xref: /freebsd/contrib/llvm-project/lld/ELF/InputFiles.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = std::string(f->getName());
63     else
64       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65   }
66   return f->toStringCache;
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver.save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
119                                        /*RequiresNullTerminator=*/false);
120   if (auto ec = mbOrErr.getError()) {
121     error("cannot open " + path + ": " + ec.message());
122     return None;
123   }
124 
125   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
126   MemoryBufferRef mbref = mb->getMemBufferRef();
127   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
128 
129   if (tar)
130     tar->append(relativeToRoot(path), mbref.getBuffer());
131   return mbref;
132 }
133 
134 // All input object files must be for the same architecture
135 // (e.g. it does not make sense to link x86 object files with
136 // MIPS object files.) This function checks for that error.
137 static bool isCompatible(InputFile *file) {
138   if (!file->isElf() && !isa<BitcodeFile>(file))
139     return true;
140 
141   if (file->ekind == config->ekind && file->emachine == config->emachine) {
142     if (config->emachine != EM_MIPS)
143       return true;
144     if (isMipsN32Abi(file) == config->mipsN32Abi)
145       return true;
146   }
147 
148   StringRef target =
149       !config->bfdname.empty() ? config->bfdname : config->emulation;
150   if (!target.empty()) {
151     error(toString(file) + " is incompatible with " + target);
152     return false;
153   }
154 
155   InputFile *existing;
156   if (!objectFiles.empty())
157     existing = objectFiles[0];
158   else if (!sharedFiles.empty())
159     existing = sharedFiles[0];
160   else if (!bitcodeFiles.empty())
161     existing = bitcodeFiles[0];
162   else
163     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
164                      "determine target emulation");
165 
166   error(toString(file) + " is incompatible with " + toString(existing));
167   return false;
168 }
169 
170 template <class ELFT> static void doParseFile(InputFile *file) {
171   if (!isCompatible(file))
172     return;
173 
174   // Binary file
175   if (auto *f = dyn_cast<BinaryFile>(file)) {
176     binaryFiles.push_back(f);
177     f->parse();
178     return;
179   }
180 
181   // .a file
182   if (auto *f = dyn_cast<ArchiveFile>(file)) {
183     archiveFiles.push_back(f);
184     f->parse();
185     return;
186   }
187 
188   // Lazy object file
189   if (auto *f = dyn_cast<LazyObjFile>(file)) {
190     lazyObjFiles.push_back(f);
191     f->parse<ELFT>();
192     return;
193   }
194 
195   if (config->trace)
196     message(toString(file));
197 
198   // .so file
199   if (auto *f = dyn_cast<SharedFile>(file)) {
200     f->parse<ELFT>();
201     return;
202   }
203 
204   // LLVM bitcode file
205   if (auto *f = dyn_cast<BitcodeFile>(file)) {
206     bitcodeFiles.push_back(f);
207     f->parse<ELFT>();
208     return;
209   }
210 
211   // Regular object file
212   objectFiles.push_back(file);
213   cast<ObjFile<ELFT>>(file)->parse();
214 }
215 
216 // Add symbols in File to the symbol table.
217 void elf::parseFile(InputFile *file) {
218   switch (config->ekind) {
219   case ELF32LEKind:
220     doParseFile<ELF32LE>(file);
221     return;
222   case ELF32BEKind:
223     doParseFile<ELF32BE>(file);
224     return;
225   case ELF64LEKind:
226     doParseFile<ELF64LE>(file);
227     return;
228   case ELF64BEKind:
229     doParseFile<ELF64BE>(file);
230     return;
231   default:
232     llvm_unreachable("unknown ELFT");
233   }
234 }
235 
236 // Concatenates arguments to construct a string representing an error location.
237 static std::string createFileLineMsg(StringRef path, unsigned line) {
238   std::string filename = std::string(path::filename(path));
239   std::string lineno = ":" + std::to_string(line);
240   if (filename == path)
241     return filename + lineno;
242   return filename + lineno + " (" + path.str() + lineno + ")";
243 }
244 
245 template <class ELFT>
246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
247                                 InputSectionBase &sec, uint64_t offset) {
248   // In DWARF, functions and variables are stored to different places.
249   // First, lookup a function for a given offset.
250   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
251     return createFileLineMsg(info->FileName, info->Line);
252 
253   // If it failed, lookup again as a variable.
254   if (Optional<std::pair<std::string, unsigned>> fileLine =
255           file.getVariableLoc(sym.getName()))
256     return createFileLineMsg(fileLine->first, fileLine->second);
257 
258   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
259   return std::string(file.sourceFile);
260 }
261 
262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
263                                  uint64_t offset) {
264   if (kind() != ObjKind)
265     return "";
266   switch (config->ekind) {
267   default:
268     llvm_unreachable("Invalid kind");
269   case ELF32LEKind:
270     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
271   case ELF32BEKind:
272     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
273   case ELF64LEKind:
274     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
275   case ELF64BEKind:
276     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
277   }
278 }
279 
280 StringRef InputFile::getNameForScript() const {
281   if (archiveName.empty())
282     return getName();
283 
284   if (nameForScriptCache.empty())
285     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
286 
287   return nameForScriptCache;
288 }
289 
290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
291   llvm::call_once(initDwarf, [this]() {
292     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
293         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
294         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
295         [&](Error warning) {
296           warn(getName() + ": " + toString(std::move(warning)));
297         }));
298   });
299 
300   return dwarf.get();
301 }
302 
303 // Returns the pair of file name and line number describing location of data
304 // object (variable, array, etc) definition.
305 template <class ELFT>
306 Optional<std::pair<std::string, unsigned>>
307 ObjFile<ELFT>::getVariableLoc(StringRef name) {
308   return getDwarf()->getVariableLoc(name);
309 }
310 
311 // Returns source line information for a given offset
312 // using DWARF debug info.
313 template <class ELFT>
314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
315                                                   uint64_t offset) {
316   // Detect SectionIndex for specified section.
317   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
318   ArrayRef<InputSectionBase *> sections = s->file->getSections();
319   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
320     if (s == sections[curIndex]) {
321       sectionIndex = curIndex;
322       break;
323     }
324   }
325 
326   return getDwarf()->getDILineInfo(offset, sectionIndex);
327 }
328 
329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
330   ekind = getELFKind(mb, "");
331 
332   switch (ekind) {
333   case ELF32LEKind:
334     init<ELF32LE>();
335     break;
336   case ELF32BEKind:
337     init<ELF32BE>();
338     break;
339   case ELF64LEKind:
340     init<ELF64LE>();
341     break;
342   case ELF64BEKind:
343     init<ELF64BE>();
344     break;
345   default:
346     llvm_unreachable("getELFKind");
347   }
348 }
349 
350 template <typename Elf_Shdr>
351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
352   for (const Elf_Shdr &sec : sections)
353     if (sec.sh_type == type)
354       return &sec;
355   return nullptr;
356 }
357 
358 template <class ELFT> void ELFFileBase::init() {
359   using Elf_Shdr = typename ELFT::Shdr;
360   using Elf_Sym = typename ELFT::Sym;
361 
362   // Initialize trivial attributes.
363   const ELFFile<ELFT> &obj = getObj<ELFT>();
364   emachine = obj.getHeader().e_machine;
365   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
366   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
367 
368   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
369 
370   // Find a symbol table.
