1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "DWARF.h" 12 #include "Driver.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "Target.h" 19 #include "lld/Common/CommonLinkerContext.h" 20 #include "lld/Common/DWARF.h" 21 #include "llvm/ADT/CachedHashString.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/Object/IRObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/FileSystem.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/TimeProfiler.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <optional> 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::sys; 40 using namespace llvm::sys::fs; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 // This function is explicitly instantiated in ARM.cpp, don't do it here to 46 // avoid warnings with MSVC. 47 extern template void ObjFile<ELF32LE>::importCmseSymbols(); 48 extern template void ObjFile<ELF32BE>::importCmseSymbols(); 49 extern template void ObjFile<ELF64LE>::importCmseSymbols(); 50 extern template void ObjFile<ELF64BE>::importCmseSymbols(); 51 52 bool InputFile::isInGroup; 53 uint32_t InputFile::nextGroupId; 54 55 std::unique_ptr<TarWriter> elf::tar; 56 57 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 58 std::string lld::toString(const InputFile *f) { 59 static std::mutex mu; 60 if (!f) 61 return "<internal>"; 62 63 { 64 std::lock_guard<std::mutex> lock(mu); 65 if (f->toStringCache.empty()) { 66 if (f->archiveName.empty()) 67 f->toStringCache = f->getName(); 68 else 69 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 70 } 71 } 72 return std::string(f->toStringCache); 73 } 74 75 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 76 unsigned char size; 77 unsigned char endian; 78 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 79 80 auto report = [&](StringRef msg) { 81 StringRef filename = mb.getBufferIdentifier(); 82 if (archiveName.empty()) 83 fatal(filename + ": " + msg); 84 else 85 fatal(archiveName + "(" + filename + "): " + msg); 86 }; 87 88 if (!mb.getBuffer().starts_with(ElfMagic)) 89 report("not an ELF file"); 90 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 91 report("corrupted ELF file: invalid data encoding"); 92 if (size != ELFCLASS32 && size != ELFCLASS64) 93 report("corrupted ELF file: invalid file class"); 94 95 size_t bufSize = mb.getBuffer().size(); 96 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 97 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 98 report("corrupted ELF file: file is too short"); 99 100 if (size == ELFCLASS32) 101 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 102 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 103 } 104 105 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 106 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 107 // the input objects have been compiled. 108 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 109 const InputFile *f) { 110 std::optional<unsigned> attr = 111 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 112 if (!attr) 113 // If an ABI tag isn't present then it is implicitly given the value of 0 114 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 115 // including some in glibc that don't use FP args (and should have value 3) 116 // don't have the attribute so we do not consider an implicit value of 0 117 // as a clash. 118 return; 119 120 unsigned vfpArgs = *attr; 121 ARMVFPArgKind arg; 122 switch (vfpArgs) { 123 case ARMBuildAttrs::BaseAAPCS: 124 arg = ARMVFPArgKind::Base; 125 break; 126 case ARMBuildAttrs::HardFPAAPCS: 127 arg = ARMVFPArgKind::VFP; 128 break; 129 case ARMBuildAttrs::ToolChainFPPCS: 130 // Tool chain specific convention that conforms to neither AAPCS variant. 131 arg = ARMVFPArgKind::ToolChain; 132 break; 133 case ARMBuildAttrs::CompatibleFPAAPCS: 134 // Object compatible with all conventions. 135 return; 136 default: 137 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 138 return; 139 } 140 // Follow ld.bfd and error if there is a mix of calling conventions. 141 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 142 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 143 else 144 config->armVFPArgs = arg; 145 } 146 147 // The ARM support in lld makes some use of instructions that are not available 148 // on all ARM architectures. Namely: 149 // - Use of BLX instruction for interworking between ARM and Thumb state. 150 // - Use of the extended Thumb branch encoding in relocation. 151 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 152 // The ARM Attributes section contains information about the architecture chosen 153 // at compile time. We follow the convention that if at least one input object 154 // is compiled with an architecture that supports these features then lld is 155 // permitted to use them. 156 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 157 std::optional<unsigned> attr = 158 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 159 if (!attr) 160 return; 161 auto arch = *attr; 162 switch (arch) { 163 case ARMBuildAttrs::Pre_v4: 164 case ARMBuildAttrs::v4: 165 case ARMBuildAttrs::v4T: 166 // Architectures prior to v5 do not support BLX instruction 167 break; 168 case ARMBuildAttrs::v5T: 169 case ARMBuildAttrs::v5TE: 170 case ARMBuildAttrs::v5TEJ: 171 case ARMBuildAttrs::v6: 172 case ARMBuildAttrs::v6KZ: 173 case ARMBuildAttrs::v6K: 174 config->armHasBlx = true; 175 // Architectures used in pre-Cortex processors do not support 176 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 177 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 178 break; 179 default: 180 // All other Architectures have BLX and extended branch encoding 181 config->armHasBlx = true; 182 config->armJ1J2BranchEncoding = true; 183 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 184 // All Architectures used in Cortex processors with the exception 185 // of v6-M and v6S-M have the MOVT and MOVW instructions. 186 config->armHasMovtMovw = true; 187 break; 188 } 189 190 // Only ARMv8-M or later architectures have CMSE support. 191 std::optional<unsigned> profile = 192 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile); 193 if (!profile) 194 return; 195 if (arch >= ARMBuildAttrs::CPUArch::v8_M_Base && 196 profile == ARMBuildAttrs::MicroControllerProfile) 197 config->armCMSESupport = true; 198 199 // The thumb PLT entries require Thumb2 which can be used on multiple archs. 200 // For now, let's limit it to ones where ARM isn't available and we know have 201 // Thumb2. 202 std::optional<unsigned> armISA = 203 attributes.getAttributeValue(ARMBuildAttrs::ARM_ISA_use); 204 std::optional<unsigned> thumb = 205 attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use); 206 config->armHasArmISA |= armISA && *armISA >= ARMBuildAttrs::Allowed; 207 config->armHasThumb2ISA |= thumb && *thumb >= ARMBuildAttrs::AllowThumb32; 208 } 209 210 InputFile::InputFile(Kind k, MemoryBufferRef m) 211 : mb(m), groupId(nextGroupId), fileKind(k) { 212 // All files within the same --{start,end}-group get the same group ID. 213 // Otherwise, a new file will get a new group ID. 214 if (!isInGroup) 215 ++nextGroupId; 216 } 217 218 std::optional<MemoryBufferRef> elf::readFile(StringRef path) { 219 llvm::TimeTraceScope timeScope("Load input files", path); 220 221 // The --chroot option changes our virtual root directory. 222 // This is useful when you are dealing with files created by --reproduce. 223 if (!config->chroot.empty() && path.starts_with("/")) 224 path = saver().save(config->chroot + path); 225 226 bool remapped = false; 227 auto it = config->remapInputs.find(path); 228 if (it != config->remapInputs.end()) { 229 path = it->second; 230 remapped = true; 231 } else { 232 for (const auto &[pat, toFile] : config->remapInputsWildcards) { 233 if (pat.match(path)) { 234 path = toFile; 235 remapped = true; 236 break; 237 } 238 } 239 } 240 if (remapped) { 241 // Use /dev/null to indicate an input file that should be ignored. Change 242 // the path to NUL on Windows. 243 #ifdef _WIN32 244 if (path == "/dev/null") 245 path = "NUL"; 246 #endif 247 } 248 249 log(path); 250 config->dependencyFiles.insert(llvm::CachedHashString(path)); 251 252 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 253 /*RequiresNullTerminator=*/false); 254 if (auto ec = mbOrErr.getError()) { 255 error("cannot open " + path + ": " + ec.message()); 256 return std::nullopt; 257 } 258 259 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef(); 260 ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership 261 262 if (tar) 263 tar->append(relativeToRoot(path), mbref.getBuffer()); 264 return mbref; 265 } 266 267 // All input object files must be for the same architecture 268 // (e.g. it does not make sense to link x86 object files with 269 // MIPS object files.) This function checks for that error. 