1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = f->getName(); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<BinaryFile *> binaryFiles; 59 std::vector<BitcodeFile *> bitcodeFiles; 60 std::vector<LazyObjFile *> lazyObjFiles; 61 std::vector<InputFile *> objectFiles; 62 std::vector<SharedFile *> sharedFiles; 63 64 std::unique_ptr<TarWriter> tar; 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 InputFile::InputFile(Kind k, MemoryBufferRef m) 97 : mb(m), groupId(nextGroupId), fileKind(k) { 98 // All files within the same --{start,end}-group get the same group ID. 99 // Otherwise, a new file will get a new group ID. 100 if (!isInGroup) 101 ++nextGroupId; 102 } 103 104 Optional<MemoryBufferRef> readFile(StringRef path) { 105 // The --chroot option changes our virtual root directory. 106 // This is useful when you are dealing with files created by --reproduce. 107 if (!config->chroot.empty() && path.startswith("/")) 108 path = saver.save(config->chroot + path); 109 110 log(path); 111 112 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 113 if (auto ec = mbOrErr.getError()) { 114 error("cannot open " + path + ": " + ec.message()); 115 return None; 116 } 117 118 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 119 MemoryBufferRef mbref = mb->getMemBufferRef(); 120 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 121 122 if (tar) 123 tar->append(relativeToRoot(path), mbref.getBuffer()); 124 return mbref; 125 } 126 127 // All input object files must be for the same architecture 128 // (e.g. it does not make sense to link x86 object files with 129 // MIPS object files.) This function checks for that error. 130 static bool isCompatible(InputFile *file) { 131 if (!file->isElf() && !isa<BitcodeFile>(file)) 132 return true; 133 134 if (file->ekind == config->ekind && file->emachine == config->emachine) { 135 if (config->emachine != EM_MIPS) 136 return true; 137 if (isMipsN32Abi(file) == config->mipsN32Abi) 138 return true; 139 } 140 141 if (!config->emulation.empty()) { 142 error(toString(file) + " is incompatible with " + config->emulation); 143 return false; 144 } 145 146 InputFile *existing; 147 if (!objectFiles.empty()) 148 existing = objectFiles[0]; 149 else if (!sharedFiles.empty()) 150 existing = sharedFiles[0]; 151 else 152 existing = bitcodeFiles[0]; 153 154 error(toString(file) + " is incompatible with " + toString(existing)); 155 return false; 156 } 157 158 template <class ELFT> static void doParseFile(InputFile *file) { 159 if (!isCompatible(file)) 160 return; 161 162 // Binary file 163 if (auto *f = dyn_cast<BinaryFile>(file)) { 164 binaryFiles.push_back(f); 165 f->parse(); 166 return; 167 } 168 169 // .a file 170 if (auto *f = dyn_cast<ArchiveFile>(file)) { 171 f->parse(); 172 return; 173 } 174 175 // Lazy object file 176 if (auto *f = dyn_cast<LazyObjFile>(file)) { 177 lazyObjFiles.push_back(f); 178 f->parse<ELFT>(); 179 return; 180 } 181 182 if (config->trace) 183 message(toString(file)); 184 185 // .so file 186 if (auto *f = dyn_cast<SharedFile>(file)) { 187 f->parse<ELFT>(); 188 return; 189 } 190 191 // LLVM bitcode file 192 if (auto *f = dyn_cast<BitcodeFile>(file)) { 193 bitcodeFiles.push_back(f); 194 f->parse<ELFT>(); 195 return; 196 } 197 198 // Regular object file 199 objectFiles.push_back(file); 200 cast<ObjFile<ELFT>>(file)->parse(); 201 } 202 203 // Add symbols in File to the symbol table. 204 void parseFile(InputFile *file) { 205 switch (config->ekind) { 206 case ELF32LEKind: 207 doParseFile<ELF32LE>(file); 208 return; 209 case ELF32BEKind: 210 doParseFile<ELF32BE>(file); 211 return; 212 case ELF64LEKind: 213 doParseFile<ELF64LE>(file); 214 return; 215 case ELF64BEKind: 216 doParseFile<ELF64BE>(file); 217 return; 218 default: 219 llvm_unreachable("unknown ELFT"); 220 } 221 } 222 223 // Concatenates arguments to construct a string representing an error location. 224 static std::string createFileLineMsg(StringRef path, unsigned line) { 225 std::string filename = path::filename(path); 226 std::string lineno = ":" + std::to_string(line); 227 if (filename == path) 228 return filename + lineno; 229 return filename + lineno + " (" + path.str() + lineno + ")"; 230 } 231 232 template <class ELFT> 233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 234 InputSectionBase &sec, uint64_t offset) { 235 // In DWARF, functions and variables are stored to different places. 236 // First, lookup a function for a given offset. 237 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 238 return createFileLineMsg(info->FileName, info->Line); 239 240 // If it failed, lookup again as a variable. 241 if (Optional<std::pair<std::string, unsigned>> fileLine = 242 file.getVariableLoc(sym.getName())) 243 return createFileLineMsg(fileLine->first, fileLine->second); 244 245 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 246 return file.sourceFile; 247 } 248 249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 250 uint64_t offset) { 251 if (kind() != ObjKind) 252 return ""; 253 switch (config->ekind) { 254 default: 255 llvm_unreachable("Invalid kind"); 256 case ELF32LEKind: 257 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 258 case ELF32BEKind: 259 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 260 case ELF64LEKind: 261 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 262 case ELF64BEKind: 263 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 264 } 265 } 266 267 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 268 dwarf = make<DWARFCache>(std::make_unique<DWARFContext>( 269 std::make_unique<LLDDwarfObj<ELFT>>(this))); 270 } 271 272 // Returns the pair of file name and line number describing location of data 273 // object (variable, array, etc) definition. 274 template <class ELFT> 275 Optional<std::pair<std::string, unsigned>> 276 ObjFile<ELFT>::getVariableLoc(StringRef name) { 277 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 278 279 return dwarf->getVariableLoc(name); 280 } 281 282 // Returns source line information for a given offset 283 // using DWARF debug info. 284 template <class ELFT> 285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 286 uint64_t offset) { 287 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 288 289 // Detect SectionIndex for specified section. 290 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 291 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 292 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 293 if (s == sections[curIndex]) { 294 sectionIndex = curIndex; 295 break; 296 } 297 } 298 299 // Use fake address calculated by adding section file offset and offset in 300 // section. See comments for ObjectInfo class. 