1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "DWARF.h" 12 #include "Driver.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "Target.h" 19 #include "lld/Common/CommonLinkerContext.h" 20 #include "lld/Common/DWARF.h" 21 #include "llvm/ADT/CachedHashString.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/Object/IRObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/FileSystem.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::unique_ptr<TarWriter> elf::tar; 47 48 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 49 std::string lld::toString(const InputFile *f) { 50 static std::mutex mu; 51 if (!f) 52 return "<internal>"; 53 54 { 55 std::lock_guard<std::mutex> lock(mu); 56 if (f->toStringCache.empty()) { 57 if (f->archiveName.empty()) 58 f->toStringCache = f->getName(); 59 else 60 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 61 } 62 } 63 return std::string(f->toStringCache); 64 } 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 97 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 98 // the input objects have been compiled. 99 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 100 const InputFile *f) { 101 std::optional<unsigned> attr = 102 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 103 if (!attr) 104 // If an ABI tag isn't present then it is implicitly given the value of 0 105 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 106 // including some in glibc that don't use FP args (and should have value 3) 107 // don't have the attribute so we do not consider an implicit value of 0 108 // as a clash. 109 return; 110 111 unsigned vfpArgs = *attr; 112 ARMVFPArgKind arg; 113 switch (vfpArgs) { 114 case ARMBuildAttrs::BaseAAPCS: 115 arg = ARMVFPArgKind::Base; 116 break; 117 case ARMBuildAttrs::HardFPAAPCS: 118 arg = ARMVFPArgKind::VFP; 119 break; 120 case ARMBuildAttrs::ToolChainFPPCS: 121 // Tool chain specific convention that conforms to neither AAPCS variant. 122 arg = ARMVFPArgKind::ToolChain; 123 break; 124 case ARMBuildAttrs::CompatibleFPAAPCS: 125 // Object compatible with all conventions. 126 return; 127 default: 128 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 129 return; 130 } 131 // Follow ld.bfd and error if there is a mix of calling conventions. 132 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 133 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 134 else 135 config->armVFPArgs = arg; 136 } 137 138 // The ARM support in lld makes some use of instructions that are not available 139 // on all ARM architectures. Namely: 140 // - Use of BLX instruction for interworking between ARM and Thumb state. 141 // - Use of the extended Thumb branch encoding in relocation. 142 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 143 // The ARM Attributes section contains information about the architecture chosen 144 // at compile time. We follow the convention that if at least one input object 145 // is compiled with an architecture that supports these features then lld is 146 // permitted to use them. 147 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 148 std::optional<unsigned> attr = 149 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 150 if (!attr) 151 return; 152 auto arch = *attr; 153 switch (arch) { 154 case ARMBuildAttrs::Pre_v4: 155 case ARMBuildAttrs::v4: 156 case ARMBuildAttrs::v4T: 157 // Architectures prior to v5 do not support BLX instruction 158 break; 159 case ARMBuildAttrs::v5T: 160 case ARMBuildAttrs::v5TE: 161 case ARMBuildAttrs::v5TEJ: 162 case ARMBuildAttrs::v6: 163 case ARMBuildAttrs::v6KZ: 164 case ARMBuildAttrs::v6K: 165 config->armHasBlx = true; 166 // Architectures used in pre-Cortex processors do not support 167 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 168 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 169 break; 170 default: 171 // All other Architectures have BLX and extended branch encoding 172 config->armHasBlx = true; 173 config->armJ1J2BranchEncoding = true; 174 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 175 // All Architectures used in Cortex processors with the exception 176 // of v6-M and v6S-M have the MOVT and MOVW instructions. 177 config->armHasMovtMovw = true; 178 break; 179 } 180 } 181 182 InputFile::InputFile(Kind k, MemoryBufferRef m) 183 : mb(m), groupId(nextGroupId), fileKind(k) { 184 // All files within the same --{start,end}-group get the same group ID. 185 // Otherwise, a new file will get a new group ID. 186 if (!isInGroup) 187 ++nextGroupId; 188 } 189 190 std::optional<MemoryBufferRef> elf::readFile(StringRef path) { 191 llvm::TimeTraceScope timeScope("Load input files", path); 192 193 // The --chroot option changes our virtual root directory. 194 // This is useful when you are dealing with files created by --reproduce. 195 if (!config->chroot.empty() && path.startswith("/")) 196 path = saver().save(config->chroot + path); 197 198 log(path); 199 config->dependencyFiles.insert(llvm::CachedHashString(path)); 200 201 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 202 /*RequiresNullTerminator=*/false); 203 if (auto ec = mbOrErr.getError()) { 204 error("cannot open " + path + ": " + ec.message()); 205 return std::nullopt; 206 } 207 208 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef(); 209 ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership 210 211 if (tar) 212 tar->append(relativeToRoot(path), mbref.getBuffer()); 213 return mbref; 214 } 215 216 // All input object files must be for the same architecture 217 // (e.g. it does not make sense to link x86 object files with 218 // MIPS object files.) This function checks for that error. 219 static bool isCompatible(InputFile *file) { 220 if (!file->isElf() && !isa<BitcodeFile>(file)) 221 return true; 222 223 if (file->ekind == config->ekind && file->emachine == config->emachine) { 224 if (config->emachine != EM_MIPS) 225 return true; 226 if (isMipsN32Abi(file) == config->mipsN32Abi) 227 return true; 228 } 229 230 StringRef target = 231 !config->bfdname.empty() ? config->bfdname : config->emulation; 232 if (!target.empty()) { 233 error(toString(file) + " is incompatible with " + target); 234 return false; 235 } 236 237 InputFile *existing = nullptr; 238 if (!ctx.objectFiles.empty()) 239 existing = ctx.objectFiles[0]; 240 else if (!ctx.sharedFiles.empty()) 241 existing = ctx.sharedFiles[0]; 242 else if (!ctx.bitcodeFiles.empty()) 243 existing = ctx.bitcodeFiles[0]; 244 std::string with; 245 if (existing) 246 with = " with " + toString(existing); 247 error(toString(file) + " is incompatible" + with); 248 return false; 249 } 250 251 template <class ELFT> static void doParseFile(InputFile *file) { 252 if (!isCompatible(file)) 253 return; 254 255 // Binary file 256 if (auto *f = dyn_cast<BinaryFile>(file)) { 257 ctx.binaryFiles.push_back(f); 258 f->parse(); 259 return; 260 } 261 262 // Lazy object file 263 if (file->lazy) { 264 if (auto *f = dyn_cast<BitcodeFile>(file)) { 265 ctx.lazyBitcodeFiles.push_back(f); 266 f->parseLazy(); 267 } else { 268 cast<ObjFile<ELFT>>(file)->parseLazy(); 269 } 270 return; 271 } 272 273 if (config->trace) 274 message(toString(file)); 275 276 // .so file 277 if (auto *f = dyn_cast<SharedFile>(file)) { 278 f->parse<ELFT>(); 279 return; 280 } 281 282 // LLVM bitcode file 283 if (auto *f = dyn_cast<BitcodeFile>(file)) { 284 ctx.bitcodeFiles.push_back(f); 285 f->parse(); 286 return; 287 } 288 289 // Regular object file 290 ctx.objectFiles.push_back(cast<ELFFileBase>(file)); 291 cast<ObjFile<ELFT>>(file)->parse(); 292 } 293 294 // Add symbols in File to the symbol table. 295 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); } 296 297 // Concatenates arguments to construct a string representing an error location. 