1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 using namespace lld; 40 using namespace lld::elf; 41 42 bool InputFile::isInGroup; 43 uint32_t InputFile::nextGroupId; 44 45 std::vector<ArchiveFile *> elf::archiveFiles; 46 std::vector<BinaryFile *> elf::binaryFiles; 47 std::vector<BitcodeFile *> elf::bitcodeFiles; 48 std::vector<LazyObjFile *> elf::lazyObjFiles; 49 std::vector<InputFile *> elf::objectFiles; 50 std::vector<SharedFile *> elf::sharedFiles; 51 52 std::unique_ptr<TarWriter> elf::tar; 53 54 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 55 std::string lld::toString(const InputFile *f) { 56 if (!f) 57 return "<internal>"; 58 59 if (f->toStringCache.empty()) { 60 if (f->archiveName.empty()) 61 f->toStringCache = std::string(f->getName()); 62 else 63 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 64 } 65 return f->toStringCache; 66 } 67 68 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 69 unsigned char size; 70 unsigned char endian; 71 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 72 73 auto report = [&](StringRef msg) { 74 StringRef filename = mb.getBufferIdentifier(); 75 if (archiveName.empty()) 76 fatal(filename + ": " + msg); 77 else 78 fatal(archiveName + "(" + filename + "): " + msg); 79 }; 80 81 if (!mb.getBuffer().startswith(ElfMagic)) 82 report("not an ELF file"); 83 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 84 report("corrupted ELF file: invalid data encoding"); 85 if (size != ELFCLASS32 && size != ELFCLASS64) 86 report("corrupted ELF file: invalid file class"); 87 88 size_t bufSize = mb.getBuffer().size(); 89 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 90 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 91 report("corrupted ELF file: file is too short"); 92 93 if (size == ELFCLASS32) 94 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 95 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 96 } 97 98 InputFile::InputFile(Kind k, MemoryBufferRef m) 99 : mb(m), groupId(nextGroupId), fileKind(k) { 100 // All files within the same --{start,end}-group get the same group ID. 101 // Otherwise, a new file will get a new group ID. 102 if (!isInGroup) 103 ++nextGroupId; 104 } 105 106 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 107 // The --chroot option changes our virtual root directory. 108 // This is useful when you are dealing with files created by --reproduce. 109 if (!config->chroot.empty() && path.startswith("/")) 110 path = saver.save(config->chroot + path); 111 112 log(path); 113 114 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 115 if (auto ec = mbOrErr.getError()) { 116 error("cannot open " + path + ": " + ec.message()); 117 return None; 118 } 119 120 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 121 MemoryBufferRef mbref = mb->getMemBufferRef(); 122 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 123 124 if (tar) 125 tar->append(relativeToRoot(path), mbref.getBuffer()); 126 return mbref; 127 } 128 129 // All input object files must be for the same architecture 130 // (e.g. it does not make sense to link x86 object files with 131 // MIPS object files.) This function checks for that error. 132 static bool isCompatible(InputFile *file) { 133 if (!file->isElf() && !isa<BitcodeFile>(file)) 134 return true; 135 136 if (file->ekind == config->ekind && file->emachine == config->emachine) { 137 if (config->emachine != EM_MIPS) 138 return true; 139 if (isMipsN32Abi(file) == config->mipsN32Abi) 140 return true; 141 } 142 143 StringRef target = 144 !config->bfdname.empty() ? config->bfdname : config->emulation; 145 if (!target.empty()) { 146 error(toString(file) + " is incompatible with " + target); 147 return false; 148 } 149 150 InputFile *existing; 151 if (!objectFiles.empty()) 152 existing = objectFiles[0]; 153 else if (!sharedFiles.empty()) 154 existing = sharedFiles[0]; 155 else if (!bitcodeFiles.empty()) 156 existing = bitcodeFiles[0]; 157 else 158 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 159 "determine target emulation"); 160 161 error(toString(file) + " is incompatible with " + toString(existing)); 162 return false; 163 } 164 165 template <class ELFT> static void doParseFile(InputFile *file) { 166 if (!isCompatible(file)) 167 return; 168 169 // Binary file 170 if (auto *f = dyn_cast<BinaryFile>(file)) { 171 binaryFiles.push_back(f); 172 f->parse(); 173 return; 174 } 175 176 // .a file 177 if (auto *f = dyn_cast<ArchiveFile>(file)) { 178 archiveFiles.push_back(f); 179 f->parse(); 180 return; 181 } 182 183 // Lazy object file 184 if (auto *f = dyn_cast<LazyObjFile>(file)) { 185 lazyObjFiles.push_back(f); 186 f->parse<ELFT>(); 187 return; 188 } 189 190 if (config->trace) 191 message(toString(file)); 192 193 // .so file 194 if (auto *f = dyn_cast<SharedFile>(file)) { 195 f->parse<ELFT>(); 196 return; 197 } 198 199 // LLVM bitcode file 200 if (auto *f = dyn_cast<BitcodeFile>(file)) { 201 bitcodeFiles.push_back(f); 202 f->parse<ELFT>(); 203 return; 204 } 205 206 // Regular object file 207 objectFiles.push_back(file); 208 cast<ObjFile<ELFT>>(file)->parse(); 209 } 210 211 // Add symbols in File to the symbol table. 212 void elf::parseFile(InputFile *file) { 213 switch (config->ekind) { 214 case ELF32LEKind: 215 doParseFile<ELF32LE>(file); 216 return; 217 case ELF32BEKind: 218 doParseFile<ELF32BE>(file); 219 return; 220 case ELF64LEKind: 221 doParseFile<ELF64LE>(file); 222 return; 223 case ELF64BEKind: 224 doParseFile<ELF64BE>(file); 225 return; 226 default: 227 llvm_unreachable("unknown ELFT"); 228 } 229 } 230 231 // Concatenates arguments to construct a string representing an error location. 232 static std::string createFileLineMsg(StringRef path, unsigned line) { 233 std::string filename = std::string(path::filename(path)); 234 std::string lineno = ":" + std::to_string(line); 235 if (filename == path) 236 return filename + lineno; 237 return filename + lineno + " (" + path.str() + lineno + ")"; 238 } 239 240 template <class ELFT> 241 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 242 InputSectionBase &sec, uint64_t offset) { 243 // In DWARF, functions and variables are stored to different places. 244 // First, lookup a function for a given offset. 245 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 246 return createFileLineMsg(info->FileName, info->Line); 247 248 // If it failed, lookup again as a variable. 249 if (Optional<std::pair<std::string, unsigned>> fileLine = 250 file.getVariableLoc(sym.getName())) 251 return createFileLineMsg(fileLine->first, fileLine->second); 252 253 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 254 return std::string(file.sourceFile); 255 } 256 257 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 258 uint64_t offset) { 259 if (kind() != ObjKind) 260 return ""; 261 switch (config->ekind) { 262 default: 263 llvm_unreachable("Invalid kind"); 264 case ELF32LEKind: 265 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 266 case ELF32BEKind: 267 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 268 case ELF64LEKind: 269 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 270 case ELF64BEKind: 271 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 272 } 273 } 274 275 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 276 llvm::call_once(initDwarf, [this]() { 277 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 278 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 279 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 280 [&](Error warning) { 281 warn(getName() + ": " + toString(std::move(warning))); 282 })); 283 }); 284 285 return dwarf.get(); 286 } 287 288 // Returns the pair of file name and line number describing location of data 289 // object (variable, array, etc) definition. 