xref: /freebsd/contrib/llvm-project/lld/ELF/InputFiles.cpp (revision ebacd8013fe5f7fdf9f6a5b286f6680dd2891036)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Config.h"
11 #include "DWARF.h"
12 #include "Driver.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::unique_ptr<TarWriter> elf::tar;
47 
48 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
49 std::string lld::toString(const InputFile *f) {
50   if (!f)
51     return "<internal>";
52 
53   if (f->toStringCache.empty()) {
54     if (f->archiveName.empty())
55       f->toStringCache = f->getName();
56     else
57       (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
58   }
59   return std::string(f->toStringCache);
60 }
61 
62 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
63   unsigned char size;
64   unsigned char endian;
65   std::tie(size, endian) = getElfArchType(mb.getBuffer());
66 
67   auto report = [&](StringRef msg) {
68     StringRef filename = mb.getBufferIdentifier();
69     if (archiveName.empty())
70       fatal(filename + ": " + msg);
71     else
72       fatal(archiveName + "(" + filename + "): " + msg);
73   };
74 
75   if (!mb.getBuffer().startswith(ElfMagic))
76     report("not an ELF file");
77   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
78     report("corrupted ELF file: invalid data encoding");
79   if (size != ELFCLASS32 && size != ELFCLASS64)
80     report("corrupted ELF file: invalid file class");
81 
82   size_t bufSize = mb.getBuffer().size();
83   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
84       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
85     report("corrupted ELF file: file is too short");
86 
87   if (size == ELFCLASS32)
88     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
89   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
90 }
91 
92 InputFile::InputFile(Kind k, MemoryBufferRef m)
93     : mb(m), groupId(nextGroupId), fileKind(k) {
94   // All files within the same --{start,end}-group get the same group ID.
95   // Otherwise, a new file will get a new group ID.
96   if (!isInGroup)
97     ++nextGroupId;
98 }
99 
100 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
101   llvm::TimeTraceScope timeScope("Load input files", path);
102 
103   // The --chroot option changes our virtual root directory.
104   // This is useful when you are dealing with files created by --reproduce.
105   if (!config->chroot.empty() && path.startswith("/"))
106     path = saver().save(config->chroot + path);
107 
108   log(path);
109   config->dependencyFiles.insert(llvm::CachedHashString(path));
110 
111   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
112                                        /*RequiresNullTerminator=*/false);
113   if (auto ec = mbOrErr.getError()) {
114     error("cannot open " + path + ": " + ec.message());
115     return None;
116   }
117 
118   MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
119   ctx->memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
120 
121   if (tar)
122     tar->append(relativeToRoot(path), mbref.getBuffer());
123   return mbref;
124 }
125 
126 // All input object files must be for the same architecture
127 // (e.g. it does not make sense to link x86 object files with
128 // MIPS object files.) This function checks for that error.
129 static bool isCompatible(InputFile *file) {
130   if (!file->isElf() && !isa<BitcodeFile>(file))
131     return true;
132 
133   if (file->ekind == config->ekind && file->emachine == config->emachine) {
134     if (config->emachine != EM_MIPS)
135       return true;
136     if (isMipsN32Abi(file) == config->mipsN32Abi)
137       return true;
138   }
139 
140   StringRef target =
141       !config->bfdname.empty() ? config->bfdname : config->emulation;
142   if (!target.empty()) {
143     error(toString(file) + " is incompatible with " + target);
144     return false;
145   }
146 
147   InputFile *existing = nullptr;
148   if (!ctx->objectFiles.empty())
149     existing = ctx->objectFiles[0];
150   else if (!ctx->sharedFiles.empty())
151     existing = ctx->sharedFiles[0];
152   else if (!ctx->bitcodeFiles.empty())
153     existing = ctx->bitcodeFiles[0];
154   std::string with;
155   if (existing)
156     with = " with " + toString(existing);
157   error(toString(file) + " is incompatible" + with);
158   return false;
159 }
160 
161 template <class ELFT> static void doParseFile(InputFile *file) {
162   if (!isCompatible(file))
163     return;
164 
165   // Binary file
166   if (auto *f = dyn_cast<BinaryFile>(file)) {
167     ctx->binaryFiles.push_back(f);
168     f->parse();
169     return;
170   }
171 
172   // Lazy object file
173   if (file->lazy) {
174     if (auto *f = dyn_cast<BitcodeFile>(file)) {
175       ctx->lazyBitcodeFiles.push_back(f);
176       f->parseLazy();
177     } else {
178       cast<ObjFile<ELFT>>(file)->parseLazy();
179     }
180     return;
181   }
182 
183   if (config->trace)
184     message(toString(file));
185 
186   // .so file
187   if (auto *f = dyn_cast<SharedFile>(file)) {
188     f->parse<ELFT>();
189     return;
190   }
191 
192   // LLVM bitcode file
193   if (auto *f = dyn_cast<BitcodeFile>(file)) {
194     ctx->bitcodeFiles.push_back(f);
195     f->parse<ELFT>();
196     return;
197   }
198 
199   // Regular object file
200   ctx->objectFiles.push_back(cast<ELFFileBase>(file));
201   cast<ObjFile<ELFT>>(file)->parse();
202 }
203 
204 // Add symbols in File to the symbol table.
205 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
206 
207 // Concatenates arguments to construct a string representing an error location.
208 static std::string createFileLineMsg(StringRef path, unsigned line) {
209   std::string filename = std::string(path::filename(path));
210   std::string lineno = ":" + std::to_string(line);
211   if (filename == path)
212     return filename + lineno;
213   return filename + lineno + " (" + path.str() + lineno + ")";
214 }
215 
216 template <class ELFT>
217 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
218                                 InputSectionBase &sec, uint64_t offset) {
219   // In DWARF, functions and variables are stored to different places.
220   // First, look up a function for a given offset.
221   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
222     return createFileLineMsg(info->FileName, info->Line);
223 
224   // If it failed, look up again as a variable.
225   if (Optional<std::pair<std::string, unsigned>> fileLine =
226           file.getVariableLoc(sym.getName()))
227     return createFileLineMsg(fileLine->first, fileLine->second);
228 
229   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
230   return std::string(file.sourceFile);
231 }
232 
233 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
234                                  uint64_t offset) {
235   if (kind() != ObjKind)
236     return "";
237   switch (config->ekind) {
238   default:
239     llvm_unreachable("Invalid kind");
240   case ELF32LEKind:
241     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
242   case ELF32BEKind:
243     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
244   case ELF64LEKind:
245     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
246   case ELF64BEKind:
247     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
248   }
249 }
250 
251 StringRef InputFile::getNameForScript() const {
252   if (archiveName.empty())
253     return getName();
254 
255   if (nameForScriptCache.empty())
256     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
257 
258   return nameForScriptCache;
259 }
260 
261 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
262   llvm::call_once(initDwarf, [this]() {
263     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
264         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
265         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
266         [&](Error warning) {
267           warn(getName() + ": " + toString(std::move(warning)));
268         }));
269   });
270 
271   return dwarf.get();
272 }
273 
274 // Returns the pair of file name and line number describing location of data
275 // object (variable, array, etc) definition.
276 template <class ELFT>
277 Optional<std::pair<std::string, unsigned>>
278 ObjFile<ELFT>::getVariableLoc(StringRef name) {
279   return getDwarf()->getVariableLoc(name);
280 }
281 
282 // Returns source line information for a given offset
283 // using DWARF debug info.