298 static std::string createFileLineMsg(StringRef path, unsigned line) { 299 std::string filename = std::string(path::filename(path)); 300 std::string lineno = ":" + std::to_string(line); 301 if (filename == path) 302 return filename + lineno; 303 return filename + lineno + " (" + path.str() + lineno + ")"; 304 } 305 306 template <class ELFT> 307 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 308 InputSectionBase &sec, uint64_t offset) { 309 // In DWARF, functions and variables are stored to different places. 310 // First, look up a function for a given offset. 311 if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 312 return createFileLineMsg(info->FileName, info->Line); 313 314 // If it failed, look up again as a variable. 315 if (std::optional<std::pair<std::string, unsigned>> fileLine = 316 file.getVariableLoc(sym.getName())) 317 return createFileLineMsg(fileLine->first, fileLine->second); 318 319 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 320 return std::string(file.sourceFile); 321 } 322 323 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 324 uint64_t offset) { 325 if (kind() != ObjKind) 326 return ""; 327 switch (ekind) { 328 default: 329 llvm_unreachable("Invalid kind"); 330 case ELF32LEKind: 331 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 332 case ELF32BEKind: 333 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 334 case ELF64LEKind: 335 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 336 case ELF64BEKind: 337 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 338 } 339 } 340 341 StringRef InputFile::getNameForScript() const { 342 if (archiveName.empty()) 343 return getName(); 344 345 if (nameForScriptCache.empty()) 346 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 347 348 return nameForScriptCache; 349 } 350 351 // An ELF object file may contain a `.deplibs` section. If it exists, the 352 // section contains a list of library specifiers such as `m` for libm. This 353 // function resolves a given name by finding the first matching library checking 354 // the various ways that a library can be specified to LLD. This ELF extension 355 // is a form of autolinking and is called `dependent libraries`. It is currently 356 // unique to LLVM and lld. 357 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 358 if (!config->dependentLibraries) 359 return; 360 if (std::optional<std::string> s = searchLibraryBaseName(specifier)) 361 ctx.driver.addFile(saver().save(*s), /*withLOption=*/true); 362 else if (std::optional<std::string> s = findFromSearchPaths(specifier)) 363 ctx.driver.addFile(saver().save(*s), /*withLOption=*/true); 364 else if (fs::exists(specifier)) 365 ctx.driver.addFile(specifier, /*withLOption=*/false); 366 else 367 error(toString(f) + 368 ": unable to find library from dependent library specifier: " + 369 specifier); 370 } 371 372 // Record the membership of a section group so that in the garbage collection 373 // pass, section group members are kept or discarded as a unit. 374 template <class ELFT> 375 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 376 ArrayRef<typename ELFT::Word> entries) { 377 bool hasAlloc = false; 378 for (uint32_t index : entries.slice(1)) { 379 if (index >= sections.size()) 380 return; 381 if (InputSectionBase *s = sections[index]) 382 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 383 hasAlloc = true; 384 } 385 386 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 387 // collection. See the comment in markLive(). This rule retains .debug_types 388 // and .rela.debug_types. 389 if (!hasAlloc) 390 return; 391 392 // Connect the members in a circular doubly-linked list via 393 // nextInSectionGroup. 394 InputSectionBase *head; 395 InputSectionBase *prev = nullptr; 396 for (uint32_t index : entries.slice(1)) { 397 InputSectionBase *s = sections[index]; 398 if (!s || s == &InputSection::discarded) 399 continue; 400 if (prev) 401 prev->nextInSectionGroup = s; 402 else 403 head = s; 404 prev = s; 405 } 406 if (prev) 407 prev->nextInSectionGroup = head; 408 } 409 410 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 411 llvm::call_once(initDwarf, [this]() { 412 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 413 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 414 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 415 [&](Error warning) { 416 warn(getName() + ": " + toString(std::move(warning))); 417 })); 418 }); 419 420 return dwarf.get(); 421 } 422 423 // Returns the pair of file name and line number describing location of data 424 // object (variable, array, etc) definition. 425 template <class ELFT> 426 std::optional<std::pair<std::string, unsigned>> 427 ObjFile<ELFT>::getVariableLoc(StringRef name) { 428 return getDwarf()->getVariableLoc(name); 429 } 430 431 // Returns source line information for a given offset 432 // using DWARF debug info. 433 template <class ELFT> 434 std::optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 435 uint64_t offset) { 436 // Detect SectionIndex for specified section. 437 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 438 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 439 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 440 if (s == sections[curIndex]) { 441 sectionIndex = curIndex; 442 break; 443 } 444 } 445 446 return getDwarf()->getDILineInfo(offset, sectionIndex); 447 } 448 449 ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb) 450 : InputFile(k, mb) { 451 this->ekind = ekind; 452 } 453 454 template <typename Elf_Shdr> 455 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 456 for (const Elf_Shdr &sec : sections) 457 if (sec.sh_type == type) 458 return &sec; 459 return nullptr; 460 } 461 462 void ELFFileBase::init() { 463 switch (ekind) { 464 case ELF32LEKind: 465 init<ELF32LE>(fileKind); 466 break; 467 case ELF32BEKind: 468 init<ELF32BE>(fileKind); 469 break; 470 case ELF64LEKind: 471 init<ELF64LE>(fileKind); 472 break; 473 case ELF64BEKind: 474 init<ELF64BE>(fileKind); 475 break; 476 default: 477 llvm_unreachable("getELFKind"); 478 } 479 } 480 481 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) { 482 using Elf_Shdr = typename ELFT::Shdr; 483 using Elf_Sym = typename ELFT::Sym; 484 485 // Initialize trivial attributes. 486 const ELFFile<ELFT> &obj = getObj<ELFT>(); 487 emachine = obj.getHeader().e_machine; 488 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 489 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 490 491 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 492 elfShdrs = sections.data(); 493 numELFShdrs = sections.size(); 494 495 // Find a symbol table. 496 const Elf_Shdr *symtabSec = 497 findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB); 498 499 if (!symtabSec) 500 return; 501 502 // Initialize members corresponding to a symbol table. 503 firstGlobal = symtabSec->sh_info; 504 505 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 506 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 507 fatal(toString(this) + ": invalid sh_info in symbol table"); 508 509 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 510 numELFSyms = uint32_t(eSyms.size()); 511 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 512 } 513 514 template <class ELFT> 515 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 516 return CHECK( 517 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 518 this); 519 } 520 521 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 522 object::ELFFile<ELFT> obj = this->getObj(); 523 // Read a section table. justSymbols is usually false. 524 if (this->justSymbols) { 525 initializeJustSymbols(); 526 initializeSymbols(obj); 527 return; 528 } 529 530 // Handle dependent libraries and selection of section groups as these are not 531 // done in parallel. 