1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Object/ELFObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys; 36 using namespace llvm::sys::fs; 37 using namespace llvm::support::endian; 38 39 namespace lld { 40 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 41 std::string toString(const elf::InputFile *f) { 42 if (!f) 43 return "<internal>"; 44 45 if (f->toStringCache.empty()) { 46 if (f->archiveName.empty()) 47 f->toStringCache = f->getName(); 48 else 49 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 50 } 51 return f->toStringCache; 52 } 53 54 namespace elf { 55 bool InputFile::isInGroup; 56 uint32_t InputFile::nextGroupId; 57 std::vector<BinaryFile *> binaryFiles; 58 std::vector<BitcodeFile *> bitcodeFiles; 59 std::vector<LazyObjFile *> lazyObjFiles; 60 std::vector<InputFile *> objectFiles; 61 std::vector<SharedFile *> sharedFiles; 62 63 std::unique_ptr<TarWriter> tar; 64 65 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 66 unsigned char size; 67 unsigned char endian; 68 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 69 70 auto report = [&](StringRef msg) { 71 StringRef filename = mb.getBufferIdentifier(); 72 if (archiveName.empty()) 73 fatal(filename + ": " + msg); 74 else 75 fatal(archiveName + "(" + filename + "): " + msg); 76 }; 77 78 if (!mb.getBuffer().startswith(ElfMagic)) 79 report("not an ELF file"); 80 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 81 report("corrupted ELF file: invalid data encoding"); 82 if (size != ELFCLASS32 && size != ELFCLASS64) 83 report("corrupted ELF file: invalid file class"); 84 85 size_t bufSize = mb.getBuffer().size(); 86 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 87 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 88 report("corrupted ELF file: file is too short"); 89 90 if (size == ELFCLASS32) 91 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 92 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 93 } 94 95 InputFile::InputFile(Kind k, MemoryBufferRef m) 96 : mb(m), groupId(nextGroupId), fileKind(k) { 97 // All files within the same --{start,end}-group get the same group ID. 98 // Otherwise, a new file will get a new group ID. 99 if (!isInGroup) 100 ++nextGroupId; 101 } 102 103 Optional<MemoryBufferRef> readFile(StringRef path) { 104 // The --chroot option changes our virtual root directory. 105 // This is useful when you are dealing with files created by --reproduce. 106 if (!config->chroot.empty() && path.startswith("/")) 107 path = saver.save(config->chroot + path); 108 109 log(path); 110 111 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 112 if (auto ec = mbOrErr.getError()) { 113 error("cannot open " + path + ": " + ec.message()); 114 return None; 115 } 116 117 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 118 MemoryBufferRef mbref = mb->getMemBufferRef(); 119 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 120 121 if (tar) 122 tar->append(relativeToRoot(path), mbref.getBuffer()); 123 return mbref; 124 } 125 126 // All input object files must be for the same architecture 127 // (e.g. it does not make sense to link x86 object files with 128 // MIPS object files.) This function checks for that error. 129 static bool isCompatible(InputFile *file) { 130 if (!file->isElf() && !isa<BitcodeFile>(file)) 131 return true; 132 133 if (file->ekind == config->ekind && file->emachine == config->emachine) { 134 if (config->emachine != EM_MIPS) 135 return true; 136 if (isMipsN32Abi(file) == config->mipsN32Abi) 137 return true; 138 } 139 140 if (!config->emulation.empty()) { 141 error(toString(file) + " is incompatible with " + config->emulation); 142 return false; 143 } 144 145 InputFile *existing; 146 if (!objectFiles.empty()) 147 existing = objectFiles[0]; 148 else if (!sharedFiles.empty()) 149 existing = sharedFiles[0]; 150 else 151 existing = bitcodeFiles[0]; 152 153 error(toString(file) + " is incompatible with " + toString(existing)); 154 return false; 155 } 156 157 template <class ELFT> static void doParseFile(InputFile *file) { 158 if (!isCompatible(file)) 159 return; 160 161 // Binary file 162 if (auto *f = dyn_cast<BinaryFile>(file)) { 163 binaryFiles.push_back(f); 164 f->parse(); 165 return; 166 } 167 168 // .a file 169 if (auto *f = dyn_cast<ArchiveFile>(file)) { 170 f->parse(); 171 return; 172 } 173 174 // Lazy object file 175 if (auto *f = dyn_cast<LazyObjFile>(file)) { 176 lazyObjFiles.push_back(f); 177 f->parse<ELFT>(); 178 return; 179 } 180 181 if (config->trace) 182 message(toString(file)); 183 184 // .so file 185 if (auto *f = dyn_cast<SharedFile>(file)) { 186 f->parse<ELFT>(); 187 return; 188 } 189 190 // LLVM bitcode file 191 if (auto *f = dyn_cast<BitcodeFile>(file)) { 192 bitcodeFiles.push_back(f); 193 f->parse<ELFT>(); 194 return; 195 } 196 197 // Regular object file 198 objectFiles.push_back(file); 199 cast<ObjFile<ELFT>>(file)->parse(); 200 } 201 202 // Add symbols in File to the symbol table. 203 void parseFile(InputFile *file) { 204 switch (config->ekind) { 205 case ELF32LEKind: 206 doParseFile<ELF32LE>(file); 207 return; 208 case ELF32BEKind: 209 doParseFile<ELF32BE>(file); 210 return; 211 case ELF64LEKind: 212 doParseFile<ELF64LE>(file); 213 return; 214 case ELF64BEKind: 215 doParseFile<ELF64BE>(file); 216 return; 217 default: 218 llvm_unreachable("unknown ELFT"); 219 } 220 } 221 222 // Concatenates arguments to construct a string representing an error location. 223 static std::string createFileLineMsg(StringRef path, unsigned line) { 224 std::string filename = path::filename(path); 225 std::string lineno = ":" + std::to_string(line); 226 if (filename == path) 227 return filename + lineno; 228 return filename + lineno + " (" + path.str() + lineno + ")"; 229 } 230 231 template <class ELFT> 232 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 233 InputSectionBase &sec, uint64_t offset) { 234 // In DWARF, functions and variables are stored to different places. 235 // First, lookup a function for a given offset. 236 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 237 return createFileLineMsg(info->FileName, info->Line); 238 239 // If it failed, lookup again as a variable. 240 if (Optional<std::pair<std::string, unsigned>> fileLine = 241 file.getVariableLoc(sym.getName())) 242 return createFileLineMsg(fileLine->first, fileLine->second); 243 244 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 245 return file.sourceFile; 246 } 247 248 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 249 uint64_t offset) { 250 if (kind() != ObjKind) 251 return ""; 252 switch (config->ekind) { 253 default: 254 llvm_unreachable("Invalid kind"); 255 case ELF32LEKind: 256 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 257 case ELF32BEKind: 258 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 259 case ELF64LEKind: 260 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 261 case ELF64BEKind: 262 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 263 } 264 } 265 266 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 267 dwarf = make<DWARFCache>(std::make_unique<DWARFContext>( 268 std::make_unique<LLDDwarfObj<ELFT>>(this))); 269 } 270 271 // Returns the pair of file name and line number describing location of data 272 // object (variable, array, etc) definition. 