301 return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex); 302 } 303 304 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 305 ekind = getELFKind(mb, ""); 306 307 switch (ekind) { 308 case ELF32LEKind: 309 init<ELF32LE>(); 310 break; 311 case ELF32BEKind: 312 init<ELF32BE>(); 313 break; 314 case ELF64LEKind: 315 init<ELF64LE>(); 316 break; 317 case ELF64BEKind: 318 init<ELF64BE>(); 319 break; 320 default: 321 llvm_unreachable("getELFKind"); 322 } 323 } 324 325 template <typename Elf_Shdr> 326 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 327 for (const Elf_Shdr &sec : sections) 328 if (sec.sh_type == type) 329 return &sec; 330 return nullptr; 331 } 332 333 template <class ELFT> void ELFFileBase::init() { 334 using Elf_Shdr = typename ELFT::Shdr; 335 using Elf_Sym = typename ELFT::Sym; 336 337 // Initialize trivial attributes. 338 const ELFFile<ELFT> &obj = getObj<ELFT>(); 339 emachine = obj.getHeader()->e_machine; 340 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 341 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 342 343 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 344 345 // Find a symbol table. 346 bool isDSO = 347 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 348 const Elf_Shdr *symtabSec = 349 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 350 351 if (!symtabSec) 352 return; 353 354 // Initialize members corresponding to a symbol table. 355 firstGlobal = symtabSec->sh_info; 356 357 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 358 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 359 fatal(toString(this) + ": invalid sh_info in symbol table"); 360 361 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 362 numELFSyms = eSyms.size(); 363 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 364 } 365 366 template <class ELFT> 367 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 368 return CHECK( 369 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 370 this); 371 } 372 373 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 374 if (this->symbols.empty()) 375 return {}; 376 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 377 } 378 379 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 380 return makeArrayRef(this->symbols).slice(this->firstGlobal); 381 } 382 383 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 384 // Read a section table. justSymbols is usually false. 385 if (this->justSymbols) 386 initializeJustSymbols(); 387 else 388 initializeSections(ignoreComdats); 389 390 // Read a symbol table. 391 initializeSymbols(); 392 } 393 394 // Sections with SHT_GROUP and comdat bits define comdat section groups. 395 // They are identified and deduplicated by group name. This function 396 // returns a group name. 397 template <class ELFT> 398 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 399 const Elf_Shdr &sec) { 400 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 401 if (sec.sh_info >= symbols.size()) 402 fatal(toString(this) + ": invalid symbol index"); 403 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 404 StringRef signature = CHECK(sym.getName(this->stringTable), this); 405 406 // As a special case, if a symbol is a section symbol and has no name, 407 // we use a section name as a signature. 408 // 409 // Such SHT_GROUP sections are invalid from the perspective of the ELF 410 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 411 // older produce such sections as outputs for the -r option, so we need 412 // a bug-compatibility. 413 if (signature.empty() && sym.getType() == STT_SECTION) 414 return getSectionName(sec); 415 return signature; 416 } 417 418 template <class ELFT> 419 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 420 // On a regular link we don't merge sections if -O0 (default is -O1). This 421 // sometimes makes the linker significantly faster, although the output will 422 // be bigger. 423 // 424 // Doing the same for -r would create a problem as it would combine sections 425 // with different sh_entsize. One option would be to just copy every SHF_MERGE 426 // section as is to the output. While this would produce a valid ELF file with 427 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 428 // they see two .debug_str. We could have separate logic for combining 429 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 430 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 431 // logic for -r. 432 if (config->optimize == 0 && !config->relocatable) 433 return false; 434 435 // A mergeable section with size 0 is useless because they don't have 436 // any data to merge. A mergeable string section with size 0 can be 437 // argued as invalid because it doesn't end with a null character. 438 // We'll avoid a mess by handling them as if they were non-mergeable. 439 if (sec.sh_size == 0) 440 return false; 441 442 // Check for sh_entsize. The ELF spec is not clear about the zero 443 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 444 // the section does not hold a table of fixed-size entries". We know 445 // that Rust 1.13 produces a string mergeable section with a zero 446 // sh_entsize. Here we just accept it rather than being picky about it. 447 uint64_t entSize = sec.sh_entsize; 448 if (entSize == 0) 449 return false; 450 if (sec.sh_size % entSize) 451 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 452 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 453 Twine(entSize) + ")"); 454 455 uint64_t flags = sec.sh_flags; 456 if (!(flags & SHF_MERGE)) 457 return false; 458 if (flags & SHF_WRITE) 459 fatal(toString(this) + ":(" + name + 460 "): writable SHF_MERGE section is not supported"); 461 462 return true; 463 } 464 465 // This is for --just-symbols. 466 // 467 // --just-symbols is a very minor feature that allows you to link your 468 // output against other existing program, so that if you load both your 469 // program and the other program into memory, your output can refer the 470 // other program's symbols. 471 // 472 // When the option is given, we link "just symbols". The section table is 473 // initialized with null pointers. 474 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 475 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 476 this->sections.resize(sections.size()); 477 } 478 479 // An ELF object file may contain a `.deplibs` section. If it exists, the 480 // section contains a list of library specifiers such as `m` for libm. This 481 // function resolves a given name by finding the first matching library checking 482 // the various ways that a library can be specified to LLD. This ELF extension 483 // is a form of autolinking and is called `dependent libraries`. It is currently 484 // unique to LLVM and lld. 485 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 486 if (!config->dependentLibraries) 487 return; 488 if (fs::exists(specifier)) 489 driver->addFile(specifier, /*withLOption=*/false); 490 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 491 driver->addFile(*s, /*withLOption=*/true); 492 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 493 driver->addFile(*s, /*withLOption=*/true); 494 else 495 error(toString(f) + 496 ": unable to find library from dependent library specifier: " + 497 specifier); 498 } 499 500 // Record the membership of a section group so that in the garbage collection 501 // pass, section group members are kept or discarded as a unit. 502 template <class ELFT> 503 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 504 ArrayRef<typename ELFT::Word> entries) { 505 bool hasAlloc = false; 506 for (uint32_t index : entries.slice(1)) { 507 if (index >= sections.size()) 508 return; 509 if (InputSectionBase *s = sections[index]) 510 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 511 hasAlloc = true; 512 } 513 514 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 515 // collection. See the comment in markLive(). This rule retains .debug_types 516 // and .rela.debug_types. 