284 template <class ELFT>
285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
286                                                   uint64_t offset) {
287   // Detect SectionIndex for specified section.
288   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
289   ArrayRef<InputSectionBase *> sections = s->file->getSections();
290   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
291     if (s == sections[curIndex]) {
292       sectionIndex = curIndex;
293       break;
294     }
295   }
296 
297   return getDwarf()->getDILineInfo(offset, sectionIndex);
298 }
299 
300 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
301   ekind = getELFKind(mb, "");
302 
303   switch (ekind) {
304   case ELF32LEKind:
305     init<ELF32LE>();
306     break;
307   case ELF32BEKind:
308     init<ELF32BE>();
309     break;
310   case ELF64LEKind:
311     init<ELF64LE>();
312     break;
313   case ELF64BEKind:
314     init<ELF64BE>();
315     break;
316   default:
317     llvm_unreachable("getELFKind");
318   }
319 }
320 
321 template <typename Elf_Shdr>
322 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
323   for (const Elf_Shdr &sec : sections)
324     if (sec.sh_type == type)
325       return &sec;
326   return nullptr;
327 }
328 
329 template <class ELFT> void ELFFileBase::init() {
330   using Elf_Shdr = typename ELFT::Shdr;
331   using Elf_Sym = typename ELFT::Sym;
332 
333   // Initialize trivial attributes.
334   const ELFFile<ELFT> &obj = getObj<ELFT>();
335   emachine = obj.getHeader().e_machine;
336   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
337   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
338 
339   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
340   elfShdrs = sections.data();
341   numELFShdrs = sections.size();
342 
343   // Find a symbol table.
344   bool isDSO =
345       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
346   const Elf_Shdr *symtabSec =
347       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
348 
349   if (!symtabSec)
350     return;
351 
352   // Initialize members corresponding to a symbol table.
353   firstGlobal = symtabSec->sh_info;
354 
355   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
356   if (firstGlobal == 0 || firstGlobal > eSyms.size())
357     fatal(toString(this) + ": invalid sh_info in symbol table");
358 
359   elfSyms = reinterpret_cast<const void *>(eSyms.data());
360   numELFSyms = uint32_t(eSyms.size());
361   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
362 }
363 
364 template <class ELFT>
365 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
366   return CHECK(
367       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
368       this);
369 }
370 
371 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
372   object::ELFFile<ELFT> obj = this->getObj();
373   // Read a section table. justSymbols is usually false.
374   if (this->justSymbols)
375     initializeJustSymbols();
376   else
377     initializeSections(ignoreComdats, obj);
378 
379   // Read a symbol table.
380   initializeSymbols(obj);
381 }
382 
383 // Sections with SHT_GROUP and comdat bits define comdat section groups.
384 // They are identified and deduplicated by group name. This function
385 // returns a group name.
386 template <class ELFT>
387 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
388                                               const Elf_Shdr &sec) {
389   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
390   if (sec.sh_info >= symbols.size())
391     fatal(toString(this) + ": invalid symbol index");
392   const typename ELFT::Sym &sym = symbols[sec.sh_info];
393   return CHECK(sym.getName(this->stringTable), this);
394 }
395 
396 template <class ELFT>
397 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
398   // On a regular link we don't merge sections if -O0 (default is -O1). This
399   // sometimes makes the linker significantly faster, although the output will
400   // be bigger.
401   //
402   // Doing the same for -r would create a problem as it would combine sections
403   // with different sh_entsize. One option would be to just copy every SHF_MERGE
404   // section as is to the output. While this would produce a valid ELF file with
405   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
406   // they see two .debug_str. We could have separate logic for combining
407   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
408   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
409   // logic for -r.
410   if (config->optimize == 0 && !config->relocatable)
411     return false;
412 
413   // A mergeable section with size 0 is useless because they don't have
414   // any data to merge. A mergeable string section with size 0 can be
415   // argued as invalid because it doesn't end with a null character.
416   // We'll avoid a mess by handling them as if they were non-mergeable.
417   if (sec.sh_size == 0)
418     return false;
419 
420   // Check for sh_entsize. The ELF spec is not clear about the zero
421   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
422   // the section does not hold a table of fixed-size entries". We know
423   // that Rust 1.13 produces a string mergeable section with a zero
424   // sh_entsize. Here we just accept it rather than being picky about it.
425   uint64_t entSize = sec.sh_entsize;
426   if (entSize == 0)
427     return false;
428   if (sec.sh_size % entSize)
429     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
430           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
431           Twine(entSize) + ")");
432 
433   if (sec.sh_flags & SHF_WRITE)
434     fatal(toString(this) + ":(" + name +
435           "): writable SHF_MERGE section is not supported");
436 
437   return true;
438 }
439 
440 // This is for --just-symbols.
441 //
442 // --just-symbols is a very minor feature that allows you to link your
443 // output against other existing program, so that if you load both your
444 // program and the other program into memory, your output can refer the
445 // other program's symbols.
446 //
447 // When the option is given, we link "just symbols". The section table is
448 // initialized with null pointers.
449 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
450   sections.resize(numELFShdrs);
451 }
452 
453 // An ELF object file may contain a `.deplibs` section. If it exists, the
454 // section contains a list of library specifiers such as `m` for libm. This
455 // function resolves a given name by finding the first matching library checking
456 // the various ways that a library can be specified to LLD. This ELF extension
457 // is a form of autolinking and is called `dependent libraries`. It is currently
458 // unique to LLVM and lld.
459 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
460   if (!config->dependentLibraries)
461     return;
462   if (Optional<std::string> s = searchLibraryBaseName(specifier))
463     driver->addFile(saver().save(*s), /*withLOption=*/true);
464   else if (Optional<std::string> s = findFromSearchPaths(specifier))
465     driver->addFile(saver().save(*s), /*withLOption=*/true);
466   else if (fs::exists(specifier))
467     driver->addFile(specifier, /*withLOption=*/false);
468   else
469     error(toString(f) +
470           ": unable to find library from dependent library specifier: " +
471           specifier);
472 }
473 
474 // Record the membership of a section group so that in the garbage collection
475 // pass, section group members are kept or discarded as a unit.
476 template <class ELFT>
477 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
478                                ArrayRef<typename ELFT::Word> entries) {
479   bool hasAlloc = false;
480   for (uint32_t index : entries.slice(1)) {
481     if (index >= sections.size())
482       return;
483     if (InputSectionBase *s = sections[index])
484       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
485         hasAlloc = true;
486   }
487 
488   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
489   // collection. See the comment in markLive(). This rule retains .debug_types
490   // and .rela.debug_types.
491   if (!hasAlloc)
492     return;
493 
494   // Connect the members in a circular doubly-linked list via
495   // nextInSectionGroup.