273 template <class ELFT> 274 Optional<std::pair<std::string, unsigned>> 275 ObjFile<ELFT>::getVariableLoc(StringRef name) { 276 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 277 278 return dwarf->getVariableLoc(name); 279 } 280 281 // Returns source line information for a given offset 282 // using DWARF debug info. 283 template <class ELFT> 284 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 285 uint64_t offset) { 286 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 287 288 // Detect SectionIndex for specified section. 289 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 290 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 291 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 292 if (s == sections[curIndex]) { 293 sectionIndex = curIndex; 294 break; 295 } 296 } 297 298 // Use fake address calcuated by adding section file offset and offset in 299 // section. See comments for ObjectInfo class. 300 return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex); 301 } 302 303 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 304 ekind = getELFKind(mb, ""); 305 306 switch (ekind) { 307 case ELF32LEKind: 308 init<ELF32LE>(); 309 break; 310 case ELF32BEKind: 311 init<ELF32BE>(); 312 break; 313 case ELF64LEKind: 314 init<ELF64LE>(); 315 break; 316 case ELF64BEKind: 317 init<ELF64BE>(); 318 break; 319 default: 320 llvm_unreachable("getELFKind"); 321 } 322 } 323 324 template <typename Elf_Shdr> 325 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 326 for (const Elf_Shdr &sec : sections) 327 if (sec.sh_type == type) 328 return &sec; 329 return nullptr; 330 } 331 332 template <class ELFT> void ELFFileBase::init() { 333 using Elf_Shdr = typename ELFT::Shdr; 334 using Elf_Sym = typename ELFT::Sym; 335 336 // Initialize trivial attributes. 337 const ELFFile<ELFT> &obj = getObj<ELFT>(); 338 emachine = obj.getHeader()->e_machine; 339 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 340 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 341 342 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 343 344 // Find a symbol table. 345 bool isDSO = 346 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 347 const Elf_Shdr *symtabSec = 348 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 349 350 if (!symtabSec) 351 return; 352 353 // Initialize members corresponding to a symbol table. 354 firstGlobal = symtabSec->sh_info; 355 356 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 357 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 358 fatal(toString(this) + ": invalid sh_info in symbol table"); 359 360 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 361 numELFSyms = eSyms.size(); 362 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 363 } 364 365 template <class ELFT> 366 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 367 return CHECK( 368 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 369 this); 370 } 371 372 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 373 if (this->symbols.empty()) 374 return {}; 375 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 376 } 377 378 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 379 return makeArrayRef(this->symbols).slice(this->firstGlobal); 380 } 381 382 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 383 // Read a section table. justSymbols is usually false. 384 if (this->justSymbols) 385 initializeJustSymbols(); 386 else 387 initializeSections(ignoreComdats); 388 389 // Read a symbol table. 390 initializeSymbols(); 391 } 392 393 // Sections with SHT_GROUP and comdat bits define comdat section groups. 394 // They are identified and deduplicated by group name. This function 395 // returns a group name. 396 template <class ELFT> 397 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 398 const Elf_Shdr &sec) { 399 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 400 if (sec.sh_info >= symbols.size()) 401 fatal(toString(this) + ": invalid symbol index"); 402 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 403 StringRef signature = CHECK(sym.getName(this->stringTable), this); 404 405 // As a special case, if a symbol is a section symbol and has no name, 406 // we use a section name as a signature. 407 // 408 // Such SHT_GROUP sections are invalid from the perspective of the ELF 409 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 410 // older produce such sections as outputs for the -r option, so we need 411 // a bug-compatibility. 412 if (signature.empty() && sym.getType() == STT_SECTION) 413 return getSectionName(sec); 414 return signature; 415 } 416 417 template <class ELFT> 418 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 419 // On a regular link we don't merge sections if -O0 (default is -O1). This 420 // sometimes makes the linker significantly faster, although the output will 421 // be bigger. 422 // 423 // Doing the same for -r would create a problem as it would combine sections 424 // with different sh_entsize. One option would be to just copy every SHF_MERGE 425 // section as is to the output. While this would produce a valid ELF file with 426 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 427 // they see two .debug_str. We could have separate logic for combining 428 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 429 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 430 // logic for -r. 431 if (config->optimize == 0 && !config->relocatable) 432 return false; 433 434 // A mergeable section with size 0 is useless because they don't have 435 // any data to merge. A mergeable string section with size 0 can be 436 // argued as invalid because it doesn't end with a null character. 437 // We'll avoid a mess by handling them as if they were non-mergeable. 438 if (sec.sh_size == 0) 439 return false; 440 441 // Check for sh_entsize. The ELF spec is not clear about the zero 442 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 443 // the section does not hold a table of fixed-size entries". We know 444 // that Rust 1.13 produces a string mergeable section with a zero 445 // sh_entsize. Here we just accept it rather than being picky about it. 446 uint64_t entSize = sec.sh_entsize; 447 if (entSize == 0) 448 return false; 449 if (sec.sh_size % entSize) 450 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 451 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 452 Twine(entSize) + ")"); 453 454 uint64_t flags = sec.sh_flags; 455 if (!(flags & SHF_MERGE)) 456 return false; 457 if (flags & SHF_WRITE) 458 fatal(toString(this) + ":(" + name + 459 "): writable SHF_MERGE section is not supported"); 460 461 return true; 462 } 463 464 // This is for --just-symbols. 