1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <optional> 26 #include <vector> 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::support; 32 using namespace llvm::support::endian; 33 using namespace llvm::sys; 34 using namespace lld; 35 using namespace lld::elf; 36 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return ArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t addralign, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info, 58 link), 59 file(file), content_(data.data()), size(data.size()) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(addralign, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->addralign = v; 72 73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no 74 // longer supported. 75 if (flags & SHF_COMPRESSED) 76 invokeELFT(parseCompressedHeader,); 77 } 78 79 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the 80 // output section. However, for relocatable linking without 81 // --force-group-allocation, the SHF_GROUP flag and section groups are retained. 82 static uint64_t getFlags(uint64_t flags) { 83 flags &= ~(uint64_t)SHF_INFO_LINK; 84 if (config->resolveGroups) 85 flags &= ~(uint64_t)SHF_GROUP; 86 return flags; 87 } 88 89 template <class ELFT> 90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 91 const typename ELFT::Shdr &hdr, 92 StringRef name, Kind sectionKind) 93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 95 hdr.sh_addralign, getSectionContents(file, hdr), name, 96 sectionKind) { 97 // We reject object files having insanely large alignments even though 98 // they are allowed by the spec. I think 4GB is a reasonable limitation. 99 // We might want to relax this in the future. 100 if (hdr.sh_addralign > UINT32_MAX) 101 fatal(toString(&file) + ": section sh_addralign is too large"); 102 } 103 104 size_t InputSectionBase::getSize() const { 105 if (auto *s = dyn_cast<SyntheticSection>(this)) 106 return s->getSize(); 107 return size - bytesDropped; 108 } 109 110 template <class ELFT> 111 static void decompressAux(const InputSectionBase &sec, uint8_t *out, 112 size_t size) { 113 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); 114 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) 115 .slice(sizeof(typename ELFT::Chdr)); 116 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 117 ? compression::zlib::decompress(compressed, out, size) 118 : compression::zstd::decompress(compressed, out, size)) 119 fatal(toString(&sec) + 120 ": decompress failed: " + llvm::toString(std::move(e))); 121 } 122 123 void InputSectionBase::decompress() const { 124 uint8_t *uncompressedBuf; 125 { 126 static std::mutex mu; 127 std::lock_guard<std::mutex> lock(mu); 128 uncompressedBuf = bAlloc().Allocate<uint8_t>(size); 129 } 130 131 invokeELFT(decompressAux, *this, uncompressedBuf, size); 132 content_ = uncompressedBuf; 133 compressed = false; 134 } 135 136 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 137 if (relSecIdx == 0) 138 return {}; 139 RelsOrRelas<ELFT> ret; 140 typename ELFT::Shdr shdr = 141 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 142 if (shdr.sh_type == SHT_REL) { 143 ret.rels = ArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 144 file->mb.getBufferStart() + shdr.sh_offset), 145 shdr.sh_size / sizeof(typename ELFT::Rel)); 146 } else { 147 assert(shdr.sh_type == SHT_RELA); 148 ret.relas = ArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 149 file->mb.getBufferStart() + shdr.sh_offset), 150 shdr.sh_size / sizeof(typename ELFT::Rela)); 151 } 152 return ret; 153 } 154 155 uint64_t SectionBase::getOffset(uint64_t offset) const { 156 switch (kind()) { 157 case Output: { 158 auto *os = cast<OutputSection>(this); 159 // For output sections we treat offset -1 as the end of the section. 160 return offset == uint64_t(-1) ? os->size : offset; 161 } 162 case Regular: 163 case Synthetic: 164 case Spill: 165 return cast<InputSection>(this)->outSecOff + offset; 166 case EHFrame: { 167 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 168 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 169 // start of the output .eh_frame. Just return offset. 170 // 171 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 172 // discarded due to GC/ICF. We should compute the output section offset. 173 const EhInputSection *es = cast<EhInputSection>(this); 174 if (!es->content().empty()) 175 if (InputSection *isec = es->getParent()) 176 return isec->outSecOff + es->getParentOffset(offset); 177 return offset; 178 } 179 case Merge: 180 const MergeInputSection *ms = cast<MergeInputSection>(this); 181 if (InputSection *isec = ms->getParent()) 182 return isec->outSecOff + ms->getParentOffset(offset); 183 return ms->getParentOffset(offset); 184 } 185 llvm_unreachable("invalid section kind"); 186 } 187 188 uint64_t SectionBase::getVA(uint64_t offset) const { 189 const OutputSection *out = getOutputSection(); 190 return (out ? out->addr : 0) + getOffset(offset); 191 } 192 193 OutputSection *SectionBase::getOutputSection() { 194 InputSection *sec; 195 if (auto *isec = dyn_cast<InputSection>(this)) 196 sec = isec; 197 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 198 sec = ms->getParent(); 199 else if (auto *eh = dyn_cast<EhInputSection>(this)) 200 sec = eh->getParent(); 201 else 202 return cast<OutputSection>(this); 203 return sec ? sec->getParent() : nullptr; 204 } 205 206 // When a section is compressed, `rawData` consists with a header followed 207 // by zlib-compressed data. This function parses a header to initialize 208 // `uncompressedSize` member and remove the header from `rawData`. 209 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 210 flags &= ~(uint64_t)SHF_COMPRESSED; 211 212 // New-style header 213 if (content().size() < sizeof(typename ELFT::Chdr)) { 214 error(toString(this) + ": corrupted compressed section"); 215 return; 216 } 217 218 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); 219 if (hdr->ch_type == ELFCOMPRESS_ZLIB) { 220 if (!compression::zlib::isAvailable()) 221 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " 222 "not built with zlib support"); 223 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { 224 if (!compression::zstd::isAvailable()) 225 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is " 226 "not built with zstd support"); 227 } else { 228 error(toString(this) + ": unsupported compression type (" + 229 Twine(hdr->ch_type) + ")"); 230 return; 231 } 232 233 compressed = true; 234 compressedSize = size; 235 size = hdr->ch_size; 236 addralign = std::max<uint32_t>(hdr->ch_addralign, 1); 237 } 238 239 InputSection *InputSectionBase::getLinkOrderDep() const { 240 assert(flags & SHF_LINK_ORDER); 241 if (!link) 242 return nullptr; 243 return cast<InputSection>(file->getSections()[link]); 244 } 245 246 // Find a symbol that encloses a given location. 