1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::vector<ArchiveFile *> elf::archiveFiles; 47 std::vector<BinaryFile *> elf::binaryFiles; 48 std::vector<BitcodeFile *> elf::bitcodeFiles; 49 std::vector<LazyObjFile *> elf::lazyObjFiles; 50 std::vector<InputFile *> elf::objectFiles; 51 std::vector<SharedFile *> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = std::string(f->getName()); 63 else 64 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 65 } 66 return f->toStringCache; 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 119 if (auto ec = mbOrErr.getError()) { 120 error("cannot open " + path + ": " + ec.message()); 121 return None; 122 } 123 124 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 125 MemoryBufferRef mbref = mb->getMemBufferRef(); 126 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 127 128 if (tar) 129 tar->append(relativeToRoot(path), mbref.getBuffer()); 130 return mbref; 131 } 132 133 // All input object files must be for the same architecture 134 // (e.g. it does not make sense to link x86 object files with 135 // MIPS object files.) This function checks for that error. 136 static bool isCompatible(InputFile *file) { 137 if (!file->isElf() && !isa<BitcodeFile>(file)) 138 return true; 139 140 if (file->ekind == config->ekind && file->emachine == config->emachine) { 141 if (config->emachine != EM_MIPS) 142 return true; 143 if (isMipsN32Abi(file) == config->mipsN32Abi) 144 return true; 145 } 146 147 StringRef target = 148 !config->bfdname.empty() ? config->bfdname : config->emulation; 149 if (!target.empty()) { 150 error(toString(file) + " is incompatible with " + target); 151 return false; 152 } 153 154 InputFile *existing; 155 if (!objectFiles.empty()) 156 existing = objectFiles[0]; 157 else if (!sharedFiles.empty()) 158 existing = sharedFiles[0]; 159 else if (!bitcodeFiles.empty()) 160 existing = bitcodeFiles[0]; 161 else 162 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 163 "determine target emulation"); 164 165 error(toString(file) + " is incompatible with " + toString(existing)); 166 return false; 167 } 168 169 template <class ELFT> static void doParseFile(InputFile *file) { 170 if (!isCompatible(file)) 171 return; 172 173 // Binary file 174 if (auto *f = dyn_cast<BinaryFile>(file)) { 175 binaryFiles.push_back(f); 176 f->parse(); 177 return; 178 } 179 180 // .a file 181 if (auto *f = dyn_cast<ArchiveFile>(file)) { 182 archiveFiles.push_back(f); 183 f->parse(); 184 return; 185 } 186 187 // Lazy object file 188 if (auto *f = dyn_cast<LazyObjFile>(file)) { 189 lazyObjFiles.push_back(f); 190 f->parse<ELFT>(); 191 return; 192 } 193 194 if (config->trace) 195 message(toString(file)); 196 197 // .so file 198 if (auto *f = dyn_cast<SharedFile>(file)) { 199 f->parse<ELFT>(); 200 return; 201 } 202 203 // LLVM bitcode file 204 if (auto *f = dyn_cast<BitcodeFile>(file)) { 205 bitcodeFiles.push_back(f); 206 f->parse<ELFT>(); 207 return; 208 } 209 210 // Regular object file 211 objectFiles.push_back(file); 212 cast<ObjFile<ELFT>>(file)->parse(); 213 } 214 215 // Add symbols in File to the symbol table. 216 void elf::parseFile(InputFile *file) { 217 switch (config->ekind) { 218 case ELF32LEKind: 219 doParseFile<ELF32LE>(file); 220 return; 221 case ELF32BEKind: 222 doParseFile<ELF32BE>(file); 223 return; 224 case ELF64LEKind: 225 doParseFile<ELF64LE>(file); 226 return; 227 case ELF64BEKind: 228 doParseFile<ELF64BE>(file); 229 return; 230 default: 231 llvm_unreachable("unknown ELFT"); 232 } 233 } 234 235 // Concatenates arguments to construct a string representing an error location. 236 static std::string createFileLineMsg(StringRef path, unsigned line) { 237 std::string filename = std::string(path::filename(path)); 238 std::string lineno = ":" + std::to_string(line); 239 if (filename == path) 240 return filename + lineno; 241 return filename + lineno + " (" + path.str() + lineno + ")"; 242 } 243 244 template <class ELFT> 245 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 246 InputSectionBase &sec, uint64_t offset) { 247 // In DWARF, functions and variables are stored to different places. 248 // First, lookup a function for a given offset. 249 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 250 return createFileLineMsg(info->FileName, info->Line); 251 252 // If it failed, lookup again as a variable. 