371   bool isDSO =
372       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
373   const Elf_Shdr *symtabSec =
374       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
375 
376   if (!symtabSec)
377     return;
378 
379   // Initialize members corresponding to a symbol table.
380   firstGlobal = symtabSec->sh_info;
381 
382   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
383   if (firstGlobal == 0 || firstGlobal > eSyms.size())
384     fatal(toString(this) + ": invalid sh_info in symbol table");
385 
386   elfSyms = reinterpret_cast<const void *>(eSyms.data());
387   numELFSyms = eSyms.size();
388   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
389 }
390 
391 template <class ELFT>
392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
393   return CHECK(
394       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
395       this);
396 }
397 
398 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
399   if (this->symbols.empty())
400     return {};
401   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
402 }
403 
404 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
405   return makeArrayRef(this->symbols).slice(this->firstGlobal);
406 }
407 
408 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
409   // Read a section table. justSymbols is usually false.
410   if (this->justSymbols)
411     initializeJustSymbols();
412   else
413     initializeSections(ignoreComdats);
414 
415   // Read a symbol table.
416   initializeSymbols();
417 }
418 
419 // Sections with SHT_GROUP and comdat bits define comdat section groups.
420 // They are identified and deduplicated by group name. This function
421 // returns a group name.
422 template <class ELFT>
423 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
424                                               const Elf_Shdr &sec) {
425   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
426   if (sec.sh_info >= symbols.size())
427     fatal(toString(this) + ": invalid symbol index");
428   const typename ELFT::Sym &sym = symbols[sec.sh_info];
429   StringRef signature = CHECK(sym.getName(this->stringTable), this);
430 
431   // As a special case, if a symbol is a section symbol and has no name,
432   // we use a section name as a signature.
433   //
434   // Such SHT_GROUP sections are invalid from the perspective of the ELF
435   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
436   // older produce such sections as outputs for the -r option, so we need
437   // a bug-compatibility.
438   if (signature.empty() && sym.getType() == STT_SECTION)
439     return getSectionName(sec);
440   return signature;
441 }
442 
443 template <class ELFT>
444 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
445   if (!(sec.sh_flags & SHF_MERGE))
446     return false;
447 
448   // On a regular link we don't merge sections if -O0 (default is -O1). This
449   // sometimes makes the linker significantly faster, although the output will
450   // be bigger.
451   //
452   // Doing the same for -r would create a problem as it would combine sections
453   // with different sh_entsize. One option would be to just copy every SHF_MERGE
454   // section as is to the output. While this would produce a valid ELF file with
455   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
456   // they see two .debug_str. We could have separate logic for combining
457   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
458   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
459   // logic for -r.
460   if (config->optimize == 0 && !config->relocatable)
461     return false;
462 
463   // A mergeable section with size 0 is useless because they don't have
464   // any data to merge. A mergeable string section with size 0 can be
465   // argued as invalid because it doesn't end with a null character.
466   // We'll avoid a mess by handling them as if they were non-mergeable.
467   if (sec.sh_size == 0)
468     return false;
469 
470   // Check for sh_entsize. The ELF spec is not clear about the zero
471   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
472   // the section does not hold a table of fixed-size entries". We know
473   // that Rust 1.13 produces a string mergeable section with a zero
474   // sh_entsize. Here we just accept it rather than being picky about it.
475   uint64_t entSize = sec.sh_entsize;
476   if (entSize == 0)
477     return false;
478   if (sec.sh_size % entSize)
479     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
480           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
481           Twine(entSize) + ")");
482 
483   if (sec.sh_flags & SHF_WRITE)
484     fatal(toString(this) + ":(" + name +
485           "): writable SHF_MERGE section is not supported");
486 
487   return true;
488 }
489 
490 // This is for --just-symbols.
491 //
492 // --just-symbols is a very minor feature that allows you to link your
493 // output against other existing program, so that if you load both your
494 // program and the other program into memory, your output can refer the
495 // other program's symbols.
496 //
497 // When the option is given, we link "just symbols". The section table is
498 // initialized with null pointers.
499 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
500   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
501   this->sections.resize(sections.size());
502 }
503 
504 // An ELF object file may contain a `.deplibs` section. If it exists, the
505 // section contains a list of library specifiers such as `m` for libm. This
506 // function resolves a given name by finding the first matching library checking
507 // the various ways that a library can be specified to LLD. This ELF extension
508 // is a form of autolinking and is called `dependent libraries`. It is currently
509 // unique to LLVM and lld.
510 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
511   if (!config->dependentLibraries)
512     return;
513   if (fs::exists(specifier))
514     driver->addFile(specifier, /*withLOption=*/false);
515   else if (Optional<std::string> s = findFromSearchPaths(specifier))
516     driver->addFile(*s, /*withLOption=*/true);
517   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
518     driver->addFile(*s, /*withLOption=*/true);
519   else
520     error(toString(f) +
521           ": unable to find library from dependent library specifier: " +
522           specifier);
523 }
524 
525 // Record the membership of a section group so that in the garbage collection
526 // pass, section group members are kept or discarded as a unit.
527 template <class ELFT>
528 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
529                                ArrayRef<typename ELFT::Word> entries) {
530   bool hasAlloc = false;
531   for (uint32_t index : entries.slice(1)) {
532     if (index >= sections.size())
533       return;
534     if (InputSectionBase *s = sections[index])
535       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
536         hasAlloc = true;
537   }
538 
539   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
540   // collection. See the comment in markLive(). This rule retains .debug_types
541   // and .rela.debug_types.
542   if (!hasAlloc)
543     return;
544 
545   // Connect the members in a circular doubly-linked list via
546   // nextInSectionGroup.
547   InputSectionBase *head;
548   InputSectionBase *prev = nullptr;
549   for (uint32_t index : entries.slice(1)) {
550     InputSectionBase *s = sections[index];
551     if (!s || s == &InputSection::discarded)
552       continue;
553     if (prev)
554       prev->nextInSectionGroup = s;
555     else
556       head = s;
557     prev = s;
558   }
559   if (prev)
560     prev->nextInSectionGroup = head;
561 }
562 
563 template <class ELFT>
564 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
565   const ELFFile<ELFT> &obj = this->getObj();
566 
567   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
568   uint64_t size = objSections.size();
569   this->sections.resize(size);
570   this->sectionStringTable =
571       CHECK(obj.getSectionStringTable(objSections), this);
572 
573   std::vector<ArrayRef<Elf_Word>> selectedGroups;
574 
575   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
576     if (this->sections[i] == &InputSection::discarded)
577       continue;
578     const Elf_Shdr &sec = objSections[i];
579 
580     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
581       cgProfileSectionIndex = i;
582 
583     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
584     // if -r is given, we'll let the final link discard such sections.
585     // This is compatible with GNU.
586     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
587       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
588         // We ignore the address-significance table if we know that the object
589         // file was created by objcopy or ld -r. This is because these tools
590         // will reorder the symbols in the symbol table, invalidating the data
591         // in the address-significance table, which refers to symbols by index.
592         if (sec.sh_link != 0)
593           this->addrsigSec = &sec;
594         else if (config->icf == ICFLevel::Safe)
595           warn(toString(this) +
596                ": --icf=safe conservatively ignores "
597                "SHT_LLVM_ADDRSIG [index " +
598                Twine(i) +
599                "] with sh_link=0 "
600                "(likely created using objcopy or ld -r)");
601       }
602       this->sections[i] = &InputSection::discarded;
603       continue;
604     }
605 
606     switch (sec.sh_type) {
607     case SHT_GROUP: {
608       // De-duplicate section groups by their signatures.