247 Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, 248 uint8_t type) const { 249 if (file->isInternal()) 250 return nullptr; 251 for (Symbol *b : file->getSymbols()) 252 if (Defined *d = dyn_cast<Defined>(b)) 253 if (d->section == this && d->value <= offset && 254 offset < d->value + d->size && (type == 0 || type == d->type)) 255 return d; 256 return nullptr; 257 } 258 259 // Returns an object file location string. Used to construct an error message. 260 std::string InputSectionBase::getLocation(uint64_t offset) const { 261 std::string secAndOffset = 262 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 263 264 // We don't have file for synthetic sections. 265 if (file == nullptr) 266 return (config->outputFile + ":(" + secAndOffset).str(); 267 268 std::string filename = toString(file); 269 if (Defined *d = getEnclosingFunction(offset)) 270 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 271 272 return filename + ":(" + secAndOffset; 273 } 274 275 // This function is intended to be used for constructing an error message. 276 // The returned message looks like this: 277 // 278 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 279 // 280 // Returns an empty string if there's no way to get line info. 281 std::string InputSectionBase::getSrcMsg(const Symbol &sym, 282 uint64_t offset) const { 283 return file->getSrcMsg(sym, *this, offset); 284 } 285 286 // Returns a filename string along with an optional section name. This 287 // function is intended to be used for constructing an error 288 // message. The returned message looks like this: 289 // 290 // path/to/foo.o:(function bar) 291 // 292 // or 293 // 294 // path/to/foo.o:(function bar) in archive path/to/bar.a 295 std::string InputSectionBase::getObjMsg(uint64_t off) const { 296 std::string filename = std::string(file->getName()); 297 298 std::string archive; 299 if (!file->archiveName.empty()) 300 archive = (" in archive " + file->archiveName).str(); 301 302 // Find a symbol that encloses a given location. getObjMsg may be called 303 // before ObjFile::initSectionsAndLocalSyms where local symbols are 304 // initialized. 305 if (Defined *d = getEnclosingSymbol(off)) 306 return filename + ":(" + toString(*d) + ")" + archive; 307 308 // If there's no symbol, print out the offset in the section. 309 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 310 .str(); 311 } 312 313 PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source, 314 InputSectionDescription &isd) 315 : InputSection(source.file, source.flags, source.type, source.addralign, {}, 316 source.name, SectionBase::Spill), 317 isd(&isd) {} 318 319 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 320 321 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 322 uint32_t addralign, ArrayRef<uint8_t> data, 323 StringRef name, Kind k) 324 : InputSectionBase(f, flags, type, 325 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data, 326 name, k) { 327 assert(f || this == &InputSection::discarded); 328 } 329 330 template <class ELFT> 331 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 332 StringRef name) 333 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 334 335 // Copy SHT_GROUP section contents. Used only for the -r option. 336 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 337 // ELFT::Word is the 32-bit integral type in the target endianness. 338 using u32 = typename ELFT::Word; 339 ArrayRef<u32> from = getDataAs<u32>(); 340 auto *to = reinterpret_cast<u32 *>(buf); 341 342 // The first entry is not a section number but a flag. 343 *to++ = from[0]; 344 345 // Adjust section numbers because section numbers in an input object files are 346 // different in the output. We also need to handle combined or discarded 347 // members. 348 ArrayRef<InputSectionBase *> sections = file->getSections(); 349 DenseSet<uint32_t> seen; 350 for (uint32_t idx : from.slice(1)) { 351 OutputSection *osec = sections[idx]->getOutputSection(); 352 if (osec && seen.insert(osec->sectionIndex).second) 353 *to++ = osec->sectionIndex; 354 } 355 } 356 357 InputSectionBase *InputSection::getRelocatedSection() const { 358 if (file->isInternal() || !isStaticRelSecType(type)) 359 return nullptr; 360 ArrayRef<InputSectionBase *> sections = file->getSections(); 361 return sections[info]; 362 } 363 364 template <class ELFT, class RelTy> 365 void InputSection::copyRelocations(uint8_t *buf) { 366 if (config->relax && !config->relocatable && 367 (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) { 368 // On LoongArch and RISC-V, relaxation might change relocations: copy 369 // from internal ones that are updated by relaxation. 370 InputSectionBase *sec = getRelocatedSection(); 371 copyRelocations<ELFT, RelTy>(buf, llvm::make_range(sec->relocations.begin(), 372 sec->relocations.end())); 373 } else { 374 // Convert the raw relocations in the input section into Relocation objects 375 // suitable to be used by copyRelocations below. 376 struct MapRel { 377 const ObjFile<ELFT> &file; 378 Relocation operator()(const RelTy &rel) const { 379 // RelExpr is not used so set to a dummy value. 380 return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset, 381 getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; 382 } 383 }; 384 385 using RawRels = ArrayRef<RelTy>; 386 using MapRelIter = 387 llvm::mapped_iterator<typename RawRels::iterator, MapRel>; 388 auto mapRel = MapRel{*getFile<ELFT>()}; 389 RawRels rawRels = getDataAs<RelTy>(); 390 auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), 391 MapRelIter(rawRels.end(), mapRel)); 392 copyRelocations<ELFT, RelTy>(buf, rels); 393 } 394 } 395 396 // This is used for -r and --emit-relocs. We can't use memcpy to copy 397 // relocations because we need to update symbol table offset and section index 398 // for each relocation. So we copy relocations one by one. 399 template <class ELFT, class RelTy, class RelIt> 400 void InputSection::copyRelocations(uint8_t *buf, 401 llvm::iterator_range<RelIt> rels) { 402 const TargetInfo &target = *elf::target; 403 InputSectionBase *sec = getRelocatedSection(); 404 (void)sec->contentMaybeDecompress(); // uncompress if needed 405 406 for (const Relocation &rel : rels) { 407 RelType type = rel.type; 408 const ObjFile<ELFT> *file = getFile<ELFT>(); 409 Symbol &sym = *rel.sym; 410 411 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 412 buf += sizeof(RelTy); 413 414 if (RelTy::HasAddend) 415 p->r_addend = rel.addend; 416 417 // Output section VA is zero for -r, so r_offset is an offset within the 418 // section, but for --emit-relocs it is a virtual address. 