532 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 533 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 534 uint64_t size = objSections.size(); 535 sections.resize(size); 536 for (size_t i = 0; i != size; ++i) { 537 const Elf_Shdr &sec = objSections[i]; 538 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) { 539 StringRef name = check(obj.getSectionName(sec, shstrtab)); 540 ArrayRef<char> data = CHECK( 541 this->getObj().template getSectionContentsAsArray<char>(sec), this); 542 if (!data.empty() && data.back() != '\0') { 543 error( 544 toString(this) + 545 ": corrupted dependent libraries section (unterminated string): " + 546 name); 547 } else { 548 for (const char *d = data.begin(), *e = data.end(); d < e;) { 549 StringRef s(d); 550 addDependentLibrary(s, this); 551 d += s.size() + 1; 552 } 553 } 554 this->sections[i] = &InputSection::discarded; 555 continue; 556 } 557 558 if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) { 559 ARMAttributeParser attributes; 560 ArrayRef<uint8_t> contents = 561 check(this->getObj().getSectionContents(sec)); 562 StringRef name = check(obj.getSectionName(sec, shstrtab)); 563 this->sections[i] = &InputSection::discarded; 564 if (Error e = 565 attributes.parse(contents, ekind == ELF32LEKind ? support::little 566 : support::big)) { 567 InputSection isec(*this, sec, name); 568 warn(toString(&isec) + ": " + llvm::toString(std::move(e))); 569 } else { 570 updateSupportedARMFeatures(attributes); 571 updateARMVFPArgs(attributes, this); 572 573 // FIXME: Retain the first attribute section we see. The eglibc ARM 574 // dynamic loaders require the presence of an attribute section for 575 // dlopen to work. In a full implementation we would merge all attribute 576 // sections. 577 if (in.attributes == nullptr) { 578 in.attributes = std::make_unique<InputSection>(*this, sec, name); 579 this->sections[i] = in.attributes.get(); 580 } 581 } 582 } 583 584 if (sec.sh_type != SHT_GROUP) 585 continue; 586 StringRef signature = getShtGroupSignature(objSections, sec); 587 ArrayRef<Elf_Word> entries = 588 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 589 if (entries.empty()) 590 fatal(toString(this) + ": empty SHT_GROUP"); 591 592 Elf_Word flag = entries[0]; 593 if (flag && flag != GRP_COMDAT) 594 fatal(toString(this) + ": unsupported SHT_GROUP format"); 595 596 bool keepGroup = 597 (flag & GRP_COMDAT) == 0 || ignoreComdats || 598 symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this) 599 .second; 600 if (keepGroup) { 601 if (config->relocatable) 602 this->sections[i] = createInputSection( 603 i, sec, check(obj.getSectionName(sec, shstrtab))); 604 continue; 605 } 606 607 // Otherwise, discard group members. 608 for (uint32_t secIndex : entries.slice(1)) { 609 if (secIndex >= size) 610 fatal(toString(this) + 611 ": invalid section index in group: " + Twine(secIndex)); 612 this->sections[secIndex] = &InputSection::discarded; 613 } 614 } 615 616 // Read a symbol table. 617 initializeSymbols(obj); 618 } 619 620 // Sections with SHT_GROUP and comdat bits define comdat section groups. 621 // They are identified and deduplicated by group name. This function 622 // returns a group name. 623 template <class ELFT> 624 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 625 const Elf_Shdr &sec) { 626 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 627 if (sec.sh_info >= symbols.size()) 628 fatal(toString(this) + ": invalid symbol index"); 629 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 630 return CHECK(sym.getName(this->stringTable), this); 631 } 632 633 template <class ELFT> 634 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 635 // On a regular link we don't merge sections if -O0 (default is -O1). This 636 // sometimes makes the linker significantly faster, although the output will 637 // be bigger. 638 // 639 // Doing the same for -r would create a problem as it would combine sections 640 // with different sh_entsize. One option would be to just copy every SHF_MERGE 641 // section as is to the output. While this would produce a valid ELF file with 642 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 643 // they see two .debug_str. We could have separate logic for combining 644 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 645 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 646 // logic for -r. 647 if (config->optimize == 0 && !config->relocatable) 648 return false; 649 650 // A mergeable section with size 0 is useless because they don't have 651 // any data to merge. A mergeable string section with size 0 can be 652 // argued as invalid because it doesn't end with a null character. 653 // We'll avoid a mess by handling them as if they were non-mergeable. 654 if (sec.sh_size == 0) 655 return false; 656 657 // Check for sh_entsize. The ELF spec is not clear about the zero 658 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 659 // the section does not hold a table of fixed-size entries". We know 660 // that Rust 1.13 produces a string mergeable section with a zero 661 // sh_entsize. Here we just accept it rather than being picky about it. 662 uint64_t entSize = sec.sh_entsize; 663 if (entSize == 0) 664 return false; 665 if (sec.sh_size % entSize) 666 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 667 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 668 Twine(entSize) + ")"); 669 670 if (sec.sh_flags & SHF_WRITE) 671 fatal(toString(this) + ":(" + name + 672 "): writable SHF_MERGE section is not supported"); 673 674 return true; 675 } 676 677 // This is for --just-symbols. 678 // 679 // --just-symbols is a very minor feature that allows you to link your 680 // output against other existing program, so that if you load both your 681 // program and the other program into memory, your output can refer the 682 // other program's symbols. 683 // 684 // When the option is given, we link "just symbols". The section table is 685 // initialized with null pointers. 686 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 687 sections.resize(numELFShdrs); 688 } 689 690 template <class ELFT> 691 void ObjFile<ELFT>::initializeSections(bool ignoreComdats, 692 const llvm::object::ELFFile<ELFT> &obj) { 693 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 694 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 695 uint64_t size = objSections.size(); 696 SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups; 697 for (size_t i = 0; i != size; ++i) { 698 if (this->sections[i] == &InputSection::discarded) 699 continue; 700 const Elf_Shdr &sec = objSections[i]; 701 702 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 703 // if -r is given, we'll let the final link discard such sections. 704 // This is compatible with GNU. 705 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 706 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE) 707 cgProfileSectionIndex = i; 708 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 709 // We ignore the address-significance table if we know that the object 710 // file was created by objcopy or ld -r. This is because these tools 711 // will reorder the symbols in the symbol table, invalidating the data 712 // in the address-significance table, which refers to symbols by index. 713 if (sec.sh_link != 0) 714 this->addrsigSec = &sec; 715 else if (config->icf == ICFLevel::Safe) 716 warn(toString(this) + 717 ": --icf=safe conservatively ignores " 718 "SHT_LLVM_ADDRSIG [index " + 719 Twine(i) + 720 "] with sh_link=0 " 721 "(likely created using objcopy or ld -r)"); 722 } 723 this->sections[i] = &InputSection::discarded; 724 continue; 725 } 726 727 switch (sec.sh_type) { 728 case SHT_GROUP: { 729 if (!config->relocatable) 730 sections[i] = &InputSection::discarded; 731 StringRef signature = 732 cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable)); 733 ArrayRef<Elf_Word> entries = 734 cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec)); 735 if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats || 736 symtab.comdatGroups.find(CachedHashStringRef(signature))->second == 737 this) 738 selectedGroups.push_back(entries); 739 break; 740 } 741 case SHT_SYMTAB_SHNDX: 742 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 743 break; 744 case SHT_SYMTAB: 745 case SHT_STRTAB: 746 case SHT_REL: 747 case SHT_RELA: 748 case SHT_NULL: 749 break; 750 case SHT_LLVM_SYMPART: 751 ctx.hasSympart.store(true, std::memory_order_relaxed); 752 [[fallthrough]]; 753 default: 754 this->sections[i] = 755 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 756 } 757 } 758 759 // We have a second loop. It is used to: 760 // 1) handle SHF_LINK_ORDER sections. 