609       StringRef signature = getShtGroupSignature(objSections, sec);
610       this->sections[i] = &InputSection::discarded;
611 
612       ArrayRef<Elf_Word> entries =
613           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
614       if (entries.empty())
615         fatal(toString(this) + ": empty SHT_GROUP");
616 
617       Elf_Word flag = entries[0];
618       if (flag && flag != GRP_COMDAT)
619         fatal(toString(this) + ": unsupported SHT_GROUP format");
620 
621       bool keepGroup =
622           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
623           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
624               .second;
625       if (keepGroup) {
626         if (config->relocatable)
627           this->sections[i] = createInputSection(sec);
628         selectedGroups.push_back(entries);
629         continue;
630       }
631 
632       // Otherwise, discard group members.
633       for (uint32_t secIndex : entries.slice(1)) {
634         if (secIndex >= size)
635           fatal(toString(this) +
636                 ": invalid section index in group: " + Twine(secIndex));
637         this->sections[secIndex] = &InputSection::discarded;
638       }
639       break;
640     }
641     case SHT_SYMTAB_SHNDX:
642       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
643       break;
644     case SHT_SYMTAB:
645     case SHT_STRTAB:
646     case SHT_REL:
647     case SHT_RELA:
648     case SHT_NULL:
649       break;
650     default:
651       this->sections[i] = createInputSection(sec);
652     }
653   }
654 
655   // We have a second loop. It is used to:
656   // 1) handle SHF_LINK_ORDER sections.
657   // 2) create SHT_REL[A] sections. In some cases the section header index of a
658   //    relocation section may be smaller than that of the relocated section. In
659   //    such cases, the relocation section would attempt to reference a target
660   //    section that has not yet been created. For simplicity, delay creation of
661   //    relocation sections until now.
662   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
663     if (this->sections[i] == &InputSection::discarded)
664       continue;
665     const Elf_Shdr &sec = objSections[i];
666 
667     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
668       this->sections[i] = createInputSection(sec);
669 
670     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
671     // the flag.
672     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
673       continue;
674 
675     InputSectionBase *linkSec = nullptr;
676     if (sec.sh_link < this->sections.size())
677       linkSec = this->sections[sec.sh_link];
678     if (!linkSec)
679       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
680 
681     // A SHF_LINK_ORDER section is discarded if its linked-to section is
682     // discarded.
683     InputSection *isec = cast<InputSection>(this->sections[i]);
684     linkSec->dependentSections.push_back(isec);
685     if (!isa<InputSection>(linkSec))
686       error("a section " + isec->name +
687             " with SHF_LINK_ORDER should not refer a non-regular section: " +
688             toString(linkSec));
689   }
690 
691   for (ArrayRef<Elf_Word> entries : selectedGroups)
692     handleSectionGroup<ELFT>(this->sections, entries);
693 }
694 
695 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
696 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
697 // the input objects have been compiled.
698 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
699                              const InputFile *f) {
700   Optional<unsigned> attr =
701       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
702   if (!attr.hasValue())
703     // If an ABI tag isn't present then it is implicitly given the value of 0
704     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
705     // including some in glibc that don't use FP args (and should have value 3)
706     // don't have the attribute so we do not consider an implicit value of 0
707     // as a clash.
708     return;
709 
710   unsigned vfpArgs = attr.getValue();
711   ARMVFPArgKind arg;
712   switch (vfpArgs) {
713   case ARMBuildAttrs::BaseAAPCS:
714     arg = ARMVFPArgKind::Base;
715     break;
716   case ARMBuildAttrs::HardFPAAPCS:
717     arg = ARMVFPArgKind::VFP;
718     break;
719   case ARMBuildAttrs::ToolChainFPPCS:
720     // Tool chain specific convention that conforms to neither AAPCS variant.
721     arg = ARMVFPArgKind::ToolChain;
722     break;
723   case ARMBuildAttrs::CompatibleFPAAPCS:
724     // Object compatible with all conventions.
725     return;
726   default:
727     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
728     return;
729   }
730   // Follow ld.bfd and error if there is a mix of calling conventions.
731   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
732     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
733   else
734     config->armVFPArgs = arg;
735 }
736 
737 // The ARM support in lld makes some use of instructions that are not available
738 // on all ARM architectures. Namely:
739 // - Use of BLX instruction for interworking between ARM and Thumb state.
740 // - Use of the extended Thumb branch encoding in relocation.
741 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
742 // The ARM Attributes section contains information about the architecture chosen
743 // at compile time. We follow the convention that if at least one input object
744 // is compiled with an architecture that supports these features then lld is
745 // permitted to use them.
746 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
747   Optional<unsigned> attr =
748       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
749   if (!attr.hasValue())
750     return;
751   auto arch = attr.getValue();
752   switch (arch) {
753   case ARMBuildAttrs::Pre_v4:
754   case ARMBuildAttrs::v4:
755   case ARMBuildAttrs::v4T:
756     // Architectures prior to v5 do not support BLX instruction
757     break;
758   case ARMBuildAttrs::v5T:
759   case ARMBuildAttrs::v5TE:
760   case ARMBuildAttrs::v5TEJ:
761   case ARMBuildAttrs::v6:
762   case ARMBuildAttrs::v6KZ:
763   case ARMBuildAttrs::v6K:
764     config->armHasBlx = true;
765     // Architectures used in pre-Cortex processors do not support
766     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
767     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
768     break;
769   default:
770     // All other Architectures have BLX and extended branch encoding
771     config->armHasBlx = true;
772     config->armJ1J2BranchEncoding = true;
773     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
774       // All Architectures used in Cortex processors with the exception
775       // of v6-M and v6S-M have the MOVT and MOVW instructions.
776       config->armHasMovtMovw = true;
777     break;
778   }
779 }
780 
781 // If a source file is compiled with x86 hardware-assisted call flow control
782 // enabled, the generated object file contains feature flags indicating that
783 // fact. This function reads the feature flags and returns it.
784 //
785 // Essentially we want to read a single 32-bit value in this function, but this
786 // function is rather complicated because the value is buried deep inside a
787 // .note.gnu.property section.
788 //
789 // The section consists of one or more NOTE records. Each NOTE record consists
790 // of zero or more type-length-value fields. We want to find a field of a
791 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
792 // the ABI is unnecessarily complicated.
793 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
794   using Elf_Nhdr = typename ELFT::Nhdr;
795   using Elf_Note = typename ELFT::Note;
796 
797   uint32_t featuresSet = 0;
798   ArrayRef<uint8_t> data = sec.data();
799   auto reportFatal = [&](const uint8_t *place, const char *msg) {
800     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
801           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
802   };
803   while (!data.empty()) {
804     // Read one NOTE record.
805     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
806     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
807       reportFatal(data.data(), "data is too short");
808 
809     Elf_Note note(*nhdr);
810     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
811       data = data.slice(nhdr->getSize());
812       continue;
813     }
814 
815     uint32_t featureAndType = config->emachine == EM_AARCH64
816                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
817                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
818 
819     // Read a body of a NOTE record, which consists of type-length-value fields.