419 p->r_offset = sec->getVA(rel.offset); 420 p->setSymbolAndType(in.symTab->getSymbolIndex(sym), type, 421 config->isMips64EL); 422 423 if (sym.type == STT_SECTION) { 424 // We combine multiple section symbols into only one per 425 // section. This means we have to update the addend. That is 426 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 427 // section data. We do that by adding to the Relocation vector. 428 429 // .eh_frame is horribly special and can reference discarded sections. To 430 // avoid having to parse and recreate .eh_frame, we just replace any 431 // relocation in it pointing to discarded sections with R_*_NONE, which 432 // hopefully creates a frame that is ignored at runtime. Also, don't warn 433 // on .gcc_except_table and debug sections. 434 // 435 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 436 auto *d = dyn_cast<Defined>(&sym); 437 if (!d) { 438 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 439 sec->name != ".gcc_except_table" && sec->name != ".got2" && 440 sec->name != ".toc") { 441 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 442 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 443 warn("relocation refers to a discarded section: " + 444 CHECK(file->getObj().getSectionName(sec), file) + 445 "\n>>> referenced by " + getObjMsg(p->r_offset)); 446 } 447 p->setSymbolAndType(0, 0, false); 448 continue; 449 } 450 SectionBase *section = d->section; 451 assert(section->isLive()); 452 453 int64_t addend = rel.addend; 454 const uint8_t *bufLoc = sec->content().begin() + rel.offset; 455 if (!RelTy::HasAddend) 456 addend = target.getImplicitAddend(bufLoc, type); 457 458 if (config->emachine == EM_MIPS && 459 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 460 // Some MIPS relocations depend on "gp" value. By default, 461 // this value has 0x7ff0 offset from a .got section. But 462 // relocatable files produced by a compiler or a linker 463 // might redefine this default value and we must use it 464 // for a calculation of the relocation result. When we 465 // generate EXE or DSO it's trivial. Generating a relocatable 466 // output is more difficult case because the linker does 467 // not calculate relocations in this mode and loses 468 // individual "gp" values used by each input object file. 469 // As a workaround we add the "gp" value to the relocation 470 // addend and save it back to the file. 471 addend += sec->getFile<ELFT>()->mipsGp0; 472 } 473 474 if (RelTy::HasAddend) 475 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 476 // For SHF_ALLOC sections relocated by REL, append a relocation to 477 // sec->relocations so that relocateAlloc transitively called by 478 // writeSections will update the implicit addend. Non-SHF_ALLOC sections 479 // utilize relocateNonAlloc to process raw relocations and do not need 480 // this sec->relocations change. 481 else if (config->relocatable && (sec->flags & SHF_ALLOC) && 482 type != target.noneRel) 483 sec->addReloc({R_ABS, type, rel.offset, addend, &sym}); 484 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 485 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 486 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 487 // indicates that r30 is relative to the input section .got2 488 // (r_addend>=0x8000), after linking, r30 should be relative to the output 489 // section .got2 . To compensate for the shift, adjust r_addend by 490 // ppc32Got->outSecOff. 491 p->r_addend += sec->file->ppc32Got2->outSecOff; 492 } 493 } 494 } 495 496 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 497 // references specially. The general rule is that the value of the symbol in 498 // this context is the address of the place P. A further special case is that 499 // branch relocations to an undefined weak reference resolve to the next 500 // instruction. 501 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 502 uint32_t p) { 503 switch (type) { 504 // Unresolved branch relocations to weak references resolve to next 505 // instruction, this will be either 2 or 4 bytes on from P. 506 case R_ARM_THM_JUMP8: 507 case R_ARM_THM_JUMP11: 508 return p + 2 + a; 509 case R_ARM_CALL: 510 case R_ARM_JUMP24: 511 case R_ARM_PC24: 512 case R_ARM_PLT32: 513 case R_ARM_PREL31: 514 case R_ARM_THM_JUMP19: 515 case R_ARM_THM_JUMP24: 516 return p + 4 + a; 517 case R_ARM_THM_CALL: 518 // We don't want an interworking BLX to ARM 519 return p + 5 + a; 520 // Unresolved non branch pc-relative relocations 521 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 522 // targets a weak-reference. 523 case R_ARM_MOVW_PREL_NC: 524 case R_ARM_MOVT_PREL: 525 case R_ARM_REL32: 526 case R_ARM_THM_ALU_PREL_11_0: 527 case R_ARM_THM_MOVW_PREL_NC: 528 case R_ARM_THM_MOVT_PREL: 529 case R_ARM_THM_PC12: 530 return p + a; 531 // p + a is unrepresentable as negative immediates can't be encoded. 532 case R_ARM_THM_PC8: 533 return p; 534 } 535 llvm_unreachable("ARM pc-relative relocation expected\n"); 536 } 537 538 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 539 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 540 switch (type) { 541 // Unresolved branch relocations to weak references resolve to next 542 // instruction, this is 4 bytes on from P. 543 case R_AARCH64_CALL26: 544 case R_AARCH64_CONDBR19: 545 case R_AARCH64_JUMP26: 546 case R_AARCH64_TSTBR14: 547 return p + 4; 548 // Unresolved non branch pc-relative relocations 549 case R_AARCH64_PREL16: 550 case R_AARCH64_PREL32: 551 case R_AARCH64_PREL64: 552 case R_AARCH64_ADR_PREL_LO21: 553 case R_AARCH64_LD_PREL_LO19: 554 case R_AARCH64_PLT32: 555 return p; 556 } 557 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 558 } 559 560 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 561 switch (type) { 562 case R_RISCV_BRANCH: 563 case R_RISCV_JAL: 564 case R_RISCV_CALL: 565 case R_RISCV_CALL_PLT: 566 case R_RISCV_RVC_BRANCH: 567 case R_RISCV_RVC_JUMP: 568 case R_RISCV_PLT32: 569 return p; 570 default: 571 return 0; 572 } 573 } 574 575 // ARM SBREL relocations are of the form S + A - B where B is the static base 576 // The ARM ABI defines base to be "addressing origin of the output segment 577 // defining the symbol S". We defined the "addressing origin"/static base to be 578 // the base of the PT_LOAD segment containing the Sym. 579 // The procedure call standard only defines a Read Write Position Independent 580 // RWPI variant so in practice we should expect the static base to be the base 581 // of the RW segment. 