270 static bool isCompatible(InputFile *file) { 271 if (!file->isElf() && !isa<BitcodeFile>(file)) 272 return true; 273 274 if (file->ekind == config->ekind && file->emachine == config->emachine) { 275 if (config->emachine != EM_MIPS) 276 return true; 277 if (isMipsN32Abi(file) == config->mipsN32Abi) 278 return true; 279 } 280 281 StringRef target = 282 !config->bfdname.empty() ? config->bfdname : config->emulation; 283 if (!target.empty()) { 284 error(toString(file) + " is incompatible with " + target); 285 return false; 286 } 287 288 InputFile *existing = nullptr; 289 if (!ctx.objectFiles.empty()) 290 existing = ctx.objectFiles[0]; 291 else if (!ctx.sharedFiles.empty()) 292 existing = ctx.sharedFiles[0]; 293 else if (!ctx.bitcodeFiles.empty()) 294 existing = ctx.bitcodeFiles[0]; 295 std::string with; 296 if (existing) 297 with = " with " + toString(existing); 298 error(toString(file) + " is incompatible" + with); 299 return false; 300 } 301 302 template <class ELFT> static void doParseFile(InputFile *file) { 303 if (!isCompatible(file)) 304 return; 305 306 // Lazy object file 307 if (file->lazy) { 308 if (auto *f = dyn_cast<BitcodeFile>(file)) { 309 ctx.lazyBitcodeFiles.push_back(f); 310 f->parseLazy(); 311 } else { 312 cast<ObjFile<ELFT>>(file)->parseLazy(); 313 } 314 return; 315 } 316 317 if (config->trace) 318 message(toString(file)); 319 320 if (file->kind() == InputFile::ObjKind) { 321 ctx.objectFiles.push_back(cast<ELFFileBase>(file)); 322 cast<ObjFile<ELFT>>(file)->parse(); 323 } else if (auto *f = dyn_cast<SharedFile>(file)) { 324 f->parse<ELFT>(); 325 } else if (auto *f = dyn_cast<BitcodeFile>(file)) { 326 ctx.bitcodeFiles.push_back(f); 327 f->parse(); 328 } else { 329 ctx.binaryFiles.push_back(cast<BinaryFile>(file)); 330 cast<BinaryFile>(file)->parse(); 331 } 332 } 333 334 // Add symbols in File to the symbol table. 335 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); } 336 337 // This function is explicitly instantiated in ARM.cpp. Mark it extern here, 338 // to avoid warnings when building with MSVC. 339 extern template void ObjFile<ELF32LE>::importCmseSymbols(); 340 extern template void ObjFile<ELF32BE>::importCmseSymbols(); 341 extern template void ObjFile<ELF64LE>::importCmseSymbols(); 342 extern template void ObjFile<ELF64BE>::importCmseSymbols(); 343 344 template <class ELFT> 345 static void doParseFiles(const std::vector<InputFile *> &files, 346 InputFile *armCmseImpLib) { 347 // Add all files to the symbol table. This will add almost all symbols that we 348 // need to the symbol table. This process might add files to the link due to 349 // addDependentLibrary. 350 for (size_t i = 0; i < files.size(); ++i) { 351 llvm::TimeTraceScope timeScope("Parse input files", files[i]->getName()); 352 doParseFile<ELFT>(files[i]); 353 } 354 if (armCmseImpLib) 355 cast<ObjFile<ELFT>>(*armCmseImpLib).importCmseSymbols(); 356 } 357 358 void elf::parseFiles(const std::vector<InputFile *> &files, 359 InputFile *armCmseImpLib) { 360 llvm::TimeTraceScope timeScope("Parse input files"); 361 invokeELFT(doParseFiles, files, armCmseImpLib); 362 } 363 364 // Concatenates arguments to construct a string representing an error location. 365 static std::string createFileLineMsg(StringRef path, unsigned line) { 366 std::string filename = std::string(path::filename(path)); 367 std::string lineno = ":" + std::to_string(line); 368 if (filename == path) 369 return filename + lineno; 370 return filename + lineno + " (" + path.str() + lineno + ")"; 371 } 372 373 template <class ELFT> 374 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 375 const InputSectionBase &sec, uint64_t offset) { 376 // In DWARF, functions and variables are stored to different places. 377 // First, look up a function for a given offset. 378 if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 379 return createFileLineMsg(info->FileName, info->Line); 380 381 // If it failed, look up again as a variable. 382 if (std::optional<std::pair<std::string, unsigned>> fileLine = 383 file.getVariableLoc(sym.getName())) 384 return createFileLineMsg(fileLine->first, fileLine->second); 385 386 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 387 return std::string(file.sourceFile); 388 } 389 390 std::string InputFile::getSrcMsg(const Symbol &sym, const InputSectionBase &sec, 391 uint64_t offset) { 392 if (kind() != ObjKind) 393 return ""; 394 switch (ekind) { 395 default: 396 llvm_unreachable("Invalid kind"); 397 case ELF32LEKind: 398 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 399 case ELF32BEKind: 400 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 401 case ELF64LEKind: 402 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 403 case ELF64BEKind: 404 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 405 } 406 } 407 408 StringRef InputFile::getNameForScript() const { 409 if (archiveName.empty()) 410 return getName(); 411 412 if (nameForScriptCache.empty()) 413 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 414 415 return nameForScriptCache; 416 } 417 418 // An ELF object file may contain a `.deplibs` section. If it exists, the 419 // section contains a list of library specifiers such as `m` for libm. This 420 // function resolves a given name by finding the first matching library checking 421 // the various ways that a library can be specified to LLD. This ELF extension 422 // is a form of autolinking and is called `dependent libraries`. It is currently 423 // unique to LLVM and lld. 424 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 425 if (!config->dependentLibraries) 426 return; 427 if (std::optional<std::string> s = searchLibraryBaseName(specifier)) 428 ctx.driver.addFile(saver().save(*s), /*withLOption=*/true); 429 else if (std::optional<std::string> s = findFromSearchPaths(specifier)) 430 ctx.driver.addFile(saver().save(*s), /*withLOption=*/true); 431 else if (fs::exists(specifier)) 432 ctx.driver.addFile(specifier, /*withLOption=*/false); 433 else 434 error(toString(f) + 435 ": unable to find library from dependent library specifier: " + 436 specifier); 437 } 438 439 // Record the membership of a section group so that in the garbage collection 440 // pass, section group members are kept or discarded as a unit. 441 template <class ELFT> 442 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 443 ArrayRef<typename ELFT::Word> entries) { 444 bool hasAlloc = false; 445 for (uint32_t index : entries.slice(1)) { 446 if (index >= sections.size()) 447 return; 448 if (InputSectionBase *s = sections[index]) 449 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 450 hasAlloc = true; 451 } 452 453 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 454 // collection. See the comment in markLive(). This rule retains .debug_types 455 // and .rela.debug_types. 456 if (!hasAlloc) 457 return; 458 459 // Connect the members in a circular doubly-linked list via 460 // nextInSectionGroup. 461 InputSectionBase *head; 462 InputSectionBase *prev = nullptr; 463 for (uint32_t index : entries.slice(1)) { 464 InputSectionBase *s = sections[index]; 465 if (!s || s == &InputSection::discarded) 466 continue; 467 if (prev) 468 prev->nextInSectionGroup = s; 469 else 470 head = s; 471 prev = s; 472 } 473 if (prev) 474 prev->nextInSectionGroup = head; 475 } 476 477 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 478 llvm::call_once(initDwarf, [this]() { 479 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 480 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 481 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 482 [&](Error warning) { 483 warn(getName() + ": " + toString(std::move(warning))); 484 })); 485 }); 486 487 return dwarf.get(); 488 } 489 490 // Returns the pair of file name and line number describing location of data 491 // object (variable, array, etc) definition. 492 template <class ELFT> 493 std::optional<std::pair<std::string, unsigned>> 494 ObjFile<ELFT>::getVariableLoc(StringRef name) { 495 return getDwarf()->getVariableLoc(name); 496 } 497 498 // Returns source line information for a given offset 499 // using DWARF debug info. 500 template <class ELFT> 501 std::optional<DILineInfo> 502 ObjFile<ELFT>::getDILineInfo(const InputSectionBase *s, uint64_t offset) { 503 // Detect SectionIndex for specified section. 