465 // 466 // --just-symbols is a very minor feature that allows you to link your 467 // output against other existing program, so that if you load both your 468 // program and the other program into memory, your output can refer the 469 // other program's symbols. 470 // 471 // When the option is given, we link "just symbols". The section table is 472 // initialized with null pointers. 473 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 474 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 475 this->sections.resize(sections.size()); 476 } 477 478 // An ELF object file may contain a `.deplibs` section. If it exists, the 479 // section contains a list of library specifiers such as `m` for libm. This 480 // function resolves a given name by finding the first matching library checking 481 // the various ways that a library can be specified to LLD. This ELF extension 482 // is a form of autolinking and is called `dependent libraries`. It is currently 483 // unique to LLVM and lld. 484 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 485 if (!config->dependentLibraries) 486 return; 487 if (fs::exists(specifier)) 488 driver->addFile(specifier, /*withLOption=*/false); 489 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 490 driver->addFile(*s, /*withLOption=*/true); 491 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 492 driver->addFile(*s, /*withLOption=*/true); 493 else 494 error(toString(f) + 495 ": unable to find library from dependent library specifier: " + 496 specifier); 497 } 498 499 template <class ELFT> 500 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 501 const ELFFile<ELFT> &obj = this->getObj(); 502 503 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 504 uint64_t size = objSections.size(); 505 this->sections.resize(size); 506 this->sectionStringTable = 507 CHECK(obj.getSectionStringTable(objSections), this); 508 509 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 510 if (this->sections[i] == &InputSection::discarded) 511 continue; 512 const Elf_Shdr &sec = objSections[i]; 513 514 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 515 cgProfile = 516 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 517 518 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 519 // if -r is given, we'll let the final link discard such sections. 520 // This is compatible with GNU. 521 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 522 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 523 // We ignore the address-significance table if we know that the object 524 // file was created by objcopy or ld -r. This is because these tools 525 // will reorder the symbols in the symbol table, invalidating the data 526 // in the address-significance table, which refers to symbols by index. 527 if (sec.sh_link != 0) 528 this->addrsigSec = &sec; 529 else if (config->icf == ICFLevel::Safe) 530 warn(toString(this) + ": --icf=safe is incompatible with object " 531 "files created using objcopy or ld -r"); 532 } 533 this->sections[i] = &InputSection::discarded; 534 continue; 535 } 536 537 switch (sec.sh_type) { 538 case SHT_GROUP: { 539 // De-duplicate section groups by their signatures. 540 StringRef signature = getShtGroupSignature(objSections, sec); 541 this->sections[i] = &InputSection::discarded; 542 543 544 ArrayRef<Elf_Word> entries = 545 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 546 if (entries.empty()) 547 fatal(toString(this) + ": empty SHT_GROUP"); 548 549 // The first word of a SHT_GROUP section contains flags. Currently, 550 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 551 // An group with the empty flag doesn't define anything; such sections 552 // are just skipped. 553 if (entries[0] == 0) 554 continue; 555 556 if (entries[0] != GRP_COMDAT) 557 fatal(toString(this) + ": unsupported SHT_GROUP format"); 558 559 bool isNew = 560 ignoreComdats || 561 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 562 .second; 563 if (isNew) { 564 if (config->relocatable) 565 this->sections[i] = createInputSection(sec); 566 continue; 567 } 568 569 // Otherwise, discard group members. 570 for (uint32_t secIndex : entries.slice(1)) { 571 if (secIndex >= size) 572 fatal(toString(this) + 573 ": invalid section index in group: " + Twine(secIndex)); 574 this->sections[secIndex] = &InputSection::discarded; 575 } 576 break; 577 } 578 case SHT_SYMTAB_SHNDX: 579 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 580 break; 581 case SHT_SYMTAB: 582 case SHT_STRTAB: 583 case SHT_NULL: 584 break; 585 default: 586 this->sections[i] = createInputSection(sec); 587 } 588 } 589 590 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 591 if (this->sections[i] == &InputSection::discarded) 592 continue; 593 const Elf_Shdr &sec = objSections[i]; 594 if (!(sec.sh_flags & SHF_LINK_ORDER)) 595 continue; 596 597 // .ARM.exidx sections have a reverse dependency on the InputSection they 598 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 599 InputSectionBase *linkSec = nullptr; 600 if (sec.sh_link < this->sections.size()) 601 linkSec = this->sections[sec.sh_link]; 602 if (!linkSec) 603 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 604 605 InputSection *isec = cast<InputSection>(this->sections[i]); 606 linkSec->dependentSections.push_back(isec); 607 if (!isa<InputSection>(linkSec)) 608 error("a section " + isec->name + 609 " with SHF_LINK_ORDER should not refer a non-regular section: " + 610 toString(linkSec)); 611 } 612 } 613 614 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 615 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 616 // the input objects have been compiled. 617 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 618 const InputFile *f) { 619 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 620 // If an ABI tag isn't present then it is implicitly given the value of 0 621 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 622 // including some in glibc that don't use FP args (and should have value 3) 623 // don't have the attribute so we do not consider an implicit value of 0 624 // as a clash. 625 return; 626 627 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 628 ARMVFPArgKind arg; 629 switch (vfpArgs) { 630 case ARMBuildAttrs::BaseAAPCS: 631 arg = ARMVFPArgKind::Base; 632 break; 633 case ARMBuildAttrs::HardFPAAPCS: 634 arg = ARMVFPArgKind::VFP; 635 break; 636 case ARMBuildAttrs::ToolChainFPPCS: 637 // Tool chain specific convention that conforms to neither AAPCS variant. 638 arg = ARMVFPArgKind::ToolChain; 639 break; 640 case ARMBuildAttrs::CompatibleFPAAPCS: 641 // Object compatible with all conventions. 642 return; 643 default: 644 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 645 return; 646 } 647 // Follow ld.bfd and error if there is a mix of calling conventions. 648 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 649 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 650 else 651 config->armVFPArgs = arg; 652 } 653 654 // The ARM support in lld makes some use of instructions that are not available 655 // on all ARM architectures. Namely: 656 // - Use of BLX instruction for interworking between ARM and Thumb state. 