582 static uint64_t getARMStaticBase(const Symbol &sym) { 583 OutputSection *os = sym.getOutputSection(); 584 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 585 fatal("SBREL relocation to " + sym.getName() + " without static base"); 586 return os->ptLoad->firstSec->addr; 587 } 588 589 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 590 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 591 // is calculated using PCREL_HI20's symbol. 592 // 593 // This function returns the R_RISCV_PCREL_HI20 relocation from 594 // R_RISCV_PCREL_LO12's symbol and addend. 595 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 596 const Defined *d = cast<Defined>(sym); 597 if (!d->section) { 598 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 599 sym->getName()); 600 return nullptr; 601 } 602 InputSection *isec = cast<InputSection>(d->section); 603 604 if (addend != 0) 605 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 606 isec->getObjMsg(d->value) + " is ignored"); 607 608 // Relocations are sorted by offset, so we can use std::equal_range to do 609 // binary search. 610 Relocation r; 611 r.offset = d->value; 612 auto range = 613 std::equal_range(isec->relocs().begin(), isec->relocs().end(), r, 614 [](const Relocation &lhs, const Relocation &rhs) { 615 return lhs.offset < rhs.offset; 616 }); 617 618 for (auto it = range.first; it != range.second; ++it) 619 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 620 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 621 return &*it; 622 623 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + 624 isec->getObjMsg(d->value) + 625 " without an associated R_RISCV_PCREL_HI20 relocation"); 626 return nullptr; 627 } 628 629 // A TLS symbol's virtual address is relative to the TLS segment. Add a 630 // target-specific adjustment to produce a thread-pointer-relative offset. 631 static int64_t getTlsTpOffset(const Symbol &s) { 632 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 633 if (&s == ElfSym::tlsModuleBase) 634 return 0; 635 636 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 637 // while most others use Variant 1. At run time TP will be aligned to p_align. 638 639 // Variant 1. TP will be followed by an optional gap (which is the size of 2 640 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 641 // padding, then the static TLS blocks. The alignment padding is added so that 642 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 643 // 644 // Variant 2. Static TLS blocks, followed by alignment padding are placed 645 // before TP. The alignment padding is added so that (TP - padding - 646 // p_memsz) is congruent to p_vaddr modulo p_align. 647 PhdrEntry *tls = Out::tlsPhdr; 648 switch (config->emachine) { 649 // Variant 1. 650 case EM_ARM: 651 case EM_AARCH64: 652 return s.getVA(0) + config->wordsize * 2 + 653 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 654 case EM_MIPS: 655 case EM_PPC: 656 case EM_PPC64: 657 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 658 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 659 // data and 0xf000 of the program's TLS segment. 660 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 661 case EM_LOONGARCH: 662 case EM_RISCV: 663 // See the comment in handleTlsRelocation. For TLSDESC=>IE, 664 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While 665 // `tls` may be null, the return value is ignored. 666 if (s.type != STT_TLS) 667 return 0; 668 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 669 670 // Variant 2. 671 case EM_HEXAGON: 672 case EM_S390: 673 case EM_SPARCV9: 674 case EM_386: 675 case EM_X86_64: 676 return s.getVA(0) - tls->p_memsz - 677 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 678 default: 679 llvm_unreachable("unhandled Config->EMachine"); 680 } 681 } 682 683 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 684 int64_t a, uint64_t p, 685 const Symbol &sym, RelExpr expr) { 686 switch (expr) { 687 case R_ABS: 688 case R_DTPREL: 689 case R_RELAX_TLS_LD_TO_LE_ABS: 690 case R_RELAX_GOT_PC_NOPIC: 691 case R_AARCH64_AUTH: 692 case R_RISCV_ADD: 693 case R_RISCV_LEB128: 694 return sym.getVA(a); 695 case R_ADDEND: 696 return a; 697 case R_RELAX_HINT: 698 return 0; 699 case R_ARM_SBREL: 700 return sym.getVA(a) - getARMStaticBase(sym); 701 case R_GOT: 702 case R_RELAX_TLS_GD_TO_IE_ABS: 703 return sym.getGotVA() + a; 704 case R_LOONGARCH_GOT: 705 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type 706 // for their page offsets. The arithmetics are different in the TLS case 707 // so we have to duplicate some logic here. 708 if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12) 709 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. 710 return in.got->getGlobalDynAddr(sym) + a; 711 return getRelocTargetVA(file, type, a, p, sym, R_GOT); 712 case R_GOTONLY_PC: 713 return in.got->getVA() + a - p; 714 case R_GOTPLTONLY_PC: 715 return in.gotPlt->getVA() + a - p; 716 case R_GOTREL: 717 case R_PPC64_RELAX_TOC: 718 return sym.getVA(a) - in.got->getVA(); 719 case R_GOTPLTREL: 720 return sym.getVA(a) - in.gotPlt->getVA(); 721 case R_GOTPLT: 722 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 723 return sym.getGotVA() + a - in.gotPlt->getVA(); 724 case R_TLSLD_GOT_OFF: 725 case R_GOT_OFF: 726 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 727 return sym.getGotOffset() + a; 728 case R_AARCH64_GOT_PAGE_PC: 729 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 730 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 731 case R_AARCH64_GOT_PAGE: 732 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 733 case R_GOT_PC: 734 case R_RELAX_TLS_GD_TO_IE: 735 return sym.getGotVA() + a - p; 736 case R_GOTPLT_GOTREL: 737 return sym.getGotPltVA() + a - in.got->getVA(); 738 case R_GOTPLT_PC: 739 return sym.getGotPltVA() + a - p; 740 case R_LOONGARCH_GOT_PAGE_PC: 741 if (sym.hasFlag(NEEDS_TLSGD)) 742 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type); 743 return getLoongArchPageDelta(sym.getGotVA() + a, p, type); 744 case R_MIPS_GOTREL: 745 return sym.getVA(a) - in.mipsGot->getGp(file); 746 case R_MIPS_GOT_GP: 747 return in.mipsGot->getGp(file) + a; 748 case R_MIPS_GOT_GP_PC: { 749 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 750 // is _gp_disp symbol. In that case we should use the following 751 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 752 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 753 // microMIPS variants of these relocations use slightly different 754 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 755 // to correctly handle less-significant bit of the microMIPS symbol. 