761 // 2) create SHT_REL[A] sections. In some cases the section header index of a 762 // relocation section may be smaller than that of the relocated section. In 763 // such cases, the relocation section would attempt to reference a target 764 // section that has not yet been created. For simplicity, delay creation of 765 // relocation sections until now. 766 for (size_t i = 0; i != size; ++i) { 767 if (this->sections[i] == &InputSection::discarded) 768 continue; 769 const Elf_Shdr &sec = objSections[i]; 770 771 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) { 772 // Find a relocation target section and associate this section with that. 773 // Target may have been discarded if it is in a different section group 774 // and the group is discarded, even though it's a violation of the spec. 775 // We handle that situation gracefully by discarding dangling relocation 776 // sections. 777 const uint32_t info = sec.sh_info; 778 InputSectionBase *s = getRelocTarget(i, sec, info); 779 if (!s) 780 continue; 781 782 // ELF spec allows mergeable sections with relocations, but they are rare, 783 // and it is in practice hard to merge such sections by contents, because 784 // applying relocations at end of linking changes section contents. So, we 785 // simply handle such sections as non-mergeable ones. Degrading like this 786 // is acceptable because section merging is optional. 787 if (auto *ms = dyn_cast<MergeInputSection>(s)) { 788 s = makeThreadLocal<InputSection>( 789 ms->file, ms->flags, ms->type, ms->addralign, 790 ms->contentMaybeDecompress(), ms->name); 791 sections[info] = s; 792 } 793 794 if (s->relSecIdx != 0) 795 error( 796 toString(s) + 797 ": multiple relocation sections to one section are not supported"); 798 s->relSecIdx = i; 799 800 // Relocation sections are usually removed from the output, so return 801 // `nullptr` for the normal case. However, if -r or --emit-relocs is 802 // specified, we need to copy them to the output. (Some post link analysis 803 // tools specify --emit-relocs to obtain the information.) 804 if (config->copyRelocs) { 805 auto *isec = makeThreadLocal<InputSection>( 806 *this, sec, check(obj.getSectionName(sec, shstrtab))); 807 // If the relocated section is discarded (due to /DISCARD/ or 808 // --gc-sections), the relocation section should be discarded as well. 809 s->dependentSections.push_back(isec); 810 sections[i] = isec; 811 } 812 continue; 813 } 814 815 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 816 // the flag. 817 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER)) 818 continue; 819 820 InputSectionBase *linkSec = nullptr; 821 if (sec.sh_link < size) 822 linkSec = this->sections[sec.sh_link]; 823 if (!linkSec) 824 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 825 826 // A SHF_LINK_ORDER section is discarded if its linked-to section is 827 // discarded. 828 InputSection *isec = cast<InputSection>(this->sections[i]); 829 linkSec->dependentSections.push_back(isec); 830 if (!isa<InputSection>(linkSec)) 831 error("a section " + isec->name + 832 " with SHF_LINK_ORDER should not refer a non-regular section: " + 833 toString(linkSec)); 834 } 835 836 for (ArrayRef<Elf_Word> entries : selectedGroups) 837 handleSectionGroup<ELFT>(this->sections, entries); 838 } 839 840 // If a source file is compiled with x86 hardware-assisted call flow control 841 // enabled, the generated object file contains feature flags indicating that 842 // fact. This function reads the feature flags and returns it. 843 // 844 // Essentially we want to read a single 32-bit value in this function, but this 845 // function is rather complicated because the value is buried deep inside a 846 // .note.gnu.property section. 847 // 848 // The section consists of one or more NOTE records. Each NOTE record consists 849 // of zero or more type-length-value fields. We want to find a field of a 850 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 851 // the ABI is unnecessarily complicated. 852 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 853 using Elf_Nhdr = typename ELFT::Nhdr; 854 using Elf_Note = typename ELFT::Note; 855 856 uint32_t featuresSet = 0; 857 ArrayRef<uint8_t> data = sec.content(); 858 auto reportFatal = [&](const uint8_t *place, const char *msg) { 859 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 860 Twine::utohexstr(place - sec.content().data()) + "): " + msg); 861 }; 862 while (!data.empty()) { 863 // Read one NOTE record. 864 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 865 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 866 reportFatal(data.data(), "data is too short"); 867 868 Elf_Note note(*nhdr); 869 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 870 data = data.slice(nhdr->getSize()); 871 continue; 872 } 873 874 uint32_t featureAndType = config->emachine == EM_AARCH64 875 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 876 : GNU_PROPERTY_X86_FEATURE_1_AND; 877 878 // Read a body of a NOTE record, which consists of type-length-value fields. 879 ArrayRef<uint8_t> desc = note.getDesc(); 880 while (!desc.empty()) { 881 const uint8_t *place = desc.data(); 882 if (desc.size() < 8) 883 reportFatal(place, "program property is too short"); 884 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 885 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 886 desc = desc.slice(8); 887 if (desc.size() < size) 888 reportFatal(place, "program property is too short"); 889 890 if (type == featureAndType) { 891 // We found a FEATURE_1_AND field. There may be more than one of these 892 // in a .note.gnu.property section, for a relocatable object we 893 // accumulate the bits set. 894 if (size < 4) 895 reportFatal(place, "FEATURE_1_AND entry is too short"); 896 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 897 } 898 899 // Padding is present in the note descriptor, if necessary. 900 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 901 } 902 903 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 904 data = data.slice(nhdr->getSize()); 905 } 906 907 return featuresSet; 908 } 909 910 template <class ELFT> 911 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, 912 const Elf_Shdr &sec, 913 uint32_t info) { 914 if (info < this->sections.size()) { 915 InputSectionBase *target = this->sections[info]; 916 917 // Strictly speaking, a relocation section must be included in the 918 // group of the section it relocates. However, LLVM 3.3 and earlier 919 // would fail to do so, so we gracefully handle that case. 920 if (target == &InputSection::discarded) 921 return nullptr; 922 923 if (target != nullptr) 924 return target; 925 } 926 927 error(toString(this) + Twine(": relocation section (index ") + Twine(idx) + 928 ") has invalid sh_info (" + Twine(info) + ")"); 929 return nullptr; 930 } 931 932 // The function may be called concurrently for different input files. For 933 // allocation, prefer makeThreadLocal which does not require holding a lock. 934 template <class ELFT> 935 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 936 const Elf_Shdr &sec, 937 StringRef name) { 938 if (name.startswith(".n")) { 939 // The GNU linker uses .note.GNU-stack section as a marker indicating 940 // that the code in the object file does not expect that the stack is 941 // executable (in terms of NX bit). If all input files have the marker, 942 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 943 // make the stack non-executable. Most object files have this section as 944 // of 2017. 945 // 946 // But making the stack non-executable is a norm today for security 947 // reasons. Failure to do so may result in a serious security issue. 