820     ArrayRef<uint8_t> desc = note.getDesc();
821     while (!desc.empty()) {
822       const uint8_t *place = desc.data();
823       if (desc.size() < 8)
824         reportFatal(place, "program property is too short");
825       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
826       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
827       desc = desc.slice(8);
828       if (desc.size() < size)
829         reportFatal(place, "program property is too short");
830 
831       if (type == featureAndType) {
832         // We found a FEATURE_1_AND field. There may be more than one of these
833         // in a .note.gnu.property section, for a relocatable object we
834         // accumulate the bits set.
835         if (size < 4)
836           reportFatal(place, "FEATURE_1_AND entry is too short");
837         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
838       }
839 
840       // Padding is present in the note descriptor, if necessary.
841       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
842     }
843 
844     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
845     data = data.slice(nhdr->getSize());
846   }
847 
848   return featuresSet;
849 }
850 
851 template <class ELFT>
852 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
853   uint32_t idx = sec.sh_info;
854   if (idx >= this->sections.size())
855     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
856   InputSectionBase *target = this->sections[idx];
857 
858   // Strictly speaking, a relocation section must be included in the
859   // group of the section it relocates. However, LLVM 3.3 and earlier
860   // would fail to do so, so we gracefully handle that case.
861   if (target == &InputSection::discarded)
862     return nullptr;
863 
864   if (!target)
865     fatal(toString(this) + ": unsupported relocation reference");
866   return target;
867 }
868 
869 // Create a regular InputSection class that has the same contents
870 // as a given section.
871 static InputSection *toRegularSection(MergeInputSection *sec) {
872   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
873                             sec->data(), sec->name);
874 }
875 
876 template <class ELFT>
877 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
878   StringRef name = getSectionName(sec);
879 
880   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
881     ARMAttributeParser attributes;
882     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
883     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
884                                                  ? support::little
885                                                  : support::big)) {
886       auto *isec = make<InputSection>(*this, sec, name);
887       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
888     } else {
889       updateSupportedARMFeatures(attributes);
890       updateARMVFPArgs(attributes, this);
891 
892       // FIXME: Retain the first attribute section we see. The eglibc ARM
893       // dynamic loaders require the presence of an attribute section for dlopen
894       // to work. In a full implementation we would merge all attribute
895       // sections.
896       if (in.attributes == nullptr) {
897         in.attributes = make<InputSection>(*this, sec, name);
898         return in.attributes;
899       }
900       return &InputSection::discarded;
901     }
902   }
903 
904   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
905     RISCVAttributeParser attributes;
906     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
907     if (Error e = attributes.parse(contents, support::little)) {
908       auto *isec = make<InputSection>(*this, sec, name);
909       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
910     } else {
911       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
912       // present.
913 
914       // FIXME: Retain the first attribute section we see. Tools such as
915       // llvm-objdump make use of the attribute section to determine which
916       // standard extensions to enable. In a full implementation we would merge
917       // all attribute sections.
918       if (in.attributes == nullptr) {
919         in.attributes = make<InputSection>(*this, sec, name);
920         return in.attributes;
921       }
922       return &InputSection::discarded;
923     }
924   }
925 
926   switch (sec.sh_type) {
927   case SHT_LLVM_DEPENDENT_LIBRARIES: {
928     if (config->relocatable)
929       break;
930     ArrayRef<char> data =
931         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
932     if (!data.empty() && data.back() != '\0') {
933       error(toString(this) +
934             ": corrupted dependent libraries section (unterminated string): " +
935             name);
936       return &InputSection::discarded;
937     }
938     for (const char *d = data.begin(), *e = data.end(); d < e;) {
939       StringRef s(d);
940       addDependentLibrary(s, this);
941       d += s.size() + 1;
942     }
943     return &InputSection::discarded;
944   }
945   case SHT_RELA:
946   case SHT_REL: {
947     // Find a relocation target section and associate this section with that.
948     // Target may have been discarded if it is in a different section group
949     // and the group is discarded, even though it's a violation of the
950     // spec. We handle that situation gracefully by discarding dangling
951     // relocation sections.
952     InputSectionBase *target = getRelocTarget(sec);
953     if (!target)
954       return nullptr;
955 
956     // ELF spec allows mergeable sections with relocations, but they are
957     // rare, and it is in practice hard to merge such sections by contents,
958     // because applying relocations at end of linking changes section
959     // contents. So, we simply handle such sections as non-mergeable ones.
960     // Degrading like this is acceptable because section merging is optional.
961     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
962       target = toRegularSection(ms);
963       this->sections[sec.sh_info] = target;
964     }
965 
966     if (target->firstRelocation)
967       fatal(toString(this) +
968             ": multiple relocation sections to one section are not supported");
969 
970     if (sec.sh_type == SHT_RELA) {
971       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
972       target->firstRelocation = rels.begin();
973       target->numRelocations = rels.size();
974       target->areRelocsRela = true;
975     } else {
976       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
977       target->firstRelocation = rels.begin();
978       target->numRelocations = rels.size();
979       target->areRelocsRela = false;
980     }
981     assert(isUInt<31>(target->numRelocations));
982 
983     // Relocation sections are usually removed from the output, so return
984     // `nullptr` for the normal case. However, if -r or --emit-relocs is
985     // specified, we need to copy them to the output. (Some post link analysis
986     // tools specify --emit-relocs to obtain the information.)
987     if (!config->relocatable && !config->emitRelocs)
988       return nullptr;
989     InputSection *relocSec = make<InputSection>(*this, sec, name);
990     // If the relocated section is discarded (due to /DISCARD/ or
991     // --gc-sections), the relocation section should be discarded as well.
992     target->dependentSections.push_back(relocSec);
993     return relocSec;
994   }
995   }
996 
997   // The GNU linker uses .note.GNU-stack section as a marker indicating
998   // that the code in the object file does not expect that the stack is
999   // executable (in terms of NX bit). If all input files have the marker,
1000   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1001   // make the stack non-executable. Most object files have this section as
1002   // of 2017.
1003   //
1004   // But making the stack non-executable is a norm today for security
1005   // reasons. Failure to do so may result in a serious security issue.
1006   // Therefore, we make LLD always add PT_GNU_STACK unless it is
1007   // explicitly told to do otherwise (by -z execstack). Because the stack
1008   // executable-ness is controlled solely by command line options,
1009   // .note.GNU-stack sections are simply ignored.
1010   if (name == ".note.GNU-stack")
1011     return &InputSection::discarded;
1012 
1013   // Object files that use processor features such as Intel Control-Flow
1014   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1015   // .note.gnu.property section containing a bitfield of feature bits like the
1016   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1017   //
1018   // Since we merge bitmaps from multiple object files to create a new
1019   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1020   // file's .note.gnu.property section.
1021   if (name == ".note.gnu.property") {
1022     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1023     return &InputSection::discarded;
1024   }
1025 
1026   // Split stacks is a feature to support a discontiguous stack,
1027   // commonly used in the programming language Go. For the details,
1028   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1029   // for split stack will include a .note.GNU-split-stack section.
1030   if (name == ".note.GNU-split-stack") {
1031     if (config->relocatable) {
1032       error("cannot mix split-stack and non-split-stack in a relocatable link");
1033       return &InputSection::discarded;
1034     }
1035     this->splitStack = true;
1036     return &InputSection::discarded;
1037   }
1038 
1039   // An object file cmpiled for split stack, but where some of the
1040   // functions were compiled with the no_split_stack_attribute will
1041   // include a .note.GNU-no-split-stack section.