504 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 505 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 506 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 507 if (s == sections[curIndex]) { 508 sectionIndex = curIndex; 509 break; 510 } 511 } 512 513 return getDwarf()->getDILineInfo(offset, sectionIndex); 514 } 515 516 ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb) 517 : InputFile(k, mb) { 518 this->ekind = ekind; 519 } 520 521 template <typename Elf_Shdr> 522 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 523 for (const Elf_Shdr &sec : sections) 524 if (sec.sh_type == type) 525 return &sec; 526 return nullptr; 527 } 528 529 void ELFFileBase::init() { 530 switch (ekind) { 531 case ELF32LEKind: 532 init<ELF32LE>(fileKind); 533 break; 534 case ELF32BEKind: 535 init<ELF32BE>(fileKind); 536 break; 537 case ELF64LEKind: 538 init<ELF64LE>(fileKind); 539 break; 540 case ELF64BEKind: 541 init<ELF64BE>(fileKind); 542 break; 543 default: 544 llvm_unreachable("getELFKind"); 545 } 546 } 547 548 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) { 549 using Elf_Shdr = typename ELFT::Shdr; 550 using Elf_Sym = typename ELFT::Sym; 551 552 // Initialize trivial attributes. 553 const ELFFile<ELFT> &obj = getObj<ELFT>(); 554 emachine = obj.getHeader().e_machine; 555 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 556 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 557 558 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 559 elfShdrs = sections.data(); 560 numELFShdrs = sections.size(); 561 562 // Find a symbol table. 563 const Elf_Shdr *symtabSec = 564 findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB); 565 566 if (!symtabSec) 567 return; 568 569 // Initialize members corresponding to a symbol table. 570 firstGlobal = symtabSec->sh_info; 571 572 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 573 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 574 fatal(toString(this) + ": invalid sh_info in symbol table"); 575 576 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 577 numELFSyms = uint32_t(eSyms.size()); 578 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 579 } 580 581 template <class ELFT> 582 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 583 return CHECK( 584 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 585 this); 586 } 587 588 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 589 object::ELFFile<ELFT> obj = this->getObj(); 590 // Read a section table. justSymbols is usually false. 591 if (this->justSymbols) { 592 initializeJustSymbols(); 593 initializeSymbols(obj); 594 return; 595 } 596 597 // Handle dependent libraries and selection of section groups as these are not 598 // done in parallel. 599 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 600 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 601 uint64_t size = objSections.size(); 602 sections.resize(size); 603 for (size_t i = 0; i != size; ++i) { 604 const Elf_Shdr &sec = objSections[i]; 605 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) { 606 StringRef name = check(obj.getSectionName(sec, shstrtab)); 607 ArrayRef<char> data = CHECK( 608 this->getObj().template getSectionContentsAsArray<char>(sec), this); 609 if (!data.empty() && data.back() != '\0') { 610 error( 611 toString(this) + 612 ": corrupted dependent libraries section (unterminated string): " + 613 name); 614 } else { 615 for (const char *d = data.begin(), *e = data.end(); d < e;) { 616 StringRef s(d); 617 addDependentLibrary(s, this); 618 d += s.size() + 1; 619 } 620 } 621 this->sections[i] = &InputSection::discarded; 622 continue; 623 } 624 625 if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) { 626 ARMAttributeParser attributes; 627 ArrayRef<uint8_t> contents = 628 check(this->getObj().getSectionContents(sec)); 629 StringRef name = check(obj.getSectionName(sec, shstrtab)); 630 this->sections[i] = &InputSection::discarded; 631 if (Error e = attributes.parse(contents, ekind == ELF32LEKind 632 ? llvm::endianness::little 633 : llvm::endianness::big)) { 634 InputSection isec(*this, sec, name); 635 warn(toString(&isec) + ": " + llvm::toString(std::move(e))); 636 } else { 637 updateSupportedARMFeatures(attributes); 638 updateARMVFPArgs(attributes, this); 639 640 // FIXME: Retain the first attribute section we see. The eglibc ARM 641 // dynamic loaders require the presence of an attribute section for 642 // dlopen to work. In a full implementation we would merge all attribute 643 // sections. 644 if (in.attributes == nullptr) { 645 in.attributes = std::make_unique<InputSection>(*this, sec, name); 646 this->sections[i] = in.attributes.get(); 647 } 648 } 649 } 650 651 // Producing a static binary with MTE globals is not currently supported, 652 // remove all SHT_AARCH64_MEMTAG_GLOBALS_STATIC sections as they're unused 653 // medatada, and we don't want them to end up in the output file for static 654 // executables. 655 if (sec.sh_type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC && 656 !canHaveMemtagGlobals()) { 657 this->sections[i] = &InputSection::discarded; 658 continue; 659 } 660 661 if (sec.sh_type != SHT_GROUP) 662 continue; 663 StringRef signature = getShtGroupSignature(objSections, sec); 664 ArrayRef<Elf_Word> entries = 665 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 666 if (entries.empty()) 667 fatal(toString(this) + ": empty SHT_GROUP"); 668 669 Elf_Word flag = entries[0]; 670 if (flag && flag != GRP_COMDAT) 671 fatal(toString(this) + ": unsupported SHT_GROUP format"); 672 673 bool keepGroup = 674 (flag & GRP_COMDAT) == 0 || ignoreComdats || 675 symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this) 676 .second; 677 if (keepGroup) { 678 if (!config->resolveGroups) 679 this->sections[i] = createInputSection( 680 i, sec, check(obj.getSectionName(sec, shstrtab))); 681 continue; 682 } 683 684 // Otherwise, discard group members. 685 for (uint32_t secIndex : entries.slice(1)) { 686 if (secIndex >= size) 687 fatal(toString(this) + 688 ": invalid section index in group: " + Twine(secIndex)); 689 this->sections[secIndex] = &InputSection::discarded; 690 } 691 } 692 693 // Read a symbol table. 694 initializeSymbols(obj); 695 } 696 697 // Sections with SHT_GROUP and comdat bits define comdat section groups. 698 // They are identified and deduplicated by group name. This function 699 // returns a group name. 700 template <class ELFT> 701 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 702 const Elf_Shdr &sec) { 703 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 704 if (sec.sh_info >= symbols.size()) 705 fatal(toString(this) + ": invalid symbol index"); 706 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 707 return CHECK(sym.getName(this->stringTable), this); 708 } 709 710 template <class ELFT> 711 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 712 // On a regular link we don't merge sections if -O0 (default is -O1). This 713 // sometimes makes the linker significantly faster, although the output will 714 // be bigger. 715 // 716 // Doing the same for -r would create a problem as it would combine sections 717 // with different sh_entsize. One option would be to just copy every SHF_MERGE 718 // section as is to the output. While this would produce a valid ELF file with 719 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 720 // they see two .debug_str. We could have separate logic for combining 721 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 722 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 723 // logic for -r. 724 if (config->optimize == 0 && !config->relocatable) 725 return false; 726 727 // A mergeable section with size 0 is useless because they don't have 728 // any data to merge. A mergeable string section with size 0 can be 729 // argued as invalid because it doesn't end with a null character. 730 // We'll avoid a mess by handling them as if they were non-mergeable. 731 if (sec.sh_size == 0) 732 return false; 733 734 // Check for sh_entsize. The ELF spec is not clear about the zero 735 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 736 // the section does not hold a table of fixed-size entries". We know 737 // that Rust 1.13 produces a string mergeable section with a zero 738 // sh_entsize. Here we just accept it rather than being picky about it. 739 uint64_t entSize = sec.sh_entsize; 740 if (entSize == 0) 741 return false; 742 if (sec.sh_size % entSize) 743 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 744 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 745 Twine(entSize) + ")"); 746 747 if (sec.sh_flags & SHF_WRITE) 748 fatal(toString(this) + ":(" + name + 749 "): writable SHF_MERGE section is not supported"); 750 751 return true; 752 } 753 754 // This is for --just-symbols. 755 // 756 // --just-symbols is a very minor feature that allows you to link your 757 // output against other existing program, so that if you load both your 758 // program and the other program into memory, your output can refer the 759 // other program's symbols. 760 // 761 // When the option is given, we link "just symbols". The section table is 762 // initialized with null pointers. 763 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 764 sections.resize(numELFShdrs); 765 } 766 767 static bool isKnownSpecificSectionType(uint32_t t, uint32_t flags) { 768 if (SHT_LOUSER <= t && t <= SHT_HIUSER && !