253 if (Optional<std::pair<std::string, unsigned>> fileLine = 254 file.getVariableLoc(sym.getName())) 255 return createFileLineMsg(fileLine->first, fileLine->second); 256 257 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 258 return std::string(file.sourceFile); 259 } 260 261 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 262 uint64_t offset) { 263 if (kind() != ObjKind) 264 return ""; 265 switch (config->ekind) { 266 default: 267 llvm_unreachable("Invalid kind"); 268 case ELF32LEKind: 269 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 270 case ELF32BEKind: 271 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 272 case ELF64LEKind: 273 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 274 case ELF64BEKind: 275 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 276 } 277 } 278 279 StringRef InputFile::getNameForScript() const { 280 if (archiveName.empty()) 281 return getName(); 282 283 if (nameForScriptCache.empty()) 284 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 285 286 return nameForScriptCache; 287 } 288 289 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 290 llvm::call_once(initDwarf, [this]() { 291 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 292 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 293 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 294 [&](Error warning) { 295 warn(getName() + ": " + toString(std::move(warning))); 296 })); 297 }); 298 299 return dwarf.get(); 300 } 301 302 // Returns the pair of file name and line number describing location of data 303 // object (variable, array, etc) definition. 304 template <class ELFT> 305 Optional<std::pair<std::string, unsigned>> 306 ObjFile<ELFT>::getVariableLoc(StringRef name) { 307 return getDwarf()->getVariableLoc(name); 308 } 309 310 // Returns source line information for a given offset 311 // using DWARF debug info. 312 template <class ELFT> 313 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 314 uint64_t offset) { 315 // Detect SectionIndex for specified section. 316 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 317 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 318 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 319 if (s == sections[curIndex]) { 320 sectionIndex = curIndex; 321 break; 322 } 323 } 324 325 return getDwarf()->getDILineInfo(offset, sectionIndex); 326 } 327 328 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 329 ekind = getELFKind(mb, ""); 330 331 switch (ekind) { 332 case ELF32LEKind: 333 init<ELF32LE>(); 334 break; 335 case ELF32BEKind: 336 init<ELF32BE>(); 337 break; 338 case ELF64LEKind: 339 init<ELF64LE>(); 340 break; 341 case ELF64BEKind: 342 init<ELF64BE>(); 343 break; 344 default: 345 llvm_unreachable("getELFKind"); 346 } 347 } 348 349 template <typename Elf_Shdr> 350 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 351 for (const Elf_Shdr &sec : sections) 352 if (sec.sh_type == type) 353 return &sec; 354 return nullptr; 355 } 356 357 template <class ELFT> void ELFFileBase::init() { 358 using Elf_Shdr = typename ELFT::Shdr; 359 using Elf_Sym = typename ELFT::Sym; 360 361 // Initialize trivial attributes. 362 const ELFFile<ELFT> &obj = getObj<ELFT>(); 363 emachine = obj.getHeader().e_machine; 364 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 365 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 366 367 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 368 369 // Find a symbol table. 370 bool isDSO = 371 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 372 const Elf_Shdr *symtabSec = 373 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 374 375 if (!symtabSec) 376 return; 377 378 // Initialize members corresponding to a symbol table. 379 firstGlobal = symtabSec->sh_info; 380 381 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 382 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 383 fatal(toString(this) + ": invalid sh_info in symbol table"); 384 385 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 386 numELFSyms = eSyms.size(); 387 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 388 } 389 390 template <class ELFT> 391 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 392 return CHECK( 393 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 394 this); 395 } 396 397 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 398 if (this->symbols.empty()) 399 return {}; 400 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 401 } 402 403 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 404 return makeArrayRef(this->symbols).slice(this->firstGlobal); 405 } 406 407 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 408 // Read a section table. justSymbols is usually false. 409 if (this->justSymbols) 410 initializeJustSymbols(); 411 else 412 initializeSections(ignoreComdats); 413 414 // Read a symbol table. 415 initializeSymbols(); 416 } 417 418 // Sections with SHT_GROUP and comdat bits define comdat section groups. 419 // They are identified and deduplicated by group name. This function 420 // returns a group name. 421 template <class ELFT> 422 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 423 const Elf_Shdr &sec) { 424 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 425 if (sec.sh_info >= symbols.size()) 426 fatal(toString(this) + ": invalid symbol index"); 427 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 428 StringRef signature = CHECK(sym.getName(this->stringTable), this); 429 430 // As a special case, if a symbol is a section symbol and has no name, 431 // we use a section name as a signature. 