->relocations) { 976 // InputSection::copyRelocations() adds only R_ABS relocations. 977 assert(rel.expr == R_ABS); 978 uint8_t *bufLoc = buf + rel.offset; 979 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 980 target->relocate(bufLoc, rel, targetVA); 981 } 982 } 983 984 template <class ELFT> 985 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 986 if (flags & SHF_EXECINSTR) 987 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 988 989 if (flags & SHF_ALLOC) { 990 relocateAlloc(buf, bufEnd); 991 return; 992 } 993 994 auto *sec = cast<InputSection>(this); 995 if (config->relocatable) 996 relocateNonAllocForRelocatable(sec, buf); 997 else if (sec->areRelocsRela) 998 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 999 else 1000 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 1001 } 1002 1003 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1004 assert(flags & SHF_ALLOC); 1005 const unsigned bits = config->wordsize * 8; 1006 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1007 1008 for (const Relocation &rel : relocations) { 1009 if (rel.expr == R_NONE) 1010 continue; 1011 uint64_t offset = rel.offset; 1012 uint8_t *bufLoc = buf + offset; 1013 RelType type = rel.type; 1014 1015 uint64_t addrLoc = getOutputSection()->addr + offset; 1016 if (auto *sec = dyn_cast<InputSection>(this)) 1017 addrLoc += sec->outSecOff; 1018 RelExpr expr = rel.expr; 1019 uint64_t targetVA = SignExtend64( 1020 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1021 bits); 1022 1023 switch (expr) { 1024 case R_RELAX_GOT_PC: 1025 case R_RELAX_GOT_PC_NOPIC: 1026 target->relaxGot(bufLoc, rel, targetVA); 1027 break; 1028 case R_PPC64_RELAX_GOT_PC: { 1029 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1030 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1031 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1032 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1033 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1034 // and only relax the other if the saved offset matches. 1035 if (type == R_PPC64_GOT_PCREL34) 1036 lastPPCRelaxedRelocOff = offset; 1037 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1038 break; 1039 target->relaxGot(bufLoc, rel, targetVA); 1040 break; 1041 } 1042 case R_PPC64_RELAX_TOC: 1043 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1044 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1045 // entry, there may be R_PPC64_TOC16_HA not paired with 1046 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1047 // opportunities but is safe. 1048 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1049 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1050 target->relocate(bufLoc, rel, targetVA); 1051 break; 1052 case R_RELAX_TLS_IE_TO_LE: 1053 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1054 break; 1055 case R_RELAX_TLS_LD_TO_LE: 1056 case R_RELAX_TLS_LD_TO_LE_ABS: 1057 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1058 break; 1059 case R_RELAX_TLS_GD_TO_LE: 1060 case R_RELAX_TLS_GD_TO_LE_NEG: 1061 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1062 break; 1063 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1064 case R_RELAX_TLS_GD_TO_IE: 1065 case R_RELAX_TLS_GD_TO_IE_ABS: 1066 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1067 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1068 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1069 break; 1070 case R_PPC64_CALL: 1071 // If this is a call to __tls_get_addr, it may be part of a TLS 1072 // sequence that has been relaxed and turned into a nop. In this 1073 // case, we don't want to handle it as a call. 1074 if (read32(bufLoc) == 0x60000000) // nop 1075 break; 1076 1077 // Patch a nop (0x60000000) to a ld. 1078 if (rel.sym->needsTocRestore) { 1079 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1080 // recursive calls even if the function is preemptible. This is not 1081 // wrong in the common case where the function is not preempted at 1082 // runtime. Just ignore. 1083 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1084 rel.sym->file != file) { 1085 // Use substr(6) to remove the "__plt_" prefix. 1086 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1087 lld::toString(*rel.sym).substr(6) + 1088 " lacks nop, can't restore toc"); 1089 break; 1090 } 1091 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1092 } 1093 target->relocate(bufLoc, rel, targetVA); 1094 break; 1095 default: 1096 target->relocate(bufLoc, rel, targetVA); 1097 break; 1098 } 1099 } 1100 1101 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1102 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1103 // insn. This is primarily used to relax and optimize jumps created with 1104 // basic block sections. 