948 // Therefore, we make LLD always add PT_GNU_STACK unless it is 949 // explicitly told to do otherwise (by -z execstack). Because the stack 950 // executable-ness is controlled solely by command line options, 951 // .note.GNU-stack sections are simply ignored. 952 if (name == ".note.GNU-stack") 953 return &InputSection::discarded; 954 955 // Object files that use processor features such as Intel Control-Flow 956 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 957 // .note.gnu.property section containing a bitfield of feature bits like the 958 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 959 // 960 // Since we merge bitmaps from multiple object files to create a new 961 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 962 // file's .note.gnu.property section. 963 if (name == ".note.gnu.property") { 964 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 965 return &InputSection::discarded; 966 } 967 968 // Split stacks is a feature to support a discontiguous stack, 969 // commonly used in the programming language Go. For the details, 970 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 971 // for split stack will include a .note.GNU-split-stack section. 972 if (name == ".note.GNU-split-stack") { 973 if (config->relocatable) { 974 error( 975 "cannot mix split-stack and non-split-stack in a relocatable link"); 976 return &InputSection::discarded; 977 } 978 this->splitStack = true; 979 return &InputSection::discarded; 980 } 981 982 // An object file compiled for split stack, but where some of the 983 // functions were compiled with the no_split_stack_attribute will 984 // include a .note.GNU-no-split-stack section. 985 if (name == ".note.GNU-no-split-stack") { 986 this->someNoSplitStack = true; 987 return &InputSection::discarded; 988 } 989 990 // Strip existing .note.gnu.build-id sections so that the output won't have 991 // more than one build-id. This is not usually a problem because input 992 // object files normally don't have .build-id sections, but you can create 993 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 994 // against it. 995 if (name == ".note.gnu.build-id") 996 return &InputSection::discarded; 997 } 998 999 // The linker merges EH (exception handling) frames and creates a 1000 // .eh_frame_hdr section for runtime. So we handle them with a special 1001 // class. For relocatable outputs, they are just passed through. 1002 if (name == ".eh_frame" && !config->relocatable) 1003 return makeThreadLocal<EhInputSection>(*this, sec, name); 1004 1005 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1006 return makeThreadLocal<MergeInputSection>(*this, sec, name); 1007 return makeThreadLocal<InputSection>(*this, sec, name); 1008 } 1009 1010 // Initialize this->Symbols. this->Symbols is a parallel array as 1011 // its corresponding ELF symbol table. 1012 template <class ELFT> 1013 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) { 1014 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1015 if (numSymbols == 0) { 1016 numSymbols = eSyms.size(); 1017 symbols = std::make_unique<Symbol *[]>(numSymbols); 1018 } 1019 1020 // Some entries have been filled by LazyObjFile. 1021 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1022 if (!symbols[i]) 1023 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1024 1025 // Perform symbol resolution on non-local symbols. 1026 SmallVector<unsigned, 32> undefineds; 1027 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1028 const Elf_Sym &eSym = eSyms[i]; 1029 uint32_t secIdx = eSym.st_shndx; 1030 if (secIdx == SHN_UNDEF) { 1031 undefineds.push_back(i); 1032 continue; 1033 } 1034 1035 uint8_t binding = eSym.getBinding(); 1036 uint8_t stOther = eSym.st_other; 1037 uint8_t type = eSym.getType(); 1038 uint64_t value = eSym.st_value; 1039 uint64_t size = eSym.st_size; 1040 1041 Symbol *sym = symbols[i]; 1042 sym->isUsedInRegularObj = true; 1043 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1044 if (value == 0 || value >= UINT32_MAX) 1045 fatal(toString(this) + ": common symbol '" + sym->getName() + 1046 "' has invalid alignment: " + Twine(value)); 1047 hasCommonSyms = true; 1048 sym->resolve( 1049 CommonSymbol{this, StringRef(), binding, stOther, type, value, size}); 1050 continue; 1051 } 1052 1053 // Handle global defined symbols. Defined::section will be set in postParse. 1054 sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size, 1055 nullptr}); 1056 } 1057 1058 // Undefined symbols (excluding those defined relative to non-prevailing 1059 // sections) can trigger recursive extract. Process defined symbols first so 1060 // that the relative order between a defined symbol and an undefined symbol 1061 // does not change the symbol resolution behavior. In addition, a set of 1062 // interconnected symbols will all be resolved to the same file, instead of 1063 // being resolved to different files. 1064 for (unsigned i : undefineds) { 1065 const Elf_Sym &eSym = eSyms[i]; 1066 Symbol *sym = symbols[i]; 1067 sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other, 1068 eSym.getType()}); 1069 sym->isUsedInRegularObj = true; 1070 sym->referenced = true; 1071 } 1072 } 1073 1074 template <class ELFT> 1075 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) { 1076 if (!justSymbols) 1077 initializeSections(ignoreComdats, getObj()); 1078 1079 if (!firstGlobal) 1080 return; 1081 SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal); 1082 memset(locals, 0, sizeof(SymbolUnion) * firstGlobal); 1083 1084 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1085 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1086 const Elf_Sym &eSym = eSyms[i]; 1087 uint32_t secIdx = eSym.st_shndx; 1088 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1089 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1090 else if (secIdx >= SHN_LORESERVE) 1091 secIdx = 0; 1092 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1093 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1094 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1095 error(toString(this) + ": non-local symbol (" + Twine(i) + 1096 ") found at index < .symtab's sh_info (" + Twine(end) + ")"); 1097 1098 InputSectionBase *sec = sections[secIdx]; 1099 uint8_t type = eSym.getType(); 1100 if (type == STT_FILE) 1101 sourceFile = CHECK(eSym.getName(stringTable), this); 1102 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name)) 1103 fatal(toString(this) + ": invalid symbol name offset"); 1104 StringRef name(stringTable.data() + eSym.st_name); 1105 1106 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1107 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1108 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1109 /*discardedSecIdx=*/secIdx); 1110 else 1111 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1112 eSym.st_value, eSym.st_size, sec); 1113 symbols[i]->partition = 1; 1114 symbols[i]->isUsedInRegularObj = true; 1115 } 1116 } 1117 1118 // Called after all ObjFile::parse is called for all ObjFiles. This checks 1119 // duplicate symbols and may do symbol property merge in the future. 1120 template <class ELFT> void ObjFile<ELFT>::postParse() { 1121 static std::mutex mu; 1122 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1123 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1124 const Elf_Sym &eSym = eSyms[i]; 1125 Symbol &sym = *symbols[i]; 1126 uint32_t secIdx = eSym.st_shndx; 1127 uint8_t binding = eSym.getBinding(); 1128 if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK && 1129 binding != STB_GNU_UNIQUE)) 1130 errorOrWarn(toString(this) + ": symbol (" + Twine(i) + 1131 ") has invalid binding: " + Twine((int)binding)); 1132 1133 // st_value of STT_TLS represents the assigned offset, not the actual 1134 // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can 1135 // only be referenced by special TLS relocations. It is usually an error if 1136 // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa. 1137 if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS && 1138 eSym.getType() != STT_NOTYPE) 1139 errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " + 1140 toString(sym.file) + "\n>>> in " + toString(this)); 1141 1142 // Handle non-COMMON defined symbol below. !sym.file allows a symbol 1143 // assignment to redefine a symbol without an error. 