432 // 433 // Such SHT_GROUP sections are invalid from the perspective of the ELF 434 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 435 // older produce such sections as outputs for the -r option, so we need 436 // a bug-compatibility. 437 if (signature.empty() && sym.getType() == STT_SECTION) 438 return getSectionName(sec); 439 return signature; 440 } 441 442 template <class ELFT> 443 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 444 if (!(sec.sh_flags & SHF_MERGE)) 445 return false; 446 447 // On a regular link we don't merge sections if -O0 (default is -O1). This 448 // sometimes makes the linker significantly faster, although the output will 449 // be bigger. 450 // 451 // Doing the same for -r would create a problem as it would combine sections 452 // with different sh_entsize. One option would be to just copy every SHF_MERGE 453 // section as is to the output. While this would produce a valid ELF file with 454 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 455 // they see two .debug_str. We could have separate logic for combining 456 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 457 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 458 // logic for -r. 459 if (config->optimize == 0 && !config->relocatable) 460 return false; 461 462 // A mergeable section with size 0 is useless because they don't have 463 // any data to merge. A mergeable string section with size 0 can be 464 // argued as invalid because it doesn't end with a null character. 465 // We'll avoid a mess by handling them as if they were non-mergeable. 466 if (sec.sh_size == 0) 467 return false; 468 469 // Check for sh_entsize. The ELF spec is not clear about the zero 470 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 471 // the section does not hold a table of fixed-size entries". We know 472 // that Rust 1.13 produces a string mergeable section with a zero 473 // sh_entsize. Here we just accept it rather than being picky about it. 474 uint64_t entSize = sec.sh_entsize; 475 if (entSize == 0) 476 return false; 477 if (sec.sh_size % entSize) 478 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 479 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 480 Twine(entSize) + ")"); 481 482 if (sec.sh_flags & SHF_WRITE) 483 fatal(toString(this) + ":(" + name + 484 "): writable SHF_MERGE section is not supported"); 485 486 return true; 487 } 488 489 // This is for --just-symbols. 490 // 491 // --just-symbols is a very minor feature that allows you to link your 492 // output against other existing program, so that if you load both your 493 // program and the other program into memory, your output can refer the 494 // other program's symbols. 495 // 496 // When the option is given, we link "just symbols". The section table is 497 // initialized with null pointers. 498 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 499 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 500 this->sections.resize(sections.size()); 501 } 502 503 // An ELF object file may contain a `.deplibs` section. If it exists, the 504 // section contains a list of library specifiers such as `m` for libm. This 505 // function resolves a given name by finding the first matching library checking 506 // the various ways that a library can be specified to LLD. This ELF extension 507 // is a form of autolinking and is called `dependent libraries`. It is currently 508 // unique to LLVM and lld. 509 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 510 if (!config->dependentLibraries) 511 return; 512 if (fs::exists(specifier)) 513 driver->addFile(specifier, /*withLOption=*/false); 514 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 515 driver->addFile(*s, /*withLOption=*/true); 516 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 517 driver->addFile(*s, /*withLOption=*/true); 518 else 519 error(toString(f) + 520 ": unable to find library from dependent library specifier: " + 521 specifier); 522 } 523 524 // Record the membership of a section group so that in the garbage collection 525 // pass, section group members are kept or discarded as a unit. 526 template <class ELFT> 527 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 528 ArrayRef<typename ELFT::Word> entries) { 529 bool hasAlloc = false; 530 for (uint32_t index : entries.slice(1)) { 531 if (index >= sections.size()) 532 return; 533 if (InputSectionBase *s = sections[index]) 534 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 535 hasAlloc = true; 536 } 537 538 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 539 // collection. See the comment in markLive(). This rule retains .debug_types 540 // and .rela.debug_types. 