1105 if (isa<InputSection>(this)) { 1106 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1107 uint64_t offset = jumpMod.offset; 1108 uint8_t *bufLoc = buf + offset; 1109 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1110 } 1111 } 1112 } 1113 1114 // For each function-defining prologue, find any calls to __morestack, 1115 // and replace them with calls to __morestack_non_split. 1116 static void switchMorestackCallsToMorestackNonSplit( 1117 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1118 1119 // If the target adjusted a function's prologue, all calls to 1120 // __morestack inside that function should be switched to 1121 // __morestack_non_split. 1122 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1123 if (!moreStackNonSplit) { 1124 error("Mixing split-stack objects requires a definition of " 1125 "__morestack_non_split"); 1126 return; 1127 } 1128 1129 // Sort both collections to compare addresses efficiently. 1130 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1131 return l->offset < r->offset; 1132 }); 1133 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1134 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1135 return l->value < r->value; 1136 }); 1137 1138 auto it = morestackCalls.begin(); 1139 for (Defined *f : functions) { 1140 // Find the first call to __morestack within the function. 1141 while (it != morestackCalls.end() && (*it)->offset < f->value) 1142 ++it; 1143 // Adjust all calls inside the function. 1144 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1145 (*it)->sym = moreStackNonSplit; 1146 ++it; 1147 } 1148 } 1149 } 1150 1151 static bool enclosingPrologueAttempted(uint64_t offset, 1152 const DenseSet<Defined *> &prologues) { 1153 for (Defined *f : prologues) 1154 if (f->value <= offset && offset < f->value + f->size) 1155 return true; 1156 return false; 1157 } 1158 1159 // If a function compiled for split stack calls a function not 1160 // compiled for split stack, then the caller needs its prologue 1161 // adjusted to ensure that the called function will have enough stack 1162 // available. Find those functions, and adjust their prologues. 1163 template <class ELFT> 1164 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1165 uint8_t *end) { 1166 if (!getFile<ELFT>()->splitStack) 1167 return; 1168 DenseSet<Defined *> prologues; 1169 std::vector<Relocation *> morestackCalls; 1170 1171 for (Relocation &rel : relocations) { 1172 // Local symbols can't possibly be cross-calls, and should have been 1173 // resolved long before this line. 1174 if (rel.sym->isLocal()) 1175 continue; 1176 1177 // Ignore calls into the split-stack api. 1178 if (rel.sym->getName().startswith("__morestack")) { 1179 if (rel.sym->getName().equals("__morestack")) 1180 morestackCalls.push_back(&rel); 1181 continue; 1182 } 1183 1184 // A relocation to non-function isn't relevant. Sometimes 1185 // __morestack is not marked as a function, so this check comes 1186 // after the name check. 1187 if (rel.sym->type != STT_FUNC) 1188 continue; 1189 1190 // If the callee's-file was compiled with split stack, nothing to do. In 1191 // this context, a "Defined" symbol is one "defined by the binary currently 1192 // being produced". So an "undefined" symbol might be provided by a shared 1193 // library. It is not possible to tell how such symbols were compiled, so be 1194 // conservative. 1195 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1196 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1197 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1198 continue; 1199 1200 if (enclosingPrologueAttempted(rel.offset, prologues)) 1201 continue; 1202 1203 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1204 prologues.insert(f); 1205 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1206 f->stOther)) 1207 continue; 1208 if (!getFile<ELFT>()->someNoSplitStack) 1209 error(lld::toString(this) + ": " + f->getName() + 1210 " (with -fsplit-stack) calls " + rel.sym->getName() + 1211 " (without -fsplit-stack), but couldn't adjust its prologue"); 1212 } 1213 } 1214 1215 if (target->needsMoreStackNonSplit) 1216 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1217 } 1218 1219 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1220 if (type == SHT_NOBITS) 1221 return; 1222 1223 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1224 s->writeTo(buf + outSecOff); 1225 return; 1226 } 1227 1228 // If -r or --emit-relocs is given, then an InputSection 1229 // may be a relocation section. 