xref: /freebsd/contrib/llvm-project/lld/ELF/InputFiles.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Config.h"
11 #include "DWARF.h"
12 #include "Driver.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <optional>
35 
36 using namespace llvm;
37 using namespace llvm::ELF;
38 using namespace llvm::object;
39 using namespace llvm::sys;
40 using namespace llvm::sys::fs;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 // This function is explicitly instantiated in ARM.cpp, don't do it here to
46 // avoid warnings with MSVC.
47 extern template void ObjFile<ELF32LE>::importCmseSymbols();
48 extern template void ObjFile<ELF32BE>::importCmseSymbols();
49 extern template void ObjFile<ELF64LE>::importCmseSymbols();
50 extern template void ObjFile<ELF64BE>::importCmseSymbols();
51 
52 bool InputFile::isInGroup;
53 uint32_t InputFile::nextGroupId;
54 
55 std::unique_ptr<TarWriter> elf::tar;
56 
57 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
58 std::string lld::toString(const InputFile *f) {
59   static std::mutex mu;
60   if (!f)
61     return "<internal>";
62 
63   {
64     std::lock_guard<std::mutex> lock(mu);
65     if (f->toStringCache.empty()) {
66       if (f->archiveName.empty())
67         f->toStringCache = f->getName();
68       else
69         (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
70     }
71   }
72   return std::string(f->toStringCache);
73 }
74 
75 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
76   unsigned char size;
77   unsigned char endian;
78   std::tie(size, endian) = getElfArchType(mb.getBuffer());
79 
80   auto report = [&](StringRef msg) {
81     StringRef filename = mb.getBufferIdentifier();
82     if (archiveName.empty())
83       fatal(filename + ": " + msg);
84     else
85       fatal(archiveName + "(" + filename + "): " + msg);
86   };
87 
88   if (!mb.getBuffer().starts_with(ElfMagic))
89     report("not an ELF file");
90   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
91     report("corrupted ELF file: invalid data encoding");
92   if (size != ELFCLASS32 && size != ELFCLASS64)
93     report("corrupted ELF file: invalid file class");
94 
95   size_t bufSize = mb.getBuffer().size();
96   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
97       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
98     report("corrupted ELF file: file is too short");
99 
100   if (size == ELFCLASS32)
101     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
102   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
103 }
104 
105 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
106 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
107 // the input objects have been compiled.
108 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
109                              const InputFile *f) {
110   std::optional<unsigned> attr =
111       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
112   if (!attr)
113     // If an ABI tag isn't present then it is implicitly given the value of 0
114     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
115     // including some in glibc that don't use FP args (and should have value 3)
116     // don't have the attribute so we do not consider an implicit value of 0
117     // as a clash.
118     return;
119 
120   unsigned vfpArgs = *attr;
121   ARMVFPArgKind arg;
122   switch (vfpArgs) {
123   case ARMBuildAttrs::BaseAAPCS:
124     arg = ARMVFPArgKind::Base;
125     break;
126   case ARMBuildAttrs::HardFPAAPCS:
127     arg = ARMVFPArgKind::VFP;
128     break;
129   case ARMBuildAttrs::ToolChainFPPCS:
130     // Tool chain specific convention that conforms to neither AAPCS variant.
131     arg = ARMVFPArgKind::ToolChain;
132     break;
133   case ARMBuildAttrs::CompatibleFPAAPCS:
134     // Object compatible with all conventions.
135     return;
136   default:
137     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
138     return;
139   }
140   // Follow ld.bfd and error if there is a mix of calling conventions.
141   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
142     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
143   else
144     config->armVFPArgs = arg;
145 }
146 
147 // The ARM support in lld makes some use of instructions that are not available
148 // on all ARM architectures. Namely:
149 // - Use of BLX instruction for interworking between ARM and Thumb state.
150 // - Use of the extended Thumb branch encoding in relocation.
151 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
152 // The ARM Attributes section contains information about the architecture chosen
153 // at compile time. We follow the convention that if at least one input object
154 // is compiled with an architecture that supports these features then lld is
155 // permitted to use them.
156 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
157   std::optional<unsigned> attr =
158       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
159   if (!attr)
160     return;
161   auto arch = *attr;
162   switch (arch) {
163   case ARMBuildAttrs::Pre_v4:
164   case ARMBuildAttrs::v4:
165   case ARMBuildAttrs::v4T:
166     // Architectures prior to v5 do not support BLX instruction
167     break;
168   case ARMBuildAttrs::v5T:
169   case ARMBuildAttrs::v5TE:
170   case ARMBuildAttrs::v5TEJ:
171   case ARMBuildAttrs::v6:
172   case ARMBuildAttrs::v6KZ:
173   case ARMBuildAttrs::v6K:
174     config->armHasBlx = true;
175     // Architectures used in pre-Cortex processors do not support
176     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
177     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
178     break;
179   default:
180     // All other Architectures have BLX and extended branch encoding
181     config->armHasBlx = true;
182     config->armJ1J2BranchEncoding = true;
183     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
184       // All Architectures used in Cortex processors with the exception
185       // of v6-M and v6S-M have the MOVT and MOVW instructions.
186       config->armHasMovtMovw = true;
187     break;
188   }
189 
190   // Only ARMv8-M or later architectures have CMSE support.
191   std::optional<unsigned> profile =
192       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
193   if (!profile)
194     return;
195   if (arch >= ARMBuildAttrs::CPUArch::v8_M_Base &&
196       profile == ARMBuildAttrs::MicroControllerProfile)
197     config->armCMSESupport = true;
198 
199   // The thumb PLT entries require Thumb2 which can be used on multiple archs.
200   // For now, let's limit it to ones where ARM isn't available and we know have
201   // Thumb2.
202   std::optional<unsigned> armISA =
203       attributes.getAttributeValue(ARMBuildAttrs::ARM_ISA_use);
204   std::optional<unsigned> thumb =
205       attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
206   config->armHasArmISA |= armISA && *armISA >= ARMBuildAttrs::Allowed;
207   config->armHasThumb2ISA |= thumb && *thumb >= ARMBuildAttrs::AllowThumb32;
208 }
209 
210 InputFile::InputFile(Kind k, MemoryBufferRef m)
211     : mb(m), groupId(nextGroupId), fileKind(k) {
212   // All files within the same --{start,end}-group get the same group ID.
213   // Otherwise, a new file will get a new group ID.
214   if (!isInGroup)
215     ++nextGroupId;
216 }
217 
218 std::optional<MemoryBufferRef> elf::readFile(StringRef path) {
219   llvm::TimeTraceScope timeScope("Load input files", path);
220 
221   // The --chroot option changes our virtual root directory.
222   // This is useful when you are dealing with files created by --reproduce.
223   if (!config->chroot.empty() && path.starts_with("/"))
224     path = saver().save(config->chroot + path);
225 
226   bool remapped = false;
227   auto it = config->remapInputs.find(path);
228   if (it != config->remapInputs.end()) {
229     path = it->second;
230     remapped = true;
231   } else {
232     for (const auto &[pat, toFile] : config->remapInputsWildcards) {
233       if (pat.match(path)) {
234         path = toFile;
235         remapped = true;
236         break;
237       }
238     }
239   }
240   if (remapped) {
241     // Use /dev/null to indicate an input file that should be ignored. Change
242     // the path to NUL on Windows.
243 #ifdef _WIN32
244     if (path == "/dev/null")
245       path = "NUL";
246 #endif
247   }
248 
249   log(path);
250   config->dependencyFiles.insert(llvm::CachedHashString(path));
251 
252   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
253                                        /*RequiresNullTerminator=*/false);
254   if (auto ec = mbOrErr.getError()) {
255     error("cannot open " + path + ": " + ec.message());
256     return std::nullopt;
257   }
258 
259   MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
260   ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
261 
262   if (tar)
263     tar->append(relativeToRoot(path), mbref.getBuffer());
264   return mbref;
265 }
266 
267 // All input object files must be for the same architecture
268 // (e.g. it does not make sense to link x86 object files with
269 // MIPS object files.) This function checks for that error.