517 if (!hasAlloc) 518 return; 519 520 // Connect the members in a circular doubly-linked list via 521 // nextInSectionGroup. 522 InputSectionBase *head; 523 InputSectionBase *prev = nullptr; 524 for (uint32_t index : entries.slice(1)) { 525 InputSectionBase *s = sections[index]; 526 if (!s || s == &InputSection::discarded) 527 continue; 528 if (prev) 529 prev->nextInSectionGroup = s; 530 else 531 head = s; 532 prev = s; 533 } 534 if (prev) 535 prev->nextInSectionGroup = head; 536 } 537 538 template <class ELFT> 539 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 540 const ELFFile<ELFT> &obj = this->getObj(); 541 542 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 543 uint64_t size = objSections.size(); 544 this->sections.resize(size); 545 this->sectionStringTable = 546 CHECK(obj.getSectionStringTable(objSections), this); 547 548 std::vector<ArrayRef<Elf_Word>> selectedGroups; 549 550 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 551 if (this->sections[i] == &InputSection::discarded) 552 continue; 553 const Elf_Shdr &sec = objSections[i]; 554 555 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 556 cgProfile = 557 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 558 559 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 560 // if -r is given, we'll let the final link discard such sections. 561 // This is compatible with GNU. 562 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 563 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 564 // We ignore the address-significance table if we know that the object 565 // file was created by objcopy or ld -r. This is because these tools 566 // will reorder the symbols in the symbol table, invalidating the data 567 // in the address-significance table, which refers to symbols by index. 568 if (sec.sh_link != 0) 569 this->addrsigSec = &sec; 570 else if (config->icf == ICFLevel::Safe) 571 warn(toString(this) + ": --icf=safe is incompatible with object " 572 "files created using objcopy or ld -r"); 573 } 574 this->sections[i] = &InputSection::discarded; 575 continue; 576 } 577 578 switch (sec.sh_type) { 579 case SHT_GROUP: { 580 // De-duplicate section groups by their signatures. 581 StringRef signature = getShtGroupSignature(objSections, sec); 582 this->sections[i] = &InputSection::discarded; 583 584 585 ArrayRef<Elf_Word> entries = 586 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 587 if (entries.empty()) 588 fatal(toString(this) + ": empty SHT_GROUP"); 589 590 // The first word of a SHT_GROUP section contains flags. Currently, 591 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 592 // An group with the empty flag doesn't define anything; such sections 593 // are just skipped. 594 if (entries[0] == 0) 595 continue; 596 597 if (entries[0] != GRP_COMDAT) 598 fatal(toString(this) + ": unsupported SHT_GROUP format"); 599 600 bool isNew = 601 ignoreComdats || 602 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 603 .second; 604 if (isNew) { 605 if (config->relocatable) 606 this->sections[i] = createInputSection(sec); 607 selectedGroups.push_back(entries); 608 continue; 609 } 610 611 // Otherwise, discard group members. 612 for (uint32_t secIndex : entries.slice(1)) { 613 if (secIndex >= size) 614 fatal(toString(this) + 615 ": invalid section index in group: " + Twine(secIndex)); 616 this->sections[secIndex] = &InputSection::discarded; 617 } 618 break; 619 } 620 case SHT_SYMTAB_SHNDX: 621 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 622 break; 623 case SHT_SYMTAB: 624 case SHT_STRTAB: 625 case SHT_NULL: 626 break; 627 default: 628 this->sections[i] = createInputSection(sec); 629 } 630 } 631 632 // This block handles SHF_LINK_ORDER. 633 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 634 if (this->sections[i] == &InputSection::discarded) 635 continue; 636 const Elf_Shdr &sec = objSections[i]; 637 if (!(sec.sh_flags & SHF_LINK_ORDER)) 638 continue; 639 640 // .ARM.exidx sections have a reverse dependency on the InputSection they 641 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 642 InputSectionBase *linkSec = nullptr; 643 if (sec.sh_link < this->sections.size()) 644 linkSec = this->sections[sec.sh_link]; 645 if (!linkSec) 646 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 647 648 InputSection *isec = cast<InputSection>(this->sections[i]); 649 linkSec->dependentSections.push_back(isec); 650 if (!isa<InputSection>(linkSec)) 651 error("a section " + isec->name + 652 " with SHF_LINK_ORDER should not refer a non-regular section: " + 653 toString(linkSec)); 654 } 655 656 for (ArrayRef<Elf_Word> entries : selectedGroups) 657 handleSectionGroup<ELFT>(this->sections, entries); 658 } 659 660 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 661 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 662 // the input objects have been compiled. 663 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 664 const InputFile *f) { 665 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 666 // If an ABI tag isn't present then it is implicitly given the value of 0 667 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 668 // including some in glibc that don't use FP args (and should have value 3) 669 // don't have the attribute so we do not consider an implicit value of 0 670 // as a clash. 671 return; 672 673 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 674 ARMVFPArgKind arg; 675 switch (vfpArgs) { 676 case ARMBuildAttrs::BaseAAPCS: 677 arg = ARMVFPArgKind::Base; 678 break; 679 case ARMBuildAttrs::HardFPAAPCS: 680 arg = ARMVFPArgKind::VFP; 681 break; 682 case ARMBuildAttrs::ToolChainFPPCS: 683 // Tool chain specific convention that conforms to neither AAPCS variant. 684 arg = ARMVFPArgKind::ToolChain; 685 break; 686 case ARMBuildAttrs::CompatibleFPAAPCS: 687 // Object compatible with all conventions. 688 return; 689 default: 690 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 691 return; 692 } 693 // Follow ld.bfd and error if there is a mix of calling conventions. 694 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 695 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 696 else 697 config->armVFPArgs = arg; 698 } 699 700 // The ARM support in lld makes some use of instructions that are not available 701 // on all ARM architectures. Namely: 702 // - Use of BLX instruction for interworking between ARM and Thumb state. 