290 template <class ELFT> 291 Optional<std::pair<std::string, unsigned>> 292 ObjFile<ELFT>::getVariableLoc(StringRef name) { 293 return getDwarf()->getVariableLoc(name); 294 } 295 296 // Returns source line information for a given offset 297 // using DWARF debug info. 298 template <class ELFT> 299 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 300 uint64_t offset) { 301 // Detect SectionIndex for specified section. 302 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 303 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 304 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 305 if (s == sections[curIndex]) { 306 sectionIndex = curIndex; 307 break; 308 } 309 } 310 311 return getDwarf()->getDILineInfo(offset, sectionIndex); 312 } 313 314 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 315 ekind = getELFKind(mb, ""); 316 317 switch (ekind) { 318 case ELF32LEKind: 319 init<ELF32LE>(); 320 break; 321 case ELF32BEKind: 322 init<ELF32BE>(); 323 break; 324 case ELF64LEKind: 325 init<ELF64LE>(); 326 break; 327 case ELF64BEKind: 328 init<ELF64BE>(); 329 break; 330 default: 331 llvm_unreachable("getELFKind"); 332 } 333 } 334 335 template <typename Elf_Shdr> 336 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 337 for (const Elf_Shdr &sec : sections) 338 if (sec.sh_type == type) 339 return &sec; 340 return nullptr; 341 } 342 343 template <class ELFT> void ELFFileBase::init() { 344 using Elf_Shdr = typename ELFT::Shdr; 345 using Elf_Sym = typename ELFT::Sym; 346 347 // Initialize trivial attributes. 348 const ELFFile<ELFT> &obj = getObj<ELFT>(); 349 emachine = obj.getHeader()->e_machine; 350 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 351 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 352 353 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 354 355 // Find a symbol table. 356 bool isDSO = 357 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 358 const Elf_Shdr *symtabSec = 359 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 360 361 if (!symtabSec) 362 return; 363 364 // Initialize members corresponding to a symbol table. 365 firstGlobal = symtabSec->sh_info; 366 367 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 368 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 369 fatal(toString(this) + ": invalid sh_info in symbol table"); 370 371 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 372 numELFSyms = eSyms.size(); 373 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 374 } 375 376 template <class ELFT> 377 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 378 return CHECK( 379 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 380 this); 381 } 382 383 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 384 if (this->symbols.empty()) 385 return {}; 386 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 387 } 388 389 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 390 return makeArrayRef(this->symbols).slice(this->firstGlobal); 391 } 392 393 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 394 // Read a section table. justSymbols is usually false. 395 if (this->justSymbols) 396 initializeJustSymbols(); 397 else 398 initializeSections(ignoreComdats); 399 400 // Read a symbol table. 401 initializeSymbols(); 402 } 403 404 // Sections with SHT_GROUP and comdat bits define comdat section groups. 405 // They are identified and deduplicated by group name. This function 406 // returns a group name. 407 template <class ELFT> 408 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 409 const Elf_Shdr &sec) { 410 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 411 if (sec.sh_info >= symbols.size()) 412 fatal(toString(this) + ": invalid symbol index"); 413 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 414 StringRef signature = CHECK(sym.getName(this->stringTable), this); 415 416 // As a special case, if a symbol is a section symbol and has no name, 417 // we use a section name as a signature. 418 // 419 // Such SHT_GROUP sections are invalid from the perspective of the ELF 420 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 421 // older produce such sections as outputs for the -r option, so we need 422 // a bug-compatibility. 423 if (signature.empty() && sym.getType() == STT_SECTION) 424 return getSectionName(sec); 425 return signature; 426 } 427 428 template <class ELFT> 429 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 430 if (!(sec.sh_flags & SHF_MERGE)) 431 return false; 432 433 // On a regular link we don't merge sections if -O0 (default is -O1). This 434 // sometimes makes the linker significantly faster, although the output will 435 // be bigger. 436 // 437 // Doing the same for -r would create a problem as it would combine sections 438 // with different sh_entsize. One option would be to just copy every SHF_MERGE 439 // section as is to the output. While this would produce a valid ELF file with 440 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 441 // they see two .debug_str. We could have separate logic for combining 442 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 443 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 444 // logic for -r. 445 if (config->optimize == 0 && !config->relocatable) 446 return false; 447 448 // A mergeable section with size 0 is useless because they don't have 449 // any data to merge. A mergeable string section with size 0 can be 450 // argued as invalid because it doesn't end with a null character. 451 // We'll avoid a mess by handling them as if they were non-mergeable. 452 if (sec.sh_size == 0) 453 return false; 454 455 // Check for sh_entsize. The ELF spec is not clear about the zero 456 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 457 // the section does not hold a table of fixed-size entries". We know 458 // that Rust 1.13 produces a string mergeable section with a zero 459 // sh_entsize. Here we just accept it rather than being picky about it. 460 uint64_t entSize = sec.sh_entsize; 461 if (entSize == 0) 462 return false; 463 if (sec.sh_size % entSize) 464 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 465 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 466 Twine(entSize) + ")"); 467 468 if (sec.sh_flags & SHF_WRITE) 469 fatal(toString(this) + ":(" + name + 470 "): writable SHF_MERGE section is not supported"); 471 472 return true; 473 } 474 475 // This is for --just-symbols. 476 // 477 // --just-symbols is a very minor feature that allows you to link your 478 // output against other existing program, so that if you load both your 479 // program and the other program into memory, your output can refer the 480 // other program's symbols. 481 // 482 // When the option is given, we link "just symbols". The section table is 483 // initialized with null pointers. 484 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 485 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 486 this->sections.resize(sections.size()); 487 } 488 489 // An ELF object file may contain a `.deplibs` section. If it exists, the 490 // section contains a list of library specifiers such as `m` for libm. This 491 // function resolves a given name by finding the first matching library checking 492 // the various ways that a library can be specified to LLD. This ELF extension 493 // is a form of autolinking and is called `dependent libraries`. It is currently 494 // unique to LLVM and lld. 495 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 496 if (!config->dependentLibraries) 497 return; 498 if (fs::exists(specifier)) 499 driver->addFile(specifier, /*withLOption=*/false); 500 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 501 driver->addFile(*s, /*withLOption=*/true); 502 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 503 driver->addFile(*s, /*withLOption=*/true); 504 else 505 error(toString(f) + 506 ": unable to find library from dependent library specifier: " + 507 specifier); 508 } 509 510 // Record the membership of a section group so that in the garbage collection 511 // pass, section group members are kept or discarded as a unit. 512 template <class ELFT> 513 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 514 ArrayRef<typename ELFT::Word> entries) { 515 bool hasAlloc = false; 516 for (uint32_t index : entries.slice(1)) { 517 if (index >= sections.size()) 518 return; 519 if (InputSectionBase *s = sections[index]) 520 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 521 hasAlloc = true; 522 } 523 524 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 525 // collection. See the comment in markLive(). This rule retains .debug_types 526 // and .rela.debug_types. 