270 static bool isCompatible(InputFile *file) {
271   if (!file->isElf() && !isa<BitcodeFile>(file))
272     return true;
273 
274   if (file->ekind == config->ekind && file->emachine == config->emachine) {
275     if (config->emachine != EM_MIPS)
276       return true;
277     if (isMipsN32Abi(file) == config->mipsN32Abi)
278       return true;
279   }
280 
281   StringRef target =
282       !config->bfdname.empty() ? config->bfdname : config->emulation;
283   if (!target.empty()) {
284     error(toString(file) + " is incompatible with " + target);
285     return false;
286   }
287 
288   InputFile *existing = nullptr;
289   if (!ctx.objectFiles.empty())
290     existing = ctx.objectFiles[0];
291   else if (!ctx.sharedFiles.empty())
292     existing = ctx.sharedFiles[0];
293   else if (!ctx.bitcodeFiles.empty())
294     existing = ctx.bitcodeFiles[0];
295   std::string with;
296   if (existing)
297     with = " with " + toString(existing);
298   error(toString(file) + " is incompatible" + with);
299   return false;
300 }
301 
302 template <class ELFT> static void doParseFile(InputFile *file) {
303   if (!isCompatible(file))
304     return;
305 
306   // Lazy object file
307   if (file->lazy) {
308     if (auto *f = dyn_cast<BitcodeFile>(file)) {
309       ctx.lazyBitcodeFiles.push_back(f);
310       f->parseLazy();
311     } else {
312       cast<ObjFile<ELFT>>(file)->parseLazy();
313     }
314     return;
315   }
316 
317   if (config->trace)
318     message(toString(file));
319 
320   if (file->kind() == InputFile::ObjKind) {
321     ctx.objectFiles.push_back(cast<ELFFileBase>(file));
322     cast<ObjFile<ELFT>>(file)->parse();
323   } else if (auto *f = dyn_cast<SharedFile>(file)) {
324     f->parse<ELFT>();
325   } else if (auto *f = dyn_cast<BitcodeFile>(file)) {
326     ctx.bitcodeFiles.push_back(f);
327     f->parse();
328   } else {
329     ctx.binaryFiles.push_back(cast<BinaryFile>(file));
330     cast<BinaryFile>(file)->parse();
331   }
332 }
333 
334 // Add symbols in File to the symbol table.
335 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
336 
337 // This function is explicitly instantiated in ARM.cpp. Mark it extern here,
338 // to avoid warnings when building with MSVC.
339 extern template void ObjFile<ELF32LE>::importCmseSymbols();
340 extern template void ObjFile<ELF32BE>::importCmseSymbols();
341 extern template void ObjFile<ELF64LE>::importCmseSymbols();
342 extern template void ObjFile<ELF64BE>::importCmseSymbols();
343 
344 template <class ELFT>
345 static void doParseFiles(const std::vector<InputFile *> &files,
346                          InputFile *armCmseImpLib) {
347   // Add all files to the symbol table. This will add almost all symbols that we
348   // need to the symbol table. This process might add files to the link due to
349   // addDependentLibrary.
350   for (size_t i = 0; i < files.size(); ++i) {
351     llvm::TimeTraceScope timeScope("Parse input files", files[i]->getName());
352     doParseFile<ELFT>(files[i]);
353   }
354   if (armCmseImpLib)
355     cast<ObjFile<ELFT>>(*armCmseImpLib).importCmseSymbols();
356 }
357 
358 void elf::parseFiles(const std::vector<InputFile *> &files,
359                      InputFile *armCmseImpLib) {
360   llvm::TimeTraceScope timeScope("Parse input files");
361   invokeELFT(doParseFiles, files, armCmseImpLib);
362 }
363 
364 // Concatenates arguments to construct a string representing an error location.
365 static std::string createFileLineMsg(StringRef path, unsigned line) {
366   std::string filename = std::string(path::filename(path));
367   std::string lineno = ":" + std::to_string(line);
368   if (filename == path)
369     return filename + lineno;
370   return filename + lineno + " (" + path.str() + lineno + ")";
371 }
372 
373 template <class ELFT>
374 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
375                                 const InputSectionBase &sec, uint64_t offset) {
376   // In DWARF, functions and variables are stored to different places.
377   // First, look up a function for a given offset.
378   if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
379     return createFileLineMsg(info->FileName, info->Line);
380 
381   // If it failed, look up again as a variable.
382   if (std::optional<std::pair<std::string, unsigned>> fileLine =
383           file.getVariableLoc(sym.getName()))
384     return createFileLineMsg(fileLine->first, fileLine->second);
385 
386   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
387   return std::string(file.sourceFile);
388 }
389 
390 std::string InputFile::getSrcMsg(const Symbol &sym, const InputSectionBase &sec,
391                                  uint64_t offset) {
392   if (kind() != ObjKind)
393     return "";
394   switch (ekind) {
395   default:
396     llvm_unreachable("Invalid kind");
397   case ELF32LEKind:
398     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
399   case ELF32BEKind:
400     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
401   case ELF64LEKind:
402     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
403   case ELF64BEKind:
404     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
405   }
406 }
407 
408 StringRef InputFile::getNameForScript() const {
409   if (archiveName.empty())
410     return getName();
411 
412   if (nameForScriptCache.empty())
413     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
414 
415   return nameForScriptCache;
416 }
417 
418 // An ELF object file may contain a `.deplibs` section. If it exists, the
419 // section contains a list of library specifiers such as `m` for libm. This
420 // function resolves a given name by finding the first matching library checking
421 // the various ways that a library can be specified to LLD. This ELF extension
422 // is a form of autolinking and is called `dependent libraries`. It is currently
423 // unique to LLVM and lld.
424 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
425   if (!config->dependentLibraries)
426     return;
427   if (std::optional<std::string> s = searchLibraryBaseName(specifier))
428     ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
429   else if (std::optional<std::string> s = findFromSearchPaths(specifier))
430     ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
431   else if (fs::exists(specifier))
432     ctx.driver.addFile(specifier, /*withLOption=*/false);
433   else
434     error(toString(f) +
435           ": unable to find library from dependent library specifier: " +
436           specifier);
437 }
438 
439 // Record the membership of a section group so that in the garbage collection
440 // pass, section group members are kept or discarded as a unit.
441 template <class ELFT>
442 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
443                                ArrayRef<typename ELFT::Word> entries) {
444   bool hasAlloc = false;
445   for (uint32_t index : entries.slice(1)) {
446     if (index >= sections.size())
447       return;
448     if (InputSectionBase *s = sections[index])
449       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
450         hasAlloc = true;
451   }
452 
453   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
454   // collection. See the comment in markLive(). This rule retains .debug_types
455   // and .rela.debug_types.
456   if (!hasAlloc)
457     return;
458 
459   // Connect the members in a circular doubly-linked list via
460   // nextInSectionGroup.
461   InputSectionBase *head;
462   InputSectionBase *prev = nullptr;
463   for (uint32_t index : entries.slice(1)) {
464     InputSectionBase *s = sections[index];
465     if (!s || s == &InputSection::discarded)
466       continue;
467     if (prev)
468       prev->nextInSectionGroup = s;
469     else
470       head = s;
471     prev = s;
472   }
473   if (prev)
474     prev->nextInSectionGroup = head;
475 }
476 
477 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
478   llvm::call_once(initDwarf, [this]() {
479     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
480         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
481         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
482         [&](Error warning) {
483           warn(getName() + ": " + toString(std::move(warning)));
484         }));
485   });
486 
487   return dwarf.get();
488 }
489 
490 // Returns the pair of file name and line number describing location of data
491 // object (variable, array, etc) definition.
492 template <class ELFT>
493 std::optional<std::pair<std::string, unsigned>>
494 ObjFile<ELFT>::getVariableLoc(StringRef name) {
495   return getDwarf()->getVariableLoc(name);
496 }
497 
498 // Returns source line information for a given offset
499 // using DWARF debug info.
500 template <class ELFT>
501 std::optional<DILineInfo>
502 ObjFile<ELFT>::getDILineInfo(const InputSectionBase *s, uint64_t offset) {
503   // Detect SectionIndex for specified section.