1042   if (name == ".note.GNU-no-split-stack") {
1043     this->someNoSplitStack = true;
1044     return &InputSection::discarded;
1045   }
1046 
1047   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1048   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1049   // sections. Drop those sections to avoid duplicate symbol errors.
1050   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1051   // fixed for a while.
1052   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1053       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1054     return &InputSection::discarded;
1055 
1056   // If we are creating a new .build-id section, strip existing .build-id
1057   // sections so that the output won't have more than one .build-id.
1058   // This is not usually a problem because input object files normally don't
1059   // have .build-id sections, but you can create such files by
1060   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1061   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1062     return &InputSection::discarded;
1063 
1064   // The linker merges EH (exception handling) frames and creates a
1065   // .eh_frame_hdr section for runtime. So we handle them with a special
1066   // class. For relocatable outputs, they are just passed through.
1067   if (name == ".eh_frame" && !config->relocatable)
1068     return make<EhInputSection>(*this, sec, name);
1069 
1070   if (shouldMerge(sec, name))
1071     return make<MergeInputSection>(*this, sec, name);
1072   return make<InputSection>(*this, sec, name);
1073 }
1074 
1075 template <class ELFT>
1076 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1077   return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
1078 }
1079 
1080 // Initialize this->Symbols. this->Symbols is a parallel array as
1081 // its corresponding ELF symbol table.
1082 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1083   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1084   this->symbols.resize(eSyms.size());
1085 
1086   // Fill in InputFile::symbols. Some entries have been initialized
1087   // because of LazyObjFile.
1088   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1089     if (this->symbols[i])
1090       continue;
1091     const Elf_Sym &eSym = eSyms[i];
1092     uint32_t secIdx = getSectionIndex(eSym);
1093     if (secIdx >= this->sections.size())
1094       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1095     if (eSym.getBinding() != STB_LOCAL) {
1096       if (i < firstGlobal)
1097         error(toString(this) + ": non-local symbol (" + Twine(i) +
1098               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1099               ")");
1100       this->symbols[i] =
1101           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1102       continue;
1103     }
1104 
1105     // Handle local symbols. Local symbols are not added to the symbol
1106     // table because they are not visible from other object files. We
1107     // allocate symbol instances and add their pointers to symbols.
1108     if (i >= firstGlobal)
1109       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1110                   ") found at index >= .symtab's sh_info (" +
1111                   Twine(firstGlobal) + ")");
1112 
1113     InputSectionBase *sec = this->sections[secIdx];
1114     uint8_t type = eSym.getType();
1115     if (type == STT_FILE)
1116       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1117     if (this->stringTable.size() <= eSym.st_name)
1118       fatal(toString(this) + ": invalid symbol name offset");
1119     StringRefZ name = this->stringTable.data() + eSym.st_name;
1120 
1121     if (eSym.st_shndx == SHN_UNDEF)
1122       this->symbols[i] =
1123           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1124     else if (sec == &InputSection::discarded)
1125       this->symbols[i] =
1126           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1127                           /*discardedSecIdx=*/secIdx);
1128     else
1129       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1130                                        type, eSym.st_value, eSym.st_size, sec);
1131   }
1132 
1133   // Symbol resolution of non-local symbols.
1134   SmallVector<unsigned, 32> undefineds;
1135   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1136     const Elf_Sym &eSym = eSyms[i];
1137     uint8_t binding = eSym.getBinding();
1138     if (binding == STB_LOCAL)
1139       continue; // Errored above.
1140 
1141     uint32_t secIdx = getSectionIndex(eSym);
1142     InputSectionBase *sec = this->sections[secIdx];
1143     uint8_t stOther = eSym.st_other;
1144     uint8_t type = eSym.getType();
1145     uint64_t value = eSym.st_value;
1146     uint64_t size = eSym.st_size;
1147     StringRefZ name = this->stringTable.data() + eSym.st_name;
1148 
1149     // Handle global undefined symbols.
1150     if (eSym.st_shndx == SHN_UNDEF) {
1151       undefineds.push_back(i);
1152       continue;
1153     }
1154 
1155     // Handle global common symbols.
1156     if (eSym.st_shndx == SHN_COMMON) {
1157       if (value == 0 || value >= UINT32_MAX)
1158         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1159               "' has invalid alignment: " + Twine(value));
1160       this->symbols[i]->resolve(
1161           CommonSymbol{this, name, binding, stOther, type, value, size});
1162       continue;
1163     }
1164 
1165     // If a defined symbol is in a discarded section, handle it as if it
1166     // were an undefined symbol. Such symbol doesn't comply with the
1167     // standard, but in practice, a .eh_frame often directly refer
1168     // COMDAT member sections, and if a comdat group is discarded, some
1169     // defined symbol in a .eh_frame becomes dangling symbols.
1170     if (sec == &InputSection::discarded) {
1171       Undefined und{this, name, binding, stOther, type, secIdx};
1172       Symbol *sym = this->symbols[i];
1173       // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1174       // containing this object has not finished processing, i.e. this symbol is
1175       // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1176       // Undefined so that any relocations outside of the group to it will
1177       // trigger a discarded section error.
1178       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1179            !cast<ArchiveFile>(sym->file)->parsed) ||
1180           (sym->symbolKind == Symbol::LazyObjectKind &&
1181            cast<LazyObjFile>(sym->file)->fetched))
1182         sym->replace(und);
1183       else
1184         sym->resolve(und);
1185       continue;
1186     }
1187 
1188     // Handle global defined symbols.
1189     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1190         binding == STB_GNU_UNIQUE) {
1191       this->symbols[i]->resolve(
1192           Defined{this, name, binding, stOther, type, value, size, sec});
1193       continue;
1194     }
1195 
1196     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1197   }
1198 
1199   // Undefined symbols (excluding those defined relative to non-prevailing
1200   // sections) can trigger recursive fetch. Process defined symbols first so
1201   // that the relative order between a defined symbol and an undefined symbol
1202   // does not change the symbol resolution behavior. In addition, a set of
1203   // interconnected symbols will all be resolved to the same file, instead of
1204   // being resolved to different files.
1205   for (unsigned i : undefineds) {
1206     const Elf_Sym &eSym = eSyms[i];
1207     StringRefZ name = this->stringTable.data() + eSym.st_name;
1208     this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(),
1209                                         eSym.st_other, eSym.getType()});
1210     this->symbols[i]->referenced = true;
1211   }
1212 }
1213 
1214 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1215     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1216       file(std::move(file)) {}
1217 
1218 void ArchiveFile::parse() {
1219   for (const Archive::Symbol &sym : file->symbols())
1220     symtab->addSymbol(LazyArchive{*this, sym});
1221 
1222   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1223   // archive has been processed.
1224   parsed = true;
1225 }
1226 
1227 // Returns a buffer pointing to a member file containing a given symbol.
1228 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1229   Archive::Child c =
1230       CHECK(sym.getMember(), toString(this) +
1231                                  ": could not get the member for symbol " +
1232                                  toELFString(sym));
1233 
1234   if (!seen.insert(c.getChildOffset()).second)
1235     return;
1236 
1237   MemoryBufferRef mb =
1238       CHECK(c.getMemoryBufferRef(),
1239             toString(this) +
1240                 ": could not get the buffer for the member defining symbol " +
1241                 toELFString(sym));
1242 
1243   if (tar && c.getParent()->isThin())
1244     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1245 
1246   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1247   file->groupId = groupId;
1248   parseFile(file);
1249 }
1250 
1251 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1252 // A tentative definition will be promoted to a global definition if there are
1253 // no non-tentative definitions to dominate it. When we hold a tentative
1254 // definition to a symbol and are inspecting archive members for inclusion
1255 // there are 2 ways we can proceed:
1256 //
1257 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1258 //    tentative to real definition has already happened) and not inspect
1259 //    archive members for Global/Weak definitions to replace the tentative
1260 //    definition. An archive member would only be included if it satisfies some
1261 //    other undefined symbol. This is the behavior Gold uses.