496   InputSectionBase *head;
497   InputSectionBase *prev = nullptr;
498   for (uint32_t index : entries.slice(1)) {
499     InputSectionBase *s = sections[index];
500     if (!s || s == &InputSection::discarded)
501       continue;
502     if (prev)
503       prev->nextInSectionGroup = s;
504     else
505       head = s;
506     prev = s;
507   }
508   if (prev)
509     prev->nextInSectionGroup = head;
510 }
511 
512 template <class ELFT>
513 void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
514                                        const llvm::object::ELFFile<ELFT> &obj) {
515   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
516   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
517   uint64_t size = objSections.size();
518   this->sections.resize(size);
519 
520   std::vector<ArrayRef<Elf_Word>> selectedGroups;
521 
522   for (size_t i = 0; i != size; ++i) {
523     if (this->sections[i] == &InputSection::discarded)
524       continue;
525     const Elf_Shdr &sec = objSections[i];
526 
527     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
528     // if -r is given, we'll let the final link discard such sections.
529     // This is compatible with GNU.
530     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
531       if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
532         cgProfileSectionIndex = i;
533       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
534         // We ignore the address-significance table if we know that the object
535         // file was created by objcopy or ld -r. This is because these tools
536         // will reorder the symbols in the symbol table, invalidating the data
537         // in the address-significance table, which refers to symbols by index.
538         if (sec.sh_link != 0)
539           this->addrsigSec = &sec;
540         else if (config->icf == ICFLevel::Safe)
541           warn(toString(this) +
542                ": --icf=safe conservatively ignores "
543                "SHT_LLVM_ADDRSIG [index " +
544                Twine(i) +
545                "] with sh_link=0 "
546                "(likely created using objcopy or ld -r)");
547       }
548       this->sections[i] = &InputSection::discarded;
549       continue;
550     }
551 
552     switch (sec.sh_type) {
553     case SHT_GROUP: {
554       // De-duplicate section groups by their signatures.
555       StringRef signature = getShtGroupSignature(objSections, sec);
556       this->sections[i] = &InputSection::discarded;
557 
558       ArrayRef<Elf_Word> entries =
559           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
560       if (entries.empty())
561         fatal(toString(this) + ": empty SHT_GROUP");
562 
563       Elf_Word flag = entries[0];
564       if (flag && flag != GRP_COMDAT)
565         fatal(toString(this) + ": unsupported SHT_GROUP format");
566 
567       bool keepGroup =
568           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
569           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
570               .second;
571       if (keepGroup) {
572         if (config->relocatable)
573           this->sections[i] = createInputSection(
574               i, sec, check(obj.getSectionName(sec, shstrtab)));
575         selectedGroups.push_back(entries);
576         continue;
577       }
578 
579       // Otherwise, discard group members.
580       for (uint32_t secIndex : entries.slice(1)) {
581         if (secIndex >= size)
582           fatal(toString(this) +
583                 ": invalid section index in group: " + Twine(secIndex));
584         this->sections[secIndex] = &InputSection::discarded;
585       }
586       break;
587     }
588     case SHT_SYMTAB_SHNDX:
589       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
590       break;
591     case SHT_SYMTAB:
592     case SHT_STRTAB:
593     case SHT_REL:
594     case SHT_RELA:
595     case SHT_NULL:
596       break;
597     case SHT_LLVM_SYMPART:
598       ctx->hasSympart.store(true, std::memory_order_relaxed);
599       LLVM_FALLTHROUGH;
600     default:
601       this->sections[i] =
602           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
603     }
604   }
605 
606   // We have a second loop. It is used to:
607   // 1) handle SHF_LINK_ORDER sections.
608   // 2) create SHT_REL[A] sections. In some cases the section header index of a
609   //    relocation section may be smaller than that of the relocated section. In
610   //    such cases, the relocation section would attempt to reference a target
611   //    section that has not yet been created. For simplicity, delay creation of
612   //    relocation sections until now.
613   for (size_t i = 0; i != size; ++i) {
614     if (this->sections[i] == &InputSection::discarded)
615       continue;
616     const Elf_Shdr &sec = objSections[i];
617 
618     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
619       // Find a relocation target section and associate this section with that.
620       // Target may have been discarded if it is in a different section group
621       // and the group is discarded, even though it's a violation of the spec.
622       // We handle that situation gracefully by discarding dangling relocation
623       // sections.
624       const uint32_t info = sec.sh_info;
625       InputSectionBase *s = getRelocTarget(i, sec, info);
626       if (!s)
627         continue;
628 
629       // ELF spec allows mergeable sections with relocations, but they are rare,
630       // and it is in practice hard to merge such sections by contents, because
631       // applying relocations at end of linking changes section contents. So, we
632       // simply handle such sections as non-mergeable ones. Degrading like this
633       // is acceptable because section merging is optional.
634       if (auto *ms = dyn_cast<MergeInputSection>(s)) {
635         s = make<InputSection>(ms->file, ms->flags, ms->type, ms->alignment,
636                                ms->data(), ms->name);
637         sections[info] = s;
638       }
639 
640       if (s->relSecIdx != 0)
641         error(
642             toString(s) +
643             ": multiple relocation sections to one section are not supported");
644       s->relSecIdx = i;
645 
646       // Relocation sections are usually removed from the output, so return
647       // `nullptr` for the normal case. However, if -r or --emit-relocs is
648       // specified, we need to copy them to the output. (Some post link analysis
649       // tools specify --emit-relocs to obtain the information.)
650       if (config->copyRelocs) {
651         auto *isec = make<InputSection>(
652             *this, sec, check(obj.getSectionName(sec, shstrtab)));
653         // If the relocated section is discarded (due to /DISCARD/ or
654         // --gc-sections), the relocation section should be discarded as well.
655         s->dependentSections.push_back(isec);
656         sections[i] = isec;
657       }
658       continue;
659     }
660 
661     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
662     // the flag.
663     if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
664       continue;
665 
666     InputSectionBase *linkSec = nullptr;
667     if (sec.sh_link < size)
668       linkSec = this->sections[sec.sh_link];
669     if (!linkSec)
670       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
671 
672     // A SHF_LINK_ORDER section is discarded if its linked-to section is
673     // discarded.
674     InputSection *isec = cast<InputSection>(this->sections[i]);
675     linkSec->dependentSections.push_back(isec);
676     if (!isa<InputSection>(linkSec))
677       error("a section " + isec->name +
678             " with SHF_LINK_ORDER should not refer a non-regular section: " +
679             toString(linkSec));
680   }
681 
682   for (ArrayRef<Elf_Word> entries : selectedGroups)
683     handleSectionGroup<ELFT>(this->sections, entries);
684 }
685 
686 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
687 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
688 // the input objects have been compiled.
689 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
690                              const InputFile *f) {
691   Optional<unsigned> attr =
692       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
693   if (!attr)
694     // If an ABI tag isn't present then it is implicitly given the value of 0
695     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
696     // including some in glibc that don't use FP args (and should have value 3)
697     // don't have the attribute so we do not consider an implicit value of 0
698     // as a clash.
699     return;
700 
701   unsigned vfpArgs = *attr;
702   ARMVFPArgKind arg;
703   switch (vfpArgs) {
704   case ARMBuildAttrs::BaseAAPCS:
705     arg = ARMVFPArgKind::Base;
706     break;
707   case ARMBuildAttrs::HardFPAAPCS:
708     arg = ARMVFPArgKind::VFP;
709     break;
710   case ARMBuildAttrs::ToolChainFPPCS:
711     // Tool chain specific convention that conforms to neither AAPCS variant.
712     arg = ARMVFPArgKind::ToolChain;
713     break;
714   case ARMBuildAttrs::CompatibleFPAAPCS:
715     // Object compatible with all conventions.