541 if (!hasAlloc) 542 return; 543 544 // Connect the members in a circular doubly-linked list via 545 // nextInSectionGroup. 546 InputSectionBase *head; 547 InputSectionBase *prev = nullptr; 548 for (uint32_t index : entries.slice(1)) { 549 InputSectionBase *s = sections[index]; 550 if (!s || s == &InputSection::discarded) 551 continue; 552 if (prev) 553 prev->nextInSectionGroup = s; 554 else 555 head = s; 556 prev = s; 557 } 558 if (prev) 559 prev->nextInSectionGroup = head; 560 } 561 562 template <class ELFT> 563 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 564 const ELFFile<ELFT> &obj = this->getObj(); 565 566 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 567 uint64_t size = objSections.size(); 568 this->sections.resize(size); 569 this->sectionStringTable = 570 CHECK(obj.getSectionStringTable(objSections), this); 571 572 std::vector<ArrayRef<Elf_Word>> selectedGroups; 573 574 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 575 if (this->sections[i] == &InputSection::discarded) 576 continue; 577 const Elf_Shdr &sec = objSections[i]; 578 579 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 580 cgProfile = 581 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec)); 582 583 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 584 // if -r is given, we'll let the final link discard such sections. 585 // This is compatible with GNU. 586 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 587 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 588 // We ignore the address-significance table if we know that the object 589 // file was created by objcopy or ld -r. This is because these tools 590 // will reorder the symbols in the symbol table, invalidating the data 591 // in the address-significance table, which refers to symbols by index. 592 if (sec.sh_link != 0) 593 this->addrsigSec = &sec; 594 else if (config->icf == ICFLevel::Safe) 595 warn(toString(this) + ": --icf=safe is incompatible with object " 596 "files created using objcopy or ld -r"); 597 } 598 this->sections[i] = &InputSection::discarded; 599 continue; 600 } 601 602 switch (sec.sh_type) { 603 case SHT_GROUP: { 604 // De-duplicate section groups by their signatures. 605 StringRef signature = getShtGroupSignature(objSections, sec); 606 this->sections[i] = &InputSection::discarded; 607 608 609 ArrayRef<Elf_Word> entries = 610 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 611 if (entries.empty()) 612 fatal(toString(this) + ": empty SHT_GROUP"); 613 614 // The first word of a SHT_GROUP section contains flags. Currently, 615 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 616 // An group with the empty flag doesn't define anything; such sections 617 // are just skipped. 618 if (entries[0] == 0) 619 continue; 620 621 if (entries[0] != GRP_COMDAT) 622 fatal(toString(this) + ": unsupported SHT_GROUP format"); 623 624 bool isNew = 625 ignoreComdats || 626 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 627 .second; 628 if (isNew) { 629 if (config->relocatable) 630 this->sections[i] = createInputSection(sec); 631 selectedGroups.push_back(entries); 632 continue; 633 } 634 635 // Otherwise, discard group members. 636 for (uint32_t secIndex : entries.slice(1)) { 637 if (secIndex >= size) 638 fatal(toString(this) + 639 ": invalid section index in group: " + Twine(secIndex)); 640 this->sections[secIndex] = &InputSection::discarded; 641 } 642 break; 643 } 644 case SHT_SYMTAB_SHNDX: 645 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 646 break; 647 case SHT_SYMTAB: 648 case SHT_STRTAB: 649 case SHT_REL: 650 case SHT_RELA: 651 case SHT_NULL: 652 break; 653 default: 654 this->sections[i] = createInputSection(sec); 655 } 656 } 657 658 // We have a second loop. It is used to: 659 // 1) handle SHF_LINK_ORDER sections. 660 // 2) create SHT_REL[A] sections. In some cases the section header index of a 661 // relocation section may be smaller than that of the relocated section. In 662 // such cases, the relocation section would attempt to reference a target 663 // section that has not yet been created. For simplicity, delay creation of 664 // relocation sections until now. 665 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 666 if (this->sections[i] == &InputSection::discarded) 667 continue; 668 const Elf_Shdr &sec = objSections[i]; 669 670 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 671 this->sections[i] = createInputSection(sec); 672 673 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 674 // the flag. 675 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 676 continue; 677 678 InputSectionBase *linkSec = nullptr; 679 if (sec.sh_link < this->sections.size()) 680 linkSec = this->sections[sec.sh_link]; 681 if (!linkSec) 682 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 683 684 // A SHF_LINK_ORDER section is discarded if its linked-to section is 685 // discarded. 