703 // - Use of the extended Thumb branch encoding in relocation. 704 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 705 // The ARM Attributes section contains information about the architecture chosen 706 // at compile time. We follow the convention that if at least one input object 707 // is compiled with an architecture that supports these features then lld is 708 // permitted to use them. 709 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 710 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 711 return; 712 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 713 switch (arch) { 714 case ARMBuildAttrs::Pre_v4: 715 case ARMBuildAttrs::v4: 716 case ARMBuildAttrs::v4T: 717 // Architectures prior to v5 do not support BLX instruction 718 break; 719 case ARMBuildAttrs::v5T: 720 case ARMBuildAttrs::v5TE: 721 case ARMBuildAttrs::v5TEJ: 722 case ARMBuildAttrs::v6: 723 case ARMBuildAttrs::v6KZ: 724 case ARMBuildAttrs::v6K: 725 config->armHasBlx = true; 726 // Architectures used in pre-Cortex processors do not support 727 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 728 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 729 break; 730 default: 731 // All other Architectures have BLX and extended branch encoding 732 config->armHasBlx = true; 733 config->armJ1J2BranchEncoding = true; 734 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 735 // All Architectures used in Cortex processors with the exception 736 // of v6-M and v6S-M have the MOVT and MOVW instructions. 737 config->armHasMovtMovw = true; 738 break; 739 } 740 } 741 742 // If a source file is compiled with x86 hardware-assisted call flow control 743 // enabled, the generated object file contains feature flags indicating that 744 // fact. This function reads the feature flags and returns it. 745 // 746 // Essentially we want to read a single 32-bit value in this function, but this 747 // function is rather complicated because the value is buried deep inside a 748 // .note.gnu.property section. 749 // 750 // The section consists of one or more NOTE records. Each NOTE record consists 751 // of zero or more type-length-value fields. We want to find a field of a 752 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 753 // the ABI is unnecessarily complicated. 754 template <class ELFT> 755 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 756 using Elf_Nhdr = typename ELFT::Nhdr; 757 using Elf_Note = typename ELFT::Note; 758 759 uint32_t featuresSet = 0; 760 while (!data.empty()) { 761 // Read one NOTE record. 762 if (data.size() < sizeof(Elf_Nhdr)) 763 fatal(toString(obj) + ": .note.gnu.property: section too short"); 764 765 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 766 if (data.size() < nhdr->getSize()) 767 fatal(toString(obj) + ": .note.gnu.property: section too short"); 768 769 Elf_Note note(*nhdr); 770 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 771 data = data.slice(nhdr->getSize()); 772 continue; 773 } 774 775 uint32_t featureAndType = config->emachine == EM_AARCH64 776 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 777 : GNU_PROPERTY_X86_FEATURE_1_AND; 778 779 // Read a body of a NOTE record, which consists of type-length-value fields. 780 ArrayRef<uint8_t> desc = note.getDesc(); 781 while (!desc.empty()) { 782 if (desc.size() < 8) 783 fatal(toString(obj) + ": .note.gnu.property: section too short"); 784 785 uint32_t type = read32le(desc.data()); 786 uint32_t size = read32le(desc.data() + 4); 787 788 if (type == featureAndType) { 789 // We found a FEATURE_1_AND field. There may be more than one of these 790 // in a .note.gnu.property section, for a relocatable object we 791 // accumulate the bits set. 792 featuresSet |= read32le(desc.data() + 8); 793 } 794 795 // On 64-bit, a payload may be followed by a 4-byte padding to make its 796 // size a multiple of 8. 797 if (ELFT::Is64Bits) 798 size = alignTo(size, 8); 799 800 desc = desc.slice(size + 8); // +8 for Type and Size 801 } 802 803 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 804 data = data.slice(nhdr->getSize()); 805 } 806 807 return featuresSet; 808 } 809 810 template <class ELFT> 811 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 812 uint32_t idx = sec.sh_info; 813 if (idx >= this->sections.size()) 814 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 815 InputSectionBase *target = this->sections[idx]; 816 817 // Strictly speaking, a relocation section must be included in the 818 // group of the section it relocates. However, LLVM 3.3 and earlier 819 // would fail to do so, so we gracefully handle that case. 820 if (target == &InputSection::discarded) 821 return nullptr; 822 823 if (!target) 824 fatal(toString(this) + ": unsupported relocation reference"); 825 return target; 826 } 827 828 // Create a regular InputSection class that has the same contents 829 // as a given section. 830 static InputSection *toRegularSection(MergeInputSection *sec) { 831 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 832 sec->data(), sec->name); 833 } 834 835 template <class ELFT> 836 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 837 StringRef name = getSectionName(sec); 838 839 switch (sec.sh_type) { 840 case SHT_ARM_ATTRIBUTES: { 841 if (config->emachine != EM_ARM) 842 break; 843 ARMAttributeParser attributes; 844 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 845 attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind); 846 updateSupportedARMFeatures(attributes); 847 updateARMVFPArgs(attributes, this); 848 849 // FIXME: Retain the first attribute section we see. The eglibc ARM 850 // dynamic loaders require the presence of an attribute section for dlopen 851 // to work. In a full implementation we would merge all attribute sections. 852 if (in.armAttributes == nullptr) { 853 in.armAttributes = make<InputSection>(*this, sec, name); 854 return in.armAttributes; 855 } 856 return &InputSection::discarded; 857 } 858 case SHT_LLVM_DEPENDENT_LIBRARIES: { 859 if (config->relocatable) 860 break; 861 ArrayRef<char> data = 862 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 863 if (!data.empty() && data.back() != '\0') { 864 error(toString(this) + 865 ": corrupted dependent libraries section (unterminated string): " + 866 name); 867 return &InputSection::discarded; 868 } 869 for (const char *d = data.begin(), *e = data.end(); d < e;) { 870 StringRef s(d); 871 addDependentLibrary(s, this); 872 d += s.size() + 1; 873 } 874 return &InputSection::discarded; 875 } 876 case SHT_RELA: 877 case SHT_REL: { 878 // Find a relocation target section and associate this section with that. 879 // Target may have been discarded if it is in a different section group 880 // and the group is discarded, even though it's a violation of the 881 // spec. We handle that situation gracefully by discarding dangling 882 // relocation sections. 