756 uint64_t v = in.mipsGot->getGp(file) + a - p; 757 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 758 v += 4; 759 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 760 v -= 1; 761 return v; 762 } 763 case R_MIPS_GOT_LOCAL_PAGE: 764 // If relocation against MIPS local symbol requires GOT entry, this entry 765 // should be initialized by 'page address'. This address is high 16-bits 766 // of sum the symbol's value and the addend. 767 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 768 in.mipsGot->getGp(file); 769 case R_MIPS_GOT_OFF: 770 case R_MIPS_GOT_OFF32: 771 // In case of MIPS if a GOT relocation has non-zero addend this addend 772 // should be applied to the GOT entry content not to the GOT entry offset. 773 // That is why we use separate expression type. 774 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 775 in.mipsGot->getGp(file); 776 case R_MIPS_TLSGD: 777 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 778 in.mipsGot->getGp(file); 779 case R_MIPS_TLSLD: 780 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 781 in.mipsGot->getGp(file); 782 case R_AARCH64_PAGE_PC: { 783 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 784 return getAArch64Page(val) - getAArch64Page(p); 785 } 786 case R_RISCV_PC_INDIRECT: { 787 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 788 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 789 *hiRel->sym, hiRel->expr); 790 return 0; 791 } 792 case R_LOONGARCH_PAGE_PC: 793 return getLoongArchPageDelta(sym.getVA(a), p, type); 794 case R_PC: 795 case R_ARM_PCA: { 796 uint64_t dest; 797 if (expr == R_ARM_PCA) 798 // Some PC relative ARM (Thumb) relocations align down the place. 799 p = p & 0xfffffffc; 800 if (sym.isUndefined()) { 801 // On ARM and AArch64 a branch to an undefined weak resolves to the next 802 // instruction, otherwise the place. On RISC-V, resolve an undefined weak 803 // to the same instruction to cause an infinite loop (making the user 804 // aware of the issue) while ensuring no overflow. 805 // Note: if the symbol is hidden, its binding has been converted to local, 806 // so we just check isUndefined() here. 807 if (config->emachine == EM_ARM) 808 dest = getARMUndefinedRelativeWeakVA(type, a, p); 809 else if (config->emachine == EM_AARCH64) 810 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 811 else if (config->emachine == EM_PPC) 812 dest = p; 813 else if (config->emachine == EM_RISCV) 814 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 815 else 816 dest = sym.getVA(a); 817 } else { 818 dest = sym.getVA(a); 819 } 820 return dest - p; 821 } 822 case R_PLT: 823 return sym.getPltVA() + a; 824 case R_PLT_PC: 825 case R_PPC64_CALL_PLT: 826 return sym.getPltVA() + a - p; 827 case R_LOONGARCH_PLT_PAGE_PC: 828 return getLoongArchPageDelta(sym.getPltVA() + a, p, type); 829 case R_PLT_GOTPLT: 830 return sym.getPltVA() + a - in.gotPlt->getVA(); 831 case R_PLT_GOTREL: 832 return sym.getPltVA() + a - in.got->getVA(); 833 case R_PPC32_PLTREL: 834 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 835 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 836 // target VA computation. 837 return sym.getPltVA() - p; 838 case R_PPC64_CALL: { 839 uint64_t symVA = sym.getVA(a); 840 // If we have an undefined weak symbol, we might get here with a symbol 841 // address of zero. That could overflow, but the code must be unreachable, 842 // so don't bother doing anything at all. 843 if (!symVA) 844 return 0; 845 846 // PPC64 V2 ABI describes two entry points to a function. The global entry 847 // point is used for calls where the caller and callee (may) have different 848 // TOC base pointers and r2 needs to be modified to hold the TOC base for 849 // the callee. For local calls the caller and callee share the same 850 // TOC base and so the TOC pointer initialization code should be skipped by 851 // branching to the local entry point. 852 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 853 } 854 case R_PPC64_TOCBASE: 855 return getPPC64TocBase() + a; 856 case R_RELAX_GOT_PC: 857 case R_PPC64_RELAX_GOT_PC: 858 return sym.getVA(a) - p; 859 case R_RELAX_TLS_GD_TO_LE: 860 case R_RELAX_TLS_IE_TO_LE: 861 case R_RELAX_TLS_LD_TO_LE: 862 case R_TPREL: 863 // It is not very clear what to return if the symbol is undefined. With 864 // --noinhibit-exec, even a non-weak undefined reference may reach here. 865 // Just return A, which matches R_ABS, and the behavior of some dynamic 866 // loaders. 867 if (sym.isUndefined()) 868 return a; 869 return getTlsTpOffset(sym) + a; 870 case R_RELAX_TLS_GD_TO_LE_NEG: 871 case R_TPREL_NEG: 872 if (sym.isUndefined()) 873 return a; 874 return -getTlsTpOffset(sym) + a; 875 case R_SIZE: 876 return sym.getSize() + a; 877 case R_TLSDESC: 878 return in.got->getTlsDescAddr(sym) + a; 879 case R_TLSDESC_PC: 880 return in.got->getTlsDescAddr(sym) + a - p; 881 case R_TLSDESC_GOTPLT: 882 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 883 case R_AARCH64_TLSDESC_PAGE: 884 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 885 case R_LOONGARCH_TLSDESC_PAGE_PC: 886 return getLoongArchPageDelta(in.got->getTlsDescAddr(sym) + a, p, type); 887 case R_TLSGD_GOT: 888 return in.got->getGlobalDynOffset(sym) + a; 889 case R_TLSGD_GOTPLT: 890 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 891 case R_TLSGD_PC: 892 return in.got->getGlobalDynAddr(sym) + a - p; 893 case R_LOONGARCH_TLSGD_PAGE_PC: 894 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type); 895 case R_TLSLD_GOTPLT: 896 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 897 case R_TLSLD_GOT: 898 return in.got->getTlsIndexOff() + a; 899 case R_TLSLD_PC: 900 return in.got->getTlsIndexVA() + a - p; 901 default: 902 llvm_unreachable("invalid expression"); 903 } 904 } 905 906 // This function applies relocations to sections without SHF_ALLOC bit. 907 // Such sections are never mapped to memory at runtime. Debug sections are 908 // an example. Relocations in non-alloc sections are much easier to 909 // handle than in allocated sections because it will never need complex 910 // treatment such as GOT or PLT (because at runtime no one refers them). 911 // So, we handle relocations for non-alloc sections directly in this 912 // function as a performance optimization. 