686 InputSection *isec = cast<InputSection>(this->sections[i]); 687 linkSec->dependentSections.push_back(isec); 688 if (!isa<InputSection>(linkSec)) 689 error("a section " + isec->name + 690 " with SHF_LINK_ORDER should not refer a non-regular section: " + 691 toString(linkSec)); 692 } 693 694 for (ArrayRef<Elf_Word> entries : selectedGroups) 695 handleSectionGroup<ELFT>(this->sections, entries); 696 } 697 698 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 699 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 700 // the input objects have been compiled. 701 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 702 const InputFile *f) { 703 Optional<unsigned> attr = 704 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 705 if (!attr.hasValue()) 706 // If an ABI tag isn't present then it is implicitly given the value of 0 707 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 708 // including some in glibc that don't use FP args (and should have value 3) 709 // don't have the attribute so we do not consider an implicit value of 0 710 // as a clash. 711 return; 712 713 unsigned vfpArgs = attr.getValue(); 714 ARMVFPArgKind arg; 715 switch (vfpArgs) { 716 case ARMBuildAttrs::BaseAAPCS: 717 arg = ARMVFPArgKind::Base; 718 break; 719 case ARMBuildAttrs::HardFPAAPCS: 720 arg = ARMVFPArgKind::VFP; 721 break; 722 case ARMBuildAttrs::ToolChainFPPCS: 723 // Tool chain specific convention that conforms to neither AAPCS variant. 724 arg = ARMVFPArgKind::ToolChain; 725 break; 726 case ARMBuildAttrs::CompatibleFPAAPCS: 727 // Object compatible with all conventions. 728 return; 729 default: 730 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 731 return; 732 } 733 // Follow ld.bfd and error if there is a mix of calling conventions. 734 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 735 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 736 else 737 config->armVFPArgs = arg; 738 } 739 740 // The ARM support in lld makes some use of instructions that are not available 741 // on all ARM architectures. Namely: 742 // - Use of BLX instruction for interworking between ARM and Thumb state. 743 // - Use of the extended Thumb branch encoding in relocation. 744 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 745 // The ARM Attributes section contains information about the architecture chosen 746 // at compile time. We follow the convention that if at least one input object 747 // is compiled with an architecture that supports these features then lld is 748 // permitted to use them. 749 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 750 Optional<unsigned> attr = 751 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 752 if (!attr.hasValue()) 753 return; 754 auto arch = attr.getValue(); 755 switch (arch) { 756 case ARMBuildAttrs::Pre_v4: 757 case ARMBuildAttrs::v4: 758 case ARMBuildAttrs::v4T: 759 // Architectures prior to v5 do not support BLX instruction 760 break; 761 case ARMBuildAttrs::v5T: 762 case ARMBuildAttrs::v5TE: 763 case ARMBuildAttrs::v5TEJ: 764 case ARMBuildAttrs::v6: 765 case ARMBuildAttrs::v6KZ: 766 case ARMBuildAttrs::v6K: 767 config->armHasBlx = true; 768 // Architectures used in pre-Cortex processors do not support 769 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 770 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 771 break; 772 default: 773 // All other Architectures have BLX and extended branch encoding 774 config->armHasBlx = true; 775 config->armJ1J2BranchEncoding = true; 776 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 777 // All Architectures used in Cortex processors with the exception 778 // of v6-M and v6S-M have the MOVT and MOVW instructions. 779 config->armHasMovtMovw = true; 780 break; 781 } 782 } 783 784 // If a source file is compiled with x86 hardware-assisted call flow control 785 // enabled, the generated object file contains feature flags indicating that 786 // fact. This function reads the feature flags and returns it. 787 // 788 // Essentially we want to read a single 32-bit value in this function, but this 789 // function is rather complicated because the value is buried deep inside a 790 // .note.gnu.property section. 791 // 792 // The section consists of one or more NOTE records. Each NOTE record consists 793 // of zero or more type-length-value fields. We want to find a field of a 794 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 795 // the ABI is unnecessarily complicated. 796 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 797 using Elf_Nhdr = typename ELFT::Nhdr; 798 using Elf_Note = typename ELFT::Note; 799 800 uint32_t featuresSet = 0; 801 ArrayRef<uint8_t> data = sec.data(); 802 auto reportFatal = [&](const uint8_t *place, const char *msg) { 803 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 804 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 805 }; 806 while (!data.empty()) { 807 // Read one NOTE record. 