504   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
505   ArrayRef<InputSectionBase *> sections = s->file->getSections();
506   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
507     if (s == sections[curIndex]) {
508       sectionIndex = curIndex;
509       break;
510     }
511   }
512 
513   return getDwarf()->getDILineInfo(offset, sectionIndex);
514 }
515 
516 ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb)
517     : InputFile(k, mb) {
518   this->ekind = ekind;
519 }
520 
521 template <typename Elf_Shdr>
522 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
523   for (const Elf_Shdr &sec : sections)
524     if (sec.sh_type == type)
525       return &sec;
526   return nullptr;
527 }
528 
529 void ELFFileBase::init() {
530   switch (ekind) {
531   case ELF32LEKind:
532     init<ELF32LE>(fileKind);
533     break;
534   case ELF32BEKind:
535     init<ELF32BE>(fileKind);
536     break;
537   case ELF64LEKind:
538     init<ELF64LE>(fileKind);
539     break;
540   case ELF64BEKind:
541     init<ELF64BE>(fileKind);
542     break;
543   default:
544     llvm_unreachable("getELFKind");
545   }
546 }
547 
548 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
549   using Elf_Shdr = typename ELFT::Shdr;
550   using Elf_Sym = typename ELFT::Sym;
551 
552   // Initialize trivial attributes.
553   const ELFFile<ELFT> &obj = getObj<ELFT>();
554   emachine = obj.getHeader().e_machine;
555   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
556   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
557 
558   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
559   elfShdrs = sections.data();
560   numELFShdrs = sections.size();
561 
562   // Find a symbol table.
563   const Elf_Shdr *symtabSec =
564       findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
565 
566   if (!symtabSec)
567     return;
568 
569   // Initialize members corresponding to a symbol table.
570   firstGlobal = symtabSec->sh_info;
571 
572   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
573   if (firstGlobal == 0 || firstGlobal > eSyms.size())
574     fatal(toString(this) + ": invalid sh_info in symbol table");
575 
576   elfSyms = reinterpret_cast<const void *>(eSyms.data());
577   numELFSyms = uint32_t(eSyms.size());
578   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
579 }
580 
581 template <class ELFT>
582 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
583   return CHECK(
584       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
585       this);
586 }
587 
588 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
589   object::ELFFile<ELFT> obj = this->getObj();
590   // Read a section table. justSymbols is usually false.
591   if (this->justSymbols) {
592     initializeJustSymbols();
593     initializeSymbols(obj);
594     return;
595   }
596 
597   // Handle dependent libraries and selection of section groups as these are not
598   // done in parallel.
599   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
600   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
601   uint64_t size = objSections.size();
602   sections.resize(size);
603   for (size_t i = 0; i != size; ++i) {
604     const Elf_Shdr &sec = objSections[i];
605     if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
606       StringRef name = check(obj.getSectionName(sec, shstrtab));
607       ArrayRef<char> data = CHECK(
608           this->getObj().template getSectionContentsAsArray<char>(sec), this);
609       if (!data.empty() && data.back() != '\0') {
610         error(
611             toString(this) +
612             ": corrupted dependent libraries section (unterminated string): " +
613             name);
614       } else {
615         for (const char *d = data.begin(), *e = data.end(); d < e;) {
616           StringRef s(d);
617           addDependentLibrary(s, this);
618           d += s.size() + 1;
619         }
620       }
621       this->sections[i] = &InputSection::discarded;
622       continue;
623     }
624 
625     if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
626       ARMAttributeParser attributes;
627       ArrayRef<uint8_t> contents =
628           check(this->getObj().getSectionContents(sec));
629       StringRef name = check(obj.getSectionName(sec, shstrtab));
630       this->sections[i] = &InputSection::discarded;
631       if (Error e = attributes.parse(contents, ekind == ELF32LEKind
632                                                    ? llvm::endianness::little
633                                                    : llvm::endianness::big)) {
634         InputSection isec(*this, sec, name);
635         warn(toString(&isec) + ": " + llvm::toString(std::move(e)));
636       } else {
637         updateSupportedARMFeatures(attributes);
638         updateARMVFPArgs(attributes, this);
639 
640         // FIXME: Retain the first attribute section we see. The eglibc ARM
641         // dynamic loaders require the presence of an attribute section for
642         // dlopen to work. In a full implementation we would merge all attribute
643         // sections.
644         if (in.attributes == nullptr) {
645           in.attributes = std::make_unique<InputSection>(*this, sec, name);
646           this->sections[i] = in.attributes.get();
647         }
648       }
649     }
650 
651     // Producing a static binary with MTE globals is not currently supported,
652     // remove all SHT_AARCH64_MEMTAG_GLOBALS_STATIC sections as they're unused
653     // medatada, and we don't want them to end up in the output file for static
654     // executables.
655     if (sec.sh_type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC &&
656         !canHaveMemtagGlobals()) {
657       this->sections[i] = &InputSection::discarded;
658       continue;
659     }
660 
661     if (sec.sh_type != SHT_GROUP)
662       continue;
663     StringRef signature = getShtGroupSignature(objSections, sec);
664     ArrayRef<Elf_Word> entries =
665         CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
666     if (entries.empty())
667       fatal(toString(this) + ": empty SHT_GROUP");
668 
669     Elf_Word flag = entries[0];
670     if (flag && flag != GRP_COMDAT)
671       fatal(toString(this) + ": unsupported SHT_GROUP format");
672 
673     bool keepGroup =
674         (flag & GRP_COMDAT) == 0 || ignoreComdats ||
675         symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this)
676             .second;
677     if (keepGroup) {
678       if (!config->resolveGroups)
679         this->sections[i] = createInputSection(
680             i, sec, check(obj.getSectionName(sec, shstrtab)));
681       continue;
682     }
683 
684     // Otherwise, discard group members.
685     for (uint32_t secIndex : entries.slice(1)) {
686       if (secIndex >= size)
687         fatal(toString(this) +
688               ": invalid section index in group: " + Twine(secIndex));
689       this->sections[secIndex] = &InputSection::discarded;
690     }
691   }
692 
693   // Read a symbol table.
694   initializeSymbols(obj);
695 }
696 
697 // Sections with SHT_GROUP and comdat bits define comdat section groups.
698 // They are identified and deduplicated by group name. This function
699 // returns a group name.
700 template <class ELFT>
701 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
702                                               const Elf_Shdr &sec) {
703   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
704   if (sec.sh_info >= symbols.size())
705     fatal(toString(this) + ": invalid symbol index");
706   const typename ELFT::Sym &sym = symbols[sec.sh_info];
707   return CHECK(sym.getName(this->stringTable), this);
708 }
709 
710 template <class ELFT>
711 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
712   // On a regular link we don't merge sections if -O0 (default is -O1). This
713   // sometimes makes the linker significantly faster, although the output will
714   // be bigger.
715   //
716   // Doing the same for -r would create a problem as it would combine sections
717   // with different sh_entsize. One option would be to just copy every SHF_MERGE
718   // section as is to the output. While this would produce a valid ELF file with
719   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
720   // they see two .debug_str. We could have separate logic for combining
721   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
722   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
723   // logic for -r.
724   if (config->optimize == 0 && !config->relocatable)
725     return false;
726 
727   // A mergeable section with size 0 is useless because they don't have
728   // any data to merge. A mergeable string section with size 0 can be
729   // argued as invalid because it doesn't end with a null character.
730   // We'll avoid a mess by handling them as if they were non-mergeable.
731   if (sec.sh_size == 0)
732     return false;
733 
734   // Check for sh_entsize. The ELF spec is not clear about the zero
735   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
736   // the section does not hold a table of fixed-size entries". We know
737   // that Rust 1.13 produces a string mergeable section with a zero
738   // sh_entsize. Here we just accept it rather than being picky about it.
739   uint64_t entSize = sec.sh_entsize;
740   if (entSize == 0)
741     return false;
742   if (sec.sh_size % entSize)
743     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
744           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
745           Twine(entSize) + ")");
746 
747   if (sec.sh_flags & SHF_WRITE)
748     fatal(toString(this) + ":(" + name +
749           "): writable SHF_MERGE section is not supported");
750 
751   return true;
752 }
753 
754 // This is for --just-symbols.
755 //
756 // --just-symbols is a very minor feature that allows you to link your
757 // output against other existing program, so that if you load both your
758 // program and the other program into memory, your output can refer the
759 // other program's symbols.
760 //
761 // When the option is given, we link "just symbols". The section table is
762 // initialized with null pointers.