527 if (!hasAlloc) 528 return; 529 530 // Connect the members in a circular doubly-linked list via 531 // nextInSectionGroup. 532 InputSectionBase *head; 533 InputSectionBase *prev = nullptr; 534 for (uint32_t index : entries.slice(1)) { 535 InputSectionBase *s = sections[index]; 536 if (!s || s == &InputSection::discarded) 537 continue; 538 if (prev) 539 prev->nextInSectionGroup = s; 540 else 541 head = s; 542 prev = s; 543 } 544 if (prev) 545 prev->nextInSectionGroup = head; 546 } 547 548 template <class ELFT> 549 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 550 const ELFFile<ELFT> &obj = this->getObj(); 551 552 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 553 uint64_t size = objSections.size(); 554 this->sections.resize(size); 555 this->sectionStringTable = 556 CHECK(obj.getSectionStringTable(objSections), this); 557 558 std::vector<ArrayRef<Elf_Word>> selectedGroups; 559 560 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 561 if (this->sections[i] == &InputSection::discarded) 562 continue; 563 const Elf_Shdr &sec = objSections[i]; 564 565 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 566 cgProfile = 567 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 568 569 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 570 // if -r is given, we'll let the final link discard such sections. 571 // This is compatible with GNU. 572 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 573 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 574 // We ignore the address-significance table if we know that the object 575 // file was created by objcopy or ld -r. This is because these tools 576 // will reorder the symbols in the symbol table, invalidating the data 577 // in the address-significance table, which refers to symbols by index. 578 if (sec.sh_link != 0) 579 this->addrsigSec = &sec; 580 else if (config->icf == ICFLevel::Safe) 581 warn(toString(this) + ": --icf=safe is incompatible with object " 582 "files created using objcopy or ld -r"); 583 } 584 this->sections[i] = &InputSection::discarded; 585 continue; 586 } 587 588 switch (sec.sh_type) { 589 case SHT_GROUP: { 590 // De-duplicate section groups by their signatures. 591 StringRef signature = getShtGroupSignature(objSections, sec); 592 this->sections[i] = &InputSection::discarded; 593 594 595 ArrayRef<Elf_Word> entries = 596 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 597 if (entries.empty()) 598 fatal(toString(this) + ": empty SHT_GROUP"); 599 600 // The first word of a SHT_GROUP section contains flags. Currently, 601 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 602 // An group with the empty flag doesn't define anything; such sections 603 // are just skipped. 604 if (entries[0] == 0) 605 continue; 606 607 if (entries[0] != GRP_COMDAT) 608 fatal(toString(this) + ": unsupported SHT_GROUP format"); 609 610 bool isNew = 611 ignoreComdats || 612 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 613 .second; 614 if (isNew) { 615 if (config->relocatable) 616 this->sections[i] = createInputSection(sec); 617 selectedGroups.push_back(entries); 618 continue; 619 } 620 621 // Otherwise, discard group members. 622 for (uint32_t secIndex : entries.slice(1)) { 623 if (secIndex >= size) 624 fatal(toString(this) + 625 ": invalid section index in group: " + Twine(secIndex)); 626 this->sections[secIndex] = &InputSection::discarded; 627 } 628 break; 629 } 630 case SHT_SYMTAB_SHNDX: 631 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 632 break; 633 case SHT_SYMTAB: 634 case SHT_STRTAB: 635 case SHT_REL: 636 case SHT_RELA: 637 case SHT_NULL: 638 break; 639 default: 640 this->sections[i] = createInputSection(sec); 641 } 642 } 643 644 // We have a second loop. It is used to: 645 // 1) handle SHF_LINK_ORDER sections. 646 // 2) create SHT_REL[A] sections. In some cases the section header index of a 647 // relocation section may be smaller than that of the relocated section. In 648 // such cases, the relocation section would attempt to reference a target 649 // section that has not yet been created. For simplicity, delay creation of 650 // relocation sections until now. 651 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 652 if (this->sections[i] == &InputSection::discarded) 653 continue; 654 const Elf_Shdr &sec = objSections[i]; 655 656 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 657 this->sections[i] = createInputSection(sec); 658 659 if (!(sec.sh_flags & SHF_LINK_ORDER)) 660 continue; 661 662 // .ARM.exidx sections have a reverse dependency on the InputSection they 663 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 664 InputSectionBase *linkSec = nullptr; 665 if (sec.sh_link < this->sections.size()) 666 linkSec = this->sections[sec.sh_link]; 667 if (!linkSec) 668 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 669 670 InputSection *isec = cast<InputSection>(this->sections[i]); 671 linkSec->dependentSections.push_back(isec); 672 if (!isa<InputSection>(linkSec)) 673 error("a section " + isec->name + 674 " with SHF_LINK_ORDER should not refer a non-regular section: " + 675 toString(linkSec)); 676 } 677 678 for (ArrayRef<Elf_Word> entries : selectedGroups) 679 handleSectionGroup<ELFT>(this->sections, entries); 680 } 681 682 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 683 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 684 // the input objects have been compiled. 685 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 686 const InputFile *f) { 687 Optional<unsigned> attr = 688 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 689 if (!attr.hasValue()) 690 // If an ABI tag isn't present then it is implicitly given the value of 0 691 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 692 // including some in glibc that don't use FP args (and should have value 3) 693 // don't have the attribute so we do not consider an implicit value of 0 694 // as a clash. 695 return; 696 697 unsigned vfpArgs = attr.getValue(); 698 ARMVFPArgKind arg; 699 switch (vfpArgs) { 700 case ARMBuildAttrs::BaseAAPCS: 701 arg = ARMVFPArgKind::Base; 702 break; 703 case ARMBuildAttrs::HardFPAAPCS: 704 arg = ARMVFPArgKind::VFP; 705 break; 706 case ARMBuildAttrs::ToolChainFPPCS: 707 // Tool chain specific convention that conforms to neither AAPCS variant. 708 arg = ARMVFPArgKind::ToolChain; 709 break; 710 case ARMBuildAttrs::CompatibleFPAAPCS: 711 // Object compatible with all conventions. 712 return; 713 default: 714 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 715 return; 716 } 717 // Follow ld.bfd and error if there is a mix of calling conventions. 718 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 719 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 720 else 721 config->armVFPArgs = arg; 722 } 723 724 // The ARM support in lld makes some use of instructions that are not available 725 // on all ARM architectures. Namely: 726 // - Use of BLX instruction for interworking between ARM and Thumb state. 727 // - Use of the extended Thumb branch encoding in relocation. 