657 // - Use of the extended Thumb branch encoding in relocation. 658 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 659 // The ARM Attributes section contains information about the architecture chosen 660 // at compile time. We follow the convention that if at least one input object 661 // is compiled with an architecture that supports these features then lld is 662 // permitted to use them. 663 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 664 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 665 return; 666 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 667 switch (arch) { 668 case ARMBuildAttrs::Pre_v4: 669 case ARMBuildAttrs::v4: 670 case ARMBuildAttrs::v4T: 671 // Architectures prior to v5 do not support BLX instruction 672 break; 673 case ARMBuildAttrs::v5T: 674 case ARMBuildAttrs::v5TE: 675 case ARMBuildAttrs::v5TEJ: 676 case ARMBuildAttrs::v6: 677 case ARMBuildAttrs::v6KZ: 678 case ARMBuildAttrs::v6K: 679 config->armHasBlx = true; 680 // Architectures used in pre-Cortex processors do not support 681 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 682 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 683 break; 684 default: 685 // All other Architectures have BLX and extended branch encoding 686 config->armHasBlx = true; 687 config->armJ1J2BranchEncoding = true; 688 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 689 // All Architectures used in Cortex processors with the exception 690 // of v6-M and v6S-M have the MOVT and MOVW instructions. 691 config->armHasMovtMovw = true; 692 break; 693 } 694 } 695 696 // If a source file is compiled with x86 hardware-assisted call flow control 697 // enabled, the generated object file contains feature flags indicating that 698 // fact. This function reads the feature flags and returns it. 699 // 700 // Essentially we want to read a single 32-bit value in this function, but this 701 // function is rather complicated because the value is buried deep inside a 702 // .note.gnu.property section. 703 // 704 // The section consists of one or more NOTE records. Each NOTE record consists 705 // of zero or more type-length-value fields. We want to find a field of a 706 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 707 // the ABI is unnecessarily complicated. 708 template <class ELFT> 709 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 710 using Elf_Nhdr = typename ELFT::Nhdr; 711 using Elf_Note = typename ELFT::Note; 712 713 uint32_t featuresSet = 0; 714 while (!data.empty()) { 715 // Read one NOTE record. 716 if (data.size() < sizeof(Elf_Nhdr)) 717 fatal(toString(obj) + ": .note.gnu.property: section too short"); 718 719 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 720 if (data.size() < nhdr->getSize()) 721 fatal(toString(obj) + ": .note.gnu.property: section too short"); 722 723 Elf_Note note(*nhdr); 724 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 725 data = data.slice(nhdr->getSize()); 726 continue; 727 } 728 729 uint32_t featureAndType = config->emachine == EM_AARCH64 730 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 731 : GNU_PROPERTY_X86_FEATURE_1_AND; 732 733 // Read a body of a NOTE record, which consists of type-length-value fields. 734 ArrayRef<uint8_t> desc = note.getDesc(); 735 while (!desc.empty()) { 736 if (desc.size() < 8) 737 fatal(toString(obj) + ": .note.gnu.property: section too short"); 738 739 uint32_t type = read32le(desc.data()); 740 uint32_t size = read32le(desc.data() + 4); 741 742 if (type == featureAndType) { 743 // We found a FEATURE_1_AND field. There may be more than one of these 744 // in a .note.gnu.propery section, for a relocatable object we 745 // accumulate the bits set. 746 featuresSet |= read32le(desc.data() + 8); 747 } 748 749 // On 64-bit, a payload may be followed by a 4-byte padding to make its 750 // size a multiple of 8. 751 if (ELFT::Is64Bits) 752 size = alignTo(size, 8); 753 754 desc = desc.slice(size + 8); // +8 for Type and Size 755 } 756 757 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 758 data = data.slice(nhdr->getSize()); 759 } 760 761 return featuresSet; 762 } 763 764 template <class ELFT> 765 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 766 uint32_t idx = sec.sh_info; 767 if (idx >= this->sections.size()) 768 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 769 InputSectionBase *target = this->sections[idx]; 770 771 // Strictly speaking, a relocation section must be included in the 772 // group of the section it relocates. However, LLVM 3.3 and earlier 773 // would fail to do so, so we gracefully handle that case. 774 if (target == &InputSection::discarded) 775 return nullptr; 776 777 if (!target) 778 fatal(toString(this) + ": unsupported relocation reference"); 779 return target; 780 } 781 782 // Create a regular InputSection class that has the same contents 783 // as a given section. 784 static InputSection *toRegularSection(MergeInputSection *sec) { 785 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 786 sec->data(), sec->name); 787 } 788 789 template <class ELFT> 790 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 791 StringRef name = getSectionName(sec); 792 793 switch (sec.sh_type) { 794 case SHT_ARM_ATTRIBUTES: { 795 if (config->emachine != EM_ARM) 796 break; 797 ARMAttributeParser attributes; 798 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 799 attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind); 800 updateSupportedARMFeatures(attributes); 801 updateARMVFPArgs(attributes, this); 802 803 // FIXME: Retain the first attribute section we see. The eglibc ARM 804 // dynamic loaders require the presence of an attribute section for dlopen 805 // to work. In a full implementation we would merge all attribute sections. 806 if (in.armAttributes == nullptr) { 807 in.armAttributes = make<InputSection>(*this, sec, name); 808 return in.armAttributes; 809 } 810 return &InputSection::discarded; 811 } 812 case SHT_LLVM_DEPENDENT_LIBRARIES: { 813 if (config->relocatable) 814 break; 815 ArrayRef<char> data = 816 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 817 if (!data.empty() && data.back() != '\0') { 818 error(toString(this) + 819 ": corrupted dependent libraries section (unterminated string): " + 820 name); 821 return &InputSection::discarded; 822 } 823 for (const char *d = data.begin(), *e = data.end(); d < e;) { 824 StringRef s(d); 825 addDependentLibrary(s, this); 826 d += s.size() + 1; 827 } 828 return &InputSection::discarded; 829 } 830 case SHT_RELA: 831 case SHT_REL: { 832 // Find a relocation target section and associate this section with that. 833 // Target may have been discarded if it is in a different section group 834 // and the group is discarded, even though it's a violation of the 835 // spec. We handle that situation gracefully by discarding dangling 836 // relocation sections. 837 InputSectionBase *target = getRelocTarget(sec); 838 if (!target) 839 return nullptr; 840 841 // This section contains relocation information. 