763 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
764   sections.resize(numELFShdrs);
765 }
766 
767 static bool isKnownSpecificSectionType(uint32_t t, uint32_t flags) {
768   if (SHT_LOUSER <= t && t <= SHT_HIUSER && !(flags & SHF_ALLOC))
769     return true;
770   if (SHT_LOOS <= t && t <= SHT_HIOS && !(flags & SHF_OS_NONCONFORMING))
771     return true;
772   // Allow all processor-specific types. This is different from GNU ld.
773   return SHT_LOPROC <= t && t <= SHT_HIPROC;
774 }
775 
776 template <class ELFT>
777 void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
778                                        const llvm::object::ELFFile<ELFT> &obj) {
779   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
780   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
781   uint64_t size = objSections.size();
782   SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
783   for (size_t i = 0; i != size; ++i) {
784     if (this->sections[i] == &InputSection::discarded)
785       continue;
786     const Elf_Shdr &sec = objSections[i];
787     const uint32_t type = sec.sh_type;
788 
789     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
790     // if -r is given, we'll let the final link discard such sections.
791     // This is compatible with GNU.
792     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
793       if (type == SHT_LLVM_CALL_GRAPH_PROFILE)
794         cgProfileSectionIndex = i;
795       if (type == SHT_LLVM_ADDRSIG) {
796         // We ignore the address-significance table if we know that the object
797         // file was created by objcopy or ld -r. This is because these tools
798         // will reorder the symbols in the symbol table, invalidating the data
799         // in the address-significance table, which refers to symbols by index.
800         if (sec.sh_link != 0)
801           this->addrsigSec = &sec;
802         else if (config->icf == ICFLevel::Safe)
803           warn(toString(this) +
804                ": --icf=safe conservatively ignores "
805                "SHT_LLVM_ADDRSIG [index " +
806                Twine(i) +
807                "] with sh_link=0 "
808                "(likely created using objcopy or ld -r)");
809       }
810       this->sections[i] = &InputSection::discarded;
811       continue;
812     }
813 
814     switch (type) {
815     case SHT_GROUP: {
816       if (!config->relocatable)
817         sections[i] = &InputSection::discarded;
818       StringRef signature =
819           cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
820       ArrayRef<Elf_Word> entries =
821           cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
822       if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
823           symtab.comdatGroups.find(CachedHashStringRef(signature))->second ==
824               this)
825         selectedGroups.push_back(entries);
826       break;
827     }
828     case SHT_SYMTAB_SHNDX:
829       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
830       break;
831     case SHT_SYMTAB:
832     case SHT_STRTAB:
833     case SHT_REL:
834     case SHT_RELA:
835     case SHT_CREL:
836     case SHT_NULL:
837       break;
838     case SHT_PROGBITS:
839     case SHT_NOTE:
840     case SHT_NOBITS:
841     case SHT_INIT_ARRAY:
842     case SHT_FINI_ARRAY:
843     case SHT_PREINIT_ARRAY:
844       this->sections[i] =
845           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
846       break;
847     case SHT_LLVM_LTO:
848       // Discard .llvm.lto in a relocatable link that does not use the bitcode.
849       // The concatenated output does not properly reflect the linking
850       // semantics. In addition, since we do not use the bitcode wrapper format,
851       // the concatenated raw bitcode would be invalid.
852       if (config->relocatable && !config->fatLTOObjects) {
853         sections[i] = &InputSection::discarded;
854         break;
855       }
856       [[fallthrough]];
857     default:
858       this->sections[i] =
859           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
860       if (type == SHT_LLVM_SYMPART)
861         ctx.hasSympart.store(true, std::memory_order_relaxed);
862       else if (config->rejectMismatch &&
863                !isKnownSpecificSectionType(type, sec.sh_flags))
864         errorOrWarn(toString(this->sections[i]) + ": unknown section type 0x" +
865                     Twine::utohexstr(type));
866       break;
867     }
868   }
869 
870   // We have a second loop. It is used to:
871   // 1) handle SHF_LINK_ORDER sections.
872   // 2) create relocation sections. In some cases the section header index of a
873   //    relocation section may be smaller than that of the relocated section. In
874   //    such cases, the relocation section would attempt to reference a target
875   //    section that has not yet been created. For simplicity, delay creation of
876   //    relocation sections until now.
877   for (size_t i = 0; i != size; ++i) {
878     if (this->sections[i] == &InputSection::discarded)
879       continue;
880     const Elf_Shdr &sec = objSections[i];
881 
882     if (isStaticRelSecType(sec.sh_type)) {
883       // Find a relocation target section and associate this section with that.
884       // Target may have been discarded if it is in a different section group
885       // and the group is discarded, even though it's a violation of the spec.
886       // We handle that situation gracefully by discarding dangling relocation
887       // sections.
888       const uint32_t info = sec.sh_info;
889       InputSectionBase *s = getRelocTarget(i, info);
890       if (!s)
891         continue;
892 
893       // ELF spec allows mergeable sections with relocations, but they are rare,
894       // and it is in practice hard to merge such sections by contents, because
895       // applying relocations at end of linking changes section contents. So, we
896       // simply handle such sections as non-mergeable ones. Degrading like this
897       // is acceptable because section merging is optional.
898       if (auto *ms = dyn_cast<MergeInputSection>(s)) {
899         s = makeThreadLocal<InputSection>(
900             ms->file, ms->flags, ms->type, ms->addralign,
901             ms->contentMaybeDecompress(), ms->name);
902         sections[info] = s;
903       }
904 
905       if (s->relSecIdx != 0)
906         error(
907             toString(s) +
908             ": multiple relocation sections to one section are not supported");
909       s->relSecIdx = i;
910 
911       // Relocation sections are usually removed from the output, so return
912       // `nullptr` for the normal case. However, if -r or --emit-relocs is
913       // specified, we need to copy them to the output. (Some post link analysis
914       // tools specify --emit-relocs to obtain the information.)
915       if (config->copyRelocs) {
916         auto *isec = makeThreadLocal<InputSection>(
917             *this, sec, check(obj.getSectionName(sec, shstrtab)));
918         // If the relocated section is discarded (due to /DISCARD/ or
919         // --gc-sections), the relocation section should be discarded as well.
920         s->dependentSections.push_back(isec);
921         sections[i] = isec;
922       }
923       continue;
924     }
925 
926     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
927     // the flag.
928     if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
929       continue;
930 
931     InputSectionBase *linkSec = nullptr;
932     if (sec.sh_link < size)
933       linkSec = this->sections[sec.sh_link];
934     if (!linkSec)
935       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
936 
937     // A SHF_LINK_ORDER section is discarded if its linked-to section is
938     // discarded.
939     InputSection *isec = cast<InputSection>(this->sections[i]);
940     linkSec->dependentSections.push_back(isec);
941     if (!isa<InputSection>(linkSec))
942       error("a section " + isec->name +
943             " with SHF_LINK_ORDER should not refer a non-regular section: " +
944             toString(linkSec));
945   }
946 
947   for (ArrayRef<Elf_Word> entries : selectedGroups)
948     handleSectionGroup<ELFT>(this->sections, entries);
949 }
950 
951 // Read the following info from the .note.gnu.property section and write it to
952 // the corresponding fields in `ObjFile`:
953 // - Feature flags (32 bits) representing x86 or AArch64 features for
954 //   hardware-assisted call flow control;
955 // - AArch64 PAuth ABI core info (16 bytes).
956 template <class ELFT>
957 void readGnuProperty(const InputSection &sec, ObjFile<ELFT> &f) {
958   using Elf_Nhdr = typename ELFT::Nhdr;
959   using Elf_Note = typename ELFT::Note;
960 
961   ArrayRef<uint8_t> data = sec.content();
962   auto reportFatal = [&](const uint8_t *place, const Twine &msg) {
963     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
964           Twine::utohexstr(place - sec.content().data()) + "): " + msg);
965   };
966   while (!data.empty()) {
967     // Read one NOTE record.
968     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
969     if (data.size() < sizeof(Elf_Nhdr) ||
970         data.size() < nhdr->getSize(sec.addralign))
971       reportFatal(data.data(), "data is too short");
972 
973     Elf_Note note(*nhdr);
974     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
975       data = data.slice(nhdr->getSize(sec.addralign));
976       continue;
977     }
978 
979     uint32_t featureAndType = config->emachine == EM_AARCH64
980                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
981                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
982 
983     // Read a body of a NOTE record, which consists of type-length-value fields.