913 template <class ELFT, class RelTy> 914 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 915 const unsigned bits = sizeof(typename ELFT::uint) * 8; 916 const TargetInfo &target = *elf::target; 917 const auto emachine = config->emachine; 918 const bool isDebug = isDebugSection(*this); 919 const bool isDebugLine = isDebug && name == ".debug_line"; 920 std::optional<uint64_t> tombstone; 921 if (isDebug) { 922 if (name == ".debug_loc" || name == ".debug_ranges") 923 tombstone = 1; 924 else if (name == ".debug_names") 925 tombstone = UINT64_MAX; // tombstone value 926 else 927 tombstone = 0; 928 } 929 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 930 if (patAndValue.first.match(this->name)) { 931 tombstone = patAndValue.second; 932 break; 933 } 934 935 const InputFile *f = this->file; 936 for (auto it = rels.begin(), end = rels.end(); it != end; ++it) { 937 const RelTy &rel = *it; 938 const RelType type = rel.getType(config->isMips64EL); 939 const uint64_t offset = rel.r_offset; 940 uint8_t *bufLoc = buf + offset; 941 int64_t addend = getAddend<ELFT>(rel); 942 if (!RelTy::HasAddend) 943 addend += target.getImplicitAddend(bufLoc, type); 944 945 Symbol &sym = f->getRelocTargetSym(rel); 946 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 947 if (expr == R_NONE) 948 continue; 949 auto *ds = dyn_cast<Defined>(&sym); 950 951 if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { 952 if (++it != end && 953 it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && 954 it->r_offset == offset) { 955 uint64_t val; 956 if (!ds && tombstone) { 957 val = *tombstone; 958 } else { 959 val = sym.getVA(addend) - 960 (f->getRelocTargetSym(*it).getVA(0) + getAddend<ELFT>(*it)); 961 } 962 if (overwriteULEB128(bufLoc, val) >= 0x80) 963 errorOrWarn(getLocation(offset) + ": ULEB128 value " + Twine(val) + 964 " exceeds available space; references '" + 965 lld::toString(sym) + "'"); 966 continue; 967 } 968 errorOrWarn(getLocation(offset) + 969 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128"); 970 return; 971 } 972 973 if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { 974 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 975 // folded section symbols) to a tombstone value. Resolving to addend is 976 // unsatisfactory because the result address range may collide with a 977 // valid range of low address, or leave multiple CUs claiming ownership of 978 // the same range of code, which may confuse consumers. 979 // 980 // To address the problems, we use -1 as a tombstone value for most 981 // .debug_* sections. We have to ignore the addend because we don't want 982 // to resolve an address attribute (which may have a non-zero addend) to 983 // -1+addend (wrap around to a low address). 984 // 985 // R_DTPREL type relocations represent an offset into the dynamic thread 986 // vector. The computed value is st_value plus a non-negative offset. 987 // Negative values are invalid, so -1 can be used as the tombstone value. 988 // 989 // If the referenced symbol is relative to a discarded section (due to 990 // --gc-sections, COMDAT, etc), it has been converted to a Undefined. 991 // `ds->folded` catches the ICF folded case. However, resolving a 992 // relocation in .debug_line to -1 would stop debugger users from setting 993 // breakpoints on the folded-in function, so exclude .debug_line. 994 // 995 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 996 // (base address selection entry), use 1 (which is used by GNU ld for 997 // .debug_ranges). 998 // 999 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 1000 // value. Enable -1 in a future release. 1001 if (!ds || (ds->folded && !isDebugLine)) { 1002 // If -z dead-reloc-in-nonalloc= is specified, respect it. 1003 uint64_t value = SignExtend64<bits>(*tombstone); 1004 // For a 32-bit local TU reference in .debug_names, X86_64::relocate 1005 // requires that the unsigned value for R_X86_64_32 is truncated to 1006 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit 1007 // absolute relocations and do not need this change. 1008 if (emachine == EM_X86_64 && type == R_X86_64_32) 1009 value = static_cast<uint32_t>(value); 1010 target.relocateNoSym(bufLoc, type, value); 1011 continue; 1012 } 1013 } 1014 1015 // For a relocatable link, content relocated by relocation types with an 1016 // explicit addend, such as RELA, remain unchanged and we can stop here. 1017 // While content relocated by relocation types with an implicit addend, such 1018 // as REL, needs the implicit addend updated. 1019 if (config->relocatable && (RelTy::HasAddend || sym.type != STT_SECTION)) 1020 continue; 1021 1022 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 1023 // sections. 1024 if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || 1025 expr == R_RISCV_ADD) { 1026 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 1027 continue; 1028 } 1029 1030 if (expr == R_SIZE) { 1031 target.relocateNoSym(bufLoc, type, 1032 SignExtend64<bits>(sym.getSize() + addend)); 1033 continue; 1034 } 1035 1036 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 1037 toString(type) + " against symbol '" + toString(sym) + 1038 "'"; 1039 if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) { 1040 errorOrWarn(msg); 1041 return; 1042 } 1043 1044 // If the control reaches here, we found a PC-relative relocation in a 1045 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 1046 // at runtime, the notion of PC-relative doesn't make sense here. So, 1047 // this is a usage error. However, GNU linkers historically accept such 1048 // relocations without any errors and relocate them as if they were at 1049 // address 0. For bug-compatibility, we accept them with warnings. We 1050 // know Steel Bank Common Lisp as of 2018 have this bug. 1051 // 1052 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 1053 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in 1054 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to 1055 // keep this bug-compatible code for a while. 1056 warn(msg); 1057 target.relocateNoSym( 1058 bufLoc, type, 1059 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 1060 } 1061 } 1062 1063 template <class ELFT> 1064 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 1065 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 1066 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 1067 1068 if (flags & SHF_ALLOC) { 1069 target->relocateAlloc(*this, buf); 1070 return; 1071 } 1072 1073 auto *sec = cast<InputSection>(this); 1074 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1075 // locations with tombstone values. 1076 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1077 if (rels.areRelocsRel()) 1078 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1079 else 1080 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1081 } 1082 1083 // For each function-defining prologue, find any calls to __morestack, 1084 // and replace them with calls to __morestack_non_split. 1085 static void switchMorestackCallsToMorestackNonSplit( 1086 DenseSet<Defined *> &prologues, 1087 SmallVector<Relocation *, 0> &morestackCalls) { 1088 1089 // If the target adjusted a function's prologue, all calls to 1090 // __morestack inside that function should be switched to 1091 // __morestack_non_split. 