808 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 809 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 810 reportFatal(data.data(), "data is too short"); 811 812 Elf_Note note(*nhdr); 813 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 814 data = data.slice(nhdr->getSize()); 815 continue; 816 } 817 818 uint32_t featureAndType = config->emachine == EM_AARCH64 819 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 820 : GNU_PROPERTY_X86_FEATURE_1_AND; 821 822 // Read a body of a NOTE record, which consists of type-length-value fields. 823 ArrayRef<uint8_t> desc = note.getDesc(); 824 while (!desc.empty()) { 825 const uint8_t *place = desc.data(); 826 if (desc.size() < 8) 827 reportFatal(place, "program property is too short"); 828 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 829 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 830 desc = desc.slice(8); 831 if (desc.size() < size) 832 reportFatal(place, "program property is too short"); 833 834 if (type == featureAndType) { 835 // We found a FEATURE_1_AND field. There may be more than one of these 836 // in a .note.gnu.property section, for a relocatable object we 837 // accumulate the bits set. 838 if (size < 4) 839 reportFatal(place, "FEATURE_1_AND entry is too short"); 840 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 841 } 842 843 // Padding is present in the note descriptor, if necessary. 844 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 845 } 846 847 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 848 data = data.slice(nhdr->getSize()); 849 } 850 851 return featuresSet; 852 } 853 854 template <class ELFT> 855 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 856 uint32_t idx = sec.sh_info; 857 if (idx >= this->sections.size()) 858 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 859 InputSectionBase *target = this->sections[idx]; 860 861 // Strictly speaking, a relocation section must be included in the 862 // group of the section it relocates. However, LLVM 3.3 and earlier 863 // would fail to do so, so we gracefully handle that case. 864 if (target == &InputSection::discarded) 865 return nullptr; 866 867 if (!target) 868 fatal(toString(this) + ": unsupported relocation reference"); 869 return target; 870 } 871 872 // Create a regular InputSection class that has the same contents 873 // as a given section. 874 static InputSection *toRegularSection(MergeInputSection *sec) { 875 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 876 sec->data(), sec->name); 877 } 878 879 template <class ELFT> 880 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 881 StringRef name = getSectionName(sec); 882 883 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 884 ARMAttributeParser attributes; 885 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 886 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 887 ? support::little 888 : support::big)) { 889 auto *isec = make<InputSection>(*this, sec, name); 890 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 891 } else { 892 updateSupportedARMFeatures(attributes); 893 updateARMVFPArgs(attributes, this); 894 895 // FIXME: Retain the first attribute section we see. The eglibc ARM 896 // dynamic loaders require the presence of an attribute section for dlopen 897 // to work. In a full implementation we would merge all attribute 898 // sections. 899 if (in.attributes == nullptr) { 900 in.attributes = make<InputSection>(*this, sec, name); 901 return in.attributes; 902 } 903 return &InputSection::discarded; 904 } 905 } 906 907 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 908 RISCVAttributeParser attributes; 909 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 910 if (Error e = attributes.parse(contents, support::little)) { 911 auto *isec = make<InputSection>(*this, sec, name); 912 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 913 } else { 914 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 915 // present. 916 917 // FIXME: Retain the first attribute section we see. Tools such as 918 // llvm-objdump make use of the attribute section to determine which 919 // standard extensions to enable. In a full implementation we would merge 920 // all attribute sections. 921 if (in.attributes == nullptr) { 922 in.attributes = make<InputSection>(*this, sec, name); 923 return in.attributes; 924 } 925 return &InputSection::discarded; 926 } 927 } 928 929 switch (sec.sh_type) { 930 case SHT_LLVM_DEPENDENT_LIBRARIES: { 931 if (config->relocatable) 932 break; 933 ArrayRef<char> data = 934 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 935 if (!data.empty() && data.back() != '\0') { 936 error(toString(this) + 937 ": corrupted dependent libraries section (unterminated string): " + 938 name); 939 return &InputSection::discarded; 940 } 941 for (const char *d = data.begin(), *e = data.end(); d < e;) { 942 StringRef s(d); 943 addDependentLibrary(s, this); 944 d += s.size() + 1; 945 } 946 return &InputSection::discarded; 947 } 948 case SHT_RELA: 949 case SHT_REL: { 950 // Find a relocation target section and associate this section with that. 951 // Target may have been discarded if it is in a different section group 952 // and the group is discarded, even though it's a violation of the 953 // spec. We handle that situation gracefully by discarding dangling 954 // relocation sections. 