(flags & SHF_ALLOC)) 769 return true; 770 if (SHT_LOOS <= t && t <= SHT_HIOS && !(flags & SHF_OS_NONCONFORMING)) 771 return true; 772 // Allow all processor-specific types. This is different from GNU ld. 773 return SHT_LOPROC <= t && t <= SHT_HIPROC; 774 } 775 776 template <class ELFT> 777 void ObjFile<ELFT>::initializeSections(bool ignoreComdats, 778 const llvm::object::ELFFile<ELFT> &obj) { 779 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 780 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 781 uint64_t size = objSections.size(); 782 SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups; 783 for (size_t i = 0; i != size; ++i) { 784 if (this->sections[i] == &InputSection::discarded) 785 continue; 786 const Elf_Shdr &sec = objSections[i]; 787 const uint32_t type = sec.sh_type; 788 789 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 790 // if -r is given, we'll let the final link discard such sections. 791 // This is compatible with GNU. 792 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 793 if (type == SHT_LLVM_CALL_GRAPH_PROFILE) 794 cgProfileSectionIndex = i; 795 if (type == SHT_LLVM_ADDRSIG) { 796 // We ignore the address-significance table if we know that the object 797 // file was created by objcopy or ld -r. This is because these tools 798 // will reorder the symbols in the symbol table, invalidating the data 799 // in the address-significance table, which refers to symbols by index. 800 if (sec.sh_link != 0) 801 this->addrsigSec = &sec; 802 else if (config->icf == ICFLevel::Safe) 803 warn(toString(this) + 804 ": --icf=safe conservatively ignores " 805 "SHT_LLVM_ADDRSIG [index " + 806 Twine(i) + 807 "] with sh_link=0 " 808 "(likely created using objcopy or ld -r)"); 809 } 810 this->sections[i] = &InputSection::discarded; 811 continue; 812 } 813 814 switch (type) { 815 case SHT_GROUP: { 816 if (!config->relocatable) 817 sections[i] = &InputSection::discarded; 818 StringRef signature = 819 cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable)); 820 ArrayRef<Elf_Word> entries = 821 cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec)); 822 if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats || 823 symtab.comdatGroups.find(CachedHashStringRef(signature))->second == 824 this) 825 selectedGroups.push_back(entries); 826 break; 827 } 828 case SHT_SYMTAB_SHNDX: 829 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 830 break; 831 case SHT_SYMTAB: 832 case SHT_STRTAB: 833 case SHT_REL: 834 case SHT_RELA: 835 case SHT_CREL: 836 case SHT_NULL: 837 break; 838 case SHT_PROGBITS: 839 case SHT_NOTE: 840 case SHT_NOBITS: 841 case SHT_INIT_ARRAY: 842 case SHT_FINI_ARRAY: 843 case SHT_PREINIT_ARRAY: 844 this->sections[i] = 845 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 846 break; 847 case SHT_LLVM_LTO: 848 // Discard .llvm.lto in a relocatable link that does not use the bitcode. 849 // The concatenated output does not properly reflect the linking 850 // semantics. In addition, since we do not use the bitcode wrapper format, 851 // the concatenated raw bitcode would be invalid. 852 if (config->relocatable && !config->fatLTOObjects) { 853 sections[i] = &InputSection::discarded; 854 break; 855 } 856 [[fallthrough]]; 857 default: 858 this->sections[i] = 859 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 860 if (type == SHT_LLVM_SYMPART) 861 ctx.hasSympart.store(true, std::memory_order_relaxed); 862 else if (config->rejectMismatch && 863 !isKnownSpecificSectionType(type, sec.sh_flags)) 864 errorOrWarn(toString(this->sections[i]) + ": unknown section type 0x" + 865 Twine::utohexstr(type)); 866 break; 867 } 868 } 869 870 // We have a second loop. It is used to: 871 // 1) handle SHF_LINK_ORDER sections. 872 // 2) create relocation sections. In some cases the section header index of a 873 // relocation section may be smaller than that of the relocated section. In 874 // such cases, the relocation section would attempt to reference a target 875 // section that has not yet been created. For simplicity, delay creation of 876 // relocation sections until now. 877 for (size_t i = 0; i != size; ++i) { 878 if (this->sections[i] == &InputSection::discarded) 879 continue; 880 const Elf_Shdr &sec = objSections[i]; 881 882 if (isStaticRelSecType(sec.sh_type)) { 883 // Find a relocation target section and associate this section with that. 884 // Target may have been discarded if it is in a different section group 885 // and the group is discarded, even though it's a violation of the spec. 886 // We handle that situation gracefully by discarding dangling relocation 887 // sections. 888 const uint32_t info = sec.sh_info; 889 InputSectionBase *s = getRelocTarget(i, info); 890 if (!s) 891 continue; 892 893 // ELF spec allows mergeable sections with relocations, but they are rare, 894 // and it is in practice hard to merge such sections by contents, because 895 // applying relocations at end of linking changes section contents. So, we 896 // simply handle such sections as non-mergeable ones. Degrading like this 897 // is acceptable because section merging is optional. 898 if (auto *ms = dyn_cast<MergeInputSection>(s)) { 899 s = makeThreadLocal<InputSection>( 900 ms->file, ms->flags, ms->type, ms->addralign, 901 ms->contentMaybeDecompress(), ms->name); 902 sections[info] = s; 903 } 904 905 if (s->relSecIdx != 0) 906 error( 907 toString(s) + 908 ": multiple relocation sections to one section are not supported"); 909 s->relSecIdx = i; 910 911 // Relocation sections are usually removed from the output, so return 912 // `nullptr` for the normal case. However, if -r or --emit-relocs is 913 // specified, we need to copy them to the output. (Some post link analysis 914 // tools specify --emit-relocs to obtain the information.) 915 if (config->copyRelocs) { 916 auto *isec = makeThreadLocal<InputSection>( 917 *this, sec, check(obj.getSectionName(sec, shstrtab))); 918 // If the relocated section is discarded (due to /DISCARD/ or 919 // --gc-sections), the relocation section should be discarded as well. 920 s->dependentSections.push_back(isec); 921 sections[i] = isec; 922 } 923 continue; 924 } 925 926 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 927 // the flag. 928 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER)) 929 continue; 930 931 InputSectionBase *linkSec = nullptr; 932 if (sec.sh_link < size) 933 linkSec = this->sections[sec.sh_link]; 934 if (!linkSec) 935 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 936 937 // A SHF_LINK_ORDER section is discarded if its linked-to section is 938 // discarded. 939 InputSection *isec = cast<InputSection>(this->sections[i]); 940 linkSec->dependentSections.push_back(isec); 941 if (!isa<InputSection>(linkSec)) 942 error("a section " + isec->name + 943 " with SHF_LINK_ORDER should not refer a non-regular section: " + 944 toString(linkSec)); 945 } 946 947 for (ArrayRef<Elf_Word> entries : selectedGroups) 948 handleSectionGroup<ELFT>(this->sections, entries); 949 } 950 951 // Read the following info from the .note.gnu.property section and write it to 952 // the corresponding fields in `ObjFile`: 953 // - Feature flags (32 bits) representing x86 or AArch64 features for 954 // hardware-assisted call flow control; 955 // - AArch64 PAuth ABI core info (16 bytes). 956 template <class ELFT> 957 void readGnuProperty(const InputSection &sec, ObjFile<ELFT> &f) { 958 using Elf_Nhdr = typename ELFT::Nhdr; 959 using Elf_Note = typename ELFT::Note; 960 961 ArrayRef<uint8_t> data = sec.content(); 962 auto reportFatal = [&](const uint8_t *place, const Twine &msg) { 963 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 964 Twine::utohexstr(place - sec.content().data()) + "): " + msg); 965 }; 966 while (!data.empty()) { 967 // Read one NOTE record. 968 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 969 if (data.size() < sizeof(Elf_Nhdr) || 970 data.size() < nhdr->getSize(sec.addralign)) 971 reportFatal(data.data(), "data is too short"); 972 973 Elf_Note note(*nhdr); 974 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 975 data = data.slice(nhdr->getSize(sec.addralign)); 976 continue; 977 } 978 979 uint32_t featureAndType = config->emachine == EM_AARCH64 980 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 981 : GNU_PROPERTY_X86_FEATURE_1_AND; 982 983 // Read a body of a NOTE record, which consists of type-length-value fields. 