1092 Symbol *moreStackNonSplit = symtab.find("__morestack_non_split"); 1093 if (!moreStackNonSplit) { 1094 error("mixing split-stack objects requires a definition of " 1095 "__morestack_non_split"); 1096 return; 1097 } 1098 1099 // Sort both collections to compare addresses efficiently. 1100 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1101 return l->offset < r->offset; 1102 }); 1103 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1104 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1105 return l->value < r->value; 1106 }); 1107 1108 auto it = morestackCalls.begin(); 1109 for (Defined *f : functions) { 1110 // Find the first call to __morestack within the function. 1111 while (it != morestackCalls.end() && (*it)->offset < f->value) 1112 ++it; 1113 // Adjust all calls inside the function. 1114 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1115 (*it)->sym = moreStackNonSplit; 1116 ++it; 1117 } 1118 } 1119 } 1120 1121 static bool enclosingPrologueAttempted(uint64_t offset, 1122 const DenseSet<Defined *> &prologues) { 1123 for (Defined *f : prologues) 1124 if (f->value <= offset && offset < f->value + f->size) 1125 return true; 1126 return false; 1127 } 1128 1129 // If a function compiled for split stack calls a function not 1130 // compiled for split stack, then the caller needs its prologue 1131 // adjusted to ensure that the called function will have enough stack 1132 // available. Find those functions, and adjust their prologues. 1133 template <class ELFT> 1134 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1135 uint8_t *end) { 1136 DenseSet<Defined *> prologues; 1137 SmallVector<Relocation *, 0> morestackCalls; 1138 1139 for (Relocation &rel : relocs()) { 1140 // Ignore calls into the split-stack api. 1141 if (rel.sym->getName().starts_with("__morestack")) { 1142 if (rel.sym->getName() == "__morestack") 1143 morestackCalls.push_back(&rel); 1144 continue; 1145 } 1146 1147 // A relocation to non-function isn't relevant. Sometimes 1148 // __morestack is not marked as a function, so this check comes 1149 // after the name check. 1150 if (rel.sym->type != STT_FUNC) 1151 continue; 1152 1153 // If the callee's-file was compiled with split stack, nothing to do. In 1154 // this context, a "Defined" symbol is one "defined by the binary currently 1155 // being produced". So an "undefined" symbol might be provided by a shared 1156 // library. It is not possible to tell how such symbols were compiled, so be 1157 // conservative. 1158 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1159 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1160 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1161 continue; 1162 1163 if (enclosingPrologueAttempted(rel.offset, prologues)) 1164 continue; 1165 1166 if (Defined *f = getEnclosingFunction(rel.offset)) { 1167 prologues.insert(f); 1168 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1169 f->stOther)) 1170 continue; 1171 if (!getFile<ELFT>()->someNoSplitStack) 1172 error(lld::toString(this) + ": " + f->getName() + 1173 " (with -fsplit-stack) calls " + rel.sym->getName() + 1174 " (without -fsplit-stack), but couldn't adjust its prologue"); 1175 } 1176 } 1177 1178 if (target->needsMoreStackNonSplit) 1179 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1180 } 1181 1182 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1183 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1184 return; 1185 // If -r or --emit-relocs is given, then an InputSection 1186 // may be a relocation section. 1187 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1188 copyRelocations<ELFT, typename ELFT::Rela>(buf); 1189 return; 1190 } 1191 if (LLVM_UNLIKELY(type == SHT_REL)) { 1192 copyRelocations<ELFT, typename ELFT::Rel>(buf); 1193 return; 1194 } 1195 1196 // If -r is given, we may have a SHT_GROUP section. 1197 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1198 copyShtGroup<ELFT>(buf); 1199 return; 1200 } 1201 1202 // If this is a compressed section, uncompress section contents directly 1203 // to the buffer. 1204 if (compressed) { 1205 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); 1206 auto compressed = ArrayRef<uint8_t>(content_, compressedSize) 1207 .slice(sizeof(typename ELFT::Chdr)); 1208 size_t size = this->size; 1209 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB 1210 ? compression::zlib::decompress(compressed, buf, size) 1211 : compression::zstd::decompress(compressed, buf, size)) 1212 fatal(toString(this) + 1213 ": decompress failed: " + llvm::toString(std::move(e))); 1214 uint8_t *bufEnd = buf + size; 1215 relocate<ELFT>(buf, bufEnd); 1216 return; 1217 } 1218 1219 // Copy section contents from source object file to output file 1220 // and then apply relocations. 1221 memcpy(buf, content().data(), content().size()); 1222 relocate<ELFT>(buf, buf + content().size()); 1223 } 1224 1225 void InputSection::replace(InputSection *other) { 1226 addralign = std::max(addralign, other->addralign); 1227 1228 // When a section is replaced with another section that was allocated to 1229 // another partition, the replacement section (and its associated sections) 1230 // need to be placed in the main partition so that both partitions will be 1231 // able to access it. 1232 if (partition != other->partition) { 1233 partition = 1; 1234 for (InputSection *isec : dependentSections) 1235 isec->partition = 1; 1236 } 1237 1238 other->repl = repl; 1239 other->markDead(); 1240 } 1241 1242 template <class ELFT> 1243 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1244 const typename ELFT::Shdr &header, 1245 StringRef name) 1246 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1247 1248 SyntheticSection *EhInputSection::getParent() const { 1249 return cast_or_null<SyntheticSection>(parent); 1250 } 1251 1252 // .eh_frame is a sequence of CIE or FDE records. 1253 // This function splits an input section into records and returns them. 1254 template <class ELFT> void EhInputSection::split() { 1255 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1256 // getReloc expects the relocations to be sorted by r_offset. See the comment 1257 // in scanRelocs. 