716     return;
717   default:
718     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
719     return;
720   }
721   // Follow ld.bfd and error if there is a mix of calling conventions.
722   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
723     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
724   else
725     config->armVFPArgs = arg;
726 }
727 
728 // The ARM support in lld makes some use of instructions that are not available
729 // on all ARM architectures. Namely:
730 // - Use of BLX instruction for interworking between ARM and Thumb state.
731 // - Use of the extended Thumb branch encoding in relocation.
732 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
733 // The ARM Attributes section contains information about the architecture chosen
734 // at compile time. We follow the convention that if at least one input object
735 // is compiled with an architecture that supports these features then lld is
736 // permitted to use them.
737 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
738   Optional<unsigned> attr =
739       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
740   if (!attr)
741     return;
742   auto arch = attr.value();
743   switch (arch) {
744   case ARMBuildAttrs::Pre_v4:
745   case ARMBuildAttrs::v4:
746   case ARMBuildAttrs::v4T:
747     // Architectures prior to v5 do not support BLX instruction
748     break;
749   case ARMBuildAttrs::v5T:
750   case ARMBuildAttrs::v5TE:
751   case ARMBuildAttrs::v5TEJ:
752   case ARMBuildAttrs::v6:
753   case ARMBuildAttrs::v6KZ:
754   case ARMBuildAttrs::v6K:
755     config->armHasBlx = true;
756     // Architectures used in pre-Cortex processors do not support
757     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
758     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
759     break;
760   default:
761     // All other Architectures have BLX and extended branch encoding
762     config->armHasBlx = true;
763     config->armJ1J2BranchEncoding = true;
764     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
765       // All Architectures used in Cortex processors with the exception
766       // of v6-M and v6S-M have the MOVT and MOVW instructions.
767       config->armHasMovtMovw = true;
768     break;
769   }
770 }
771 
772 // If a source file is compiled with x86 hardware-assisted call flow control
773 // enabled, the generated object file contains feature flags indicating that
774 // fact. This function reads the feature flags and returns it.
775 //
776 // Essentially we want to read a single 32-bit value in this function, but this
777 // function is rather complicated because the value is buried deep inside a
778 // .note.gnu.property section.
779 //
780 // The section consists of one or more NOTE records. Each NOTE record consists
781 // of zero or more type-length-value fields. We want to find a field of a
782 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
783 // the ABI is unnecessarily complicated.
784 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
785   using Elf_Nhdr = typename ELFT::Nhdr;
786   using Elf_Note = typename ELFT::Note;
787 
788   uint32_t featuresSet = 0;
789   ArrayRef<uint8_t> data = sec.rawData;
790   auto reportFatal = [&](const uint8_t *place, const char *msg) {
791     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
792           Twine::utohexstr(place - sec.rawData.data()) + "): " + msg);
793   };
794   while (!data.empty()) {
795     // Read one NOTE record.
796     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
797     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
798       reportFatal(data.data(), "data is too short");
799 
800     Elf_Note note(*nhdr);
801     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
802       data = data.slice(nhdr->getSize());
803       continue;
804     }
805 
806     uint32_t featureAndType = config->emachine == EM_AARCH64
807                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
808                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
809 
810     // Read a body of a NOTE record, which consists of type-length-value fields.
811     ArrayRef<uint8_t> desc = note.getDesc();
812     while (!desc.empty()) {
813       const uint8_t *place = desc.data();
814       if (desc.size() < 8)
815         reportFatal(place, "program property is too short");
816       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
817       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
818       desc = desc.slice(8);
819       if (desc.size() < size)
820         reportFatal(place, "program property is too short");
821 
822       if (type == featureAndType) {
823         // We found a FEATURE_1_AND field. There may be more than one of these
824         // in a .note.gnu.property section, for a relocatable object we
825         // accumulate the bits set.
826         if (size < 4)
827           reportFatal(place, "FEATURE_1_AND entry is too short");
828         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
829       }
830 
831       // Padding is present in the note descriptor, if necessary.
832       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
833     }
834 
835     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
836     data = data.slice(nhdr->getSize());
837   }
838 
839   return featuresSet;
840 }
841 
842 template <class ELFT>
843 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
844                                                 const Elf_Shdr &sec,
845                                                 uint32_t info) {
846   if (info < this->sections.size()) {
847     InputSectionBase *target = this->sections[info];
848 
849     // Strictly speaking, a relocation section must be included in the
850     // group of the section it relocates. However, LLVM 3.3 and earlier
851     // would fail to do so, so we gracefully handle that case.
852     if (target == &InputSection::discarded)
853       return nullptr;
854 
855     if (target != nullptr)
856       return target;
857   }
858 
859   error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
860         ") has invalid sh_info (" + Twine(info) + ")");
861   return nullptr;
862 }
863 
864 template <class ELFT>
865 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
866                                                     const Elf_Shdr &sec,
867                                                     StringRef name) {
868   if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
869     ARMAttributeParser attributes;
870     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
871     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
872                                                  ? support::little
873                                                  : support::big)) {
874       auto *isec = make<InputSection>(*this, sec, name);
875       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
876     } else {
877       updateSupportedARMFeatures(attributes);
878       updateARMVFPArgs(attributes, this);
879 
880       // FIXME: Retain the first attribute section we see. The eglibc ARM
881       // dynamic loaders require the presence of an attribute section for dlopen
882       // to work. In a full implementation we would merge all attribute
883       // sections.
884       if (in.attributes == nullptr) {
885         in.attributes = std::make_unique<InputSection>(*this, sec, name);
886         return in.attributes.get();
887       }
888       return &InputSection::discarded;
889     }
890   }
891 
892   if (sec.sh_type == SHT_RISCV_ATTRIBUTES && config->emachine == EM_RISCV) {
893     RISCVAttributeParser attributes;
894     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
895     if (Error e = attributes.parse(contents, support::little)) {
896       auto *isec = make<InputSection>(*this, sec, name);
897       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
898     } else {
899       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
900       // present.
901 
902       // FIXME: Retain the first attribute section we see. Tools such as
903       // llvm-objdump make use of the attribute section to determine which
904       // standard extensions to enable. In a full implementation we would merge
905       // all attribute sections.
906       if (in.attributes == nullptr) {
907         in.attributes = std::make_unique<InputSection>(*this, sec, name);
908         return in.attributes.get();
909       }
910       return &InputSection::discarded;
911     }
912   }
913 
914   if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
915     ArrayRef<char> data =
916         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
917     if (!data.empty() && data.back() != '\0') {
918       error(toString(this) +
919             ": corrupted dependent libraries section (unterminated string): " +
920             name);
921       return &InputSection::discarded;
922     }
923     for (const char *d = data.begin(), *e = data.end(); d < e;) {
924       StringRef s(d);
925       addDependentLibrary(s, this);
926       d += s.size() + 1;
927     }
928     return &InputSection::discarded;
929   }
930 
931   if (name.startswith(".n")) {
932     // The GNU linker uses .note.GNU-stack section as a marker indicating
933     // that the code in the object file does not expect that the stack is
934     // executable (in terms of NX bit). If all input files have the marker,
935     // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
936     // make the stack non-executable. Most object files have this section as
937     // of 2017.
938     //
939     // But making the stack non-executable is a norm today for security
940     // reasons. Failure to do so may result in a serious security issue.