728 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 729 // The ARM Attributes section contains information about the architecture chosen 730 // at compile time. We follow the convention that if at least one input object 731 // is compiled with an architecture that supports these features then lld is 732 // permitted to use them. 733 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 734 Optional<unsigned> attr = 735 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 736 if (!attr.hasValue()) 737 return; 738 auto arch = attr.getValue(); 739 switch (arch) { 740 case ARMBuildAttrs::Pre_v4: 741 case ARMBuildAttrs::v4: 742 case ARMBuildAttrs::v4T: 743 // Architectures prior to v5 do not support BLX instruction 744 break; 745 case ARMBuildAttrs::v5T: 746 case ARMBuildAttrs::v5TE: 747 case ARMBuildAttrs::v5TEJ: 748 case ARMBuildAttrs::v6: 749 case ARMBuildAttrs::v6KZ: 750 case ARMBuildAttrs::v6K: 751 config->armHasBlx = true; 752 // Architectures used in pre-Cortex processors do not support 753 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 754 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 755 break; 756 default: 757 // All other Architectures have BLX and extended branch encoding 758 config->armHasBlx = true; 759 config->armJ1J2BranchEncoding = true; 760 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 761 // All Architectures used in Cortex processors with the exception 762 // of v6-M and v6S-M have the MOVT and MOVW instructions. 763 config->armHasMovtMovw = true; 764 break; 765 } 766 } 767 768 // If a source file is compiled with x86 hardware-assisted call flow control 769 // enabled, the generated object file contains feature flags indicating that 770 // fact. This function reads the feature flags and returns it. 771 // 772 // Essentially we want to read a single 32-bit value in this function, but this 773 // function is rather complicated because the value is buried deep inside a 774 // .note.gnu.property section. 775 // 776 // The section consists of one or more NOTE records. Each NOTE record consists 777 // of zero or more type-length-value fields. We want to find a field of a 778 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 779 // the ABI is unnecessarily complicated. 780 template <class ELFT> 781 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 782 using Elf_Nhdr = typename ELFT::Nhdr; 783 using Elf_Note = typename ELFT::Note; 784 785 uint32_t featuresSet = 0; 786 while (!data.empty()) { 787 // Read one NOTE record. 788 if (data.size() < sizeof(Elf_Nhdr)) 789 fatal(toString(obj) + ": .note.gnu.property: section too short"); 790 791 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 792 if (data.size() < nhdr->getSize()) 793 fatal(toString(obj) + ": .note.gnu.property: section too short"); 794 795 Elf_Note note(*nhdr); 796 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 797 data = data.slice(nhdr->getSize()); 798 continue; 799 } 800 801 uint32_t featureAndType = config->emachine == EM_AARCH64 802 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 803 : GNU_PROPERTY_X86_FEATURE_1_AND; 804 805 // Read a body of a NOTE record, which consists of type-length-value fields. 806 ArrayRef<uint8_t> desc = note.getDesc(); 807 while (!desc.empty()) { 808 if (desc.size() < 8) 809 fatal(toString(obj) + ": .note.gnu.property: section too short"); 810 811 uint32_t type = read32le(desc.data()); 812 uint32_t size = read32le(desc.data() + 4); 813 814 if (type == featureAndType) { 815 // We found a FEATURE_1_AND field. There may be more than one of these 816 // in a .note.gnu.property section, for a relocatable object we 817 // accumulate the bits set. 818 featuresSet |= read32le(desc.data() + 8); 819 } 820 821 // On 64-bit, a payload may be followed by a 4-byte padding to make its 822 // size a multiple of 8. 823 if (ELFT::Is64Bits) 824 size = alignTo(size, 8); 825 826 desc = desc.slice(size + 8); // +8 for Type and Size 827 } 828 829 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 830 data = data.slice(nhdr->getSize()); 831 } 832 833 return featuresSet; 834 } 835 836 template <class ELFT> 837 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 838 uint32_t idx = sec.sh_info; 839 if (idx >= this->sections.size()) 840 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 841 InputSectionBase *target = this->sections[idx]; 842 843 // Strictly speaking, a relocation section must be included in the 844 // group of the section it relocates. However, LLVM 3.3 and earlier 845 // would fail to do so, so we gracefully handle that case. 846 if (target == &InputSection::discarded) 847 return nullptr; 848 849 if (!target) 850 fatal(toString(this) + ": unsupported relocation reference"); 851 return target; 852 } 853 854 // Create a regular InputSection class that has the same contents 855 // as a given section. 856 static InputSection *toRegularSection(MergeInputSection *sec) { 857 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 858 sec->data(), sec->name); 859 } 860 861 template <class ELFT> 862 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 863 StringRef name = getSectionName(sec); 864 865 switch (sec.sh_type) { 866 case SHT_ARM_ATTRIBUTES: { 867 if (config->emachine != EM_ARM) 868 break; 869 ARMAttributeParser attributes; 870 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 871 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 872 ? support::little 873 : support::big)) { 874 auto *isec = make<InputSection>(*this, sec, name); 875 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 876 break; 877 } 878 updateSupportedARMFeatures(attributes); 879 updateARMVFPArgs(attributes, this); 880 881 // FIXME: Retain the first attribute section we see. The eglibc ARM 882 // dynamic loaders require the presence of an attribute section for dlopen 883 // to work. In a full implementation we would merge all attribute sections. 884 if (in.armAttributes == nullptr) { 885 in.armAttributes = make<InputSection>(*this, sec, name); 886 return in.armAttributes; 887 } 888 return &InputSection::discarded; 889 } 890 case SHT_LLVM_DEPENDENT_LIBRARIES: { 891 if (config->relocatable) 892 break; 893 ArrayRef<char> data = 894 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 895 if (!data.empty() && data.back() != '\0') { 896 error(toString(this) + 897 ": corrupted dependent libraries section (unterminated string): " + 898 name); 899 return &InputSection::discarded; 900 } 901 for (const char *d = data.begin(), *e = data.end(); d < e;) { 902 StringRef s(d); 903 addDependentLibrary(s, this); 904 d += s.size() + 1; 905 } 906 return &InputSection::discarded; 907 } 908 case SHT_RELA: 909 case SHT_REL: { 910 // Find a relocation target section and associate this section with that. 911 // Target may have been discarded if it is in a different section group 912 // and the group is discarded, even though it's a violation of the 913 // spec. We handle that situation gracefully by discarding dangling 914 // relocation sections. 915 InputSectionBase *target = getRelocTarget(sec); 916 if (!target) 917 return nullptr; 918 919 // ELF spec allows mergeable sections with relocations, but they are 920 // rare, and it is in practice hard to merge such sections by contents, 921 // because applying relocations at end of linking changes section 922 // contents. So, we simply handle such sections as non-mergeable ones. 923 // Degrading like this is acceptable because section merging is optional. 924 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 925 target = toRegularSection(ms); 926 this->sections[sec.sh_info] = target; 927 } 928 929 // This section contains relocation information. 930 // If -r is given, we do not interpret or apply relocation 931 // but just copy relocation sections to output. 