842 // If -r is given, we do not interpret or apply relocation 843 // but just copy relocation sections to output. 844 if (config->relocatable) { 845 InputSection *relocSec = make<InputSection>(*this, sec, name); 846 // We want to add a dependency to target, similar like we do for 847 // -emit-relocs below. This is useful for the case when linker script 848 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 849 // -r, but we faced it in the Linux kernel and have to handle such case 850 // and not to crash. 851 target->dependentSections.push_back(relocSec); 852 return relocSec; 853 } 854 855 if (target->firstRelocation) 856 fatal(toString(this) + 857 ": multiple relocation sections to one section are not supported"); 858 859 // ELF spec allows mergeable sections with relocations, but they are 860 // rare, and it is in practice hard to merge such sections by contents, 861 // because applying relocations at end of linking changes section 862 // contents. So, we simply handle such sections as non-mergeable ones. 863 // Degrading like this is acceptable because section merging is optional. 864 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 865 target = toRegularSection(ms); 866 this->sections[sec.sh_info] = target; 867 } 868 869 if (sec.sh_type == SHT_RELA) { 870 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 871 target->firstRelocation = rels.begin(); 872 target->numRelocations = rels.size(); 873 target->areRelocsRela = true; 874 } else { 875 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 876 target->firstRelocation = rels.begin(); 877 target->numRelocations = rels.size(); 878 target->areRelocsRela = false; 879 } 880 assert(isUInt<31>(target->numRelocations)); 881 882 // Relocation sections processed by the linker are usually removed 883 // from the output, so returning `nullptr` for the normal case. 884 // However, if -emit-relocs is given, we need to leave them in the output. 885 // (Some post link analysis tools need this information.) 886 if (config->emitRelocs) { 887 InputSection *relocSec = make<InputSection>(*this, sec, name); 888 // We will not emit relocation section if target was discarded. 889 target->dependentSections.push_back(relocSec); 890 return relocSec; 891 } 892 return nullptr; 893 } 894 } 895 896 // The GNU linker uses .note.GNU-stack section as a marker indicating 897 // that the code in the object file does not expect that the stack is 898 // executable (in terms of NX bit). If all input files have the marker, 899 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 900 // make the stack non-executable. Most object files have this section as 901 // of 2017. 902 // 903 // But making the stack non-executable is a norm today for security 904 // reasons. Failure to do so may result in a serious security issue. 905 // Therefore, we make LLD always add PT_GNU_STACK unless it is 906 // explicitly told to do otherwise (by -z execstack). Because the stack 907 // executable-ness is controlled solely by command line options, 908 // .note.GNU-stack sections are simply ignored. 909 if (name == ".note.GNU-stack") 910 return &InputSection::discarded; 911 912 // Object files that use processor features such as Intel Control-Flow 913 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 914 // .note.gnu.property section containing a bitfield of feature bits like the 915 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 916 // 917 // Since we merge bitmaps from multiple object files to create a new 918 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 919 // file's .note.gnu.property section. 920 if (name == ".note.gnu.property") { 921 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 922 this->andFeatures = readAndFeatures(this, contents); 923 return &InputSection::discarded; 924 } 925 926 // Split stacks is a feature to support a discontiguous stack, 927 // commonly used in the programming language Go. For the details, 928 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 929 // for split stack will include a .note.GNU-split-stack section. 930 if (name == ".note.GNU-split-stack") { 931 if (config->relocatable) { 932 error("cannot mix split-stack and non-split-stack in a relocatable link"); 933 return &InputSection::discarded; 934 } 935 this->splitStack = true; 936 return &InputSection::discarded; 937 } 938 939 // An object file cmpiled for split stack, but where some of the 940 // functions were compiled with the no_split_stack_attribute will 941 // include a .note.GNU-no-split-stack section. 942 if (name == ".note.GNU-no-split-stack") { 943 this->someNoSplitStack = true; 944 return &InputSection::discarded; 945 } 946 947 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 948 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 949 // sections. Drop those sections to avoid duplicate symbol errors. 950 // FIXME: This is glibc PR20543, we should remove this hack once that has been 951 // fixed for a while. 952 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 953 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 954 return &InputSection::discarded; 955 956 // If we are creating a new .build-id section, strip existing .build-id 957 // sections so that the output won't have more than one .build-id. 958 // This is not usually a problem because input object files normally don't 959 // have .build-id sections, but you can create such files by 960 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 961 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 962 return &InputSection::discarded; 963 964 // The linker merges EH (exception handling) frames and creates a 965 // .eh_frame_hdr section for runtime. So we handle them with a special 966 // class. For relocatable outputs, they are just passed through. 967 if (name == ".eh_frame" && !config->relocatable) 968 return make<EhInputSection>(*this, sec, name); 969 970 if (shouldMerge(sec, name)) 971 return make<MergeInputSection>(*this, sec, name); 972 return make<InputSection>(*this, sec, name); 973 } 974 975 template <class ELFT> 976 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 977 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 978 } 979 980 // Initialize this->Symbols. this->Symbols is a parallel array as 981 // its corresponding ELF symbol table. 982 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 983 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 984 this->symbols.resize(eSyms.size()); 985 986 // Our symbol table may have already been partially initialized 987 // because of LazyObjFile. 988 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 989 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 990 this->symbols[i] = 991 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 992 993 // Fill this->Symbols. A symbol is either local or global. 994 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 995 const Elf_Sym &eSym = eSyms[i]; 996 997 // Read symbol attributes. 