984 ArrayRef<uint8_t> desc = note.getDesc(sec.addralign); 985 while (!desc.empty()) { 986 const uint8_t *place = desc.data(); 987 if (desc.size() < 8) 988 reportFatal(place, "program property is too short"); 989 uint32_t type = read32<ELFT::Endianness>(desc.data()); 990 uint32_t size = read32<ELFT::Endianness>(desc.data() + 4); 991 desc = desc.slice(8); 992 if (desc.size() < size) 993 reportFatal(place, "program property is too short"); 994 995 if (type == featureAndType) { 996 // We found a FEATURE_1_AND field. There may be more than one of these 997 // in a .note.gnu.property section, for a relocatable object we 998 // accumulate the bits set. 999 if (size < 4) 1000 reportFatal(place, "FEATURE_1_AND entry is too short"); 1001 f.andFeatures |= read32<ELFT::Endianness>(desc.data()); 1002 } else if (config->emachine == EM_AARCH64 && 1003 type == GNU_PROPERTY_AARCH64_FEATURE_PAUTH) { 1004 if (!f.aarch64PauthAbiCoreInfo.empty()) { 1005 reportFatal(data.data(), 1006 "multiple GNU_PROPERTY_AARCH64_FEATURE_PAUTH entries are " 1007 "not supported"); 1008 } else if (size != 16) { 1009 reportFatal(data.data(), "GNU_PROPERTY_AARCH64_FEATURE_PAUTH entry " 1010 "is invalid: expected 16 bytes, but got " + 1011 Twine(size)); 1012 } 1013 f.aarch64PauthAbiCoreInfo = desc; 1014 } 1015 1016 // Padding is present in the note descriptor, if necessary. 1017 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 1018 } 1019 1020 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 1021 data = data.slice(nhdr->getSize(sec.addralign)); 1022 } 1023 } 1024 1025 template <class ELFT> 1026 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, uint32_t info) { 1027 if (info < this->sections.size()) { 1028 InputSectionBase *target = this->sections[info]; 1029 1030 // Strictly speaking, a relocation section must be included in the 1031 // group of the section it relocates. However, LLVM 3.3 and earlier 1032 // would fail to do so, so we gracefully handle that case. 1033 if (target == &InputSection::discarded) 1034 return nullptr; 1035 1036 if (target != nullptr) 1037 return target; 1038 } 1039 1040 error(toString(this) + Twine(": relocation section (index ") + Twine(idx) + 1041 ") has invalid sh_info (" + Twine(info) + ")"); 1042 return nullptr; 1043 } 1044 1045 // The function may be called concurrently for different input files. For 1046 // allocation, prefer makeThreadLocal which does not require holding a lock. 1047 template <class ELFT> 1048 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 1049 const Elf_Shdr &sec, 1050 StringRef name) { 1051 if (name.starts_with(".n")) { 1052 // The GNU linker uses .note.GNU-stack section as a marker indicating 1053 // that the code in the object file does not expect that the stack is 1054 // executable (in terms of NX bit). If all input files have the marker, 1055 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 1056 // make the stack non-executable. Most object files have this section as 1057 // of 2017. 1058 // 1059 // But making the stack non-executable is a norm today for security 1060 // reasons. Failure to do so may result in a serious security issue. 1061 // Therefore, we make LLD always add PT_GNU_STACK unless it is 1062 // explicitly told to do otherwise (by -z execstack). Because the stack 1063 // executable-ness is controlled solely by command line options, 1064 // .note.GNU-stack sections are simply ignored. 1065 if (name == ".note.GNU-stack") 1066 return &InputSection::discarded; 1067 1068 // Object files that use processor features such as Intel Control-Flow 1069 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 1070 // .note.gnu.property section containing a bitfield of feature bits like the 1071 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 1072 // 1073 // Since we merge bitmaps from multiple object files to create a new 1074 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 1075 // file's .note.gnu.property section. 1076 if (name == ".note.gnu.property") { 1077 readGnuProperty<ELFT>(InputSection(*this, sec, name), *this); 1078 return &InputSection::discarded; 1079 } 1080 1081 // Split stacks is a feature to support a discontiguous stack, 1082 // commonly used in the programming language Go. For the details, 1083 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1084 // for split stack will include a .note.GNU-split-stack section. 1085 if (name == ".note.GNU-split-stack") { 1086 if (config->relocatable) { 1087 error( 1088 "cannot mix split-stack and non-split-stack in a relocatable link"); 1089 return &InputSection::discarded; 1090 } 1091 this->splitStack = true; 1092 return &InputSection::discarded; 1093 } 1094 1095 // An object file compiled for split stack, but where some of the 1096 // functions were compiled with the no_split_stack_attribute will 1097 // include a .note.GNU-no-split-stack section. 1098 if (name == ".note.GNU-no-split-stack") { 1099 this->someNoSplitStack = true; 1100 return &InputSection::discarded; 1101 } 1102 1103 // Strip existing .note.gnu.build-id sections so that the output won't have 1104 // more than one build-id. This is not usually a problem because input 1105 // object files normally don't have .build-id sections, but you can create 1106 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 1107 // against it. 1108 if (name == ".note.gnu.build-id") 1109 return &InputSection::discarded; 1110 } 1111 1112 // The linker merges EH (exception handling) frames and creates a 1113 // .eh_frame_hdr section for runtime. So we handle them with a special 1114 // class. For relocatable outputs, they are just passed through. 1115 if (name == ".eh_frame" && !config->relocatable) 1116 return makeThreadLocal<EhInputSection>(*this, sec, name); 1117 1118 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1119 return makeThreadLocal<MergeInputSection>(*this, sec, name); 1120 return makeThreadLocal<InputSection>(*this, sec, name); 1121 } 1122 1123 // Initialize symbols. symbols is a parallel array to the corresponding ELF 1124 // symbol table. 1125 template <class ELFT> 1126 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) { 1127 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1128 if (numSymbols == 0) { 1129 numSymbols = eSyms.size(); 1130 symbols = std::make_unique<Symbol *[]>(numSymbols); 1131 } 1132 1133 // Some entries have been filled by LazyObjFile. 1134 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1135 if (!symbols[i]) 1136 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1137 1138 // Perform symbol resolution on non-local symbols. 1139 SmallVector<unsigned, 32> undefineds; 1140 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1141 const Elf_Sym &eSym = eSyms[i]; 1142 uint32_t secIdx = eSym.st_shndx; 1143 if (secIdx == SHN_UNDEF) { 1144 undefineds.push_back(i); 1145 continue; 1146 } 1147 1148 uint8_t binding = eSym.getBinding(); 1149 uint8_t stOther = eSym.st_other; 1150 uint8_t type = eSym.getType(); 1151 uint64_t value = eSym.st_value; 1152 uint64_t size = eSym.st_size; 1153 1154 Symbol *sym = symbols[i]; 1155 sym->isUsedInRegularObj = true; 1156 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1157 if (value == 0 || value >= UINT32_MAX) 1158 fatal(toString(this) + ": common symbol '" + sym->getName() + 1159 "' has invalid alignment: " + Twine(value)); 1160 hasCommonSyms = true; 1161 sym->resolve( 1162 CommonSymbol{this, StringRef(), binding, stOther, type, value, size}); 1163 continue; 1164 } 1165 1166 // Handle global defined symbols. Defined::section will be set in postParse. 1167 sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size, 1168 nullptr}); 1169 } 1170 1171 // Undefined symbols (excluding those defined relative to non-prevailing 1172 // sections) can trigger recursive extract. Process defined symbols first so 1173 // that the relative order between a defined symbol and an undefined symbol 1174 // does not change the symbol resolution behavior. In addition, a set of 1175 // interconnected symbols will all be resolved to the same file, instead of 1176 // being resolved to different files. 1177 for (unsigned i : undefineds) { 1178 const Elf_Sym &eSym = eSyms[i]; 1179 Symbol *sym = symbols[i]; 1180 sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other, 1181 eSym.getType()}); 1182 sym->isUsedInRegularObj = true; 1183 sym->referenced = true; 1184 } 1185 } 1186 1187 template <class ELFT> 1188 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) { 1189 if (!justSymbols) 1190 initializeSections(ignoreComdats, getObj()); 1191 1192 if (!firstGlobal) 1193 return; 1194 SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal); 1195 memset(locals, 0, sizeof(SymbolUnion) * firstGlobal); 1196 1197 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1198 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1199 const Elf_Sym &eSym = eSyms[i]; 1200 uint32_t secIdx = eSym.st_shndx; 1201 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1202 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1203 else if (secIdx >= SHN_LORESERVE) 1204 secIdx = 0; 1205 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1206 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1207 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1208 error(toString(this) + ": non-local symbol (" + Twine(i) + 1209 ") found at index < .symtab's sh_info (" + Twine(end) + ")"); 1210 1211 InputSectionBase *sec = sections[secIdx]; 1212 uint8_t type = eSym.getType(); 1213 if (type == STT_FILE) 1214 sourceFile = CHECK(eSym.getName(stringTable), this); 1215 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name)) 1216 fatal(toString(this) + ": invalid symbol name offset"); 1217 StringRef name(stringTable.data() + eSym.st_name); 1218 1219 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1220 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1221 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1222 /*discardedSecIdx=*/secIdx); 1223 else 1224 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1225 eSym.st_value, eSym.st_size, sec); 1226 symbols[i]->partition = 1; 1227 symbols[i]->isUsedInRegularObj = true; 1228 } 1229 } 1230 1231 // Called after all ObjFile::parse is called for all ObjFiles. This checks 1232 // duplicate symbols and may do symbol property merge in the future. 