932 if (config->relocatable) { 933 InputSection *relocSec = make<InputSection>(*this, sec, name); 934 // We want to add a dependency to target, similar like we do for 935 // -emit-relocs below. This is useful for the case when linker script 936 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 937 // -r, but we faced it in the Linux kernel and have to handle such case 938 // and not to crash. 939 target->dependentSections.push_back(relocSec); 940 return relocSec; 941 } 942 943 if (target->firstRelocation) 944 fatal(toString(this) + 945 ": multiple relocation sections to one section are not supported"); 946 947 if (sec.sh_type == SHT_RELA) { 948 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 949 target->firstRelocation = rels.begin(); 950 target->numRelocations = rels.size(); 951 target->areRelocsRela = true; 952 } else { 953 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 954 target->firstRelocation = rels.begin(); 955 target->numRelocations = rels.size(); 956 target->areRelocsRela = false; 957 } 958 assert(isUInt<31>(target->numRelocations)); 959 960 // Relocation sections processed by the linker are usually removed 961 // from the output, so returning `nullptr` for the normal case. 962 // However, if -emit-relocs is given, we need to leave them in the output. 963 // (Some post link analysis tools need this information.) 964 if (config->emitRelocs) { 965 InputSection *relocSec = make<InputSection>(*this, sec, name); 966 // We will not emit relocation section if target was discarded. 967 target->dependentSections.push_back(relocSec); 968 return relocSec; 969 } 970 return nullptr; 971 } 972 } 973 974 // The GNU linker uses .note.GNU-stack section as a marker indicating 975 // that the code in the object file does not expect that the stack is 976 // executable (in terms of NX bit). If all input files have the marker, 977 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 978 // make the stack non-executable. Most object files have this section as 979 // of 2017. 980 // 981 // But making the stack non-executable is a norm today for security 982 // reasons. Failure to do so may result in a serious security issue. 983 // Therefore, we make LLD always add PT_GNU_STACK unless it is 984 // explicitly told to do otherwise (by -z execstack). Because the stack 985 // executable-ness is controlled solely by command line options, 986 // .note.GNU-stack sections are simply ignored. 987 if (name == ".note.GNU-stack") 988 return &InputSection::discarded; 989 990 // Object files that use processor features such as Intel Control-Flow 991 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 992 // .note.gnu.property section containing a bitfield of feature bits like the 993 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 994 // 995 // Since we merge bitmaps from multiple object files to create a new 996 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 997 // file's .note.gnu.property section. 998 if (name == ".note.gnu.property") { 999 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 1000 this->andFeatures = readAndFeatures(this, contents); 1001 return &InputSection::discarded; 1002 } 1003 1004 // Split stacks is a feature to support a discontiguous stack, 1005 // commonly used in the programming language Go. For the details, 1006 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1007 // for split stack will include a .note.GNU-split-stack section. 1008 if (name == ".note.GNU-split-stack") { 1009 if (config->relocatable) { 1010 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1011 return &InputSection::discarded; 1012 } 1013 this->splitStack = true; 1014 return &InputSection::discarded; 1015 } 1016 1017 // An object file cmpiled for split stack, but where some of the 1018 // functions were compiled with the no_split_stack_attribute will 1019 // include a .note.GNU-no-split-stack section. 1020 if (name == ".note.GNU-no-split-stack") { 1021 this->someNoSplitStack = true; 1022 return &InputSection::discarded; 1023 } 1024 1025 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1026 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1027 // sections. Drop those sections to avoid duplicate symbol errors. 1028 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1029 // fixed for a while. 1030 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1031 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1032 return &InputSection::discarded; 1033 1034 // If we are creating a new .build-id section, strip existing .build-id 1035 // sections so that the output won't have more than one .build-id. 1036 // This is not usually a problem because input object files normally don't 1037 // have .build-id sections, but you can create such files by 1038 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1039 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1040 return &InputSection::discarded; 1041 1042 // The linker merges EH (exception handling) frames and creates a 1043 // .eh_frame_hdr section for runtime. So we handle them with a special 1044 // class. For relocatable outputs, they are just passed through. 1045 if (name == ".eh_frame" && !config->relocatable) 1046 return make<EhInputSection>(*this, sec, name); 1047 1048 if (shouldMerge(sec, name)) 1049 return make<MergeInputSection>(*this, sec, name); 1050 return make<InputSection>(*this, sec, name); 1051 } 1052 1053 template <class ELFT> 1054 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1055 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1056 } 1057 1058 // Initialize this->Symbols. this->Symbols is a parallel array as 1059 // its corresponding ELF symbol table. 1060 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1061 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1062 this->symbols.resize(eSyms.size()); 1063 1064 // Fill in InputFile::symbols. Some entries have been initialized 1065 // because of LazyObjFile. 1066 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1067 if (this->symbols[i]) 1068 continue; 1069 const Elf_Sym &eSym = eSyms[i]; 1070 uint32_t secIdx = getSectionIndex(eSym); 1071 if (secIdx >= this->sections.size()) 1072 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1073 if (eSym.getBinding() != STB_LOCAL) { 1074 if (i < firstGlobal) 1075 error(toString(this) + ": non-local symbol (" + Twine(i) + 1076 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1077 ")"); 1078 this->symbols[i] = 1079 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1080 continue; 1081 } 1082 1083 // Handle local symbols. Local symbols are not added to the symbol 1084 // table because they are not visible from other object files. We 1085 // allocate symbol instances and add their pointers to symbols. 1086 if (i >= firstGlobal) 1087 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1088 ") found at index >= .symtab's sh_info (" + 1089 Twine(firstGlobal) + ")"); 1090 1091 InputSectionBase *sec = this->sections[secIdx]; 1092 uint8_t type = eSym.getType(); 1093 if (type == STT_FILE) 1094 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1095 if (this->stringTable.size() <= eSym.st_name) 1096 fatal(toString(this) + ": invalid symbol name offset"); 1097 StringRefZ name = this->stringTable.data() + eSym.st_name; 1098 1099 if (eSym.st_shndx == SHN_UNDEF) 1100 this->symbols[i] = 1101 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1102 else if (sec == &InputSection::discarded) 1103 this->symbols[i] = 1104 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1105 /*discardedSecIdx=*/secIdx); 1106 else 1107 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1108 type, eSym.st_value, eSym.st_size, sec); 1109 } 1110 1111 // Symbol resolution of non-local symbols. 1112 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1113 const Elf_Sym &eSym = eSyms[i]; 1114 uint8_t binding = eSym.getBinding(); 1115 if (binding == STB_LOCAL) 1116 continue; // Errored above. 