998 uint32_t secIdx = getSectionIndex(eSym); 999 if (secIdx >= this->sections.size()) 1000 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1001 1002 InputSectionBase *sec = this->sections[secIdx]; 1003 uint8_t binding = eSym.getBinding(); 1004 uint8_t stOther = eSym.st_other; 1005 uint8_t type = eSym.getType(); 1006 uint64_t value = eSym.st_value; 1007 uint64_t size = eSym.st_size; 1008 StringRefZ name = this->stringTable.data() + eSym.st_name; 1009 1010 // Handle local symbols. Local symbols are not added to the symbol 1011 // table because they are not visible from other object files. We 1012 // allocate symbol instances and add their pointers to Symbols. 1013 if (binding == STB_LOCAL) { 1014 if (eSym.getType() == STT_FILE) 1015 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1016 1017 if (this->stringTable.size() <= eSym.st_name) 1018 fatal(toString(this) + ": invalid symbol name offset"); 1019 1020 if (eSym.st_shndx == SHN_UNDEF) 1021 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1022 else if (sec == &InputSection::discarded) 1023 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1024 /*DiscardedSecIdx=*/secIdx); 1025 else 1026 this->symbols[i] = 1027 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1028 continue; 1029 } 1030 1031 // Handle global undefined symbols. 1032 if (eSym.st_shndx == SHN_UNDEF) { 1033 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1034 this->symbols[i]->referenced = true; 1035 continue; 1036 } 1037 1038 // Handle global common symbols. 1039 if (eSym.st_shndx == SHN_COMMON) { 1040 if (value == 0 || value >= UINT32_MAX) 1041 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1042 "' has invalid alignment: " + Twine(value)); 1043 this->symbols[i]->resolve( 1044 CommonSymbol{this, name, binding, stOther, type, value, size}); 1045 continue; 1046 } 1047 1048 // If a defined symbol is in a discarded section, handle it as if it 1049 // were an undefined symbol. Such symbol doesn't comply with the 1050 // standard, but in practice, a .eh_frame often directly refer 1051 // COMDAT member sections, and if a comdat group is discarded, some 1052 // defined symbol in a .eh_frame becomes dangling symbols. 1053 if (sec == &InputSection::discarded) { 1054 this->symbols[i]->resolve( 1055 Undefined{this, name, binding, stOther, type, secIdx}); 1056 continue; 1057 } 1058 1059 // Handle global defined symbols. 1060 if (binding == STB_GLOBAL || binding == STB_WEAK || 1061 binding == STB_GNU_UNIQUE) { 1062 this->symbols[i]->resolve( 1063 Defined{this, name, binding, stOther, type, value, size, sec}); 1064 continue; 1065 } 1066 1067 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1068 } 1069 } 1070 1071 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1072 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1073 file(std::move(file)) {} 1074 1075 void ArchiveFile::parse() { 1076 for (const Archive::Symbol &sym : file->symbols()) 1077 symtab->addSymbol(LazyArchive{*this, sym}); 1078 } 1079 1080 // Returns a buffer pointing to a member file containing a given symbol. 1081 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1082 Archive::Child c = 1083 CHECK(sym.getMember(), toString(this) + 1084 ": could not get the member for symbol " + 1085 toELFString(sym)); 1086 1087 if (!seen.insert(c.getChildOffset()).second) 1088 return; 1089 1090 MemoryBufferRef mb = 1091 CHECK(c.getMemoryBufferRef(), 1092 toString(this) + 1093 ": could not get the buffer for the member defining symbol " + 1094 toELFString(sym)); 1095 1096 if (tar && c.getParent()->isThin()) 1097 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1098 1099 InputFile *file = createObjectFile( 1100 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1101 file->groupId = groupId; 1102 parseFile(file); 1103 } 1104 1105 unsigned SharedFile::vernauxNum; 1106 1107 // Parse the version definitions in the object file if present, and return a 1108 // vector whose nth element contains a pointer to the Elf_Verdef for version 1109 // identifier n. Version identifiers that are not definitions map to nullptr. 1110 template <typename ELFT> 1111 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1112 const typename ELFT::Shdr *sec) { 1113 if (!sec) 1114 return {}; 1115 1116 // We cannot determine the largest verdef identifier without inspecting 1117 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1118 // sequentially starting from 1, so we predict that the largest identifier 1119 // will be verdefCount. 1120 unsigned verdefCount = sec->sh_info; 1121 std::vector<const void *> verdefs(verdefCount + 1); 1122 1123 // Build the Verdefs array by following the chain of Elf_Verdef objects 1124 // from the start of the .gnu.version_d section. 1125 const uint8_t *verdef = base + sec->sh_offset; 1126 for (unsigned i = 0; i != verdefCount; ++i) { 1127 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1128 verdef += curVerdef->vd_next; 1129 unsigned verdefIndex = curVerdef->vd_ndx; 1130 verdefs.resize(verdefIndex + 1); 1131 verdefs[verdefIndex] = curVerdef; 1132 } 1133 return verdefs; 1134 } 1135 1136 // We do not usually care about alignments of data in shared object 1137 // files because the loader takes care of it. However, if we promote a 1138 // DSO symbol to point to .bss due to copy relocation, we need to keep 1139 // the original alignment requirements. We infer it in this function. 1140 template <typename ELFT> 1141 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1142 const typename ELFT::Sym &sym) { 1143 uint64_t ret = UINT64_MAX; 1144 if (sym.st_value) 1145 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1146 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1147 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1148 return (ret > UINT32_MAX) ? 0 : ret; 1149 } 1150 1151 // Fully parse the shared object file. 1152 // 1153 // This function parses symbol versions. If a DSO has version information, 1154 // the file has a ".gnu.version_d" section which contains symbol version 1155 // definitions. Each symbol is associated to one version through a table in 1156 // ".gnu.version" section. That table is a parallel array for the symbol 1157 // table, and each table entry contains an index in ".gnu.version_d". 1158 // 1159 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1160 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1161 // ".gnu.version_d". 1162 // 1163 // The file format for symbol versioning is perhaps a bit more complicated 1164 // than necessary, but you can easily understand the code if you wrap your 1165 // head around the data structure described above. 