1233 template <class ELFT> void ObjFile<ELFT>::postParse() { 1234 static std::mutex mu; 1235 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1236 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1237 const Elf_Sym &eSym = eSyms[i]; 1238 Symbol &sym = *symbols[i]; 1239 uint32_t secIdx = eSym.st_shndx; 1240 uint8_t binding = eSym.getBinding(); 1241 if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK && 1242 binding != STB_GNU_UNIQUE)) 1243 errorOrWarn(toString(this) + ": symbol (" + Twine(i) + 1244 ") has invalid binding: " + Twine((int)binding)); 1245 1246 // st_value of STT_TLS represents the assigned offset, not the actual 1247 // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can 1248 // only be referenced by special TLS relocations. It is usually an error if 1249 // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa. 1250 if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS && 1251 eSym.getType() != STT_NOTYPE) 1252 errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " + 1253 toString(sym.file) + "\n>>> in " + toString(this)); 1254 1255 // Handle non-COMMON defined symbol below. !sym.file allows a symbol 1256 // assignment to redefine a symbol without an error. 1257 if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF || 1258 secIdx == SHN_COMMON) 1259 continue; 1260 1261 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1262 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1263 else if (secIdx >= SHN_LORESERVE) 1264 secIdx = 0; 1265 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1266 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1267 InputSectionBase *sec = sections[secIdx]; 1268 if (sec == &InputSection::discarded) { 1269 if (sym.traced) { 1270 printTraceSymbol(Undefined{this, sym.getName(), sym.binding, 1271 sym.stOther, sym.type, secIdx}, 1272 sym.getName()); 1273 } 1274 if (sym.file == this) { 1275 std::lock_guard<std::mutex> lock(mu); 1276 ctx.nonPrevailingSyms.emplace_back(&sym, secIdx); 1277 } 1278 continue; 1279 } 1280 1281 if (sym.file == this) { 1282 cast<Defined>(sym).section = sec; 1283 continue; 1284 } 1285 1286 if (sym.binding == STB_WEAK || binding == STB_WEAK) 1287 continue; 1288 std::lock_guard<std::mutex> lock(mu); 1289 ctx.duplicates.push_back({&sym, this, sec, eSym.st_value}); 1290 } 1291 } 1292 1293 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1294 // A tentative definition will be promoted to a global definition if there are 1295 // no non-tentative definitions to dominate it. When we hold a tentative 1296 // definition to a symbol and are inspecting archive members for inclusion 1297 // there are 2 ways we can proceed: 1298 // 1299 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1300 // tentative to real definition has already happened) and not inspect 1301 // archive members for Global/Weak definitions to replace the tentative 1302 // definition. An archive member would only be included if it satisfies some 1303 // other undefined symbol. This is the behavior Gold uses. 1304 // 1305 // 2) Consider the tentative definition as still undefined (ie the promotion to 1306 // a real definition happens only after all symbol resolution is done). 1307 // The linker searches archive members for STB_GLOBAL definitions to 1308 // replace the tentative definition with. This is the behavior used by 1309 // GNU ld. 1310 // 1311 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1312 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1313 // (pre F90) FORTRAN code that is packaged into an archive. 1314 // 1315 // The following functions search archive members for definitions to replace 1316 // tentative definitions (implementing behavior 2). 1317 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1318 StringRef archiveName) { 1319 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1320 for (const irsymtab::Reader::SymbolRef &sym : 1321 symtabFile.TheReader.symbols()) { 1322 if (sym.isGlobal() && sym.getName() == symName) 1323 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1324 } 1325 return false; 1326 } 1327 1328 template <class ELFT> 1329 static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName, 1330 StringRef archiveName) { 1331 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName); 1332 obj->init(); 1333 StringRef stringtable = obj->getStringTable(); 1334 1335 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1336 Expected<StringRef> name = sym.getName(stringtable); 1337 if (name && name.get() == symName) 1338 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1339 !sym.isCommon(); 1340 } 1341 return false; 1342 } 1343 1344 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1345 StringRef archiveName) { 1346 switch (getELFKind(mb, archiveName)) { 1347 case ELF32LEKind: 1348 return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName); 1349 case ELF32BEKind: 1350 return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName); 1351 case ELF64LEKind: 1352 return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName); 1353 case ELF64BEKind: 1354 return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName); 1355 default: 1356 llvm_unreachable("getELFKind"); 1357 } 1358 } 1359 1360 unsigned SharedFile::vernauxNum; 1361 1362 SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName) 1363 : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName), 1364 isNeeded(!config->asNeeded) {} 1365 1366 // Parse the version definitions in the object file if present, and return a 1367 // vector whose nth element contains a pointer to the Elf_Verdef for version 1368 // identifier n. Version identifiers that are not definitions map to nullptr. 1369 template <typename ELFT> 1370 static SmallVector<const void *, 0> 1371 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1372 if (!sec) 1373 return {}; 1374 1375 // Build the Verdefs array by following the chain of Elf_Verdef objects 1376 // from the start of the .gnu.version_d section. 1377 SmallVector<const void *, 0> verdefs; 1378 const uint8_t *verdef = base + sec->sh_offset; 1379 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1380 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1381 verdef += curVerdef->vd_next; 1382 unsigned verdefIndex = curVerdef->vd_ndx; 1383 if (verdefIndex >= verdefs.size()) 1384 verdefs.resize(verdefIndex + 1); 1385 verdefs[verdefIndex] = curVerdef; 1386 } 1387 return verdefs; 1388 } 1389 1390 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1391 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1392 // implement sophisticated error checking like in llvm-readobj because the value 1393 // of such diagnostics is low. 1394 template <typename ELFT> 1395 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1396 const typename ELFT::Shdr *sec) { 1397 if (!sec) 1398 return {}; 1399 std::vector<uint32_t> verneeds; 1400 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1401 const uint8_t *verneedBuf = data.begin(); 1402 for (unsigned i = 0; i != sec->sh_info; ++i) { 1403 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1404 fatal(toString(this) + " has an invalid Verneed"); 1405 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1406 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1407 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1408 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1409 fatal(toString(this) + " has an invalid Vernaux"); 1410 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1411 if (aux->vna_name >= this->stringTable.size()) 1412 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1413 uint16_t version = aux->vna_other & VERSYM_VERSION; 1414 if (version >= verneeds.size()) 1415 verneeds.resize(version + 1); 1416 verneeds[version] = aux->vna_name; 1417 vernauxBuf += aux->vna_next; 1418 } 1419 verneedBuf += vn->vn_next; 1420 } 1421 return verneeds; 1422 } 1423 1424 // We do not usually care about alignments of data in shared object 1425 // files because the loader takes care of it. However, if we promote a 1426 // DSO symbol to point to .bss due to copy relocation, we need to keep 1427 // the original alignment requirements. We infer it in this function. 