1230 if (type == SHT_RELA) { 1231 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1232 return; 1233 } 1234 if (type == SHT_REL) { 1235 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1236 return; 1237 } 1238 1239 // If -r is given, we may have a SHT_GROUP section. 1240 if (type == SHT_GROUP) { 1241 copyShtGroup<ELFT>(buf + outSecOff); 1242 return; 1243 } 1244 1245 // If this is a compressed section, uncompress section contents directly 1246 // to the buffer. 1247 if (uncompressedSize >= 0) { 1248 size_t size = uncompressedSize; 1249 if (Error e = zlib::uncompress(toStringRef(rawData), 1250 (char *)(buf + outSecOff), size)) 1251 fatal(toString(this) + 1252 ": uncompress failed: " + llvm::toString(std::move(e))); 1253 uint8_t *bufEnd = buf + outSecOff + size; 1254 relocate<ELFT>(buf + outSecOff, bufEnd); 1255 return; 1256 } 1257 1258 // Copy section contents from source object file to output file 1259 // and then apply relocations. 1260 memcpy(buf + outSecOff, data().data(), data().size()); 1261 uint8_t *bufEnd = buf + outSecOff + data().size(); 1262 relocate<ELFT>(buf + outSecOff, bufEnd); 1263 } 1264 1265 void InputSection::replace(InputSection *other) { 1266 alignment = std::max(alignment, other->alignment); 1267 1268 // When a section is replaced with another section that was allocated to 1269 // another partition, the replacement section (and its associated sections) 1270 // need to be placed in the main partition so that both partitions will be 1271 // able to access it. 1272 if (partition != other->partition) { 1273 partition = 1; 1274 for (InputSection *isec : dependentSections) 1275 isec->partition = 1; 1276 } 1277 1278 other->repl = repl; 1279 other->markDead(); 1280 } 1281 1282 template <class ELFT> 1283 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1284 const typename ELFT::Shdr &header, 1285 StringRef name) 1286 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1287 1288 SyntheticSection *EhInputSection::getParent() const { 1289 return cast_or_null<SyntheticSection>(parent); 1290 } 1291 1292 // Returns the index of the first relocation that points to a region between 1293 // Begin and Begin+Size. 1294 template <class IntTy, class RelTy> 1295 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1296 unsigned &relocI) { 1297 // Start search from RelocI for fast access. That works because the 1298 // relocations are sorted in .eh_frame. 1299 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1300 const RelTy &rel = rels[relocI]; 1301 if (rel.r_offset < begin) 1302 continue; 1303 1304 if (rel.r_offset < begin + size) 1305 return relocI; 1306 return -1; 1307 } 1308 return -1; 1309 } 1310 1311 // .eh_frame is a sequence of CIE or FDE records. 1312 // This function splits an input section into records and returns them. 1313 template <class ELFT> void EhInputSection::split() { 1314 if (areRelocsRela) 1315 split<ELFT>(relas<ELFT>()); 1316 else 1317 split<ELFT>(rels<ELFT>()); 1318 } 1319 1320 template <class ELFT, class RelTy> 1321 void EhInputSection::split(ArrayRef<RelTy> rels) { 1322 unsigned relI = 0; 1323 for (size_t off = 0, end = data().size(); off != end;) { 1324 size_t size = readEhRecordSize(this, off); 1325 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1326 // The empty record is the end marker. 1327 if (size == 4) 1328 break; 1329 off += size; 1330 } 1331 } 1332 1333 static size_t findNull(StringRef s, size_t entSize) { 1334 // Optimize the common case. 1335 if (entSize == 1) 1336 return s.find(0); 1337 1338 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1339 const char *b = s.begin() + i; 1340 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1341 return i; 1342 } 1343 return StringRef::npos; 1344 } 1345 1346 SyntheticSection *MergeInputSection::getParent() const { 1347 return cast_or_null<SyntheticSection>(parent); 1348 } 1349 1350 // Split SHF_STRINGS section. Such section is a sequence of 1351 // null-terminated strings. 1352 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1353 size_t off = 0; 1354 bool isAlloc = flags & SHF_ALLOC; 1355 StringRef s = toStringRef(data); 1356 1357 while (!s.empty()) { 1358 size_t end = findNull(s, entSize); 1359 if (end == StringRef::npos) 1360 fatal(toString(this) + ": string is not null terminated"); 1361 size_t size = end + entSize; 1362 1363 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1364 s = s.substr(size); 1365 off += size; 1366 } 1367 } 1368 1369 // Split non-SHF_STRINGS section. Such section is a sequence of 1370 // fixed size records. 