1117 1118 uint32_t secIdx = getSectionIndex(eSym); 1119 InputSectionBase *sec = this->sections[secIdx]; 1120 uint8_t stOther = eSym.st_other; 1121 uint8_t type = eSym.getType(); 1122 uint64_t value = eSym.st_value; 1123 uint64_t size = eSym.st_size; 1124 StringRefZ name = this->stringTable.data() + eSym.st_name; 1125 1126 // Handle global undefined symbols. 1127 if (eSym.st_shndx == SHN_UNDEF) { 1128 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1129 this->symbols[i]->referenced = true; 1130 continue; 1131 } 1132 1133 // Handle global common symbols. 1134 if (eSym.st_shndx == SHN_COMMON) { 1135 if (value == 0 || value >= UINT32_MAX) 1136 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1137 "' has invalid alignment: " + Twine(value)); 1138 this->symbols[i]->resolve( 1139 CommonSymbol{this, name, binding, stOther, type, value, size}); 1140 continue; 1141 } 1142 1143 // If a defined symbol is in a discarded section, handle it as if it 1144 // were an undefined symbol. Such symbol doesn't comply with the 1145 // standard, but in practice, a .eh_frame often directly refer 1146 // COMDAT member sections, and if a comdat group is discarded, some 1147 // defined symbol in a .eh_frame becomes dangling symbols. 1148 if (sec == &InputSection::discarded) { 1149 Undefined und{this, name, binding, stOther, type, secIdx}; 1150 Symbol *sym = this->symbols[i]; 1151 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file 1152 // containing this object has not finished processing, i.e. this symbol is 1153 // a result of a lazy symbol fetch. We should demote the lazy symbol to an 1154 // Undefined so that any relocations outside of the group to it will 1155 // trigger a discarded section error. 1156 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1157 !cast<ArchiveFile>(sym->file)->parsed) || 1158 (sym->symbolKind == Symbol::LazyObjectKind && 1159 cast<LazyObjFile>(sym->file)->fetched)) 1160 sym->replace(und); 1161 else 1162 sym->resolve(und); 1163 continue; 1164 } 1165 1166 // Handle global defined symbols. 1167 if (binding == STB_GLOBAL || binding == STB_WEAK || 1168 binding == STB_GNU_UNIQUE) { 1169 this->symbols[i]->resolve( 1170 Defined{this, name, binding, stOther, type, value, size, sec}); 1171 continue; 1172 } 1173 1174 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1175 } 1176 } 1177 1178 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1179 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1180 file(std::move(file)) {} 1181 1182 void ArchiveFile::parse() { 1183 for (const Archive::Symbol &sym : file->symbols()) 1184 symtab->addSymbol(LazyArchive{*this, sym}); 1185 1186 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1187 // archive has been processed. 1188 parsed = true; 1189 } 1190 1191 // Returns a buffer pointing to a member file containing a given symbol. 1192 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1193 Archive::Child c = 1194 CHECK(sym.getMember(), toString(this) + 1195 ": could not get the member for symbol " + 1196 toELFString(sym)); 1197 1198 if (!seen.insert(c.getChildOffset()).second) 1199 return; 1200 1201 MemoryBufferRef mb = 1202 CHECK(c.getMemoryBufferRef(), 1203 toString(this) + 1204 ": could not get the buffer for the member defining symbol " + 1205 toELFString(sym)); 1206 1207 if (tar && c.getParent()->isThin()) 1208 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1209 1210 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1211 file->groupId = groupId; 1212 parseFile(file); 1213 } 1214 1215 size_t ArchiveFile::getMemberCount() const { 1216 size_t count = 0; 1217 Error err = Error::success(); 1218 for (const Archive::Child &c : file->children(err)) { 1219 (void)c; 1220 ++count; 1221 } 1222 // This function is used by --print-archive-stats=, where an error does not 1223 // really matter. 1224 consumeError(std::move(err)); 1225 return count; 1226 } 1227 1228 unsigned SharedFile::vernauxNum; 1229 1230 // Parse the version definitions in the object file if present, and return a 1231 // vector whose nth element contains a pointer to the Elf_Verdef for version 1232 // identifier n. Version identifiers that are not definitions map to nullptr. 1233 template <typename ELFT> 1234 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1235 const typename ELFT::Shdr *sec) { 1236 if (!sec) 1237 return {}; 1238 1239 // We cannot determine the largest verdef identifier without inspecting 1240 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1241 // sequentially starting from 1, so we predict that the largest identifier 1242 // will be verdefCount. 1243 unsigned verdefCount = sec->sh_info; 1244 std::vector<const void *> verdefs(verdefCount + 1); 1245 1246 // Build the Verdefs array by following the chain of Elf_Verdef objects 1247 // from the start of the .gnu.version_d section. 1248 const uint8_t *verdef = base + sec->sh_offset; 1249 for (unsigned i = 0; i != verdefCount; ++i) { 1250 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1251 verdef += curVerdef->vd_next; 1252 unsigned verdefIndex = curVerdef->vd_ndx; 1253 verdefs.resize(verdefIndex + 1); 1254 verdefs[verdefIndex] = curVerdef; 1255 } 1256 return verdefs; 1257 } 1258 1259 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1260 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1261 // implement sophisticated error checking like in llvm-readobj because the value 1262 // of such diagnostics is low. 1263 template <typename ELFT> 1264 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1265 const typename ELFT::Shdr *sec) { 1266 if (!sec) 1267 return {}; 1268 std::vector<uint32_t> verneeds; 1269 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(sec), this); 1270 const uint8_t *verneedBuf = data.begin(); 1271 for (unsigned i = 0; i != sec->sh_info; ++i) { 1272 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1273 fatal(toString(this) + " has an invalid Verneed"); 1274 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1275 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1276 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1277 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1278 fatal(toString(this) + " has an invalid Vernaux"); 1279 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1280 if (aux->vna_name >= this->stringTable.size()) 1281 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1282 uint16_t version = aux->vna_other & VERSYM_VERSION; 1283 if (version >= verneeds.size()) 1284 verneeds.resize(version + 1); 1285 verneeds[version] = aux->vna_name; 1286 vernauxBuf += aux->vna_next; 1287 } 1288 verneedBuf += vn->vn_next; 1289 } 1290 return verneeds; 1291 } 1292 1293 // We do not usually care about alignments of data in shared object 1294 // files because the loader takes care of it. However, if we promote a 1295 // DSO symbol to point to .bss due to copy relocation, we need to keep 1296 // the original alignment requirements. We infer it in this function. 1297 template <typename ELFT> 1298 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1299 const typename ELFT::Sym &sym) { 1300 uint64_t ret = UINT64_MAX; 1301 if (sym.st_value) 1302 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1303 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1304 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1305 return (ret > UINT32_MAX) ? 0 : ret; 1306 } 1307 1308 // Fully parse the shared object file. 1309 // 1310 // This function parses symbol versions. If a DSO has version information, 1311 // the file has a ".gnu.version_d" section which contains symbol version 1312 // definitions. Each symbol is associated to one version through a table in 1313 // ".gnu.version" section. That table is a parallel array for the symbol 1314 // table, and each table entry contains an index in ".gnu.version_d". 