984     ArrayRef<uint8_t> desc = note.getDesc(sec.addralign);
985     while (!desc.empty()) {
986       const uint8_t *place = desc.data();
987       if (desc.size() < 8)
988         reportFatal(place, "program property is too short");
989       uint32_t type = read32<ELFT::Endianness>(desc.data());
990       uint32_t size = read32<ELFT::Endianness>(desc.data() + 4);
991       desc = desc.slice(8);
992       if (desc.size() < size)
993         reportFatal(place, "program property is too short");
994 
995       if (type == featureAndType) {
996         // We found a FEATURE_1_AND field. There may be more than one of these
997         // in a .note.gnu.property section, for a relocatable object we
998         // accumulate the bits set.
999         if (size < 4)
1000           reportFatal(place, "FEATURE_1_AND entry is too short");
1001         f.andFeatures |= read32<ELFT::Endianness>(desc.data());
1002       } else if (config->emachine == EM_AARCH64 &&
1003                  type == GNU_PROPERTY_AARCH64_FEATURE_PAUTH) {
1004         if (!f.aarch64PauthAbiCoreInfo.empty()) {
1005           reportFatal(data.data(),
1006                       "multiple GNU_PROPERTY_AARCH64_FEATURE_PAUTH entries are "
1007                       "not supported");
1008         } else if (size != 16) {
1009           reportFatal(data.data(), "GNU_PROPERTY_AARCH64_FEATURE_PAUTH entry "
1010                                    "is invalid: expected 16 bytes, but got " +
1011                                        Twine(size));
1012         }
1013         f.aarch64PauthAbiCoreInfo = desc;
1014       }
1015 
1016       // Padding is present in the note descriptor, if necessary.
1017       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
1018     }
1019 
1020     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
1021     data = data.slice(nhdr->getSize(sec.addralign));
1022   }
1023 }
1024 
1025 template <class ELFT>
1026 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, uint32_t info) {
1027   if (info < this->sections.size()) {
1028     InputSectionBase *target = this->sections[info];
1029 
1030     // Strictly speaking, a relocation section must be included in the
1031     // group of the section it relocates. However, LLVM 3.3 and earlier
1032     // would fail to do so, so we gracefully handle that case.
1033     if (target == &InputSection::discarded)
1034       return nullptr;
1035 
1036     if (target != nullptr)
1037       return target;
1038   }
1039 
1040   error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
1041         ") has invalid sh_info (" + Twine(info) + ")");
1042   return nullptr;
1043 }
1044 
1045 // The function may be called concurrently for different input files. For
1046 // allocation, prefer makeThreadLocal which does not require holding a lock.
1047 template <class ELFT>
1048 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
1049                                                     const Elf_Shdr &sec,
1050                                                     StringRef name) {
1051   if (name.starts_with(".n")) {
1052     // The GNU linker uses .note.GNU-stack section as a marker indicating
1053     // that the code in the object file does not expect that the stack is
1054     // executable (in terms of NX bit). If all input files have the marker,
1055     // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1056     // make the stack non-executable. Most object files have this section as
1057     // of 2017.
1058     //
1059     // But making the stack non-executable is a norm today for security
1060     // reasons. Failure to do so may result in a serious security issue.
1061     // Therefore, we make LLD always add PT_GNU_STACK unless it is
1062     // explicitly told to do otherwise (by -z execstack). Because the stack
1063     // executable-ness is controlled solely by command line options,
1064     // .note.GNU-stack sections are simply ignored.
1065     if (name == ".note.GNU-stack")
1066       return &InputSection::discarded;
1067 
1068     // Object files that use processor features such as Intel Control-Flow
1069     // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1070     // .note.gnu.property section containing a bitfield of feature bits like the
1071     // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1072     //
1073     // Since we merge bitmaps from multiple object files to create a new
1074     // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1075     // file's .note.gnu.property section.
1076     if (name == ".note.gnu.property") {
1077       readGnuProperty<ELFT>(InputSection(*this, sec, name), *this);
1078       return &InputSection::discarded;
1079     }
1080 
1081     // Split stacks is a feature to support a discontiguous stack,
1082     // commonly used in the programming language Go. For the details,
1083     // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1084     // for split stack will include a .note.GNU-split-stack section.
1085     if (name == ".note.GNU-split-stack") {
1086       if (config->relocatable) {
1087         error(
1088             "cannot mix split-stack and non-split-stack in a relocatable link");
1089         return &InputSection::discarded;
1090       }
1091       this->splitStack = true;
1092       return &InputSection::discarded;
1093     }
1094 
1095     // An object file compiled for split stack, but where some of the
1096     // functions were compiled with the no_split_stack_attribute will
1097     // include a .note.GNU-no-split-stack section.
1098     if (name == ".note.GNU-no-split-stack") {
1099       this->someNoSplitStack = true;
1100       return &InputSection::discarded;
1101     }
1102 
1103     // Strip existing .note.gnu.build-id sections so that the output won't have
1104     // more than one build-id. This is not usually a problem because input
1105     // object files normally don't have .build-id sections, but you can create
1106     // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1107     // against it.
1108     if (name == ".note.gnu.build-id")
1109       return &InputSection::discarded;
1110   }
1111 
1112   // The linker merges EH (exception handling) frames and creates a
1113   // .eh_frame_hdr section for runtime. So we handle them with a special
1114   // class. For relocatable outputs, they are just passed through.
1115   if (name == ".eh_frame" && !config->relocatable)
1116     return makeThreadLocal<EhInputSection>(*this, sec, name);
1117 
1118   if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1119     return makeThreadLocal<MergeInputSection>(*this, sec, name);
1120   return makeThreadLocal<InputSection>(*this, sec, name);
1121 }
1122 
1123 // Initialize symbols. symbols is a parallel array to the corresponding ELF
1124 // symbol table.
1125 template <class ELFT>
1126 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1127   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1128   if (numSymbols == 0) {
1129     numSymbols = eSyms.size();
1130     symbols = std::make_unique<Symbol *[]>(numSymbols);
1131   }
1132 
1133   // Some entries have been filled by LazyObjFile.
1134   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1135     if (!symbols[i])
1136       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1137 
1138   // Perform symbol resolution on non-local symbols.
1139   SmallVector<unsigned, 32> undefineds;
1140   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1141     const Elf_Sym &eSym = eSyms[i];
1142     uint32_t secIdx = eSym.st_shndx;
1143     if (secIdx == SHN_UNDEF) {
1144       undefineds.push_back(i);
1145       continue;
1146     }
1147 
1148     uint8_t binding = eSym.getBinding();
1149     uint8_t stOther = eSym.st_other;
1150     uint8_t type = eSym.getType();
1151     uint64_t value = eSym.st_value;
1152     uint64_t size = eSym.st_size;
1153 
1154     Symbol *sym = symbols[i];
1155     sym->isUsedInRegularObj = true;
1156     if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1157       if (value == 0 || value >= UINT32_MAX)
1158         fatal(toString(this) + ": common symbol '" + sym->getName() +
1159               "' has invalid alignment: " + Twine(value));
1160       hasCommonSyms = true;
1161       sym->resolve(
1162           CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1163       continue;
1164     }
1165 
1166     // Handle global defined symbols. Defined::section will be set in postParse.
1167     sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1168                          nullptr});
1169   }
1170 
1171   // Undefined symbols (excluding those defined relative to non-prevailing
1172   // sections) can trigger recursive extract. Process defined symbols first so
1173   // that the relative order between a defined symbol and an undefined symbol
1174   // does not change the symbol resolution behavior. In addition, a set of
1175   // interconnected symbols will all be resolved to the same file, instead of
1176   // being resolved to different files.