1262 //
1263 // 2) Consider the tentative definition as still undefined (ie the promotion to
1264 //    a real definition happens only after all symbol resolution is done).
1265 //    The linker searches archive members for STB_GLOBAL definitions to
1266 //    replace the tentative definition with. This is the behavior used by
1267 //    GNU ld.
1268 //
1269 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1270 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1271 //  (pre F90) FORTRAN code that is packaged into an archive.
1272 //
1273 //  The following functions search archive members for definitions to replace
1274 //  tentative definitions (implementing behavior 2).
1275 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1276                                   StringRef archiveName) {
1277   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1278   for (const irsymtab::Reader::SymbolRef &sym :
1279        symtabFile.TheReader.symbols()) {
1280     if (sym.isGlobal() && sym.getName() == symName)
1281       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1282   }
1283   return false;
1284 }
1285 
1286 template <class ELFT>
1287 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1288                            StringRef archiveName) {
1289   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1290   StringRef stringtable = obj->getStringTable();
1291 
1292   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1293     Expected<StringRef> name = sym.getName(stringtable);
1294     if (name && name.get() == symName)
1295       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1296              !sym.isCommon();
1297   }
1298   return false;
1299 }
1300 
1301 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1302                            StringRef archiveName) {
1303   switch (getELFKind(mb, archiveName)) {
1304   case ELF32LEKind:
1305     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1306   case ELF32BEKind:
1307     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1308   case ELF64LEKind:
1309     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1310   case ELF64BEKind:
1311     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1312   default:
1313     llvm_unreachable("getELFKind");
1314   }
1315 }
1316 
1317 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) {
1318   Archive::Child c =
1319       CHECK(sym.getMember(), toString(this) +
1320                                  ": could not get the member for symbol " +
1321                                  toELFString(sym));
1322   MemoryBufferRef mb =
1323       CHECK(c.getMemoryBufferRef(),
1324             toString(this) +
1325                 ": could not get the buffer for the member defining symbol " +
1326                 toELFString(sym));
1327 
1328   if (isBitcode(mb))
1329     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1330 
1331   return isNonCommonDef(mb, sym.getName(), getName());
1332 }
1333 
1334 size_t ArchiveFile::getMemberCount() const {
1335   size_t count = 0;
1336   Error err = Error::success();
1337   for (const Archive::Child &c : file->children(err)) {
1338     (void)c;
1339     ++count;
1340   }
1341   // This function is used by --print-archive-stats=, where an error does not
1342   // really matter.
1343   consumeError(std::move(err));
1344   return count;
1345 }
1346 
1347 unsigned SharedFile::vernauxNum;
1348 
1349 // Parse the version definitions in the object file if present, and return a
1350 // vector whose nth element contains a pointer to the Elf_Verdef for version
1351 // identifier n. Version identifiers that are not definitions map to nullptr.
1352 template <typename ELFT>
1353 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1354                                               const typename ELFT::Shdr *sec) {
1355   if (!sec)
1356     return {};
1357 
1358   // We cannot determine the largest verdef identifier without inspecting
1359   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1360   // sequentially starting from 1, so we predict that the largest identifier
1361   // will be verdefCount.
1362   unsigned verdefCount = sec->sh_info;
1363   std::vector<const void *> verdefs(verdefCount + 1);
1364 
1365   // Build the Verdefs array by following the chain of Elf_Verdef objects
1366   // from the start of the .gnu.version_d section.
1367   const uint8_t *verdef = base + sec->sh_offset;
1368   for (unsigned i = 0; i != verdefCount; ++i) {
1369     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1370     verdef += curVerdef->vd_next;
1371     unsigned verdefIndex = curVerdef->vd_ndx;
1372     verdefs.resize(verdefIndex + 1);
1373     verdefs[verdefIndex] = curVerdef;
1374   }
1375   return verdefs;
1376 }
1377 
1378 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1379 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1380 // implement sophisticated error checking like in llvm-readobj because the value
1381 // of such diagnostics is low.
1382 template <typename ELFT>
1383 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1384                                                const typename ELFT::Shdr *sec) {
1385   if (!sec)
1386     return {};
1387   std::vector<uint32_t> verneeds;
1388   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1389   const uint8_t *verneedBuf = data.begin();
1390   for (unsigned i = 0; i != sec->sh_info; ++i) {
1391     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1392       fatal(toString(this) + " has an invalid Verneed");
1393     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1394     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1395     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1396       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1397         fatal(toString(this) + " has an invalid Vernaux");
1398       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1399       if (aux->vna_name >= this->stringTable.size())
1400         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1401       uint16_t version = aux->vna_other & VERSYM_VERSION;
1402       if (version >= verneeds.size())
1403         verneeds.resize(version + 1);
1404       verneeds[version] = aux->vna_name;
1405       vernauxBuf += aux->vna_next;
1406     }
1407     verneedBuf += vn->vn_next;
1408   }
1409   return verneeds;
1410 }
1411 
1412 // We do not usually care about alignments of data in shared object
1413 // files because the loader takes care of it. However, if we promote a
1414 // DSO symbol to point to .bss due to copy relocation, we need to keep
1415 // the original alignment requirements. We infer it in this function.
1416 template <typename ELFT>
1417 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1418                              const typename ELFT::Sym &sym) {
1419   uint64_t ret = UINT64_MAX;
1420   if (sym.st_value)
1421     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1422   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1423     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1424   return (ret > UINT32_MAX) ? 0 : ret;
1425 }
1426 
1427 // Fully parse the shared object file.
1428 //
1429 // This function parses symbol versions. If a DSO has version information,
1430 // the file has a ".gnu.version_d" section which contains symbol version
1431 // definitions. Each symbol is associated to one version through a table in
1432 // ".gnu.version" section. That table is a parallel array for the symbol
1433 // table, and each table entry contains an index in ".gnu.version_d".
1434 //
1435 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1436 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1437 // ".gnu.version_d".
1438 //
1439 // The file format for symbol versioning is perhaps a bit more complicated
1440 // than necessary, but you can easily understand the code if you wrap your
1441 // head around the data structure described above.
1442 template <class ELFT> void SharedFile::parse() {
1443   using Elf_Dyn = typename ELFT::Dyn;
1444   using Elf_Shdr = typename ELFT::Shdr;
1445   using Elf_Sym = typename ELFT::Sym;
1446   using Elf_Verdef = typename ELFT::Verdef;
1447   using Elf_Versym = typename ELFT::Versym;
1448 
1449   ArrayRef<Elf_Dyn> dynamicTags;
1450   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1451   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1452 
1453   const Elf_Shdr *versymSec = nullptr;
1454   const Elf_Shdr *verdefSec = nullptr;
1455   const Elf_Shdr *verneedSec = nullptr;
1456 
1457   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1458   for (const Elf_Shdr &sec : sections) {
1459     switch (sec.sh_type) {
1460     default:
1461       continue;
1462     case SHT_DYNAMIC:
1463       dynamicTags =
1464           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1465       break;
1466     case SHT_GNU_versym:
1467       versymSec = &sec;
1468       break;
1469     case SHT_GNU_verdef:
1470       verdefSec = &sec;
1471       break;
1472     case SHT_GNU_verneed:
1473       verneedSec = &sec;
1474       break;
1475     }
1476   }
1477 
1478   if (versymSec && numELFSyms == 0) {
1479     error("SHT_GNU_versym should be associated with symbol table");
1480     return;
1481   }
1482 
1483   // Search for a DT_SONAME tag to initialize this->soName.