941     // Therefore, we make LLD always add PT_GNU_STACK unless it is
942     // explicitly told to do otherwise (by -z execstack). Because the stack
943     // executable-ness is controlled solely by command line options,
944     // .note.GNU-stack sections are simply ignored.
945     if (name == ".note.GNU-stack")
946       return &InputSection::discarded;
947 
948     // Object files that use processor features such as Intel Control-Flow
949     // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
950     // .note.gnu.property section containing a bitfield of feature bits like the
951     // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
952     //
953     // Since we merge bitmaps from multiple object files to create a new
954     // .note.gnu.property containing a single AND'ed bitmap, we discard an input
955     // file's .note.gnu.property section.
956     if (name == ".note.gnu.property") {
957       this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
958       return &InputSection::discarded;
959     }
960 
961     // Split stacks is a feature to support a discontiguous stack,
962     // commonly used in the programming language Go. For the details,
963     // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
964     // for split stack will include a .note.GNU-split-stack section.
965     if (name == ".note.GNU-split-stack") {
966       if (config->relocatable) {
967         error(
968             "cannot mix split-stack and non-split-stack in a relocatable link");
969         return &InputSection::discarded;
970       }
971       this->splitStack = true;
972       return &InputSection::discarded;
973     }
974 
975     // An object file cmpiled for split stack, but where some of the
976     // functions were compiled with the no_split_stack_attribute will
977     // include a .note.GNU-no-split-stack section.
978     if (name == ".note.GNU-no-split-stack") {
979       this->someNoSplitStack = true;
980       return &InputSection::discarded;
981     }
982 
983     // Strip existing .note.gnu.build-id sections so that the output won't have
984     // more than one build-id. This is not usually a problem because input
985     // object files normally don't have .build-id sections, but you can create
986     // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
987     // against it.
988     if (name == ".note.gnu.build-id")
989       return &InputSection::discarded;
990   }
991 
992   // The linker merges EH (exception handling) frames and creates a
993   // .eh_frame_hdr section for runtime. So we handle them with a special
994   // class. For relocatable outputs, they are just passed through.
995   if (name == ".eh_frame" && !config->relocatable)
996     return make<EhInputSection>(*this, sec, name);
997 
998   if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
999     return make<MergeInputSection>(*this, sec, name);
1000   return make<InputSection>(*this, sec, name);
1001 }
1002 
1003 // Initialize this->Symbols. this->Symbols is a parallel array as
1004 // its corresponding ELF symbol table.
1005 template <class ELFT>
1006 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1007   SymbolTable &symtab = *elf::symtab;
1008 
1009   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1010   symbols.resize(eSyms.size());
1011 
1012   // Some entries have been filled by LazyObjFile.
1013   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1014     if (!symbols[i])
1015       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1016 
1017   // Perform symbol resolution on non-local symbols.
1018   SmallVector<unsigned, 32> undefineds;
1019   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1020     const Elf_Sym &eSym = eSyms[i];
1021     uint32_t secIdx = eSym.st_shndx;
1022     if (secIdx == SHN_UNDEF) {
1023       undefineds.push_back(i);
1024       continue;
1025     }
1026 
1027     uint8_t binding = eSym.getBinding();
1028     uint8_t stOther = eSym.st_other;
1029     uint8_t type = eSym.getType();
1030     uint64_t value = eSym.st_value;
1031     uint64_t size = eSym.st_size;
1032 
1033     Symbol *sym = symbols[i];
1034     sym->isUsedInRegularObj = true;
1035     if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1036       if (value == 0 || value >= UINT32_MAX)
1037         fatal(toString(this) + ": common symbol '" + sym->getName() +
1038               "' has invalid alignment: " + Twine(value));
1039       hasCommonSyms = true;
1040       sym->resolve(
1041           CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1042       continue;
1043     }
1044 
1045     // Handle global defined symbols. Defined::section will be set in postParse.
1046     sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1047                          nullptr});
1048   }
1049 
1050   // Undefined symbols (excluding those defined relative to non-prevailing
1051   // sections) can trigger recursive extract. Process defined symbols first so
1052   // that the relative order between a defined symbol and an undefined symbol
1053   // does not change the symbol resolution behavior. In addition, a set of
1054   // interconnected symbols will all be resolved to the same file, instead of
1055   // being resolved to different files.
1056   for (unsigned i : undefineds) {
1057     const Elf_Sym &eSym = eSyms[i];
1058     Symbol *sym = symbols[i];
1059     sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1060                            eSym.getType()});
1061     sym->isUsedInRegularObj = true;
1062     sym->referenced = true;
1063   }
1064 }
1065 
1066 template <class ELFT> void ObjFile<ELFT>::initializeLocalSymbols() {
1067   if (!firstGlobal)
1068     return;
1069   localSymStorage = std::make_unique<SymbolUnion[]>(firstGlobal);
1070   SymbolUnion *locals = localSymStorage.get();
1071 
1072   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1073   for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1074     const Elf_Sym &eSym = eSyms[i];
1075     uint32_t secIdx = eSym.st_shndx;
1076     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1077       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1078     else if (secIdx >= SHN_LORESERVE)
1079       secIdx = 0;
1080     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1081       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1082     if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1083       error(toString(this) + ": non-local symbol (" + Twine(i) +
1084             ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1085 
1086     InputSectionBase *sec = sections[secIdx];
1087     uint8_t type = eSym.getType();
1088     if (type == STT_FILE)
1089       sourceFile = CHECK(eSym.getName(stringTable), this);
1090     if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1091       fatal(toString(this) + ": invalid symbol name offset");
1092     StringRef name(stringTable.data() + eSym.st_name);
1093 
1094     symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1095     if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1096       new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1097                                  /*discardedSecIdx=*/secIdx);
1098     else
1099       new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1100                                eSym.st_value, eSym.st_size, sec);
1101     symbols[i]->isUsedInRegularObj = true;
1102   }
1103 }
1104 
1105 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1106 // duplicate symbols and may do symbol property merge in the future.
1107 template <class ELFT> void ObjFile<ELFT>::postParse() {
1108   static std::mutex mu;
1109   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1110   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1111     const Elf_Sym &eSym = eSyms[i];
1112     Symbol &sym = *symbols[i];
1113     uint32_t secIdx = eSym.st_shndx;
1114     uint8_t binding = eSym.getBinding();
1115     if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1116                       binding != STB_GNU_UNIQUE))
1117       errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1118                   ") has invalid binding: " + Twine((int)binding));
1119 
1120     // st_value of STT_TLS represents the assigned offset, not the actual
1121     // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1122     // only be referenced by special TLS relocations. It is usually an error if
1123     // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1124     if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1125         eSym.getType() != STT_NOTYPE)
1126       errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1127                   toString(sym.file) + "\n>>> in " + toString(this));
1128 
1129     // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1130     // assignment to redefine a symbol without an error.