1177   for (unsigned i : undefineds) {
1178     const Elf_Sym &eSym = eSyms[i];
1179     Symbol *sym = symbols[i];
1180     sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1181                            eSym.getType()});
1182     sym->isUsedInRegularObj = true;
1183     sym->referenced = true;
1184   }
1185 }
1186 
1187 template <class ELFT>
1188 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
1189   if (!justSymbols)
1190     initializeSections(ignoreComdats, getObj());
1191 
1192   if (!firstGlobal)
1193     return;
1194   SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
1195   memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
1196 
1197   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1198   for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1199     const Elf_Sym &eSym = eSyms[i];
1200     uint32_t secIdx = eSym.st_shndx;
1201     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1202       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1203     else if (secIdx >= SHN_LORESERVE)
1204       secIdx = 0;
1205     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1206       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1207     if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1208       error(toString(this) + ": non-local symbol (" + Twine(i) +
1209             ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1210 
1211     InputSectionBase *sec = sections[secIdx];
1212     uint8_t type = eSym.getType();
1213     if (type == STT_FILE)
1214       sourceFile = CHECK(eSym.getName(stringTable), this);
1215     if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1216       fatal(toString(this) + ": invalid symbol name offset");
1217     StringRef name(stringTable.data() + eSym.st_name);
1218 
1219     symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1220     if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1221       new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1222                                  /*discardedSecIdx=*/secIdx);
1223     else
1224       new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1225                                eSym.st_value, eSym.st_size, sec);
1226     symbols[i]->partition = 1;
1227     symbols[i]->isUsedInRegularObj = true;
1228   }
1229 }
1230 
1231 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1232 // duplicate symbols and may do symbol property merge in the future.
1233 template <class ELFT> void ObjFile<ELFT>::postParse() {
1234   static std::mutex mu;
1235   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1236   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1237     const Elf_Sym &eSym = eSyms[i];
1238     Symbol &sym = *symbols[i];
1239     uint32_t secIdx = eSym.st_shndx;
1240     uint8_t binding = eSym.getBinding();
1241     if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1242                       binding != STB_GNU_UNIQUE))
1243       errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1244                   ") has invalid binding: " + Twine((int)binding));
1245 
1246     // st_value of STT_TLS represents the assigned offset, not the actual
1247     // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1248     // only be referenced by special TLS relocations. It is usually an error if
1249     // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1250     if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1251         eSym.getType() != STT_NOTYPE)
1252       errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1253                   toString(sym.file) + "\n>>> in " + toString(this));
1254 
1255     // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1256     // assignment to redefine a symbol without an error.
1257     if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1258         secIdx == SHN_COMMON)
1259       continue;
1260 
1261     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1262       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1263     else if (secIdx >= SHN_LORESERVE)
1264       secIdx = 0;
1265     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1266       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1267     InputSectionBase *sec = sections[secIdx];
1268     if (sec == &InputSection::discarded) {
1269       if (sym.traced) {
1270         printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1271                                    sym.stOther, sym.type, secIdx},
1272                          sym.getName());
1273       }
1274       if (sym.file == this) {
1275         std::lock_guard<std::mutex> lock(mu);
1276         ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
1277       }
1278       continue;
1279     }
1280 
1281     if (sym.file == this) {
1282       cast<Defined>(sym).section = sec;
1283       continue;
1284     }
1285 
1286     if (sym.binding == STB_WEAK || binding == STB_WEAK)
1287       continue;
1288     std::lock_guard<std::mutex> lock(mu);
1289     ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
1290   }
1291 }
1292 
1293 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1294 // A tentative definition will be promoted to a global definition if there are
1295 // no non-tentative definitions to dominate it. When we hold a tentative
1296 // definition to a symbol and are inspecting archive members for inclusion
1297 // there are 2 ways we can proceed:
1298 //
1299 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1300 //    tentative to real definition has already happened) and not inspect
1301 //    archive members for Global/Weak definitions to replace the tentative
1302 //    definition. An archive member would only be included if it satisfies some
1303 //    other undefined symbol. This is the behavior Gold uses.
1304 //
1305 // 2) Consider the tentative definition as still undefined (ie the promotion to
1306 //    a real definition happens only after all symbol resolution is done).
1307 //    The linker searches archive members for STB_GLOBAL definitions to
1308 //    replace the tentative definition with. This is the behavior used by
1309 //    GNU ld.
1310 //
1311 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1312 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1313 //  (pre F90) FORTRAN code that is packaged into an archive.
1314 //
1315 //  The following functions search archive members for definitions to replace
1316 //  tentative definitions (implementing behavior 2).
1317 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1318                                   StringRef archiveName) {
1319   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1320   for (const irsymtab::Reader::SymbolRef &sym :
1321        symtabFile.TheReader.symbols()) {
1322     if (sym.isGlobal() && sym.getName() == symName)
1323       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1324   }
1325   return false;
1326 }
1327 
1328 template <class ELFT>
1329 static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName,
1330                            StringRef archiveName) {
1331   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName);
1332   obj->init();
1333   StringRef stringtable = obj->getStringTable();
1334 
1335   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1336     Expected<StringRef> name = sym.getName(stringtable);
1337     if (name && name.get() == symName)
1338       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1339              !sym.isCommon();
1340   }
1341   return false;
1342 }
1343 
1344 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1345                            StringRef archiveName) {
1346   switch (getELFKind(mb, archiveName)) {
1347   case ELF32LEKind:
1348     return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName);
1349   case ELF32BEKind:
1350     return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName);
1351   case ELF64LEKind:
1352     return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName);
1353   case ELF64BEKind:
1354     return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName);
1355   default:
1356     llvm_unreachable("getELFKind");
1357   }
1358 }
1359 
1360 unsigned SharedFile::vernauxNum;
1361 
1362 SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName)
1363     : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName),
1364       isNeeded(!config->asNeeded) {}
1365 
1366 // Parse the version definitions in the object file if present, and return a
1367 // vector whose nth element contains a pointer to the Elf_Verdef for version
1368 // identifier n. Version identifiers that are not definitions map to nullptr.
1369 template <typename ELFT>
1370 static SmallVector<const void *, 0>
1371 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1372   if (!sec)
1373     return {};
1374 
1375   // Build the Verdefs array by following the chain of Elf_Verdef objects
1376   // from the start of the .gnu.version_d section.
1377   SmallVector<const void *, 0> verdefs;
1378   const uint8_t *verdef = base + sec->sh_offset;
1379   for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1380     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1381     verdef += curVerdef->vd_next;
1382     unsigned verdefIndex = curVerdef->vd_ndx;
1383     if (verdefIndex >= verdefs.size())
1384       verdefs.resize(verdefIndex + 1);
1385     verdefs[verdefIndex] = curVerdef;
1386   }
1387   return verdefs;
1388 }
1389 
1390 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1391 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1392 // implement sophisticated error checking like in llvm-readobj because the value
1393 // of such diagnostics is low.
1394 template <typename ELFT>
1395 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1396                                                const typename ELFT::Shdr *sec) {
1397   if (!sec)
1398     return {};
1399   std::vector<uint32_t> verneeds;
1400   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1401   const uint8_t *verneedBuf = data.begin();
1402   for (unsigned i = 0; i != sec->sh_info; ++i) {
1403     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1404       fatal(toString(this) + " has an invalid Verneed");
1405     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1406     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1407     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1408       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1409         fatal(toString(this) + " has an invalid Vernaux");
1410       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1411       if (aux->vna_name >= this->stringTable.size())
1412         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1413       uint16_t version = aux->vna_other & VERSYM_VERSION;
1414       if (version >= verneeds.size())
1415         verneeds.resize(version + 1);
1416       verneeds[version] = aux->vna_name;
1417       vernauxBuf += aux->vna_next;
1418     }
1419     verneedBuf += vn->vn_next;
1420   }
1421   return verneeds;
1422 }
1423 
1424 // We do not usually care about alignments of data in shared object
1425 // files because the loader takes care of it. However, if we promote a
1426 // DSO symbol to point to .bss due to copy relocation, we need to keep
1427 // the original alignment requirements. We infer it in this function.
1428 template <typename ELFT>
1429 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1430                              const typename ELFT::Sym &sym) {
1431   uint64_t ret = UINT64_MAX;
1432   if (sym.st_value)
1433     ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value);
1434   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1435     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1436   return (ret > UINT32_MAX) ? 0 : ret;
1437 }
1438 
1439 // Fully parse the shared object file.