883 InputSectionBase *target = getRelocTarget(sec); 884 if (!target) 885 return nullptr; 886 887 // ELF spec allows mergeable sections with relocations, but they are 888 // rare, and it is in practice hard to merge such sections by contents, 889 // because applying relocations at end of linking changes section 890 // contents. So, we simply handle such sections as non-mergeable ones. 891 // Degrading like this is acceptable because section merging is optional. 892 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 893 target = toRegularSection(ms); 894 this->sections[sec.sh_info] = target; 895 } 896 897 // This section contains relocation information. 898 // If -r is given, we do not interpret or apply relocation 899 // but just copy relocation sections to output. 900 if (config->relocatable) { 901 InputSection *relocSec = make<InputSection>(*this, sec, name); 902 // We want to add a dependency to target, similar like we do for 903 // -emit-relocs below. This is useful for the case when linker script 904 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 905 // -r, but we faced it in the Linux kernel and have to handle such case 906 // and not to crash. 907 target->dependentSections.push_back(relocSec); 908 return relocSec; 909 } 910 911 if (target->firstRelocation) 912 fatal(toString(this) + 913 ": multiple relocation sections to one section are not supported"); 914 915 if (sec.sh_type == SHT_RELA) { 916 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 917 target->firstRelocation = rels.begin(); 918 target->numRelocations = rels.size(); 919 target->areRelocsRela = true; 920 } else { 921 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 922 target->firstRelocation = rels.begin(); 923 target->numRelocations = rels.size(); 924 target->areRelocsRela = false; 925 } 926 assert(isUInt<31>(target->numRelocations)); 927 928 // Relocation sections processed by the linker are usually removed 929 // from the output, so returning `nullptr` for the normal case. 930 // However, if -emit-relocs is given, we need to leave them in the output. 931 // (Some post link analysis tools need this information.) 932 if (config->emitRelocs) { 933 InputSection *relocSec = make<InputSection>(*this, sec, name); 934 // We will not emit relocation section if target was discarded. 935 target->dependentSections.push_back(relocSec); 936 return relocSec; 937 } 938 return nullptr; 939 } 940 } 941 942 // The GNU linker uses .note.GNU-stack section as a marker indicating 943 // that the code in the object file does not expect that the stack is 944 // executable (in terms of NX bit). If all input files have the marker, 945 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 946 // make the stack non-executable. Most object files have this section as 947 // of 2017. 948 // 949 // But making the stack non-executable is a norm today for security 950 // reasons. Failure to do so may result in a serious security issue. 951 // Therefore, we make LLD always add PT_GNU_STACK unless it is 952 // explicitly told to do otherwise (by -z execstack). Because the stack 953 // executable-ness is controlled solely by command line options, 954 // .note.GNU-stack sections are simply ignored. 955 if (name == ".note.GNU-stack") 956 return &InputSection::discarded; 957 958 // Object files that use processor features such as Intel Control-Flow 959 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 960 // .note.gnu.property section containing a bitfield of feature bits like the 961 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 962 // 963 // Since we merge bitmaps from multiple object files to create a new 964 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 965 // file's .note.gnu.property section. 966 if (name == ".note.gnu.property") { 967 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 968 this->andFeatures = readAndFeatures(this, contents); 969 return &InputSection::discarded; 970 } 971 972 // Split stacks is a feature to support a discontiguous stack, 973 // commonly used in the programming language Go. For the details, 974 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 975 // for split stack will include a .note.GNU-split-stack section. 976 if (name == ".note.GNU-split-stack") { 977 if (config->relocatable) { 978 error("cannot mix split-stack and non-split-stack in a relocatable link"); 979 return &InputSection::discarded; 980 } 981 this->splitStack = true; 982 return &InputSection::discarded; 983 } 984 985 // An object file cmpiled for split stack, but where some of the 986 // functions were compiled with the no_split_stack_attribute will 987 // include a .note.GNU-no-split-stack section. 988 if (name == ".note.GNU-no-split-stack") { 989 this->someNoSplitStack = true; 990 return &InputSection::discarded; 991 } 992 993 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 994 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 995 // sections. Drop those sections to avoid duplicate symbol errors. 996 // FIXME: This is glibc PR20543, we should remove this hack once that has been 997 // fixed for a while. 998 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 999 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1000 return &InputSection::discarded; 1001 1002 // If we are creating a new .build-id section, strip existing .build-id 1003 // sections so that the output won't have more than one .build-id. 1004 // This is not usually a problem because input object files normally don't 1005 // have .build-id sections, but you can create such files by 1006 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1007 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1008 return &InputSection::discarded; 1009 1010 // The linker merges EH (exception handling) frames and creates a 1011 // .eh_frame_hdr section for runtime. So we handle them with a special 1012 // class. For relocatable outputs, they are just passed through. 1013 if (name == ".eh_frame" && !config->relocatable) 1014 return make<EhInputSection>(*this, sec, name); 1015 1016 if (shouldMerge(sec, name)) 1017 return make<MergeInputSection>(*this, sec, name); 1018 return make<InputSection>(*this, sec, name); 1019 } 1020 1021 template <class ELFT> 1022 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1023 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1024 } 1025 1026 // Initialize this->Symbols. this->Symbols is a parallel array as 1027 // its corresponding ELF symbol table. 1028 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1029 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1030 this->symbols.resize(eSyms.size()); 1031 1032 // Our symbol table may have already been partially initialized 1033 // because of LazyObjFile. 1034 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1035 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1036 this->symbols[i] = 1037 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1038 1039 // Fill this->Symbols. A symbol is either local or global. 1040 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1041 const Elf_Sym &eSym = eSyms[i]; 1042 1043 // Read symbol attributes. 