1131     if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1132         secIdx == SHN_COMMON)
1133       continue;
1134 
1135     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1136       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1137     else if (secIdx >= SHN_LORESERVE)
1138       secIdx = 0;
1139     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1140       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1141     InputSectionBase *sec = sections[secIdx];
1142     if (sec == &InputSection::discarded) {
1143       if (sym.traced) {
1144         printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1145                                    sym.stOther, sym.type, secIdx},
1146                          sym.getName());
1147       }
1148       if (sym.file == this) {
1149         std::lock_guard<std::mutex> lock(mu);
1150         ctx->nonPrevailingSyms.emplace_back(&sym, secIdx);
1151       }
1152       continue;
1153     }
1154 
1155     if (sym.file == this) {
1156       cast<Defined>(sym).section = sec;
1157       continue;
1158     }
1159 
1160     if (sym.binding == STB_WEAK || binding == STB_WEAK)
1161       continue;
1162     std::lock_guard<std::mutex> lock(mu);
1163     ctx->duplicates.push_back({&sym, this, sec, eSym.st_value});
1164   }
1165 }
1166 
1167 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1168 // A tentative definition will be promoted to a global definition if there are
1169 // no non-tentative definitions to dominate it. When we hold a tentative
1170 // definition to a symbol and are inspecting archive members for inclusion
1171 // there are 2 ways we can proceed:
1172 //
1173 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1174 //    tentative to real definition has already happened) and not inspect
1175 //    archive members for Global/Weak definitions to replace the tentative
1176 //    definition. An archive member would only be included if it satisfies some
1177 //    other undefined symbol. This is the behavior Gold uses.
1178 //
1179 // 2) Consider the tentative definition as still undefined (ie the promotion to
1180 //    a real definition happens only after all symbol resolution is done).
1181 //    The linker searches archive members for STB_GLOBAL definitions to
1182 //    replace the tentative definition with. This is the behavior used by
1183 //    GNU ld.
1184 //
1185 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1186 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1187 //  (pre F90) FORTRAN code that is packaged into an archive.
1188 //
1189 //  The following functions search archive members for definitions to replace
1190 //  tentative definitions (implementing behavior 2).
1191 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1192                                   StringRef archiveName) {
1193   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1194   for (const irsymtab::Reader::SymbolRef &sym :
1195        symtabFile.TheReader.symbols()) {
1196     if (sym.isGlobal() && sym.getName() == symName)
1197       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1198   }
1199   return false;
1200 }
1201 
1202 template <class ELFT>
1203 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1204                            StringRef archiveName) {
1205   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1206   StringRef stringtable = obj->getStringTable();
1207 
1208   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1209     Expected<StringRef> name = sym.getName(stringtable);
1210     if (name && name.get() == symName)
1211       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1212              !sym.isCommon();
1213   }
1214   return false;
1215 }
1216 
1217 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1218                            StringRef archiveName) {
1219   switch (getELFKind(mb, archiveName)) {
1220   case ELF32LEKind:
1221     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1222   case ELF32BEKind:
1223     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1224   case ELF64LEKind:
1225     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1226   case ELF64BEKind:
1227     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1228   default:
1229     llvm_unreachable("getELFKind");
1230   }
1231 }
1232 
1233 unsigned SharedFile::vernauxNum;
1234 
1235 // Parse the version definitions in the object file if present, and return a
1236 // vector whose nth element contains a pointer to the Elf_Verdef for version
1237 // identifier n. Version identifiers that are not definitions map to nullptr.
1238 template <typename ELFT>
1239 static SmallVector<const void *, 0>
1240 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1241   if (!sec)
1242     return {};
1243 
1244   // Build the Verdefs array by following the chain of Elf_Verdef objects
1245   // from the start of the .gnu.version_d section.
1246   SmallVector<const void *, 0> verdefs;
1247   const uint8_t *verdef = base + sec->sh_offset;
1248   for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1249     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1250     verdef += curVerdef->vd_next;
1251     unsigned verdefIndex = curVerdef->vd_ndx;
1252     if (verdefIndex >= verdefs.size())
1253       verdefs.resize(verdefIndex + 1);
1254     verdefs[verdefIndex] = curVerdef;
1255   }
1256   return verdefs;
1257 }
1258 
1259 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1260 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1261 // implement sophisticated error checking like in llvm-readobj because the value
1262 // of such diagnostics is low.
1263 template <typename ELFT>
1264 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1265                                                const typename ELFT::Shdr *sec) {
1266   if (!sec)
1267     return {};
1268   std::vector<uint32_t> verneeds;
1269   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1270   const uint8_t *verneedBuf = data.begin();
1271   for (unsigned i = 0; i != sec->sh_info; ++i) {
1272     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1273       fatal(toString(this) + " has an invalid Verneed");
1274     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1275     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1276     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1277       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1278         fatal(toString(this) + " has an invalid Vernaux");
1279       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1280       if (aux->vna_name >= this->stringTable.size())
1281         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1282       uint16_t version = aux->vna_other & VERSYM_VERSION;
1283       if (version >= verneeds.size())
1284         verneeds.resize(version + 1);
1285       verneeds[version] = aux->vna_name;
1286       vernauxBuf += aux->vna_next;
1287     }
1288     verneedBuf += vn->vn_next;
1289   }
1290   return verneeds;
1291 }
1292 
1293 // We do not usually care about alignments of data in shared object
1294 // files because the loader takes care of it. However, if we promote a
1295 // DSO symbol to point to .bss due to copy relocation, we need to keep
1296 // the original alignment requirements. We infer it in this function.
1297 template <typename ELFT>
1298 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1299                              const typename ELFT::Sym &sym) {
1300   uint64_t ret = UINT64_MAX;
1301   if (sym.st_value)
1302     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1303   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1304     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1305   return (ret > UINT32_MAX) ? 0 : ret;
1306 }
1307 
1308 // Fully parse the shared object file.
1309 //
1310 // This function parses symbol versions. If a DSO has version information,
1311 // the file has a ".gnu.version_d" section which contains symbol version
1312 // definitions. Each symbol is associated to one version through a table in
1313 // ".gnu.version" section. That table is a parallel array for the symbol
1314 // table, and each table entry contains an index in ".gnu.version_d".
1315 //
1316 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1317 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1318 // ".gnu.version_d".
1319 //
1320 // The file format for symbol versioning is perhaps a bit more complicated
1321 // than necessary, but you can easily understand the code if you wrap your
1322 // head around the data structure described above.
1323 template <class ELFT> void SharedFile::parse() {
1324   using Elf_Dyn = typename ELFT::Dyn;
1325   using Elf_Shdr = typename ELFT::Shdr;
1326   using Elf_Sym = typename ELFT::Sym;
1327   using Elf_Verdef = typename ELFT::Verdef;
1328   using Elf_Versym = typename ELFT::Versym;
1329 
1330   ArrayRef<Elf_Dyn> dynamicTags;
1331   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1332   ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1333 
1334   const Elf_Shdr *versymSec = nullptr;
1335   const Elf_Shdr *verdefSec = nullptr;
1336   const Elf_Shdr *verneedSec = nullptr;
1337 
1338   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1339   for (const Elf_Shdr &sec : sections) {
1340     switch (sec.sh_type) {
1341     default:
1342       continue;
1343     case SHT_DYNAMIC:
1344       dynamicTags =
1345           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1346       break;
1347     case SHT_GNU_versym:
1348       versymSec = &sec;
1349       break;
1350     case SHT_GNU_verdef:
1351       verdefSec = &sec;
1352       break;
1353     case SHT_GNU_verneed:
1354       verneedSec = &sec;
1355       break;
1356     }
1357   }
1358 
1359   if (versymSec && numELFSyms == 0) {
1360     error("SHT_GNU_versym should be associated with symbol table");
1361     return;
1362   }
1363 
1364   // Search for a DT_SONAME tag to initialize this->soName.