1258 if (rels.areRelocsRel()) { 1259 SmallVector<typename ELFT::Rel, 0> storage; 1260 split<ELFT>(sortRels(rels.rels, storage)); 1261 } else { 1262 SmallVector<typename ELFT::Rela, 0> storage; 1263 split<ELFT>(sortRels(rels.relas, storage)); 1264 } 1265 } 1266 1267 template <class ELFT, class RelTy> 1268 void EhInputSection::split(ArrayRef<RelTy> rels) { 1269 ArrayRef<uint8_t> d = content(); 1270 const char *msg = nullptr; 1271 unsigned relI = 0; 1272 while (!d.empty()) { 1273 if (d.size() < 4) { 1274 msg = "CIE/FDE too small"; 1275 break; 1276 } 1277 uint64_t size = endian::read32<ELFT::Endianness>(d.data()); 1278 if (size == 0) // ZERO terminator 1279 break; 1280 uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4); 1281 size += 4; 1282 if (LLVM_UNLIKELY(size > d.size())) { 1283 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1284 // but we do not support that format yet. 1285 msg = size == UINT32_MAX + uint64_t(4) 1286 ? "CIE/FDE too large" 1287 : "CIE/FDE ends past the end of the section"; 1288 break; 1289 } 1290 1291 // Find the first relocation that points to [off,off+size). Relocations 1292 // have been sorted by r_offset. 1293 const uint64_t off = d.data() - content().data(); 1294 while (relI != rels.size() && rels[relI].r_offset < off) 1295 ++relI; 1296 unsigned firstRel = -1; 1297 if (relI != rels.size() && rels[relI].r_offset < off + size) 1298 firstRel = relI; 1299 (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); 1300 d = d.slice(size); 1301 } 1302 if (msg) 1303 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1304 getObjMsg(d.data() - content().data())); 1305 } 1306 1307 // Return the offset in an output section for a given input offset. 1308 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1309 auto it = partition_point( 1310 fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1311 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { 1312 it = partition_point( 1313 cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); 1314 if (it == cies.begin()) // invalid piece 1315 return offset; 1316 } 1317 if (it[-1].outputOff == -1) // invalid piece 1318 return offset - it[-1].inputOff; 1319 return it[-1].outputOff + (offset - it[-1].inputOff); 1320 } 1321 1322 static size_t findNull(StringRef s, size_t entSize) { 1323 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1324 const char *b = s.begin() + i; 1325 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1326 return i; 1327 } 1328 llvm_unreachable(""); 1329 } 1330 1331 // Split SHF_STRINGS section. Such section is a sequence of 1332 // null-terminated strings. 1333 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1334 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1335 const char *p = s.data(), *end = s.data() + s.size(); 1336 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1337 fatal(toString(this) + ": string is not null terminated"); 1338 if (entSize == 1) { 1339 // Optimize the common case. 1340 do { 1341 size_t size = strlen(p); 1342 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1343 p += size + 1; 1344 } while (p != end); 1345 } else { 1346 do { 1347 size_t size = findNull(StringRef(p, end - p), entSize); 1348 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); 1349 p += size + entSize; 1350 } while (p != end); 1351 } 1352 } 1353 1354 // Split non-SHF_STRINGS section. Such section is a sequence of 1355 // fixed size records. 1356 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1357 size_t entSize) { 1358 size_t size = data.size(); 1359 assert((size % entSize) == 0); 1360 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1361 1362 pieces.resize_for_overwrite(size / entSize); 1363 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1364 pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; 1365 } 1366 1367 template <class ELFT> 1368 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1369 const typename ELFT::Shdr &header, 1370 StringRef name) 1371 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1372 1373 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1374 uint64_t entsize, ArrayRef<uint8_t> data, 1375 StringRef name) 1376 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1377 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1378 1379 // This function is called after we obtain a complete list of input sections 1380 // that need to be linked. This is responsible to split section contents 1381 // into small chunks for further processing. 1382 // 1383 // Note that this function is called from parallelForEach. This must be 1384 // thread-safe (i.e. no memory allocation from the pools). 1385 void MergeInputSection::splitIntoPieces() { 1386 assert(pieces.empty()); 1387 1388 if (flags & SHF_STRINGS) 1389 splitStrings(toStringRef(contentMaybeDecompress()), entsize); 1390 else 1391 splitNonStrings(contentMaybeDecompress(), entsize); 1392 } 1393 1394 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1395 if (content().size() <= offset) 1396 fatal(toString(this) + ": offset is outside the section"); 1397 return partition_point( 1398 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1399 } 1400 1401 // Return the offset in an output section for a given input offset. 1402 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1403 const SectionPiece &piece = getSectionPiece(offset); 1404 return piece.outputOff + (offset - piece.inputOff); 1405 } 1406 1407 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1408 StringRef); 1409 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1410 StringRef); 1411 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1412 StringRef); 1413 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1414 StringRef); 1415 1416 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1417 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1418 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1419 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1420 1421 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1422 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1423 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1424 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1425 1426 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1427 const ELF32LE::Shdr &, StringRef); 1428 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1429 const ELF32BE::Shdr &, StringRef); 1430 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1431 const ELF64LE::Shdr &, StringRef); 1432 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1433 const ELF64BE::Shdr &, StringRef); 1434 1435 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1436 const ELF32LE::Shdr &, StringRef); 1437 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1438 const ELF32BE::Shdr &, StringRef); 1439 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1440 const ELF64LE::Shdr &, StringRef); 1441 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1442 const ELF64BE::Shdr &, StringRef); 1443 1444 template void EhInputSection::split<ELF32LE>(); 1445 template void EhInputSection::split<ELF32BE>(); 1446 template void EhInputSection::split<ELF64LE>(); 1447 template void EhInputSection::split<ELF64BE>(); 1448