1428 template <typename ELFT> 1429 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1430 const typename ELFT::Sym &sym) { 1431 uint64_t ret = UINT64_MAX; 1432 if (sym.st_value) 1433 ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value); 1434 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1435 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1436 return (ret > UINT32_MAX) ? 0 : ret; 1437 } 1438 1439 // Fully parse the shared object file. 1440 // 1441 // This function parses symbol versions. If a DSO has version information, 1442 // the file has a ".gnu.version_d" section which contains symbol version 1443 // definitions. Each symbol is associated to one version through a table in 1444 // ".gnu.version" section. That table is a parallel array for the symbol 1445 // table, and each table entry contains an index in ".gnu.version_d". 1446 // 1447 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1448 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1449 // ".gnu.version_d". 1450 // 1451 // The file format for symbol versioning is perhaps a bit more complicated 1452 // than necessary, but you can easily understand the code if you wrap your 1453 // head around the data structure described above. 1454 template <class ELFT> void SharedFile::parse() { 1455 using Elf_Dyn = typename ELFT::Dyn; 1456 using Elf_Shdr = typename ELFT::Shdr; 1457 using Elf_Sym = typename ELFT::Sym; 1458 using Elf_Verdef = typename ELFT::Verdef; 1459 using Elf_Versym = typename ELFT::Versym; 1460 1461 ArrayRef<Elf_Dyn> dynamicTags; 1462 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1463 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1464 1465 const Elf_Shdr *versymSec = nullptr; 1466 const Elf_Shdr *verdefSec = nullptr; 1467 const Elf_Shdr *verneedSec = nullptr; 1468 1469 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1470 for (const Elf_Shdr &sec : sections) { 1471 switch (sec.sh_type) { 1472 default: 1473 continue; 1474 case SHT_DYNAMIC: 1475 dynamicTags = 1476 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1477 break; 1478 case SHT_GNU_versym: 1479 versymSec = &sec; 1480 break; 1481 case SHT_GNU_verdef: 1482 verdefSec = &sec; 1483 break; 1484 case SHT_GNU_verneed: 1485 verneedSec = &sec; 1486 break; 1487 } 1488 } 1489 1490 if (versymSec && numELFSyms == 0) { 1491 error("SHT_GNU_versym should be associated with symbol table"); 1492 return; 1493 } 1494 1495 // Search for a DT_SONAME tag to initialize this->soName. 1496 for (const Elf_Dyn &dyn : dynamicTags) { 1497 if (dyn.d_tag == DT_NEEDED) { 1498 uint64_t val = dyn.getVal(); 1499 if (val >= this->stringTable.size()) 1500 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1501 dtNeeded.push_back(this->stringTable.data() + val); 1502 } else if (dyn.d_tag == DT_SONAME) { 1503 uint64_t val = dyn.getVal(); 1504 if (val >= this->stringTable.size()) 1505 fatal(toString(this) + ": invalid DT_SONAME entry"); 1506 soName = this->stringTable.data() + val; 1507 } 1508 } 1509 1510 // DSOs are uniquified not by filename but by soname. 1511 DenseMap<CachedHashStringRef, SharedFile *>::iterator it; 1512 bool wasInserted; 1513 std::tie(it, wasInserted) = 1514 symtab.soNames.try_emplace(CachedHashStringRef(soName), this); 1515 1516 // If a DSO appears more than once on the command line with and without 1517 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1518 // user can add an extra DSO with --no-as-needed to force it to be added to 1519 // the dependency list. 1520 it->second->isNeeded |= isNeeded; 1521 if (!wasInserted) 1522 return; 1523 1524 ctx.sharedFiles.push_back(this); 1525 1526 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1527 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1528 1529 // Parse ".gnu.version" section which is a parallel array for the symbol 1530 // table. If a given file doesn't have a ".gnu.version" section, we use 1531 // VER_NDX_GLOBAL. 1532 size_t size = numELFSyms - firstGlobal; 1533 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1534 if (versymSec) { 1535 ArrayRef<Elf_Versym> versym = 1536 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1537 this) 1538 .slice(firstGlobal); 1539 for (size_t i = 0; i < size; ++i) 1540 versyms[i] = versym[i].vs_index; 1541 } 1542 1543 // System libraries can have a lot of symbols with versions. Using a 1544 // fixed buffer for computing the versions name (foo@ver) can save a 1545 // lot of allocations. 1546 SmallString<0> versionedNameBuffer; 1547 1548 // Add symbols to the symbol table. 1549 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1550 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1551 const Elf_Sym &sym = syms[i]; 1552 1553 // ELF spec requires that all local symbols precede weak or global 1554 // symbols in each symbol table, and the index of first non-local symbol 1555 // is stored to sh_info. If a local symbol appears after some non-local 1556 // symbol, that's a violation of the spec. 1557 StringRef name = CHECK(sym.getName(stringTable), this); 1558 if (sym.getBinding() == STB_LOCAL) { 1559 errorOrWarn(toString(this) + ": invalid local symbol '" + name + 1560 "' in global part of symbol table"); 1561 continue; 1562 } 1563 1564 const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN; 1565 if (sym.isUndefined()) { 1566 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1567 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1568 if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) { 1569 if (idx >= verneeds.size()) { 1570 error("corrupt input file: version need index " + Twine(idx) + 1571 " for symbol " + name + " is out of bounds\n>>> defined in " + 1572 toString(this)); 1573 continue; 1574 } 1575 StringRef verName = stringTable.data() + verneeds[idx]; 1576 versionedNameBuffer.clear(); 1577 name = saver().save( 1578 (name + "@" + verName).toStringRef(versionedNameBuffer)); 1579 } 1580 Symbol *s = symtab.addSymbol( 1581 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1582 s->exportDynamic = true; 1583 if (sym.getBinding() != STB_WEAK && 1584 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1585 requiredSymbols.push_back(s); 1586 continue; 1587 } 1588 1589 if (ver == VER_NDX_LOCAL || 1590 (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) { 1591 // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the 1592 // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns 1593 // VER_NDX_LOCAL. Workaround this bug. 1594 if (config->emachine == EM_MIPS && name == "_gp_disp") 1595 continue; 1596 error("corrupt input file: version definition index " + Twine(idx) + 1597 " for symbol " + name + " is out of bounds\n>>> defined in " + 1598 toString(this)); 1599 continue; 1600 } 1601 1602 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1603 if (ver == idx) { 1604 auto *s = symtab.addSymbol( 1605 SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1606 sym.getType(), sym.st_value, sym.st_size, alignment}); 1607 s->dsoDefined = true; 1608 if (s->file == this) 1609 s->versionId = ver; 1610 } 1611 1612 // Also add the symbol with the versioned name to handle undefined symbols 1613 // with explicit versions. 1614 if (ver == VER_NDX_GLOBAL) 1615 continue; 1616 1617 StringRef verName = 1618 stringTable.data() + 1619 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1620 versionedNameBuffer.clear(); 1621 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1622 auto *s = symtab.addSymbol( 1623 SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other, 1624 sym.getType(), sym.st_value, sym.st_size, alignment}); 1625 s->dsoDefined = true; 1626 if (s->file == this) 1627 s->versionId = idx; 1628 } 1629 } 1630 1631 static ELFKind getBitcodeELFKind(const Triple &t) { 1632 if (t.isLittleEndian()) 1633 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1634 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1635 } 1636 1637 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1638 switch (t.getArch()) { 1639 case Triple::aarch64: 1640 case Triple::aarch64_be: 1641 return EM_AARCH64; 1642 case Triple::amdgcn: 1643 case Triple::r600: 1644 return EM_AMDGPU; 1645 case Triple::arm: 1646 case Triple::armeb: 1647 case Triple::thumb: 1648 case Triple::thumbeb: 1649 return EM_ARM; 1650 case Triple::avr: 1651 return EM_AVR; 1652 case Triple::hexagon: 1653 return EM_HEXAGON; 1654 case Triple::loongarch32: 1655 case Triple::loongarch64: 1656 return EM_LOONGARCH; 1657 case Triple::mips: 1658 case Triple::mipsel: 1659 case Triple::mips64: 1660 case Triple::mips64el: 1661 return