1365   for (const Elf_Dyn &dyn : dynamicTags) {
1366     if (dyn.d_tag == DT_NEEDED) {
1367       uint64_t val = dyn.getVal();
1368       if (val >= this->stringTable.size())
1369         fatal(toString(this) + ": invalid DT_NEEDED entry");
1370       dtNeeded.push_back(this->stringTable.data() + val);
1371     } else if (dyn.d_tag == DT_SONAME) {
1372       uint64_t val = dyn.getVal();
1373       if (val >= this->stringTable.size())
1374         fatal(toString(this) + ": invalid DT_SONAME entry");
1375       soName = this->stringTable.data() + val;
1376     }
1377   }
1378 
1379   // DSOs are uniquified not by filename but by soname.
1380   DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1381   bool wasInserted;
1382   std::tie(it, wasInserted) =
1383       symtab->soNames.try_emplace(CachedHashStringRef(soName), this);
1384 
1385   // If a DSO appears more than once on the command line with and without
1386   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1387   // user can add an extra DSO with --no-as-needed to force it to be added to
1388   // the dependency list.
1389   it->second->isNeeded |= isNeeded;
1390   if (!wasInserted)
1391     return;
1392 
1393   ctx->sharedFiles.push_back(this);
1394 
1395   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1396   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1397 
1398   // Parse ".gnu.version" section which is a parallel array for the symbol
1399   // table. If a given file doesn't have a ".gnu.version" section, we use
1400   // VER_NDX_GLOBAL.
1401   size_t size = numELFSyms - firstGlobal;
1402   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1403   if (versymSec) {
1404     ArrayRef<Elf_Versym> versym =
1405         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1406               this)
1407             .slice(firstGlobal);
1408     for (size_t i = 0; i < size; ++i)
1409       versyms[i] = versym[i].vs_index;
1410   }
1411 
1412   // System libraries can have a lot of symbols with versions. Using a
1413   // fixed buffer for computing the versions name (foo@ver) can save a
1414   // lot of allocations.
1415   SmallString<0> versionedNameBuffer;
1416 
1417   // Add symbols to the symbol table.
1418   SymbolTable &symtab = *elf::symtab;
1419   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1420   for (size_t i = 0, e = syms.size(); i != e; ++i) {
1421     const Elf_Sym &sym = syms[i];
1422 
1423     // ELF spec requires that all local symbols precede weak or global
1424     // symbols in each symbol table, and the index of first non-local symbol
1425     // is stored to sh_info. If a local symbol appears after some non-local
1426     // symbol, that's a violation of the spec.
1427     StringRef name = CHECK(sym.getName(stringTable), this);
1428     if (sym.getBinding() == STB_LOCAL) {
1429       warn("found local symbol '" + name +
1430            "' in global part of symbol table in file " + toString(this));
1431       continue;
1432     }
1433 
1434     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1435     if (sym.isUndefined()) {
1436       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1437       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1438       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1439         if (idx >= verneeds.size()) {
1440           error("corrupt input file: version need index " + Twine(idx) +
1441                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1442                 toString(this));
1443           continue;
1444         }
1445         StringRef verName = stringTable.data() + verneeds[idx];
1446         versionedNameBuffer.clear();
1447         name = saver().save(
1448             (name + "@" + verName).toStringRef(versionedNameBuffer));
1449       }
1450       Symbol *s = symtab.addSymbol(
1451           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1452       s->exportDynamic = true;
1453       if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1454           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1455         requiredSymbols.push_back(s);
1456       continue;
1457     }
1458 
1459     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1460     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1461     // workaround for this bug.
1462     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1463         name == "_gp_disp")
1464       continue;
1465 
1466     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1467     if (!(versyms[i] & VERSYM_HIDDEN)) {
1468       auto *s = symtab.addSymbol(
1469           SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1470                        sym.getType(), sym.st_value, sym.st_size, alignment});
1471       if (s->file == this)
1472         s->verdefIndex = idx;
1473     }
1474 
1475     // Also add the symbol with the versioned name to handle undefined symbols
1476     // with explicit versions.
1477     if (idx == VER_NDX_GLOBAL)
1478       continue;
1479 
1480     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1481       error("corrupt input file: version definition index " + Twine(idx) +
1482             " for symbol " + name + " is out of bounds\n>>> defined in " +
1483             toString(this));
1484       continue;
1485     }
1486 
1487     StringRef verName =
1488         stringTable.data() +
1489         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1490     versionedNameBuffer.clear();
1491     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1492     auto *s = symtab.addSymbol(
1493         SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1494                      sym.getType(), sym.st_value, sym.st_size, alignment});
1495     if (s->file == this)
1496       s->verdefIndex = idx;
1497   }
1498 }
1499 
1500 static ELFKind getBitcodeELFKind(const Triple &t) {
1501   if (t.isLittleEndian())
1502     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1503   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1504 }
1505 
1506 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1507   switch (t.getArch()) {
1508   case Triple::aarch64:
1509   case Triple::aarch64_be:
1510     return EM_AARCH64;
1511   case Triple::amdgcn:
1512   case Triple::r600:
1513     return EM_AMDGPU;
1514   case Triple::arm:
1515   case Triple::thumb:
1516     return EM_ARM;
1517   case Triple::avr:
1518     return EM_AVR;
1519   case Triple::hexagon:
1520     return EM_HEXAGON;
1521   case Triple::mips:
1522   case Triple::mipsel:
1523   case Triple::mips64:
1524   case Triple::mips64el:
1525     return EM_MIPS;
1526   case Triple::msp430:
1527     return EM_MSP430;
1528   case Triple::ppc:
1529   case Triple::ppcle:
1530     return EM_PPC;
1531   case Triple::ppc64:
1532   case Triple::ppc64le:
1533     return EM_PPC64;
1534   case Triple::riscv32:
1535   case Triple::riscv64:
1536     return EM_RISCV;
1537   case Triple::x86:
1538     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1539   case Triple::x86_64:
1540     return EM_X86_64;
1541   default:
1542     error(path + ": could not infer e_machine from bitcode target triple " +
1543           t.str());
1544     return EM_NONE;
1545   }
1546 }
1547 
1548 static uint8_t getOsAbi(const Triple &t) {
1549   switch (t.getOS()) {
1550   case Triple::AMDHSA:
1551     return ELF::ELFOSABI_AMDGPU_HSA;
1552   case Triple::AMDPAL:
1553     return ELF::ELFOSABI_AMDGPU_PAL;
1554   case Triple::Mesa3D:
1555     return ELF::ELFOSABI_AMDGPU_MESA3D;
1556   default:
1557     return ELF::ELFOSABI_NONE;
1558   }
1559 }
1560 
1561 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1562                          uint64_t offsetInArchive, bool lazy)
1563     : InputFile(BitcodeKind, mb) {
1564   this->archiveName = archiveName;
1565   this->lazy = lazy;
1566 
1567   std::string path = mb.getBufferIdentifier().str();
1568   if (config->thinLTOIndexOnly)
1569     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1570 
1571   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1572   // name. If two archives define two members with the same name, this
1573   // causes a collision which result in only one of the objects being taken
1574   // into consideration at LTO time (which very likely causes undefined
1575   // symbols later in the link stage). So we append file offset to make
1576   // filename unique.