1315 // 1316 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1317 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1318 // ".gnu.version_d". 1319 // 1320 // The file format for symbol versioning is perhaps a bit more complicated 1321 // than necessary, but you can easily understand the code if you wrap your 1322 // head around the data structure described above. 1323 template <class ELFT> void SharedFile::parse() { 1324 using Elf_Dyn = typename ELFT::Dyn; 1325 using Elf_Shdr = typename ELFT::Shdr; 1326 using Elf_Sym = typename ELFT::Sym; 1327 using Elf_Verdef = typename ELFT::Verdef; 1328 using Elf_Versym = typename ELFT::Versym; 1329 1330 ArrayRef<Elf_Dyn> dynamicTags; 1331 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1332 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1333 1334 const Elf_Shdr *versymSec = nullptr; 1335 const Elf_Shdr *verdefSec = nullptr; 1336 const Elf_Shdr *verneedSec = nullptr; 1337 1338 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1339 for (const Elf_Shdr &sec : sections) { 1340 switch (sec.sh_type) { 1341 default: 1342 continue; 1343 case SHT_DYNAMIC: 1344 dynamicTags = 1345 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1346 break; 1347 case SHT_GNU_versym: 1348 versymSec = &sec; 1349 break; 1350 case SHT_GNU_verdef: 1351 verdefSec = &sec; 1352 break; 1353 case SHT_GNU_verneed: 1354 verneedSec = &sec; 1355 break; 1356 } 1357 } 1358 1359 if (versymSec && numELFSyms == 0) { 1360 error("SHT_GNU_versym should be associated with symbol table"); 1361 return; 1362 } 1363 1364 // Search for a DT_SONAME tag to initialize this->soName. 1365 for (const Elf_Dyn &dyn : dynamicTags) { 1366 if (dyn.d_tag == DT_NEEDED) { 1367 uint64_t val = dyn.getVal(); 1368 if (val >= this->stringTable.size()) 1369 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1370 dtNeeded.push_back(this->stringTable.data() + val); 1371 } else if (dyn.d_tag == DT_SONAME) { 1372 uint64_t val = dyn.getVal(); 1373 if (val >= this->stringTable.size()) 1374 fatal(toString(this) + ": invalid DT_SONAME entry"); 1375 soName = this->stringTable.data() + val; 1376 } 1377 } 1378 1379 // DSOs are uniquified not by filename but by soname. 1380 DenseMap<StringRef, SharedFile *>::iterator it; 1381 bool wasInserted; 1382 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1383 1384 // If a DSO appears more than once on the command line with and without 1385 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1386 // user can add an extra DSO with --no-as-needed to force it to be added to 1387 // the dependency list. 1388 it->second->isNeeded |= isNeeded; 1389 if (!wasInserted) 1390 return; 1391 1392 sharedFiles.push_back(this); 1393 1394 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1395 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1396 1397 // Parse ".gnu.version" section which is a parallel array for the symbol 1398 // table. If a given file doesn't have a ".gnu.version" section, we use 1399 // VER_NDX_GLOBAL. 1400 size_t size = numELFSyms - firstGlobal; 1401 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1402 if (versymSec) { 1403 ArrayRef<Elf_Versym> versym = 1404 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1405 this) 1406 .slice(firstGlobal); 1407 for (size_t i = 0; i < size; ++i) 1408 versyms[i] = versym[i].vs_index; 1409 } 1410 1411 // System libraries can have a lot of symbols with versions. Using a 1412 // fixed buffer for computing the versions name (foo@ver) can save a 1413 // lot of allocations. 1414 SmallString<0> versionedNameBuffer; 1415 1416 // Add symbols to the symbol table. 1417 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1418 for (size_t i = 0; i < syms.size(); ++i) { 1419 const Elf_Sym &sym = syms[i]; 1420 1421 // ELF spec requires that all local symbols precede weak or global 1422 // symbols in each symbol table, and the index of first non-local symbol 1423 // is stored to sh_info. If a local symbol appears after some non-local 1424 // symbol, that's a violation of the spec. 1425 StringRef name = CHECK(sym.getName(this->stringTable), this); 1426 if (sym.getBinding() == STB_LOCAL) { 1427 warn("found local symbol '" + name + 1428 "' in global part of symbol table in file " + toString(this)); 1429 continue; 1430 } 1431 1432 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1433 if (sym.isUndefined()) { 1434 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1435 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1436 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1437 if (idx >= verneeds.size()) { 1438 error("corrupt input file: version need index " + Twine(idx) + 1439 " for symbol " + name + " is out of bounds\n>>> defined in " + 1440 toString(this)); 1441 continue; 1442 } 1443 StringRef verName = this->stringTable.data() + verneeds[idx]; 1444 versionedNameBuffer.clear(); 1445 name = 1446 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1447 } 1448 Symbol *s = symtab->addSymbol( 1449 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1450 s->exportDynamic = true; 1451 continue; 1452 } 1453 1454 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1455 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1456 // workaround for this bug. 1457 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1458 name == "_gp_disp") 1459 continue; 1460 1461 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1462 if (!(versyms[i] & VERSYM_HIDDEN)) { 1463 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1464 sym.st_other, sym.getType(), sym.st_value, 1465 sym.st_size, alignment, idx}); 1466 } 1467 1468 // Also add the symbol with the versioned name to handle undefined symbols 1469 // with explicit versions. 1470 if (idx == VER_NDX_GLOBAL) 1471 continue; 1472 1473 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1474 error("corrupt input file: version definition index " + Twine(idx) + 1475 " for symbol " + name + " is out of bounds\n>>> defined in " + 1476 toString(this)); 1477 continue; 1478 } 1479 1480 StringRef verName = 1481 this->stringTable.data() + 1482 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1483 versionedNameBuffer.clear(); 1484 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1485 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1486 sym.st_other, sym.getType(), sym.st_value, 1487 sym.st_size, alignment, idx}); 1488 } 1489 } 1490 1491 static ELFKind getBitcodeELFKind(const Triple &t) { 1492 if (t.isLittleEndian()) 1493 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1494 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1495 } 1496 1497 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1498 switch (t.getArch()) { 1499 case Triple::aarch64: 1500 return EM_AARCH64; 1501 case Triple::amdgcn: 1502 case Triple::r600: 1503 return EM_AMDGPU; 1504 case Triple::arm: 1505 case Triple::thumb: 1506 return EM_ARM; 1507 case Triple::avr: 1508 return EM_AVR; 1509 case Triple::mips: 1510 case Triple::mipsel: 1511 case Triple::mips64: 1512 case Triple::mips64el: 1513 return EM_MIPS; 1514 case Triple::msp430: 1515 return EM_MSP430; 1516 case Triple::ppc: 1517 return EM_PPC; 1518 case Triple::ppc64: 1519 case Triple::ppc64le: 1520 return EM_PPC64; 1521 case Triple::riscv32: 1522 case Triple::riscv64: 1523 return EM_RISCV; 1524 case Triple::x86: 1525 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1526 case Triple::x86_64: 1527 return EM_X86_64; 1528 default: 1529 error(path + ": could not infer e_machine from bitcode target triple " + 1530 t.str()); 1531 return EM_NONE; 1532 } 1533 } 1534 1535 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1536 uint64_t offsetInArchive) 1537 : InputFile(BitcodeKind, mb) { 1538 this->archiveName = std::string(archiveName); 1539 1540 std::string path = mb.getBufferIdentifier().str(); 1541 if (config->thinLTOIndexOnly) 1542 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1543 1544 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1545 // name. If two archives define two members with the same name, this 1546 // causes a collision which result in only one of the objects being taken 1547 // into consideration at LTO time (which very likely causes undefined 1548 // symbols later in the link stage). So we append file offset to make 1549 // filename unique. 