1044 uint32_t secIdx = getSectionIndex(eSym); 1045 if (secIdx >= this->sections.size()) 1046 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1047 1048 InputSectionBase *sec = this->sections[secIdx]; 1049 uint8_t binding = eSym.getBinding(); 1050 uint8_t stOther = eSym.st_other; 1051 uint8_t type = eSym.getType(); 1052 uint64_t value = eSym.st_value; 1053 uint64_t size = eSym.st_size; 1054 StringRefZ name = this->stringTable.data() + eSym.st_name; 1055 1056 // Handle local symbols. Local symbols are not added to the symbol 1057 // table because they are not visible from other object files. We 1058 // allocate symbol instances and add their pointers to Symbols. 1059 if (binding == STB_LOCAL) { 1060 if (eSym.getType() == STT_FILE) 1061 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1062 1063 if (this->stringTable.size() <= eSym.st_name) 1064 fatal(toString(this) + ": invalid symbol name offset"); 1065 1066 if (eSym.st_shndx == SHN_UNDEF) 1067 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1068 else if (sec == &InputSection::discarded) 1069 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1070 /*DiscardedSecIdx=*/secIdx); 1071 else 1072 this->symbols[i] = 1073 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1074 continue; 1075 } 1076 1077 // Handle global undefined symbols. 1078 if (eSym.st_shndx == SHN_UNDEF) { 1079 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1080 this->symbols[i]->referenced = true; 1081 continue; 1082 } 1083 1084 // Handle global common symbols. 1085 if (eSym.st_shndx == SHN_COMMON) { 1086 if (value == 0 || value >= UINT32_MAX) 1087 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1088 "' has invalid alignment: " + Twine(value)); 1089 this->symbols[i]->resolve( 1090 CommonSymbol{this, name, binding, stOther, type, value, size}); 1091 continue; 1092 } 1093 1094 // If a defined symbol is in a discarded section, handle it as if it 1095 // were an undefined symbol. Such symbol doesn't comply with the 1096 // standard, but in practice, a .eh_frame often directly refer 1097 // COMDAT member sections, and if a comdat group is discarded, some 1098 // defined symbol in a .eh_frame becomes dangling symbols. 1099 if (sec == &InputSection::discarded) { 1100 this->symbols[i]->resolve( 1101 Undefined{this, name, binding, stOther, type, secIdx}); 1102 continue; 1103 } 1104 1105 // Handle global defined symbols. 1106 if (binding == STB_GLOBAL || binding == STB_WEAK || 1107 binding == STB_GNU_UNIQUE) { 1108 this->symbols[i]->resolve( 1109 Defined{this, name, binding, stOther, type, value, size, sec}); 1110 continue; 1111 } 1112 1113 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1114 } 1115 } 1116 1117 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1118 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1119 file(std::move(file)) {} 1120 1121 void ArchiveFile::parse() { 1122 for (const Archive::Symbol &sym : file->symbols()) 1123 symtab->addSymbol(LazyArchive{*this, sym}); 1124 } 1125 1126 // Returns a buffer pointing to a member file containing a given symbol. 1127 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1128 Archive::Child c = 1129 CHECK(sym.getMember(), toString(this) + 1130 ": could not get the member for symbol " + 1131 toELFString(sym)); 1132 1133 if (!seen.insert(c.getChildOffset()).second) 1134 return; 1135 1136 MemoryBufferRef mb = 1137 CHECK(c.getMemoryBufferRef(), 1138 toString(this) + 1139 ": could not get the buffer for the member defining symbol " + 1140 toELFString(sym)); 1141 1142 if (tar && c.getParent()->isThin()) 1143 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1144 1145 InputFile *file = createObjectFile( 1146 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1147 file->groupId = groupId; 1148 parseFile(file); 1149 } 1150 1151 unsigned SharedFile::vernauxNum; 1152 1153 // Parse the version definitions in the object file if present, and return a 1154 // vector whose nth element contains a pointer to the Elf_Verdef for version 1155 // identifier n. Version identifiers that are not definitions map to nullptr. 1156 template <typename ELFT> 1157 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1158 const typename ELFT::Shdr *sec) { 1159 if (!sec) 1160 return {}; 1161 1162 // We cannot determine the largest verdef identifier without inspecting 1163 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1164 // sequentially starting from 1, so we predict that the largest identifier 1165 // will be verdefCount. 1166 unsigned verdefCount = sec->sh_info; 1167 std::vector<const void *> verdefs(verdefCount + 1); 1168 1169 // Build the Verdefs array by following the chain of Elf_Verdef objects 1170 // from the start of the .gnu.version_d section. 1171 const uint8_t *verdef = base + sec->sh_offset; 1172 for (unsigned i = 0; i != verdefCount; ++i) { 1173 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1174 verdef += curVerdef->vd_next; 1175 unsigned verdefIndex = curVerdef->vd_ndx; 1176 verdefs.resize(verdefIndex + 1); 1177 verdefs[verdefIndex] = curVerdef; 1178 } 1179 return verdefs; 1180 } 1181 1182 // We do not usually care about alignments of data in shared object 1183 // files because the loader takes care of it. However, if we promote a 1184 // DSO symbol to point to .bss due to copy relocation, we need to keep 1185 // the original alignment requirements. We infer it in this function. 1186 template <typename ELFT> 1187 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1188 const typename ELFT::Sym &sym) { 1189 uint64_t ret = UINT64_MAX; 1190 if (sym.st_value) 1191 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1192 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1193 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1194 return (ret > UINT32_MAX) ? 0 : ret; 1195 } 1196 1197 // Fully parse the shared object file. 1198 // 1199 // This function parses symbol versions. If a DSO has version information, 1200 // the file has a ".gnu.version_d" section which contains symbol version 1201 // definitions. Each symbol is associated to one version through a table in 1202 // ".gnu.version" section. That table is a parallel array for the symbol 1203 // table, and each table entry contains an index in ".gnu.version_d". 1204 // 1205 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1206 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1207 // ".gnu.version_d". 1208 // 1209 // The file format for symbol versioning is perhaps a bit more complicated 1210 // than necessary, but you can easily understand the code if you wrap your 1211 // head around the data structure described above. 