1577   StringRef name = archiveName.empty()
1578                        ? saver().save(path)
1579                        : saver().save(archiveName + "(" + path::filename(path) +
1580                                       " at " + utostr(offsetInArchive) + ")");
1581   MemoryBufferRef mbref(mb.getBuffer(), name);
1582 
1583   obj = CHECK(lto::InputFile::create(mbref), this);
1584 
1585   Triple t(obj->getTargetTriple());
1586   ekind = getBitcodeELFKind(t);
1587   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1588   osabi = getOsAbi(t);
1589 }
1590 
1591 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1592   switch (gvVisibility) {
1593   case GlobalValue::DefaultVisibility:
1594     return STV_DEFAULT;
1595   case GlobalValue::HiddenVisibility:
1596     return STV_HIDDEN;
1597   case GlobalValue::ProtectedVisibility:
1598     return STV_PROTECTED;
1599   }
1600   llvm_unreachable("unknown visibility");
1601 }
1602 
1603 template <class ELFT>
1604 static void
1605 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1606                     const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1607   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1608   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1609   uint8_t visibility = mapVisibility(objSym.getVisibility());
1610 
1611   if (!sym)
1612     sym = symtab->insert(saver().save(objSym.getName()));
1613 
1614   int c = objSym.getComdatIndex();
1615   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1616     Undefined newSym(&f, StringRef(), binding, visibility, type);
1617     sym->resolve(newSym);
1618     sym->referenced = true;
1619     return;
1620   }
1621 
1622   if (objSym.isCommon()) {
1623     sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1624                               objSym.getCommonAlignment(),
1625                               objSym.getCommonSize()});
1626   } else {
1627     Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1628     if (objSym.canBeOmittedFromSymbolTable())
1629       newSym.exportDynamic = false;
1630     sym->resolve(newSym);
1631   }
1632 }
1633 
1634 template <class ELFT> void BitcodeFile::parse() {
1635   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1636     keptComdats.push_back(
1637         s.second == Comdat::NoDeduplicate ||
1638         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1639             .second);
1640   }
1641 
1642   symbols.resize(obj->symbols().size());
1643   // Process defined symbols first. See the comment in
1644   // ObjFile<ELFT>::initializeSymbols.
1645   for (auto it : llvm::enumerate(obj->symbols()))
1646     if (!it.value().isUndefined()) {
1647       Symbol *&sym = symbols[it.index()];
1648       createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this);
1649     }
1650   for (auto it : llvm::enumerate(obj->symbols()))
1651     if (it.value().isUndefined()) {
1652       Symbol *&sym = symbols[it.index()];
1653       createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this);
1654     }
1655 
1656   for (auto l : obj->getDependentLibraries())
1657     addDependentLibrary(l, this);
1658 }
1659 
1660 void BitcodeFile::parseLazy() {
1661   SymbolTable &symtab = *elf::symtab;
1662   symbols.resize(obj->symbols().size());
1663   for (auto it : llvm::enumerate(obj->symbols()))
1664     if (!it.value().isUndefined()) {
1665       auto *sym = symtab.insert(saver().save(it.value().getName()));
1666       sym->resolve(LazyObject{*this});
1667       symbols[it.index()] = sym;
1668     }
1669 }
1670 
1671 void BitcodeFile::postParse() {
1672   for (auto it : llvm::enumerate(obj->symbols())) {
1673     const Symbol &sym = *symbols[it.index()];
1674     const auto &objSym = it.value();
1675     if (sym.file == this || !sym.isDefined() || objSym.isUndefined() ||
1676         objSym.isCommon() || objSym.isWeak())
1677       continue;
1678     int c = objSym.getComdatIndex();
1679     if (c != -1 && !keptComdats[c])
1680       continue;
1681     reportDuplicate(sym, this, nullptr, 0);
1682   }
1683 }
1684 
1685 void BinaryFile::parse() {
1686   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1687   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1688                                      8, data, ".data");
1689   sections.push_back(section);
1690 
1691   // For each input file foo that is embedded to a result as a binary
1692   // blob, we define _binary_foo_{start,end,size} symbols, so that
1693   // user programs can access blobs by name. Non-alphanumeric
1694   // characters in a filename are replaced with underscore.
1695   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1696   for (size_t i = 0; i < s.size(); ++i)
1697     if (!isAlnum(s[i]))
1698       s[i] = '_';
1699 
1700   llvm::StringSaver &saver = lld::saver();
1701 
1702   symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"),
1703                                        STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0,
1704                                        0, section});
1705   symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"),
1706                                        STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1707                                        data.size(), 0, section});
1708   symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"),
1709                                        STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1710                                        data.size(), 0, nullptr});
1711 }
1712 
1713 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
1714                                 bool lazy) {
1715   ELFFileBase *f;
1716   switch (getELFKind(mb, archiveName)) {
1717   case ELF32LEKind:
1718     f = make<ObjFile<ELF32LE>>(mb, archiveName);
1719     break;
1720   case ELF32BEKind:
1721     f = make<ObjFile<ELF32BE>>(mb, archiveName);
1722     break;
1723   case ELF64LEKind:
1724     f = make<ObjFile<ELF64LE>>(mb, archiveName);
1725     break;
1726   case ELF64BEKind:
1727     f = make<ObjFile<ELF64BE>>(mb, archiveName);
1728     break;
1729   default:
1730     llvm_unreachable("getELFKind");
1731   }
1732   f->lazy = lazy;
1733   return f;
1734 }
1735 
1736 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1737   const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1738   SymbolTable &symtab = *elf::symtab;
1739 
1740   symbols.resize(eSyms.size());
1741   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1742     if (eSyms[i].st_shndx != SHN_UNDEF)
1743       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1744 
1745   // Replace existing symbols with LazyObject symbols.
1746   //
1747   // resolve() may trigger this->extract() if an existing symbol is an undefined
1748   // symbol. If that happens, this function has served its purpose, and we can
1749   // exit from the loop early.
1750   for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal))
1751     if (sym) {
1752       sym->resolve(LazyObject{*this});
1753       if (!lazy)
1754         return;
1755     }
1756 }
1757 
1758 bool InputFile::shouldExtractForCommon(StringRef name) {
1759   if (isa<BitcodeFile>(this))
1760     return isBitcodeNonCommonDef(mb, name, archiveName);
1761 
1762   return isNonCommonDef(mb, name, archiveName);
1763 }
1764 
1765 std::string elf::replaceThinLTOSuffix(StringRef path) {
1766   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1767   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1768 
1769   if (path.consume_back(suffix))
1770     return (path + repl).str();
1771   return std::string(path);
1772 }
1773 
1774 template void BitcodeFile::parse<ELF32LE>();
1775 template void BitcodeFile::parse<ELF32BE>();
1776 template void BitcodeFile::parse<ELF64LE>();
1777 template void BitcodeFile::parse<ELF64BE>();
1778 
1779 template class elf::ObjFile<ELF32LE>;
1780 template class elf::ObjFile<ELF32BE>;
1781 template class elf::ObjFile<ELF64LE>;
1782 template class elf::ObjFile<ELF64BE>;
1783 
1784 template void SharedFile::parse<ELF32LE>();
1785 template void SharedFile::parse<ELF32BE>();
1786 template void SharedFile::parse<ELF64LE>();
1787 template void SharedFile::parse<ELF64BE>();
1788