1371 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1372 size_t entSize) { 1373 size_t size = data.size(); 1374 assert((size % entSize) == 0); 1375 bool isAlloc = flags & SHF_ALLOC; 1376 1377 for (size_t i = 0; i != size; i += entSize) 1378 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1379 } 1380 1381 template <class ELFT> 1382 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1383 const typename ELFT::Shdr &header, 1384 StringRef name) 1385 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1386 1387 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1388 uint64_t entsize, ArrayRef<uint8_t> data, 1389 StringRef name) 1390 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1391 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1392 1393 // This function is called after we obtain a complete list of input sections 1394 // that need to be linked. This is responsible to split section contents 1395 // into small chunks for further processing. 1396 // 1397 // Note that this function is called from parallelForEach. This must be 1398 // thread-safe (i.e. no memory allocation from the pools). 1399 void MergeInputSection::splitIntoPieces() { 1400 assert(pieces.empty()); 1401 1402 if (flags & SHF_STRINGS) 1403 splitStrings(data(), entsize); 1404 else 1405 splitNonStrings(data(), entsize); 1406 } 1407 1408 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1409 if (this->data().size() <= offset) 1410 fatal(toString(this) + ": offset is outside the section"); 1411 1412 // If Offset is not at beginning of a section piece, it is not in the map. 1413 // In that case we need to do a binary search of the original section piece vector. 1414 auto it = partition_point( 1415 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1416 return &it[-1]; 1417 } 1418 1419 // Returns the offset in an output section for a given input offset. 1420 // Because contents of a mergeable section is not contiguous in output, 1421 // it is not just an addition to a base output offset. 1422 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1423 // If Offset is not at beginning of a section piece, it is not in the map. 1424 // In that case we need to search from the original section piece vector. 1425 const SectionPiece &piece = 1426 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); 1427 uint64_t addend = offset - piece.inputOff; 1428 return piece.outputOff + addend; 1429 } 1430 1431 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1432 StringRef); 1433 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1434 StringRef); 1435 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1436 StringRef); 1437 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1438 StringRef); 1439 1440 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1441 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1442 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1443 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1444 1445 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1446 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1447 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1448 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1449 1450 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1451 const ELF32LE::Shdr &, StringRef); 1452 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1453 const ELF32BE::Shdr &, StringRef); 1454 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1455 const ELF64LE::Shdr &, StringRef); 1456 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1457 const ELF64BE::Shdr &, StringRef); 1458 1459 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1460 const ELF32LE::Shdr &, StringRef); 1461 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1462 const ELF32BE::Shdr &, StringRef); 1463 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1464 const ELF64LE::Shdr &, StringRef); 1465 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1466 const ELF64BE::Shdr &, StringRef); 1467 1468 template void EhInputSection::split<ELF32LE>(); 1469 template void EhInputSection::split<ELF32BE>(); 1470 template void EhInputSection::split<ELF64LE>(); 1471 template void EhInputSection::split<ELF64BE>(); 1472