1212 template <class ELFT> void SharedFile::parse() { 1213 using Elf_Dyn = typename ELFT::Dyn; 1214 using Elf_Shdr = typename ELFT::Shdr; 1215 using Elf_Sym = typename ELFT::Sym; 1216 using Elf_Verdef = typename ELFT::Verdef; 1217 using Elf_Versym = typename ELFT::Versym; 1218 1219 ArrayRef<Elf_Dyn> dynamicTags; 1220 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1221 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1222 1223 const Elf_Shdr *versymSec = nullptr; 1224 const Elf_Shdr *verdefSec = nullptr; 1225 1226 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1227 for (const Elf_Shdr &sec : sections) { 1228 switch (sec.sh_type) { 1229 default: 1230 continue; 1231 case SHT_DYNAMIC: 1232 dynamicTags = 1233 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1234 break; 1235 case SHT_GNU_versym: 1236 versymSec = &sec; 1237 break; 1238 case SHT_GNU_verdef: 1239 verdefSec = &sec; 1240 break; 1241 } 1242 } 1243 1244 if (versymSec && numELFSyms == 0) { 1245 error("SHT_GNU_versym should be associated with symbol table"); 1246 return; 1247 } 1248 1249 // Search for a DT_SONAME tag to initialize this->soName. 1250 for (const Elf_Dyn &dyn : dynamicTags) { 1251 if (dyn.d_tag == DT_NEEDED) { 1252 uint64_t val = dyn.getVal(); 1253 if (val >= this->stringTable.size()) 1254 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1255 dtNeeded.push_back(this->stringTable.data() + val); 1256 } else if (dyn.d_tag == DT_SONAME) { 1257 uint64_t val = dyn.getVal(); 1258 if (val >= this->stringTable.size()) 1259 fatal(toString(this) + ": invalid DT_SONAME entry"); 1260 soName = this->stringTable.data() + val; 1261 } 1262 } 1263 1264 // DSOs are uniquified not by filename but by soname. 1265 DenseMap<StringRef, SharedFile *>::iterator it; 1266 bool wasInserted; 1267 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1268 1269 // If a DSO appears more than once on the command line with and without 1270 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1271 // user can add an extra DSO with --no-as-needed to force it to be added to 1272 // the dependency list. 1273 it->second->isNeeded |= isNeeded; 1274 if (!wasInserted) 1275 return; 1276 1277 sharedFiles.push_back(this); 1278 1279 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1280 1281 // Parse ".gnu.version" section which is a parallel array for the symbol 1282 // table. If a given file doesn't have a ".gnu.version" section, we use 1283 // VER_NDX_GLOBAL. 1284 size_t size = numELFSyms - firstGlobal; 1285 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1286 if (versymSec) { 1287 ArrayRef<Elf_Versym> versym = 1288 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1289 this) 1290 .slice(firstGlobal); 1291 for (size_t i = 0; i < size; ++i) 1292 versyms[i] = versym[i].vs_index; 1293 } 1294 1295 // System libraries can have a lot of symbols with versions. Using a 1296 // fixed buffer for computing the versions name (foo@ver) can save a 1297 // lot of allocations. 1298 SmallString<0> versionedNameBuffer; 1299 1300 // Add symbols to the symbol table. 1301 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1302 for (size_t i = 0; i < syms.size(); ++i) { 1303 const Elf_Sym &sym = syms[i]; 1304 1305 // ELF spec requires that all local symbols precede weak or global 1306 // symbols in each symbol table, and the index of first non-local symbol 1307 // is stored to sh_info. If a local symbol appears after some non-local 1308 // symbol, that's a violation of the spec. 1309 StringRef name = CHECK(sym.getName(this->stringTable), this); 1310 if (sym.getBinding() == STB_LOCAL) { 1311 warn("found local symbol '" + name + 1312 "' in global part of symbol table in file " + toString(this)); 1313 continue; 1314 } 1315 1316 if (sym.isUndefined()) { 1317 Symbol *s = symtab->addSymbol( 1318 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1319 s->exportDynamic = true; 1320 continue; 1321 } 1322 1323 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1324 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1325 // workaround for this bug. 1326 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1327 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1328 name == "_gp_disp") 1329 continue; 1330 1331 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1332 if (!(versyms[i] & VERSYM_HIDDEN)) { 1333 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1334 sym.st_other, sym.getType(), sym.st_value, 1335 sym.st_size, alignment, idx}); 1336 } 1337 1338 // Also add the symbol with the versioned name to handle undefined symbols 1339 // with explicit versions. 1340 if (idx == VER_NDX_GLOBAL) 1341 continue; 1342 1343 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1344 error("corrupt input file: version definition index " + Twine(idx) + 1345 " for symbol " + name + " is out of bounds\n>>> defined in " + 1346 toString(this)); 1347 continue; 1348 } 1349 1350 StringRef verName = 1351 this->stringTable.data() + 1352 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1353 versionedNameBuffer.clear(); 1354 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1355 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1356 sym.st_other, sym.getType(), sym.st_value, 1357 sym.st_size, alignment, idx}); 1358 } 1359 } 1360 1361 static ELFKind getBitcodeELFKind(const Triple &t) { 1362 if (t.isLittleEndian()) 1363 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1364 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1365 } 1366 1367 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1368 switch (t.getArch()) { 1369 case Triple::aarch64: 1370 return EM_AARCH64; 1371 case Triple::amdgcn: 1372 case Triple::r600: 1373 return EM_AMDGPU; 1374 case Triple::arm: 1375 case Triple::thumb: 1376 return EM_ARM; 1377 case Triple::avr: 1378 return EM_AVR; 1379 case Triple::mips: 1380 case Triple::mipsel: 1381 case Triple::mips64: 1382 case Triple::mips64el: 1383 return EM_MIPS; 1384 case Triple::msp430: 1385 return EM_MSP430; 1386 case Triple::ppc: 1387 return EM_PPC; 1388 case Triple::ppc64: 1389 case Triple::ppc64le: 1390 return EM_PPC64; 1391 case Triple::riscv32: 1392 case Triple::riscv64: 1393 return EM_RISCV; 1394 case Triple::x86: 1395 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1396 case Triple::x86_64: 1397 return EM_X86_64; 1398 default: 1399 error(path + ": could not infer e_machine from bitcode target triple " + 1400 t.str()); 1401 return EM_NONE; 1402 } 1403 } 1404 1405 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1406 uint64_t offsetInArchive) 1407 : InputFile(BitcodeKind, mb) { 1408 this->archiveName = archiveName; 1409 1410 std::string path = mb.getBufferIdentifier().str(); 1411 if (config->thinLTOIndexOnly) 1412 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1413 1414 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1415 // name. If two archives define two members with the same name, this 1416 // causes a collision which result in only one of the objects being taken 1417 // into consideration at LTO time (which very likely causes undefined 1418 // symbols later in the link stage). So we append file offset to make 1419 // filename unique. 