1550 StringRef name = 1551 archiveName.empty() 1552 ? saver.save(path) 1553 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1554 utostr(offsetInArchive) + ")"); 1555 MemoryBufferRef mbref(mb.getBuffer(), name); 1556 1557 obj = CHECK(lto::InputFile::create(mbref), this); 1558 1559 Triple t(obj->getTargetTriple()); 1560 ekind = getBitcodeELFKind(t); 1561 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1562 } 1563 1564 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1565 switch (gvVisibility) { 1566 case GlobalValue::DefaultVisibility: 1567 return STV_DEFAULT; 1568 case GlobalValue::HiddenVisibility: 1569 return STV_HIDDEN; 1570 case GlobalValue::ProtectedVisibility: 1571 return STV_PROTECTED; 1572 } 1573 llvm_unreachable("unknown visibility"); 1574 } 1575 1576 template <class ELFT> 1577 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1578 const lto::InputFile::Symbol &objSym, 1579 BitcodeFile &f) { 1580 StringRef name = saver.save(objSym.getName()); 1581 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1582 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1583 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1584 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1585 1586 int c = objSym.getComdatIndex(); 1587 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1588 Undefined newSym(&f, name, binding, visibility, type); 1589 if (canOmitFromDynSym) 1590 newSym.exportDynamic = false; 1591 Symbol *ret = symtab->addSymbol(newSym); 1592 ret->referenced = true; 1593 return ret; 1594 } 1595 1596 if (objSym.isCommon()) 1597 return symtab->addSymbol( 1598 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1599 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1600 1601 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1602 if (canOmitFromDynSym) 1603 newSym.exportDynamic = false; 1604 return symtab->addSymbol(newSym); 1605 } 1606 1607 template <class ELFT> void BitcodeFile::parse() { 1608 std::vector<bool> keptComdats; 1609 for (StringRef s : obj->getComdatTable()) 1610 keptComdats.push_back( 1611 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1612 1613 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1614 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1615 1616 for (auto l : obj->getDependentLibraries()) 1617 addDependentLibrary(l, this); 1618 } 1619 1620 void BinaryFile::parse() { 1621 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1622 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1623 8, data, ".data"); 1624 sections.push_back(section); 1625 1626 // For each input file foo that is embedded to a result as a binary 1627 // blob, we define _binary_foo_{start,end,size} symbols, so that 1628 // user programs can access blobs by name. Non-alphanumeric 1629 // characters in a filename are replaced with underscore. 1630 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1631 for (size_t i = 0; i < s.size(); ++i) 1632 if (!isAlnum(s[i])) 1633 s[i] = '_'; 1634 1635 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1636 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1637 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1638 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1639 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1640 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1641 } 1642 1643 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1644 uint64_t offsetInArchive) { 1645 if (isBitcode(mb)) 1646 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1647 1648 switch (getELFKind(mb, archiveName)) { 1649 case ELF32LEKind: 1650 return make<ObjFile<ELF32LE>>(mb, archiveName); 1651 case ELF32BEKind: 1652 return make<ObjFile<ELF32BE>>(mb, archiveName); 1653 case ELF64LEKind: 1654 return make<ObjFile<ELF64LE>>(mb, archiveName); 1655 case ELF64BEKind: 1656 return make<ObjFile<ELF64BE>>(mb, archiveName); 1657 default: 1658 llvm_unreachable("getELFKind"); 1659 } 1660 } 1661 1662 void LazyObjFile::fetch() { 1663 if (fetched) 1664 return; 1665 fetched = true; 1666 1667 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1668 file->groupId = groupId; 1669 1670 // Copy symbol vector so that the new InputFile doesn't have to 1671 // insert the same defined symbols to the symbol table again. 1672 file->symbols = std::move(symbols); 1673 1674 parseFile(file); 1675 } 1676 1677 template <class ELFT> void LazyObjFile::parse() { 1678 using Elf_Sym = typename ELFT::Sym; 1679 1680 // A lazy object file wraps either a bitcode file or an ELF file. 1681 if (isBitcode(this->mb)) { 1682 std::unique_ptr<lto::InputFile> obj = 1683 CHECK(lto::InputFile::create(this->mb), this); 1684 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1685 if (sym.isUndefined()) 1686 continue; 1687 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1688 } 1689 return; 1690 } 1691 1692 if (getELFKind(this->mb, archiveName) != config->ekind) { 1693 error("incompatible file: " + this->mb.getBufferIdentifier()); 1694 return; 1695 } 1696 1697 // Find a symbol table. 1698 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1699 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1700 1701 for (const typename ELFT::Shdr &sec : sections) { 1702 if (sec.sh_type != SHT_SYMTAB) 1703 continue; 1704 1705 // A symbol table is found. 1706 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1707 uint32_t firstGlobal = sec.sh_info; 1708 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1709 this->symbols.resize(eSyms.size()); 1710 1711 // Get existing symbols or insert placeholder symbols. 1712 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1713 if (eSyms[i].st_shndx != SHN_UNDEF) 1714 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1715 1716 // Replace existing symbols with LazyObject symbols. 1717 // 1718 // resolve() may trigger this->fetch() if an existing symbol is an 1719 // undefined symbol. If that happens, this LazyObjFile has served 1720 // its purpose, and we can exit from the loop early. 1721 for (Symbol *sym : this->symbols) { 1722 if (!sym) 1723 continue; 1724 sym->resolve(LazyObject{*this, sym->getName()}); 1725 1726 // If fetched, stop iterating because this->symbols has been transferred 1727 // to the instantiated ObjFile. 1728 if (fetched) 1729 return; 1730 } 1731 return; 1732 } 1733 } 1734 1735 std::string elf::replaceThinLTOSuffix(StringRef path) { 1736 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1737 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1738 1739 if (path.consume_back(suffix)) 1740 return (path + repl).str(); 1741 return std::string(path); 1742 } 1743 1744 template void BitcodeFile::parse<ELF32LE>(); 1745 template void BitcodeFile::parse<ELF32BE>(); 1746 template void BitcodeFile::parse<ELF64LE>(); 1747 template void BitcodeFile::parse<ELF64BE>(); 1748 1749 template void LazyObjFile::parse<ELF32LE>(); 1750 template void LazyObjFile::parse<ELF32BE>(); 1751 template void LazyObjFile::parse<ELF64LE>(); 1752 template void LazyObjFile::parse<ELF64BE>(); 1753 1754 template class elf::ObjFile<ELF32LE>; 1755 template class elf::ObjFile<ELF32BE>; 1756 template class elf::ObjFile<ELF64LE>; 1757 template class elf::ObjFile<ELF64BE>; 1758 1759 template void SharedFile::parse<ELF32LE>(); 1760 template void SharedFile::parse<ELF32BE>(); 1761 template void SharedFile::parse<ELF64LE>(); 1762 template void SharedFile::parse<ELF64BE>(); 1763