1484   for (const Elf_Dyn &dyn : dynamicTags) {
1485     if (dyn.d_tag == DT_NEEDED) {
1486       uint64_t val = dyn.getVal();
1487       if (val >= this->stringTable.size())
1488         fatal(toString(this) + ": invalid DT_NEEDED entry");
1489       dtNeeded.push_back(this->stringTable.data() + val);
1490     } else if (dyn.d_tag == DT_SONAME) {
1491       uint64_t val = dyn.getVal();
1492       if (val >= this->stringTable.size())
1493         fatal(toString(this) + ": invalid DT_SONAME entry");
1494       soName = this->stringTable.data() + val;
1495     }
1496   }
1497 
1498   // DSOs are uniquified not by filename but by soname.
1499   DenseMap<StringRef, SharedFile *>::iterator it;
1500   bool wasInserted;
1501   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1502 
1503   // If a DSO appears more than once on the command line with and without
1504   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1505   // user can add an extra DSO with --no-as-needed to force it to be added to
1506   // the dependency list.
1507   it->second->isNeeded |= isNeeded;
1508   if (!wasInserted)
1509     return;
1510 
1511   sharedFiles.push_back(this);
1512 
1513   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1514   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1515 
1516   // Parse ".gnu.version" section which is a parallel array for the symbol
1517   // table. If a given file doesn't have a ".gnu.version" section, we use
1518   // VER_NDX_GLOBAL.
1519   size_t size = numELFSyms - firstGlobal;
1520   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1521   if (versymSec) {
1522     ArrayRef<Elf_Versym> versym =
1523         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1524               this)
1525             .slice(firstGlobal);
1526     for (size_t i = 0; i < size; ++i)
1527       versyms[i] = versym[i].vs_index;
1528   }
1529 
1530   // System libraries can have a lot of symbols with versions. Using a
1531   // fixed buffer for computing the versions name (foo@ver) can save a
1532   // lot of allocations.
1533   SmallString<0> versionedNameBuffer;
1534 
1535   // Add symbols to the symbol table.
1536   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1537   for (size_t i = 0; i < syms.size(); ++i) {
1538     const Elf_Sym &sym = syms[i];
1539 
1540     // ELF spec requires that all local symbols precede weak or global
1541     // symbols in each symbol table, and the index of first non-local symbol
1542     // is stored to sh_info. If a local symbol appears after some non-local
1543     // symbol, that's a violation of the spec.
1544     StringRef name = CHECK(sym.getName(this->stringTable), this);
1545     if (sym.getBinding() == STB_LOCAL) {
1546       warn("found local symbol '" + name +
1547            "' in global part of symbol table in file " + toString(this));
1548       continue;
1549     }
1550 
1551     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1552     if (sym.isUndefined()) {
1553       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1554       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1555       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1556         if (idx >= verneeds.size()) {
1557           error("corrupt input file: version need index " + Twine(idx) +
1558                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1559                 toString(this));
1560           continue;
1561         }
1562         StringRef verName = this->stringTable.data() + verneeds[idx];
1563         versionedNameBuffer.clear();
1564         name =
1565             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1566       }
1567       Symbol *s = symtab->addSymbol(
1568           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1569       s->exportDynamic = true;
1570       if (s->isUndefined() && !s->isWeak() &&
1571           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1572         requiredSymbols.push_back(s);
1573       continue;
1574     }
1575 
1576     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1577     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1578     // workaround for this bug.
1579     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1580         name == "_gp_disp")
1581       continue;
1582 
1583     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1584     if (!(versyms[i] & VERSYM_HIDDEN)) {
1585       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1586                                      sym.st_other, sym.getType(), sym.st_value,
1587                                      sym.st_size, alignment, idx});
1588     }
1589 
1590     // Also add the symbol with the versioned name to handle undefined symbols
1591     // with explicit versions.
1592     if (idx == VER_NDX_GLOBAL)
1593       continue;
1594 
1595     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1596       error("corrupt input file: version definition index " + Twine(idx) +
1597             " for symbol " + name + " is out of bounds\n>>> defined in " +
1598             toString(this));
1599       continue;
1600     }
1601 
1602     StringRef verName =
1603         this->stringTable.data() +
1604         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1605     versionedNameBuffer.clear();
1606     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1607     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1608                                    sym.st_other, sym.getType(), sym.st_value,
1609                                    sym.st_size, alignment, idx});
1610   }
1611 }
1612 
1613 static ELFKind getBitcodeELFKind(const Triple &t) {
1614   if (t.isLittleEndian())
1615     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1616   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1617 }
1618 
1619 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1620   switch (t.getArch()) {
1621   case Triple::aarch64:
1622   case Triple::aarch64_be:
1623     return EM_AARCH64;
1624   case Triple::amdgcn:
1625   case Triple::r600:
1626     return EM_AMDGPU;
1627   case Triple::arm:
1628   case Triple::thumb:
1629     return EM_ARM;
1630   case Triple::avr:
1631     return EM_AVR;
1632   case Triple::mips:
1633   case Triple::mipsel:
1634   case Triple::mips64:
1635   case Triple::mips64el:
1636     return EM_MIPS;
1637   case Triple::msp430:
1638     return EM_MSP430;
1639   case Triple::ppc:
1640   case Triple::ppcle:
1641     return EM_PPC;
1642   case Triple::ppc64:
1643   case Triple::ppc64le:
1644     return EM_PPC64;
1645   case Triple::riscv32:
1646   case Triple::riscv64:
1647     return EM_RISCV;
1648   case Triple::x86:
1649     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1650   case Triple::x86_64:
1651     return EM_X86_64;
1652   default:
1653     error(path + ": could not infer e_machine from bitcode target triple " +
1654           t.str());
1655     return EM_NONE;
1656   }
1657 }
1658 
1659 static uint8_t getOsAbi(const Triple &t) {
1660   switch (t.getOS()) {
1661   case Triple::AMDHSA:
1662     return ELF::ELFOSABI_AMDGPU_HSA;
1663   case Triple::AMDPAL:
1664     return ELF::ELFOSABI_AMDGPU_PAL;
1665   case Triple::Mesa3D:
1666     return ELF::ELFOSABI_AMDGPU_MESA3D;
1667   default:
1668     return ELF::ELFOSABI_NONE;
1669   }
1670 }
1671 
1672 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1673                          uint64_t offsetInArchive)
1674     : InputFile(BitcodeKind, mb) {
1675   this->archiveName = std::string(archiveName);
1676 
1677   std::string path = mb.getBufferIdentifier().str();
1678   if (config->thinLTOIndexOnly)
1679     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1680 
1681   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1682   // name. If two archives define two members with the same name, this
1683   // causes a collision which result in only one of the objects being taken
1684   // into consideration at LTO time (which very likely causes undefined
1685   // symbols later in the link stage). So we append file offset to make
1686   // filename unique.