1420 StringRef name = archiveName.empty() 1421 ? saver.save(path) 1422 : saver.save(archiveName + "(" + path + " at " + 1423 utostr(offsetInArchive) + ")"); 1424 MemoryBufferRef mbref(mb.getBuffer(), name); 1425 1426 obj = CHECK(lto::InputFile::create(mbref), this); 1427 1428 Triple t(obj->getTargetTriple()); 1429 ekind = getBitcodeELFKind(t); 1430 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1431 } 1432 1433 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1434 switch (gvVisibility) { 1435 case GlobalValue::DefaultVisibility: 1436 return STV_DEFAULT; 1437 case GlobalValue::HiddenVisibility: 1438 return STV_HIDDEN; 1439 case GlobalValue::ProtectedVisibility: 1440 return STV_PROTECTED; 1441 } 1442 llvm_unreachable("unknown visibility"); 1443 } 1444 1445 template <class ELFT> 1446 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1447 const lto::InputFile::Symbol &objSym, 1448 BitcodeFile &f) { 1449 StringRef name = saver.save(objSym.getName()); 1450 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1451 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1452 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1453 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1454 1455 int c = objSym.getComdatIndex(); 1456 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1457 Undefined newSym(&f, name, binding, visibility, type); 1458 if (canOmitFromDynSym) 1459 newSym.exportDynamic = false; 1460 Symbol *ret = symtab->addSymbol(newSym); 1461 ret->referenced = true; 1462 return ret; 1463 } 1464 1465 if (objSym.isCommon()) 1466 return symtab->addSymbol( 1467 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1468 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1469 1470 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1471 if (canOmitFromDynSym) 1472 newSym.exportDynamic = false; 1473 return symtab->addSymbol(newSym); 1474 } 1475 1476 template <class ELFT> void BitcodeFile::parse() { 1477 std::vector<bool> keptComdats; 1478 for (StringRef s : obj->getComdatTable()) 1479 keptComdats.push_back( 1480 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1481 1482 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1483 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1484 1485 for (auto l : obj->getDependentLibraries()) 1486 addDependentLibrary(l, this); 1487 } 1488 1489 void BinaryFile::parse() { 1490 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1491 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1492 8, data, ".data"); 1493 sections.push_back(section); 1494 1495 // For each input file foo that is embedded to a result as a binary 1496 // blob, we define _binary_foo_{start,end,size} symbols, so that 1497 // user programs can access blobs by name. Non-alphanumeric 1498 // characters in a filename are replaced with underscore. 1499 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1500 for (size_t i = 0; i < s.size(); ++i) 1501 if (!isAlnum(s[i])) 1502 s[i] = '_'; 1503 1504 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1505 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1506 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1507 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1508 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1509 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1510 } 1511 1512 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1513 uint64_t offsetInArchive) { 1514 if (isBitcode(mb)) 1515 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1516 1517 switch (getELFKind(mb, archiveName)) { 1518 case ELF32LEKind: 1519 return make<ObjFile<ELF32LE>>(mb, archiveName); 1520 case ELF32BEKind: 1521 return make<ObjFile<ELF32BE>>(mb, archiveName); 1522 case ELF64LEKind: 1523 return make<ObjFile<ELF64LE>>(mb, archiveName); 1524 case ELF64BEKind: 1525 return make<ObjFile<ELF64BE>>(mb, archiveName); 1526 default: 1527 llvm_unreachable("getELFKind"); 1528 } 1529 } 1530 1531 void LazyObjFile::fetch() { 1532 if (mb.getBuffer().empty()) 1533 return; 1534 1535 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1536 file->groupId = groupId; 1537 1538 mb = {}; 1539 1540 // Copy symbol vector so that the new InputFile doesn't have to 1541 // insert the same defined symbols to the symbol table again. 1542 file->symbols = std::move(symbols); 1543 1544 parseFile(file); 1545 } 1546 1547 template <class ELFT> void LazyObjFile::parse() { 1548 using Elf_Sym = typename ELFT::Sym; 1549 1550 // A lazy object file wraps either a bitcode file or an ELF file. 1551 if (isBitcode(this->mb)) { 1552 std::unique_ptr<lto::InputFile> obj = 1553 CHECK(lto::InputFile::create(this->mb), this); 1554 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1555 if (sym.isUndefined()) 1556 continue; 1557 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1558 } 1559 return; 1560 } 1561 1562 if (getELFKind(this->mb, archiveName) != config->ekind) { 1563 error("incompatible file: " + this->mb.getBufferIdentifier()); 1564 return; 1565 } 1566 1567 // Find a symbol table. 1568 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1569 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1570 1571 for (const typename ELFT::Shdr &sec : sections) { 1572 if (sec.sh_type != SHT_SYMTAB) 1573 continue; 1574 1575 // A symbol table is found. 1576 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1577 uint32_t firstGlobal = sec.sh_info; 1578 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1579 this->symbols.resize(eSyms.size()); 1580 1581 // Get existing symbols or insert placeholder symbols. 1582 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1583 if (eSyms[i].st_shndx != SHN_UNDEF) 1584 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1585 1586 // Replace existing symbols with LazyObject symbols. 1587 // 1588 // resolve() may trigger this->fetch() if an existing symbol is an 1589 // undefined symbol. If that happens, this LazyObjFile has served 1590 // its purpose, and we can exit from the loop early. 1591 for (Symbol *sym : this->symbols) { 1592 if (!sym) 1593 continue; 1594 sym->resolve(LazyObject{*this, sym->getName()}); 1595 1596 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1597 if (mb.getBuffer().empty()) 1598 return; 1599 } 1600 return; 1601 } 1602 } 1603 1604 std::string replaceThinLTOSuffix(StringRef path) { 1605 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1606 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1607 1608 if (path.consume_back(suffix)) 1609 return (path + repl).str(); 1610 return path; 1611 } 1612 1613 template void BitcodeFile::parse<ELF32LE>(); 1614 template void BitcodeFile::parse<ELF32BE>(); 1615 template void BitcodeFile::parse<ELF64LE>(); 1616 template void BitcodeFile::parse<ELF64BE>(); 1617 1618 template void LazyObjFile::parse<ELF32LE>(); 1619 template void LazyObjFile::parse<ELF32BE>(); 1620 template void LazyObjFile::parse<ELF64LE>(); 1621 template void LazyObjFile::parse<ELF64BE>(); 1622 1623 template class ObjFile<ELF32LE>; 1624 template class ObjFile<ELF32BE>; 1625 template class ObjFile<ELF64LE>; 1626 template class ObjFile<ELF64BE>; 1627 1628 template void SharedFile::parse<ELF32LE>(); 1629 template void SharedFile::parse<ELF32BE>(); 1630 template void SharedFile::parse<ELF64LE>(); 1631 template void SharedFile::parse<ELF64BE>(); 1632 1633 } // namespace elf 1634 } // namespace lld 1635