1144 if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF || 1145 secIdx == SHN_COMMON) 1146 continue; 1147 1148 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1149 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1150 else if (secIdx >= SHN_LORESERVE) 1151 secIdx = 0; 1152 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1153 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1154 InputSectionBase *sec = sections[secIdx]; 1155 if (sec == &InputSection::discarded) { 1156 if (sym.traced) { 1157 printTraceSymbol(Undefined{this, sym.getName(), sym.binding, 1158 sym.stOther, sym.type, secIdx}, 1159 sym.getName()); 1160 } 1161 if (sym.file == this) { 1162 std::lock_guard<std::mutex> lock(mu); 1163 ctx.nonPrevailingSyms.emplace_back(&sym, secIdx); 1164 } 1165 continue; 1166 } 1167 1168 if (sym.file == this) { 1169 cast<Defined>(sym).section = sec; 1170 continue; 1171 } 1172 1173 if (sym.binding == STB_WEAK || binding == STB_WEAK) 1174 continue; 1175 std::lock_guard<std::mutex> lock(mu); 1176 ctx.duplicates.push_back({&sym, this, sec, eSym.st_value}); 1177 } 1178 } 1179 1180 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1181 // A tentative definition will be promoted to a global definition if there are 1182 // no non-tentative definitions to dominate it. When we hold a tentative 1183 // definition to a symbol and are inspecting archive members for inclusion 1184 // there are 2 ways we can proceed: 1185 // 1186 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1187 // tentative to real definition has already happened) and not inspect 1188 // archive members for Global/Weak definitions to replace the tentative 1189 // definition. An archive member would only be included if it satisfies some 1190 // other undefined symbol. This is the behavior Gold uses. 1191 // 1192 // 2) Consider the tentative definition as still undefined (ie the promotion to 1193 // a real definition happens only after all symbol resolution is done). 1194 // The linker searches archive members for STB_GLOBAL definitions to 1195 // replace the tentative definition with. This is the behavior used by 1196 // GNU ld. 1197 // 1198 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1199 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1200 // (pre F90) FORTRAN code that is packaged into an archive. 1201 // 1202 // The following functions search archive members for definitions to replace 1203 // tentative definitions (implementing behavior 2). 1204 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1205 StringRef archiveName) { 1206 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1207 for (const irsymtab::Reader::SymbolRef &sym : 1208 symtabFile.TheReader.symbols()) { 1209 if (sym.isGlobal() && sym.getName() == symName) 1210 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1211 } 1212 return false; 1213 } 1214 1215 template <class ELFT> 1216 static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName, 1217 StringRef archiveName) { 1218 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName); 1219 obj->init(); 1220 StringRef stringtable = obj->getStringTable(); 1221 1222 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1223 Expected<StringRef> name = sym.getName(stringtable); 1224 if (name && name.get() == symName) 1225 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1226 !sym.isCommon(); 1227 } 1228 return false; 1229 } 1230 1231 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1232 StringRef archiveName) { 1233 switch (getELFKind(mb, archiveName)) { 1234 case ELF32LEKind: 1235 return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName); 1236 case ELF32BEKind: 1237 return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName); 1238 case ELF64LEKind: 1239 return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName); 1240 case ELF64BEKind: 1241 return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName); 1242 default: 1243 llvm_unreachable("getELFKind"); 1244 } 1245 } 1246 1247 unsigned SharedFile::vernauxNum; 1248 1249 SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName) 1250 : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName), 1251 isNeeded(!config->asNeeded) {} 1252 1253 // Parse the version definitions in the object file if present, and return a 1254 // vector whose nth element contains a pointer to the Elf_Verdef for version 1255 // identifier n. Version identifiers that are not definitions map to nullptr. 1256 template <typename ELFT> 1257 static SmallVector<const void *, 0> 1258 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1259 if (!sec) 1260 return {}; 1261 1262 // Build the Verdefs array by following the chain of Elf_Verdef objects 1263 // from the start of the .gnu.version_d section. 1264 SmallVector<const void *, 0> verdefs; 1265 const uint8_t *verdef = base + sec->sh_offset; 1266 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1267 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1268 verdef += curVerdef->vd_next; 1269 unsigned verdefIndex = curVerdef->vd_ndx; 1270 if (verdefIndex >= verdefs.size()) 1271 verdefs.resize(verdefIndex + 1); 1272 verdefs[verdefIndex] = curVerdef; 1273 } 1274 return verdefs; 1275 } 1276 1277 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1278 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1279 // implement sophisticated error checking like in llvm-readobj because the value 1280 // of such diagnostics is low. 1281 template <typename ELFT> 1282 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1283 const typename ELFT::Shdr *sec) { 1284 if (!sec) 1285 return {}; 1286 std::vector<uint32_t> verneeds; 1287 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1288 const uint8_t *verneedBuf = data.begin(); 1289 for (unsigned i = 0; i != sec->sh_info; ++i) { 1290 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1291 fatal(toString(this) + " has an invalid Verneed"); 1292 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1293 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1294 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1295 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1296 fatal(toString(this) + " has an invalid Vernaux"); 1297 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1298 if (aux->vna_name >= this->stringTable.size()) 1299 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1300 uint16_t version = aux->vna_other & VERSYM_VERSION; 1301 if (version >= verneeds.size()) 1302 verneeds.resize(version + 1); 1303 verneeds[version] = aux->vna_name; 1304 vernauxBuf += aux->vna_next; 1305 } 1306 verneedBuf += vn->vn_next; 1307 } 1308 return verneeds; 1309 } 1310 1311 // We do not usually care about alignments of data in shared object 1312 // files because the loader takes care of it. However, if we promote a 1313 // DSO symbol to point to .bss due to copy relocation, we need to keep 1314 // the original alignment requirements. We infer it in this function. 1315 template <typename ELFT> 1316 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1317 const typename ELFT::Sym &sym) { 1318 uint64_t ret = UINT64_MAX; 1319 if (sym.st_value) 1320 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1321 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1322 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1323 return (ret > UINT32_MAX) ? 0 : ret; 1324 } 1325 1326 // Fully parse the shared object file. 1327 // 1328 // This function parses symbol versions. If a DSO has version information, 1329 // the file has a ".gnu.version_d" section which contains symbol version 1330 // definitions. Each symbol is associated to one version through a table in 1331 // ".gnu.version" section. That table is a parallel array for the symbol 1332 // table, and each table entry contains an index in ".gnu.version_d". 