1440 //
1441 // This function parses symbol versions. If a DSO has version information,
1442 // the file has a ".gnu.version_d" section which contains symbol version
1443 // definitions. Each symbol is associated to one version through a table in
1444 // ".gnu.version" section. That table is a parallel array for the symbol
1445 // table, and each table entry contains an index in ".gnu.version_d".
1446 //
1447 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1448 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1449 // ".gnu.version_d".
1450 //
1451 // The file format for symbol versioning is perhaps a bit more complicated
1452 // than necessary, but you can easily understand the code if you wrap your
1453 // head around the data structure described above.
1454 template <class ELFT> void SharedFile::parse() {
1455   using Elf_Dyn = typename ELFT::Dyn;
1456   using Elf_Shdr = typename ELFT::Shdr;
1457   using Elf_Sym = typename ELFT::Sym;
1458   using Elf_Verdef = typename ELFT::Verdef;
1459   using Elf_Versym = typename ELFT::Versym;
1460 
1461   ArrayRef<Elf_Dyn> dynamicTags;
1462   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1463   ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1464 
1465   const Elf_Shdr *versymSec = nullptr;
1466   const Elf_Shdr *verdefSec = nullptr;
1467   const Elf_Shdr *verneedSec = nullptr;
1468 
1469   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1470   for (const Elf_Shdr &sec : sections) {
1471     switch (sec.sh_type) {
1472     default:
1473       continue;
1474     case SHT_DYNAMIC:
1475       dynamicTags =
1476           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1477       break;
1478     case SHT_GNU_versym:
1479       versymSec = &sec;
1480       break;
1481     case SHT_GNU_verdef:
1482       verdefSec = &sec;
1483       break;
1484     case SHT_GNU_verneed:
1485       verneedSec = &sec;
1486       break;
1487     }
1488   }
1489 
1490   if (versymSec && numELFSyms == 0) {
1491     error("SHT_GNU_versym should be associated with symbol table");
1492     return;
1493   }
1494 
1495   // Search for a DT_SONAME tag to initialize this->soName.
1496   for (const Elf_Dyn &dyn : dynamicTags) {
1497     if (dyn.d_tag == DT_NEEDED) {
1498       uint64_t val = dyn.getVal();
1499       if (val >= this->stringTable.size())
1500         fatal(toString(this) + ": invalid DT_NEEDED entry");
1501       dtNeeded.push_back(this->stringTable.data() + val);
1502     } else if (dyn.d_tag == DT_SONAME) {
1503       uint64_t val = dyn.getVal();
1504       if (val >= this->stringTable.size())
1505         fatal(toString(this) + ": invalid DT_SONAME entry");
1506       soName = this->stringTable.data() + val;
1507     }
1508   }
1509 
1510   // DSOs are uniquified not by filename but by soname.
1511   DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1512   bool wasInserted;
1513   std::tie(it, wasInserted) =
1514       symtab.soNames.try_emplace(CachedHashStringRef(soName), this);
1515 
1516   // If a DSO appears more than once on the command line with and without
1517   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1518   // user can add an extra DSO with --no-as-needed to force it to be added to
1519   // the dependency list.
1520   it->second->isNeeded |= isNeeded;
1521   if (!wasInserted)
1522     return;
1523 
1524   ctx.sharedFiles.push_back(this);
1525 
1526   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1527   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1528 
1529   // Parse ".gnu.version" section which is a parallel array for the symbol
1530   // table. If a given file doesn't have a ".gnu.version" section, we use
1531   // VER_NDX_GLOBAL.
1532   size_t size = numELFSyms - firstGlobal;
1533   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1534   if (versymSec) {
1535     ArrayRef<Elf_Versym> versym =
1536         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1537               this)
1538             .slice(firstGlobal);
1539     for (size_t i = 0; i < size; ++i)
1540       versyms[i] = versym[i].vs_index;
1541   }
1542 
1543   // System libraries can have a lot of symbols with versions. Using a
1544   // fixed buffer for computing the versions name (foo@ver) can save a
1545   // lot of allocations.
1546   SmallString<0> versionedNameBuffer;
1547 
1548   // Add symbols to the symbol table.
1549   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1550   for (size_t i = 0, e = syms.size(); i != e; ++i) {
1551     const Elf_Sym &sym = syms[i];
1552 
1553     // ELF spec requires that all local symbols precede weak or global
1554     // symbols in each symbol table, and the index of first non-local symbol
1555     // is stored to sh_info. If a local symbol appears after some non-local
1556     // symbol, that's a violation of the spec.
1557     StringRef name = CHECK(sym.getName(stringTable), this);
1558     if (sym.getBinding() == STB_LOCAL) {
1559       errorOrWarn(toString(this) + ": invalid local symbol '" + name +
1560                   "' in global part of symbol table");
1561       continue;
1562     }
1563 
1564     const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
1565     if (sym.isUndefined()) {
1566       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1567       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1568       if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
1569         if (idx >= verneeds.size()) {
1570           error("corrupt input file: version need index " + Twine(idx) +
1571                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1572                 toString(this));
1573           continue;
1574         }
1575         StringRef verName = stringTable.data() + verneeds[idx];
1576         versionedNameBuffer.clear();
1577         name = saver().save(
1578             (name + "@" + verName).toStringRef(versionedNameBuffer));
1579       }
1580       Symbol *s = symtab.addSymbol(
1581           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1582       s->exportDynamic = true;
1583       if (sym.getBinding() != STB_WEAK &&
1584           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1585         requiredSymbols.push_back(s);
1586       continue;
1587     }
1588 
1589     if (ver == VER_NDX_LOCAL ||
1590         (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
1591       // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
1592       // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
1593       // VER_NDX_LOCAL. Workaround this bug.
1594       if (config->emachine == EM_MIPS && name == "_gp_disp")
1595         continue;
1596       error("corrupt input file: version definition index " + Twine(idx) +
1597             " for symbol " + name + " is out of bounds\n>>> defined in " +
1598             toString(this));
1599       continue;
1600     }
1601 
1602     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1603     if (ver == idx) {
1604       auto *s = symtab.addSymbol(
1605           SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1606                        sym.getType(), sym.st_value, sym.st_size, alignment});
1607       s->dsoDefined = true;
1608       if (s->file == this)
1609         s->versionId = ver;
1610     }
1611 
1612     // Also add the symbol with the versioned name to handle undefined symbols
1613     // with explicit versions.
1614     if (ver == VER_NDX_GLOBAL)
1615       continue;
1616 
1617     StringRef verName =
1618         stringTable.data() +
1619         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1620     versionedNameBuffer.clear();
1621     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1622     auto *s = symtab.addSymbol(
1623         SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1624                      sym.getType(), sym.st_value, sym.st_size, alignment});
1625     s->dsoDefined = true;
1626     if (s->file == this)
1627       s->versionId = idx;
1628   }
1629 }
1630 
1631 static ELFKind getBitcodeELFKind(const Triple &t) {
1632   if (t.isLittleEndian())
1633     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1634   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1635 }
1636 
1637 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1638   switch (t.getArch()) {
1639   case Triple::aarch64:
1640   case Triple::aarch64_be:
1641     return EM_AARCH64;
1642   case Triple::amdgcn:
1643   case Triple::r600:
1644     return EM_AMDGPU;
1645   case Triple::arm:
1646   case Triple::armeb:
1647   case Triple::thumb:
1648   case Triple::thumbeb:
1649     return EM_ARM;
1650   case Triple::avr:
1651     return EM_AVR;
1652   case Triple::hexagon:
1653     return EM_HEXAGON;
1654   case Triple::loongarch32:
1655   case Triple::loongarch64:
1656     return EM_LOONGARCH;
1657   case Triple::mips:
1658   case Triple::mipsel:
1659   case Triple::mips64:
1660   case Triple::mips64el:
1661     return EM_MIPS;
1662   case Triple::msp430:
1663     return EM_MSP430;
1664   case Triple::ppc:
1665   case Triple::ppcle:
1666     return EM_PPC;
1667   case Triple::ppc64:
1668   case Triple::ppc64le:
1669     return EM_PPC64;
1670   case Triple::riscv32:
1671   case Triple::riscv64:
1672     return EM_RISCV;
1673   case Triple::sparcv9:
1674     return EM_SPARCV9;
1675   case Triple::systemz:
1676     return EM_S390;
1677   case Triple::x86:
1678     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1679   case Triple::x86_64:
1680     return EM_X86_64;
1681   default:
1682     error(path + ": could not infer e_machine from bitcode target triple " +
1683           t.str());
1684     return EM_NONE;
1685   }
1686 }
1687 
1688 static uint8_t getOsAbi(const Triple &t) {
1689   switch (t.getOS()) {
1690   case Triple::AMDHSA:
1691     return ELF::ELFOSABI_AMDGPU_HSA;
1692   case Triple::AMDPAL:
1693     return ELF::ELFOSABI_AMDGPU_PAL;
1694   case Triple::Mesa3D:
1695     return ELF::ELFOSABI_AMDGPU_MESA3D;
1696   default:
1697     return ELF::ELFOSABI_NONE;
1698   }
1699 }
1700 
1701 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1702                          uint64_t offsetInArchive, bool lazy)
1703     : InputFile(BitcodeKind, mb) {
1704   this->archiveName = archiveName;
1705   this->lazy = lazy;
1706 
1707   std::string path = mb.getBufferIdentifier().str();
1708   if (config->thinLTOIndexOnly)
1709     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1710 
1711   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1712   // name. If two archives define two members with the same name, this
1713   // causes a collision which result in only one of the objects being taken
1714   // into consideration at LTO time (which very likely causes undefined
1715   // symbols later in the link stage). So we append file offset to make
1716   // filename unique.