EM_MIPS; 1662 case Triple::msp430: 1663 return EM_MSP430; 1664 case Triple::ppc: 1665 case Triple::ppcle: 1666 return EM_PPC; 1667 case Triple::ppc64: 1668 case Triple::ppc64le: 1669 return EM_PPC64; 1670 case Triple::riscv32: 1671 case Triple::riscv64: 1672 return EM_RISCV; 1673 case Triple::sparcv9: 1674 return EM_SPARCV9; 1675 case Triple::systemz: 1676 return EM_S390; 1677 case Triple::x86: 1678 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1679 case Triple::x86_64: 1680 return EM_X86_64; 1681 default: 1682 error(path + ": could not infer e_machine from bitcode target triple " + 1683 t.str()); 1684 return EM_NONE; 1685 } 1686 } 1687 1688 static uint8_t getOsAbi(const Triple &t) { 1689 switch (t.getOS()) { 1690 case Triple::AMDHSA: 1691 return ELF::ELFOSABI_AMDGPU_HSA; 1692 case Triple::AMDPAL: 1693 return ELF::ELFOSABI_AMDGPU_PAL; 1694 case Triple::Mesa3D: 1695 return ELF::ELFOSABI_AMDGPU_MESA3D; 1696 default: 1697 return ELF::ELFOSABI_NONE; 1698 } 1699 } 1700 1701 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1702 uint64_t offsetInArchive, bool lazy) 1703 : InputFile(BitcodeKind, mb) { 1704 this->archiveName = archiveName; 1705 this->lazy = lazy; 1706 1707 std::string path = mb.getBufferIdentifier().str(); 1708 if (config->thinLTOIndexOnly) 1709 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1710 1711 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1712 // name. If two archives define two members with the same name, this 1713 // causes a collision which result in only one of the objects being taken 1714 // into consideration at LTO time (which very likely causes undefined 1715 // symbols later in the link stage). So we append file offset to make 1716 // filename unique. 1717 StringRef name = archiveName.empty() 1718 ? saver().save(path) 1719 : saver().save(archiveName + "(" + path::filename(path) + 1720 " at " + utostr(offsetInArchive) + ")"); 1721 MemoryBufferRef mbref(mb.getBuffer(), name); 1722 1723 obj = CHECK(lto::InputFile::create(mbref), this); 1724 1725 Triple t(obj->getTargetTriple()); 1726 ekind = getBitcodeELFKind(t); 1727 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1728 osabi = getOsAbi(t); 1729 } 1730 1731 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1732 switch (gvVisibility) { 1733 case GlobalValue::DefaultVisibility: 1734 return STV_DEFAULT; 1735 case GlobalValue::HiddenVisibility: 1736 return STV_HIDDEN; 1737 case GlobalValue::ProtectedVisibility: 1738 return STV_PROTECTED; 1739 } 1740 llvm_unreachable("unknown visibility"); 1741 } 1742 1743 static void 1744 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats, 1745 const lto::InputFile::Symbol &objSym, BitcodeFile &f) { 1746 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1747 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1748 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1749 1750 if (!sym) 1751 sym = symtab.insert(saver().save(objSym.getName())); 1752 1753 int c = objSym.getComdatIndex(); 1754 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1755 Undefined newSym(&f, StringRef(), binding, visibility, type); 1756 sym->resolve(newSym); 1757 sym->referenced = true; 1758 return; 1759 } 1760 1761 if (objSym.isCommon()) { 1762 sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT, 1763 objSym.getCommonAlignment(), 1764 objSym.getCommonSize()}); 1765 } else { 1766 Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr); 1767 if (objSym.canBeOmittedFromSymbolTable()) 1768 newSym.exportDynamic = false; 1769 sym->resolve(newSym); 1770 } 1771 } 1772 1773 void BitcodeFile::parse() { 1774 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1775 keptComdats.push_back( 1776 s.second == Comdat::NoDeduplicate || 1777 symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1778 .second); 1779 } 1780 1781 if (numSymbols == 0) { 1782 numSymbols = obj->symbols().size(); 1783 symbols = std::make_unique<Symbol *[]>(numSymbols); 1784 } 1785 // Process defined symbols first. See the comment in 1786 // ObjFile<ELFT>::initializeSymbols. 1787 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1788 if (!irSym.isUndefined()) 1789 createBitcodeSymbol(symbols[i], keptComdats, irSym, *this); 1790 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1791 if (irSym.isUndefined()) 1792 createBitcodeSymbol(symbols[i], keptComdats, irSym, *this); 1793 1794 for (auto l : obj->getDependentLibraries()) 1795 addDependentLibrary(l, this); 1796 } 1797 1798 void BitcodeFile::parseLazy() { 1799 numSymbols = obj->symbols().size(); 1800 symbols = std::make_unique<Symbol *[]>(numSymbols); 1801 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1802 if (!irSym.isUndefined()) { 1803 auto *sym = symtab.insert(saver().save(irSym.getName())); 1804 sym->resolve(LazySymbol{*this}); 1805 symbols[i] = sym; 1806 } 1807 } 1808 1809 void BitcodeFile::postParse() { 1810 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) { 1811 const Symbol &sym = *symbols[i]; 1812 if (sym.file == this || !sym.isDefined() || irSym.isUndefined() || 1813 irSym.isCommon() || irSym.isWeak()) 1814 continue; 1815 int c = irSym.getComdatIndex(); 1816 if (c != -1 && !keptComdats[c]) 1817 continue; 1818 reportDuplicate(sym, this, nullptr, 0); 1819 } 1820 } 1821 1822 void BinaryFile::parse() { 1823 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1824 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1825 8, data, ".data"); 1826 sections.push_back(section); 1827 1828 // For each input file foo that is embedded to a result as a binary 1829 // blob, we define _binary_foo_{start,end,size} symbols, so that 1830 // user programs can access blobs by name. Non-alphanumeric 1831 // characters in a filename are replaced with underscore. 1832 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1833 for (char &c : s) 1834 if (!isAlnum(c)) 1835 c = '_'; 1836 1837 llvm::StringSaver &saver = lld::saver(); 1838 1839 symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_start"), 1840 STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0, 1841 section}); 1842 symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_end"), STB_GLOBAL, 1843 STV_DEFAULT, STT_OBJECT, data.size(), 0, 1844 section}); 1845 symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_size"), STB_GLOBAL, 1846 STV_DEFAULT, STT_OBJECT, data.size(), 0, 1847 nullptr}); 1848 } 1849 1850 InputFile *elf::createInternalFile(StringRef name) { 1851 auto *file = 1852 make<InputFile>(InputFile::InternalKind, MemoryBufferRef("", name)); 1853 // References from an internal file do not lead to --warn-backrefs 1854 // diagnostics. 1855 file->groupId = 0; 1856 return file; 1857 } 1858 1859 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName, 1860 bool lazy) { 1861 ELFFileBase *f; 1862 switch (getELFKind(mb, archiveName)) { 1863 case ELF32LEKind: 1864 f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName); 1865 break; 1866 case ELF32BEKind: 1867 f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName); 1868 break; 1869 case ELF64LEKind: 1870 f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName); 1871 break; 1872 case ELF64BEKind: 1873 f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName); 1874 break; 1875 default: 1876 llvm_unreachable("getELFKind"); 1877 } 1878 f->init(); 1879 f->lazy = lazy; 1880 return f; 1881 } 1882 1883 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1884 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1885 numSymbols = eSyms.size(); 1886 symbols = std::make_unique<Symbol *[]>(numSymbols); 1887 1888 // resolve() may trigger this->extract() if an existing symbol is an undefined 1889 // symbol. If that happens, this function has served its purpose, and we can 1890 // exit from the loop early. 1891 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1892 if (eSyms[i].st_shndx == SHN_UNDEF) 1893 continue; 1894 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1895 symbols[i]->resolve(LazySymbol{*this}); 1896 if (!lazy) 1897 break; 1898 } 1899 } 1900 1901 bool InputFile::shouldExtractForCommon(StringRef name) const { 1902 if (isa<BitcodeFile>(this)) 1903 return isBitcodeNonCommonDef(mb, name, archiveName); 1904 1905 return isNonCommonDef(mb, name, archiveName); 1906 } 1907 1908 std::string elf::replaceThinLTOSuffix(StringRef path) { 1909 auto [suffix, repl] = config->thinLTOObjectSuffixReplace; 1910 if (path.consume_back(suffix)) 1911 return (path + repl).str(); 1912 return std::string(path); 1913 } 1914 1915 template class elf::ObjFile<ELF32LE>; 1916 template class elf::ObjFile<ELF32BE>; 1917 template class elf::ObjFile<ELF64LE>; 1918 template class elf::ObjFile<ELF64BE>; 1919 1920 template void SharedFile::parse<ELF32LE>(); 1921 template void SharedFile::parse<ELF32BE>(); 1922 template void SharedFile::parse<ELF64LE>(); 1923 template void SharedFile::parse<ELF64BE>(); 1924