1333 // 1334 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1335 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1336 // ".gnu.version_d". 1337 // 1338 // The file format for symbol versioning is perhaps a bit more complicated 1339 // than necessary, but you can easily understand the code if you wrap your 1340 // head around the data structure described above. 1341 template <class ELFT> void SharedFile::parse() { 1342 using Elf_Dyn = typename ELFT::Dyn; 1343 using Elf_Shdr = typename ELFT::Shdr; 1344 using Elf_Sym = typename ELFT::Sym; 1345 using Elf_Verdef = typename ELFT::Verdef; 1346 using Elf_Versym = typename ELFT::Versym; 1347 1348 ArrayRef<Elf_Dyn> dynamicTags; 1349 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1350 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1351 1352 const Elf_Shdr *versymSec = nullptr; 1353 const Elf_Shdr *verdefSec = nullptr; 1354 const Elf_Shdr *verneedSec = nullptr; 1355 1356 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1357 for (const Elf_Shdr &sec : sections) { 1358 switch (sec.sh_type) { 1359 default: 1360 continue; 1361 case SHT_DYNAMIC: 1362 dynamicTags = 1363 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1364 break; 1365 case SHT_GNU_versym: 1366 versymSec = &sec; 1367 break; 1368 case SHT_GNU_verdef: 1369 verdefSec = &sec; 1370 break; 1371 case SHT_GNU_verneed: 1372 verneedSec = &sec; 1373 break; 1374 } 1375 } 1376 1377 if (versymSec && numELFSyms == 0) { 1378 error("SHT_GNU_versym should be associated with symbol table"); 1379 return; 1380 } 1381 1382 // Search for a DT_SONAME tag to initialize this->soName. 1383 for (const Elf_Dyn &dyn : dynamicTags) { 1384 if (dyn.d_tag == DT_NEEDED) { 1385 uint64_t val = dyn.getVal(); 1386 if (val >= this->stringTable.size()) 1387 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1388 dtNeeded.push_back(this->stringTable.data() + val); 1389 } else if (dyn.d_tag == DT_SONAME) { 1390 uint64_t val = dyn.getVal(); 1391 if (val >= this->stringTable.size()) 1392 fatal(toString(this) + ": invalid DT_SONAME entry"); 1393 soName = this->stringTable.data() + val; 1394 } 1395 } 1396 1397 // DSOs are uniquified not by filename but by soname. 1398 DenseMap<CachedHashStringRef, SharedFile *>::iterator it; 1399 bool wasInserted; 1400 std::tie(it, wasInserted) = 1401 symtab.soNames.try_emplace(CachedHashStringRef(soName), this); 1402 1403 // If a DSO appears more than once on the command line with and without 1404 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1405 // user can add an extra DSO with --no-as-needed to force it to be added to 1406 // the dependency list. 1407 it->second->isNeeded |= isNeeded; 1408 if (!wasInserted) 1409 return; 1410 1411 ctx.sharedFiles.push_back(this); 1412 1413 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1414 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1415 1416 // Parse ".gnu.version" section which is a parallel array for the symbol 1417 // table. If a given file doesn't have a ".gnu.version" section, we use 1418 // VER_NDX_GLOBAL. 1419 size_t size = numELFSyms - firstGlobal; 1420 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1421 if (versymSec) { 1422 ArrayRef<Elf_Versym> versym = 1423 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1424 this) 1425 .slice(firstGlobal); 1426 for (size_t i = 0; i < size; ++i) 1427 versyms[i] = versym[i].vs_index; 1428 } 1429 1430 // System libraries can have a lot of symbols with versions. Using a 1431 // fixed buffer for computing the versions name (foo@ver) can save a 1432 // lot of allocations. 1433 SmallString<0> versionedNameBuffer; 1434 1435 // Add symbols to the symbol table. 1436 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1437 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1438 const Elf_Sym &sym = syms[i]; 1439 1440 // ELF spec requires that all local symbols precede weak or global 1441 // symbols in each symbol table, and the index of first non-local symbol 1442 // is stored to sh_info. If a local symbol appears after some non-local 1443 // symbol, that's a violation of the spec. 1444 StringRef name = CHECK(sym.getName(stringTable), this); 1445 if (sym.getBinding() == STB_LOCAL) { 1446 errorOrWarn(toString(this) + ": invalid local symbol '" + name + 1447 "' in global part of symbol table"); 1448 continue; 1449 } 1450 1451 const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN; 1452 if (sym.isUndefined()) { 1453 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1454 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1455 if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) { 1456 if (idx >= verneeds.size()) { 1457 error("corrupt input file: version need index " + Twine(idx) + 1458 " for symbol " + name + " is out of bounds\n>>> defined in " + 1459 toString(this)); 1460 continue; 1461 } 1462 StringRef verName = stringTable.data() + verneeds[idx]; 1463 versionedNameBuffer.clear(); 1464 name = saver().save( 1465 (name + "@" + verName).toStringRef(versionedNameBuffer)); 1466 } 1467 Symbol *s = symtab.addSymbol( 1468 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1469 s->exportDynamic = true; 1470 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1471 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1472 requiredSymbols.push_back(s); 1473 continue; 1474 } 1475 1476 if (ver == VER_NDX_LOCAL || 1477 (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) { 1478 // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the 1479 // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns 1480 // VER_NDX_LOCAL. Workaround this bug. 1481 if (config->emachine == EM_MIPS && name == "_gp_disp") 1482 continue; 1483 error("corrupt input file: version definition index " + Twine(idx) + 1484 " for symbol " + name + " is out of bounds\n>>> defined in " + 1485 toString(this)); 1486 continue; 1487 } 1488 1489 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1490 if (ver == idx) { 1491 auto *s = symtab.addSymbol( 1492 SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1493 sym.getType(), sym.st_value, sym.st_size, alignment}); 1494 if (s->file == this) 1495 s->verdefIndex = ver; 1496 } 1497 1498 // Also add the symbol with the versioned name to handle undefined symbols 1499 // with explicit versions. 1500 if (ver == VER_NDX_GLOBAL) 1501 continue; 1502 1503 StringRef verName = 1504 stringTable.data() + 1505 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1506 versionedNameBuffer.clear(); 1507 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1508 auto *s = symtab.addSymbol( 1509 SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other, 1510 sym.getType(), sym.st_value, sym.st_size, alignment}); 1511 if (s->file == this) 1512 s->verdefIndex = idx; 1513 } 1514 } 1515 1516 static ELFKind getBitcodeELFKind(const Triple &t) { 1517 if (t.isLittleEndian()) 1518 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1519 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1520 } 1521 1522 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1523 switch (t.getArch()) { 1524 case Triple::aarch64: 1525 case Triple::aarch64_be: 1526 return EM_AARCH64; 1527 case Triple::amdgcn: 1528 case Triple::r600: 1529 return EM_AMDGPU; 1530 case Triple::arm: 1531 case Triple::thumb: 1532 return EM_ARM; 1533 case Triple::avr: 1534 return EM_AVR; 1535 case Triple::hexagon: 1536 return EM_HEXAGON; 1537 case Triple::mips: 1538 case Triple::mipsel: 1539 case Triple::mips64: 1540 case Triple::mips64el: 1541 return EM_MIPS; 1542 case Triple::msp430: 1543 return EM_MSP430; 1544 case Triple::ppc: 1545 case Triple::ppcle: 1546 return EM_PPC; 1547 case Triple::ppc64: 1548 case Triple::ppc64le: 1549 return EM_PPC64; 1550 case Triple::riscv32: 1551 case Triple::riscv64: 1552 return EM_RISCV; 1553 case Triple::x86: 1554 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1555 case Triple::x86_64: 1556 return EM_X86_64; 1557 default: 1558 error(path + ": could not infer e_machine from bitcode target triple " + 1559 t.str()); 1560 return EM_NONE; 1561 } 1562 } 1563 1564 static uint8_t getOsAbi(const Triple &t) { 1565 switch (t.getOS()) { 1566 case Triple::AMDHSA: 1567 return ELF::ELFOSABI_AMDGPU_HSA; 1568 case Triple::AMDPAL: 1569 return ELF::ELFOSABI_AMDGPU_PAL; 1570 case Triple::Mesa3D: 1571 return ELF::ELFOSABI_AMDGPU_MESA3D; 1572 default: 1573 return ELF::ELFOSABI_NONE; 1574 } 1575 } 1576 1577 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1578 uint64_t offsetInArchive, bool lazy) 1579 : InputFile(BitcodeKind, mb) { 1580 this->archiveName = archiveName; 1581 this->lazy = lazy; 1582 1583 std::string path = mb.getBufferIdentifier().str(); 1584 if (config->thinLTOIndexOnly) 1585 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1586 1587 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1588 // name. If two archives define two members with the same name, this 1589 // causes a collision which result in only one of the objects being taken 1590 // into consideration at LTO time (which very likely causes undefined 1591 // symbols later in the link stage). So we append file offset to make 1592 // filename unique. 