1166 template <class ELFT> void SharedFile::parse() { 1167 using Elf_Dyn = typename ELFT::Dyn; 1168 using Elf_Shdr = typename ELFT::Shdr; 1169 using Elf_Sym = typename ELFT::Sym; 1170 using Elf_Verdef = typename ELFT::Verdef; 1171 using Elf_Versym = typename ELFT::Versym; 1172 1173 ArrayRef<Elf_Dyn> dynamicTags; 1174 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1175 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1176 1177 const Elf_Shdr *versymSec = nullptr; 1178 const Elf_Shdr *verdefSec = nullptr; 1179 1180 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1181 for (const Elf_Shdr &sec : sections) { 1182 switch (sec.sh_type) { 1183 default: 1184 continue; 1185 case SHT_DYNAMIC: 1186 dynamicTags = 1187 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1188 break; 1189 case SHT_GNU_versym: 1190 versymSec = &sec; 1191 break; 1192 case SHT_GNU_verdef: 1193 verdefSec = &sec; 1194 break; 1195 } 1196 } 1197 1198 if (versymSec && numELFSyms == 0) { 1199 error("SHT_GNU_versym should be associated with symbol table"); 1200 return; 1201 } 1202 1203 // Search for a DT_SONAME tag to initialize this->soName. 1204 for (const Elf_Dyn &dyn : dynamicTags) { 1205 if (dyn.d_tag == DT_NEEDED) { 1206 uint64_t val = dyn.getVal(); 1207 if (val >= this->stringTable.size()) 1208 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1209 dtNeeded.push_back(this->stringTable.data() + val); 1210 } else if (dyn.d_tag == DT_SONAME) { 1211 uint64_t val = dyn.getVal(); 1212 if (val >= this->stringTable.size()) 1213 fatal(toString(this) + ": invalid DT_SONAME entry"); 1214 soName = this->stringTable.data() + val; 1215 } 1216 } 1217 1218 // DSOs are uniquified not by filename but by soname. 1219 DenseMap<StringRef, SharedFile *>::iterator it; 1220 bool wasInserted; 1221 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1222 1223 // If a DSO appears more than once on the command line with and without 1224 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1225 // user can add an extra DSO with --no-as-needed to force it to be added to 1226 // the dependency list. 1227 it->second->isNeeded |= isNeeded; 1228 if (!wasInserted) 1229 return; 1230 1231 sharedFiles.push_back(this); 1232 1233 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1234 1235 // Parse ".gnu.version" section which is a parallel array for the symbol 1236 // table. If a given file doesn't have a ".gnu.version" section, we use 1237 // VER_NDX_GLOBAL. 1238 size_t size = numELFSyms - firstGlobal; 1239 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1240 if (versymSec) { 1241 ArrayRef<Elf_Versym> versym = 1242 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1243 this) 1244 .slice(firstGlobal); 1245 for (size_t i = 0; i < size; ++i) 1246 versyms[i] = versym[i].vs_index; 1247 } 1248 1249 // System libraries can have a lot of symbols with versions. Using a 1250 // fixed buffer for computing the versions name (foo@ver) can save a 1251 // lot of allocations. 1252 SmallString<0> versionedNameBuffer; 1253 1254 // Add symbols to the symbol table. 1255 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1256 for (size_t i = 0; i < syms.size(); ++i) { 1257 const Elf_Sym &sym = syms[i]; 1258 1259 // ELF spec requires that all local symbols precede weak or global 1260 // symbols in each symbol table, and the index of first non-local symbol 1261 // is stored to sh_info. If a local symbol appears after some non-local 1262 // symbol, that's a violation of the spec. 1263 StringRef name = CHECK(sym.getName(this->stringTable), this); 1264 if (sym.getBinding() == STB_LOCAL) { 1265 warn("found local symbol '" + name + 1266 "' in global part of symbol table in file " + toString(this)); 1267 continue; 1268 } 1269 1270 if (sym.isUndefined()) { 1271 Symbol *s = symtab->addSymbol( 1272 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1273 s->exportDynamic = true; 1274 continue; 1275 } 1276 1277 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1278 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1279 // workaround for this bug. 1280 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1281 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1282 name == "_gp_disp") 1283 continue; 1284 1285 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1286 if (!(versyms[i] & VERSYM_HIDDEN)) { 1287 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1288 sym.st_other, sym.getType(), sym.st_value, 1289 sym.st_size, alignment, idx}); 1290 } 1291 1292 // Also add the symbol with the versioned name to handle undefined symbols 1293 // with explicit versions. 1294 if (idx == VER_NDX_GLOBAL) 1295 continue; 1296 1297 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1298 error("corrupt input file: version definition index " + Twine(idx) + 1299 " for symbol " + name + " is out of bounds\n>>> defined in " + 1300 toString(this)); 1301 continue; 1302 } 1303 1304 StringRef verName = 1305 this->stringTable.data() + 1306 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1307 versionedNameBuffer.clear(); 1308 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1309 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1310 sym.st_other, sym.getType(), sym.st_value, 1311 sym.st_size, alignment, idx}); 1312 } 1313 } 1314 1315 static ELFKind getBitcodeELFKind(const Triple &t) { 1316 if (t.isLittleEndian()) 1317 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1318 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1319 } 1320 1321 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1322 switch (t.getArch()) { 1323 case Triple::aarch64: 1324 return EM_AARCH64; 1325 case Triple::amdgcn: 1326 case Triple::r600: 1327 return EM_AMDGPU; 1328 case Triple::arm: 1329 case Triple::thumb: 1330 return EM_ARM; 1331 case Triple::avr: 1332 return EM_AVR; 1333 case Triple::mips: 1334 case Triple::mipsel: 1335 case Triple::mips64: 1336 case Triple::mips64el: 1337 return EM_MIPS; 1338 case Triple::msp430: 1339 return EM_MSP430; 1340 case Triple::ppc: 1341 return EM_PPC; 1342 case Triple::ppc64: 1343 case Triple::ppc64le: 1344 return EM_PPC64; 1345 case Triple::riscv32: 1346 case Triple::riscv64: 1347 return EM_RISCV; 1348 case Triple::x86: 1349 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1350 case Triple::x86_64: 1351 return EM_X86_64; 1352 default: 1353 error(path + ": could not infer e_machine from bitcode target triple " + 1354 t.str()); 1355 return EM_NONE; 1356 } 1357 } 1358 1359 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1360 uint64_t offsetInArchive) 1361 : InputFile(BitcodeKind, mb) { 1362 this->archiveName = archiveName; 1363 1364 std::string path = mb.getBufferIdentifier().str(); 1365 if (config->thinLTOIndexOnly) 1366 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1367 1368 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1369 // name. If two archives define two members with the same name, this 1370 // causes a collision which result in only one of the objects being taken 1371 // into consideration at LTO time (which very likely causes undefined 1372 // symbols later in the link stage). So we append file offset to make 1373 // filename unique. 