1687   StringRef name =
1688       archiveName.empty()
1689           ? saver.save(path)
1690           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1691                        utostr(offsetInArchive) + ")");
1692   MemoryBufferRef mbref(mb.getBuffer(), name);
1693 
1694   obj = CHECK(lto::InputFile::create(mbref), this);
1695 
1696   Triple t(obj->getTargetTriple());
1697   ekind = getBitcodeELFKind(t);
1698   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1699   osabi = getOsAbi(t);
1700 }
1701 
1702 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1703   switch (gvVisibility) {
1704   case GlobalValue::DefaultVisibility:
1705     return STV_DEFAULT;
1706   case GlobalValue::HiddenVisibility:
1707     return STV_HIDDEN;
1708   case GlobalValue::ProtectedVisibility:
1709     return STV_PROTECTED;
1710   }
1711   llvm_unreachable("unknown visibility");
1712 }
1713 
1714 template <class ELFT>
1715 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1716                                    const lto::InputFile::Symbol &objSym,
1717                                    BitcodeFile &f) {
1718   StringRef name = saver.save(objSym.getName());
1719   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1720   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1721   uint8_t visibility = mapVisibility(objSym.getVisibility());
1722   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1723 
1724   int c = objSym.getComdatIndex();
1725   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1726     Undefined newSym(&f, name, binding, visibility, type);
1727     if (canOmitFromDynSym)
1728       newSym.exportDynamic = false;
1729     Symbol *ret = symtab->addSymbol(newSym);
1730     ret->referenced = true;
1731     return ret;
1732   }
1733 
1734   if (objSym.isCommon())
1735     return symtab->addSymbol(
1736         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1737                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1738 
1739   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1740   if (canOmitFromDynSym)
1741     newSym.exportDynamic = false;
1742   return symtab->addSymbol(newSym);
1743 }
1744 
1745 template <class ELFT> void BitcodeFile::parse() {
1746   std::vector<bool> keptComdats;
1747   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1748     keptComdats.push_back(
1749         s.second == Comdat::NoDeduplicate ||
1750         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1751             .second);
1752   }
1753 
1754   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1755     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1756 
1757   for (auto l : obj->getDependentLibraries())
1758     addDependentLibrary(l, this);
1759 }
1760 
1761 void BinaryFile::parse() {
1762   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1763   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1764                                      8, data, ".data");
1765   sections.push_back(section);
1766 
1767   // For each input file foo that is embedded to a result as a binary
1768   // blob, we define _binary_foo_{start,end,size} symbols, so that
1769   // user programs can access blobs by name. Non-alphanumeric
1770   // characters in a filename are replaced with underscore.
1771   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1772   for (size_t i = 0; i < s.size(); ++i)
1773     if (!isAlnum(s[i]))
1774       s[i] = '_';
1775 
1776   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1777                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1778   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1779                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1780   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1781                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1782 }
1783 
1784 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1785                                  uint64_t offsetInArchive) {
1786   if (isBitcode(mb))
1787     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1788 
1789   switch (getELFKind(mb, archiveName)) {
1790   case ELF32LEKind:
1791     return make<ObjFile<ELF32LE>>(mb, archiveName);
1792   case ELF32BEKind:
1793     return make<ObjFile<ELF32BE>>(mb, archiveName);
1794   case ELF64LEKind:
1795     return make<ObjFile<ELF64LE>>(mb, archiveName);
1796   case ELF64BEKind:
1797     return make<ObjFile<ELF64BE>>(mb, archiveName);
1798   default:
1799     llvm_unreachable("getELFKind");
1800   }
1801 }
1802 
1803 void LazyObjFile::fetch() {
1804   if (fetched)
1805     return;
1806   fetched = true;
1807 
1808   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1809   file->groupId = groupId;
1810 
1811   // Copy symbol vector so that the new InputFile doesn't have to
1812   // insert the same defined symbols to the symbol table again.
1813   file->symbols = std::move(symbols);
1814 
1815   parseFile(file);
1816 }
1817 
1818 template <class ELFT> void LazyObjFile::parse() {
1819   using Elf_Sym = typename ELFT::Sym;
1820 
1821   // A lazy object file wraps either a bitcode file or an ELF file.
1822   if (isBitcode(this->mb)) {
1823     std::unique_ptr<lto::InputFile> obj =
1824         CHECK(lto::InputFile::create(this->mb), this);
1825     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1826       if (sym.isUndefined())
1827         continue;
1828       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1829     }
1830     return;
1831   }
1832 
1833   if (getELFKind(this->mb, archiveName) != config->ekind) {
1834     error("incompatible file: " + this->mb.getBufferIdentifier());
1835     return;
1836   }
1837 
1838   // Find a symbol table.
1839   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1840   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1841 
1842   for (const typename ELFT::Shdr &sec : sections) {
1843     if (sec.sh_type != SHT_SYMTAB)
1844       continue;
1845 
1846     // A symbol table is found.
1847     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1848     uint32_t firstGlobal = sec.sh_info;
1849     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1850     this->symbols.resize(eSyms.size());
1851 
1852     // Get existing symbols or insert placeholder symbols.
1853     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1854       if (eSyms[i].st_shndx != SHN_UNDEF)
1855         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1856 
1857     // Replace existing symbols with LazyObject symbols.
1858     //
1859     // resolve() may trigger this->fetch() if an existing symbol is an
1860     // undefined symbol. If that happens, this LazyObjFile has served
1861     // its purpose, and we can exit from the loop early.
1862     for (Symbol *sym : this->symbols) {
1863       if (!sym)
1864         continue;
1865       sym->resolve(LazyObject{*this, sym->getName()});
1866 
1867       // If fetched, stop iterating because this->symbols has been transferred
1868       // to the instantiated ObjFile.
1869       if (fetched)
1870         return;
1871     }
1872     return;
1873   }
1874 }
1875 
1876 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) {
1877   if (isBitcode(mb))
1878     return isBitcodeNonCommonDef(mb, name, archiveName);
1879 
1880   return isNonCommonDef(mb, name, archiveName);
1881 }
1882 
1883 std::string elf::replaceThinLTOSuffix(StringRef path) {
1884   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1885   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1886 
1887   if (path.consume_back(suffix))
1888     return (path + repl).str();
1889   return std::string(path);
1890 }
1891 
1892 template void BitcodeFile::parse<ELF32LE>();
1893 template void BitcodeFile::parse<ELF32BE>();
1894 template void BitcodeFile::parse<ELF64LE>();
1895 template void BitcodeFile::parse<ELF64BE>();
1896 
1897 template void LazyObjFile::parse<ELF32LE>();
1898 template void LazyObjFile::parse<ELF32BE>();
1899 template void LazyObjFile::parse<ELF64LE>();
1900 template void LazyObjFile::parse<ELF64BE>();
1901 
1902 template class elf::ObjFile<ELF32LE>;
1903 template class elf::ObjFile<ELF32BE>;
1904 template class elf::ObjFile<ELF64LE>;
1905 template class elf::ObjFile<ELF64BE>;
1906 
1907 template void SharedFile::parse<ELF32LE>();
1908 template void SharedFile::parse<ELF32BE>();
1909 template void SharedFile::parse<ELF64LE>();
1910 template void SharedFile::parse<ELF64BE>();
1911