1717   StringRef name = archiveName.empty()
1718                        ? saver().save(path)
1719                        : saver().save(archiveName + "(" + path::filename(path) +
1720                                       " at " + utostr(offsetInArchive) + ")");
1721   MemoryBufferRef mbref(mb.getBuffer(), name);
1722 
1723   obj = CHECK(lto::InputFile::create(mbref), this);
1724 
1725   Triple t(obj->getTargetTriple());
1726   ekind = getBitcodeELFKind(t);
1727   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1728   osabi = getOsAbi(t);
1729 }
1730 
1731 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1732   switch (gvVisibility) {
1733   case GlobalValue::DefaultVisibility:
1734     return STV_DEFAULT;
1735   case GlobalValue::HiddenVisibility:
1736     return STV_HIDDEN;
1737   case GlobalValue::ProtectedVisibility:
1738     return STV_PROTECTED;
1739   }
1740   llvm_unreachable("unknown visibility");
1741 }
1742 
1743 static void
1744 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1745                     const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1746   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1747   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1748   uint8_t visibility = mapVisibility(objSym.getVisibility());
1749 
1750   if (!sym)
1751     sym = symtab.insert(saver().save(objSym.getName()));
1752 
1753   int c = objSym.getComdatIndex();
1754   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1755     Undefined newSym(&f, StringRef(), binding, visibility, type);
1756     sym->resolve(newSym);
1757     sym->referenced = true;
1758     return;
1759   }
1760 
1761   if (objSym.isCommon()) {
1762     sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1763                               objSym.getCommonAlignment(),
1764                               objSym.getCommonSize()});
1765   } else {
1766     Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1767     if (objSym.canBeOmittedFromSymbolTable())
1768       newSym.exportDynamic = false;
1769     sym->resolve(newSym);
1770   }
1771 }
1772 
1773 void BitcodeFile::parse() {
1774   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1775     keptComdats.push_back(
1776         s.second == Comdat::NoDeduplicate ||
1777         symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1778             .second);
1779   }
1780 
1781   if (numSymbols == 0) {
1782     numSymbols = obj->symbols().size();
1783     symbols = std::make_unique<Symbol *[]>(numSymbols);
1784   }
1785   // Process defined symbols first. See the comment in
1786   // ObjFile<ELFT>::initializeSymbols.
1787   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1788     if (!irSym.isUndefined())
1789       createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1790   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1791     if (irSym.isUndefined())
1792       createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1793 
1794   for (auto l : obj->getDependentLibraries())
1795     addDependentLibrary(l, this);
1796 }
1797 
1798 void BitcodeFile::parseLazy() {
1799   numSymbols = obj->symbols().size();
1800   symbols = std::make_unique<Symbol *[]>(numSymbols);
1801   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1802     if (!irSym.isUndefined()) {
1803       auto *sym = symtab.insert(saver().save(irSym.getName()));
1804       sym->resolve(LazySymbol{*this});
1805       symbols[i] = sym;
1806     }
1807 }
1808 
1809 void BitcodeFile::postParse() {
1810   for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
1811     const Symbol &sym = *symbols[i];
1812     if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
1813         irSym.isCommon() || irSym.isWeak())
1814       continue;
1815     int c = irSym.getComdatIndex();
1816     if (c != -1 && !keptComdats[c])
1817       continue;
1818     reportDuplicate(sym, this, nullptr, 0);
1819   }
1820 }
1821 
1822 void BinaryFile::parse() {
1823   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1824   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1825                                      8, data, ".data");
1826   sections.push_back(section);
1827 
1828   // For each input file foo that is embedded to a result as a binary
1829   // blob, we define _binary_foo_{start,end,size} symbols, so that
1830   // user programs can access blobs by name. Non-alphanumeric
1831   // characters in a filename are replaced with underscore.
1832   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1833   for (char &c : s)
1834     if (!isAlnum(c))
1835       c = '_';
1836 
1837   llvm::StringSaver &saver = lld::saver();
1838 
1839   symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_start"),
1840                                       STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0,
1841                                       section});
1842   symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_end"), STB_GLOBAL,
1843                                       STV_DEFAULT, STT_OBJECT, data.size(), 0,
1844                                       section});
1845   symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_size"), STB_GLOBAL,
1846                                       STV_DEFAULT, STT_OBJECT, data.size(), 0,
1847                                       nullptr});
1848 }
1849 
1850 InputFile *elf::createInternalFile(StringRef name) {
1851   auto *file =
1852       make<InputFile>(InputFile::InternalKind, MemoryBufferRef("", name));
1853   // References from an internal file do not lead to --warn-backrefs
1854   // diagnostics.
1855   file->groupId = 0;
1856   return file;
1857 }
1858 
1859 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
1860                                 bool lazy) {
1861   ELFFileBase *f;
1862   switch (getELFKind(mb, archiveName)) {
1863   case ELF32LEKind:
1864     f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName);
1865     break;
1866   case ELF32BEKind:
1867     f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName);
1868     break;
1869   case ELF64LEKind:
1870     f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName);
1871     break;
1872   case ELF64BEKind:
1873     f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName);
1874     break;
1875   default:
1876     llvm_unreachable("getELFKind");
1877   }
1878   f->init();
1879   f->lazy = lazy;
1880   return f;
1881 }
1882 
1883 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1884   const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1885   numSymbols = eSyms.size();
1886   symbols = std::make_unique<Symbol *[]>(numSymbols);
1887 
1888   // resolve() may trigger this->extract() if an existing symbol is an undefined
1889   // symbol. If that happens, this function has served its purpose, and we can
1890   // exit from the loop early.
1891   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1892     if (eSyms[i].st_shndx == SHN_UNDEF)
1893       continue;
1894     symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1895     symbols[i]->resolve(LazySymbol{*this});
1896     if (!lazy)
1897       break;
1898   }
1899 }
1900 
1901 bool InputFile::shouldExtractForCommon(StringRef name) const {
1902   if (isa<BitcodeFile>(this))
1903     return isBitcodeNonCommonDef(mb, name, archiveName);
1904 
1905   return isNonCommonDef(mb, name, archiveName);
1906 }
1907 
1908 std::string elf::replaceThinLTOSuffix(StringRef path) {
1909   auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
1910   if (path.consume_back(suffix))
1911     return (path + repl).str();
1912   return std::string(path);
1913 }
1914 
1915 template class elf::ObjFile<ELF32LE>;
1916 template class elf::ObjFile<ELF32BE>;
1917 template class elf::ObjFile<ELF64LE>;
1918 template class elf::ObjFile<ELF64BE>;
1919 
1920 template void SharedFile::parse<ELF32LE>();
1921 template void SharedFile::parse<ELF32BE>();
1922 template void SharedFile::parse<ELF64LE>();
1923 template void SharedFile::parse<ELF64BE>();
1924