1374 StringRef name = archiveName.empty() 1375 ? saver.save(path) 1376 : saver.save(archiveName + "(" + path + " at " + 1377 utostr(offsetInArchive) + ")"); 1378 MemoryBufferRef mbref(mb.getBuffer(), name); 1379 1380 obj = CHECK(lto::InputFile::create(mbref), this); 1381 1382 Triple t(obj->getTargetTriple()); 1383 ekind = getBitcodeELFKind(t); 1384 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1385 } 1386 1387 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1388 switch (gvVisibility) { 1389 case GlobalValue::DefaultVisibility: 1390 return STV_DEFAULT; 1391 case GlobalValue::HiddenVisibility: 1392 return STV_HIDDEN; 1393 case GlobalValue::ProtectedVisibility: 1394 return STV_PROTECTED; 1395 } 1396 llvm_unreachable("unknown visibility"); 1397 } 1398 1399 template <class ELFT> 1400 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1401 const lto::InputFile::Symbol &objSym, 1402 BitcodeFile &f) { 1403 StringRef name = saver.save(objSym.getName()); 1404 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1405 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1406 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1407 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1408 1409 int c = objSym.getComdatIndex(); 1410 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1411 Undefined newSym(&f, name, binding, visibility, type); 1412 if (canOmitFromDynSym) 1413 newSym.exportDynamic = false; 1414 Symbol *ret = symtab->addSymbol(newSym); 1415 ret->referenced = true; 1416 return ret; 1417 } 1418 1419 if (objSym.isCommon()) 1420 return symtab->addSymbol( 1421 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1422 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1423 1424 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1425 if (canOmitFromDynSym) 1426 newSym.exportDynamic = false; 1427 return symtab->addSymbol(newSym); 1428 } 1429 1430 template <class ELFT> void BitcodeFile::parse() { 1431 std::vector<bool> keptComdats; 1432 for (StringRef s : obj->getComdatTable()) 1433 keptComdats.push_back( 1434 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1435 1436 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1437 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1438 1439 for (auto l : obj->getDependentLibraries()) 1440 addDependentLibrary(l, this); 1441 } 1442 1443 void BinaryFile::parse() { 1444 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1445 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1446 8, data, ".data"); 1447 sections.push_back(section); 1448 1449 // For each input file foo that is embedded to a result as a binary 1450 // blob, we define _binary_foo_{start,end,size} symbols, so that 1451 // user programs can access blobs by name. Non-alphanumeric 1452 // characters in a filename are replaced with underscore. 1453 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1454 for (size_t i = 0; i < s.size(); ++i) 1455 if (!isAlnum(s[i])) 1456 s[i] = '_'; 1457 1458 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1459 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1460 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1461 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1462 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1463 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1464 } 1465 1466 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1467 uint64_t offsetInArchive) { 1468 if (isBitcode(mb)) 1469 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1470 1471 switch (getELFKind(mb, archiveName)) { 1472 case ELF32LEKind: 1473 return make<ObjFile<ELF32LE>>(mb, archiveName); 1474 case ELF32BEKind: 1475 return make<ObjFile<ELF32BE>>(mb, archiveName); 1476 case ELF64LEKind: 1477 return make<ObjFile<ELF64LE>>(mb, archiveName); 1478 case ELF64BEKind: 1479 return make<ObjFile<ELF64BE>>(mb, archiveName); 1480 default: 1481 llvm_unreachable("getELFKind"); 1482 } 1483 } 1484 1485 void LazyObjFile::fetch() { 1486 if (mb.getBuffer().empty()) 1487 return; 1488 1489 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1490 file->groupId = groupId; 1491 1492 mb = {}; 1493 1494 // Copy symbol vector so that the new InputFile doesn't have to 1495 // insert the same defined symbols to the symbol table again. 1496 file->symbols = std::move(symbols); 1497 1498 parseFile(file); 1499 } 1500 1501 template <class ELFT> void LazyObjFile::parse() { 1502 using Elf_Sym = typename ELFT::Sym; 1503 1504 // A lazy object file wraps either a bitcode file or an ELF file. 1505 if (isBitcode(this->mb)) { 1506 std::unique_ptr<lto::InputFile> obj = 1507 CHECK(lto::InputFile::create(this->mb), this); 1508 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1509 if (sym.isUndefined()) 1510 continue; 1511 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1512 } 1513 return; 1514 } 1515 1516 if (getELFKind(this->mb, archiveName) != config->ekind) { 1517 error("incompatible file: " + this->mb.getBufferIdentifier()); 1518 return; 1519 } 1520 1521 // Find a symbol table. 1522 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1523 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1524 1525 for (const typename ELFT::Shdr &sec : sections) { 1526 if (sec.sh_type != SHT_SYMTAB) 1527 continue; 1528 1529 // A symbol table is found. 1530 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1531 uint32_t firstGlobal = sec.sh_info; 1532 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1533 this->symbols.resize(eSyms.size()); 1534 1535 // Get existing symbols or insert placeholder symbols. 1536 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1537 if (eSyms[i].st_shndx != SHN_UNDEF) 1538 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1539 1540 // Replace existing symbols with LazyObject symbols. 1541 // 1542 // resolve() may trigger this->fetch() if an existing symbol is an 1543 // undefined symbol. If that happens, this LazyObjFile has served 1544 // its purpose, and we can exit from the loop early. 1545 for (Symbol *sym : this->symbols) { 1546 if (!sym) 1547 continue; 1548 sym->resolve(LazyObject{*this, sym->getName()}); 1549 1550 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1551 if (mb.getBuffer().empty()) 1552 return; 1553 } 1554 return; 1555 } 1556 } 1557 1558 std::string replaceThinLTOSuffix(StringRef path) { 1559 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1560 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1561 1562 if (path.consume_back(suffix)) 1563 return (path + repl).str(); 1564 return path; 1565 } 1566 1567 template void BitcodeFile::parse<ELF32LE>(); 1568 template void BitcodeFile::parse<ELF32BE>(); 1569 template void BitcodeFile::parse<ELF64LE>(); 1570 template void BitcodeFile::parse<ELF64BE>(); 1571 1572 template void LazyObjFile::parse<ELF32LE>(); 1573 template void LazyObjFile::parse<ELF32BE>(); 1574 template void LazyObjFile::parse<ELF64LE>(); 1575 template void LazyObjFile::parse<ELF64BE>(); 1576 1577 template class ObjFile<ELF32LE>; 1578 template class ObjFile<ELF32BE>; 1579 template class ObjFile<ELF64LE>; 1580 template class ObjFile<ELF64BE>; 1581 1582 template void SharedFile::parse<ELF32LE>(); 1583 template void SharedFile::parse<ELF32BE>(); 1584 template void SharedFile::parse<ELF64LE>(); 1585 template void SharedFile::parse<ELF64BE>(); 1586 1587 } // namespace elf 1588 } // namespace lld 1589