1593 StringRef name = archiveName.empty() 1594 ? saver().save(path) 1595 : saver().save(archiveName + "(" + path::filename(path) + 1596 " at " + utostr(offsetInArchive) + ")"); 1597 MemoryBufferRef mbref(mb.getBuffer(), name); 1598 1599 obj = CHECK(lto::InputFile::create(mbref), this); 1600 1601 Triple t(obj->getTargetTriple()); 1602 ekind = getBitcodeELFKind(t); 1603 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1604 osabi = getOsAbi(t); 1605 } 1606 1607 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1608 switch (gvVisibility) { 1609 case GlobalValue::DefaultVisibility: 1610 return STV_DEFAULT; 1611 case GlobalValue::HiddenVisibility: 1612 return STV_HIDDEN; 1613 case GlobalValue::ProtectedVisibility: 1614 return STV_PROTECTED; 1615 } 1616 llvm_unreachable("unknown visibility"); 1617 } 1618 1619 static void 1620 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats, 1621 const lto::InputFile::Symbol &objSym, BitcodeFile &f) { 1622 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1623 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1624 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1625 1626 if (!sym) 1627 sym = symtab.insert(saver().save(objSym.getName())); 1628 1629 int c = objSym.getComdatIndex(); 1630 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1631 Undefined newSym(&f, StringRef(), binding, visibility, type); 1632 sym->resolve(newSym); 1633 sym->referenced = true; 1634 return; 1635 } 1636 1637 if (objSym.isCommon()) { 1638 sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT, 1639 objSym.getCommonAlignment(), 1640 objSym.getCommonSize()}); 1641 } else { 1642 Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr); 1643 if (objSym.canBeOmittedFromSymbolTable()) 1644 newSym.exportDynamic = false; 1645 sym->resolve(newSym); 1646 } 1647 } 1648 1649 void BitcodeFile::parse() { 1650 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1651 keptComdats.push_back( 1652 s.second == Comdat::NoDeduplicate || 1653 symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1654 .second); 1655 } 1656 1657 if (numSymbols == 0) { 1658 numSymbols = obj->symbols().size(); 1659 symbols = std::make_unique<Symbol *[]>(numSymbols); 1660 } 1661 // Process defined symbols first. See the comment in 1662 // ObjFile<ELFT>::initializeSymbols. 1663 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1664 if (!irSym.isUndefined()) 1665 createBitcodeSymbol(symbols[i], keptComdats, irSym, *this); 1666 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1667 if (irSym.isUndefined()) 1668 createBitcodeSymbol(symbols[i], keptComdats, irSym, *this); 1669 1670 for (auto l : obj->getDependentLibraries()) 1671 addDependentLibrary(l, this); 1672 } 1673 1674 void BitcodeFile::parseLazy() { 1675 numSymbols = obj->symbols().size(); 1676 symbols = std::make_unique<Symbol *[]>(numSymbols); 1677 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1678 if (!irSym.isUndefined()) { 1679 auto *sym = symtab.insert(saver().save(irSym.getName())); 1680 sym->resolve(LazyObject{*this}); 1681 symbols[i] = sym; 1682 } 1683 } 1684 1685 void BitcodeFile::postParse() { 1686 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) { 1687 const Symbol &sym = *symbols[i]; 1688 if (sym.file == this || !sym.isDefined() || irSym.isUndefined() || 1689 irSym.isCommon() || irSym.isWeak()) 1690 continue; 1691 int c = irSym.getComdatIndex(); 1692 if (c != -1 && !keptComdats[c]) 1693 continue; 1694 reportDuplicate(sym, this, nullptr, 0); 1695 } 1696 } 1697 1698 void BinaryFile::parse() { 1699 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1700 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1701 8, data, ".data"); 1702 sections.push_back(section); 1703 1704 // For each input file foo that is embedded to a result as a binary 1705 // blob, we define _binary_foo_{start,end,size} symbols, so that 1706 // user programs can access blobs by name. Non-alphanumeric 1707 // characters in a filename are replaced with underscore. 1708 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1709 for (size_t i = 0; i < s.size(); ++i) 1710 if (!isAlnum(s[i])) 1711 s[i] = '_'; 1712 1713 llvm::StringSaver &saver = lld::saver(); 1714 1715 symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"), 1716 STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0, 1717 section}); 1718 symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"), 1719 STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 1720 data.size(), 0, section}); 1721 symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"), 1722 STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 1723 data.size(), 0, nullptr}); 1724 } 1725 1726 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName, 1727 bool lazy) { 1728 ELFFileBase *f; 1729 switch (getELFKind(mb, archiveName)) { 1730 case ELF32LEKind: 1731 f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName); 1732 break; 1733 case ELF32BEKind: 1734 f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName); 1735 break; 1736 case ELF64LEKind: 1737 f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName); 1738 break; 1739 case ELF64BEKind: 1740 f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName); 1741 break; 1742 default: 1743 llvm_unreachable("getELFKind"); 1744 } 1745 f->init(); 1746 f->lazy = lazy; 1747 return f; 1748 } 1749 1750 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1751 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1752 numSymbols = eSyms.size(); 1753 symbols = std::make_unique<Symbol *[]>(numSymbols); 1754 1755 // resolve() may trigger this->extract() if an existing symbol is an undefined 1756 // symbol. If that happens, this function has served its purpose, and we can 1757 // exit from the loop early. 1758 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1759 if (eSyms[i].st_shndx == SHN_UNDEF) 1760 continue; 1761 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1762 symbols[i]->resolve(LazyObject{*this}); 1763 if (!lazy) 1764 break; 1765 } 1766 } 1767 1768 bool InputFile::shouldExtractForCommon(StringRef name) { 1769 if (isa<BitcodeFile>(this)) 1770 return isBitcodeNonCommonDef(mb, name, archiveName); 1771 1772 return isNonCommonDef(mb, name, archiveName); 1773 } 1774 1775 std::string elf::replaceThinLTOSuffix(StringRef path) { 1776 auto [suffix, repl] = config->thinLTOObjectSuffixReplace; 1777 if (path.consume_back(suffix)) 1778 return (path + repl).str(); 1779 return std::string(path); 1780 } 1781 1782 template class elf::ObjFile<ELF32LE>; 1783 template class elf::ObjFile<ELF32BE>; 1784 template class elf::ObjFile<ELF64LE>; 1785 template class elf::ObjFile<ELF64BE>; 1786 1787 template void SharedFile::parse<ELF32LE>(); 1788 template void SharedFile::parse<ELF32BE>(); 1789 template void SharedFile::parse<ELF64LE>(); 1790 template void SharedFile::parse<ELF64BE>(); 1791