955 InputSectionBase *target = getRelocTarget(sec); 956 if (!target) 957 return nullptr; 958 959 // ELF spec allows mergeable sections with relocations, but they are 960 // rare, and it is in practice hard to merge such sections by contents, 961 // because applying relocations at end of linking changes section 962 // contents. So, we simply handle such sections as non-mergeable ones. 963 // Degrading like this is acceptable because section merging is optional. 964 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 965 target = toRegularSection(ms); 966 this->sections[sec.sh_info] = target; 967 } 968 969 if (target->firstRelocation) 970 fatal(toString(this) + 971 ": multiple relocation sections to one section are not supported"); 972 973 if (sec.sh_type == SHT_RELA) { 974 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this); 975 target->firstRelocation = rels.begin(); 976 target->numRelocations = rels.size(); 977 target->areRelocsRela = true; 978 } else { 979 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this); 980 target->firstRelocation = rels.begin(); 981 target->numRelocations = rels.size(); 982 target->areRelocsRela = false; 983 } 984 assert(isUInt<31>(target->numRelocations)); 985 986 // Relocation sections are usually removed from the output, so return 987 // `nullptr` for the normal case. However, if -r or --emit-relocs is 988 // specified, we need to copy them to the output. (Some post link analysis 989 // tools specify --emit-relocs to obtain the information.) 990 if (!config->relocatable && !config->emitRelocs) 991 return nullptr; 992 InputSection *relocSec = make<InputSection>(*this, sec, name); 993 // If the relocated section is discarded (due to /DISCARD/ or 994 // --gc-sections), the relocation section should be discarded as well. 995 target->dependentSections.push_back(relocSec); 996 return relocSec; 997 } 998 } 999 1000 // The GNU linker uses .note.GNU-stack section as a marker indicating 1001 // that the code in the object file does not expect that the stack is 1002 // executable (in terms of NX bit). If all input files have the marker, 1003 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 1004 // make the stack non-executable. Most object files have this section as 1005 // of 2017. 1006 // 1007 // But making the stack non-executable is a norm today for security 1008 // reasons. Failure to do so may result in a serious security issue. 1009 // Therefore, we make LLD always add PT_GNU_STACK unless it is 1010 // explicitly told to do otherwise (by -z execstack). Because the stack 1011 // executable-ness is controlled solely by command line options, 1012 // .note.GNU-stack sections are simply ignored. 1013 if (name == ".note.GNU-stack") 1014 return &InputSection::discarded; 1015 1016 // Object files that use processor features such as Intel Control-Flow 1017 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 1018 // .note.gnu.property section containing a bitfield of feature bits like the 1019 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 1020 // 1021 // Since we merge bitmaps from multiple object files to create a new 1022 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 1023 // file's .note.gnu.property section. 1024 if (name == ".note.gnu.property") { 1025 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 1026 return &InputSection::discarded; 1027 } 1028 1029 // Split stacks is a feature to support a discontiguous stack, 1030 // commonly used in the programming language Go. For the details, 1031 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1032 // for split stack will include a .note.GNU-split-stack section. 1033 if (name == ".note.GNU-split-stack") { 1034 if (config->relocatable) { 1035 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1036 return &InputSection::discarded; 1037 } 1038 this->splitStack = true; 1039 return &InputSection::discarded; 1040 } 1041 1042 // An object file cmpiled for split stack, but where some of the 1043 // functions were compiled with the no_split_stack_attribute will 1044 // include a .note.GNU-no-split-stack section. 1045 if (name == ".note.GNU-no-split-stack") { 1046 this->someNoSplitStack = true; 1047 return &InputSection::discarded; 1048 } 1049 1050 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1051 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1052 // sections. Drop those sections to avoid duplicate symbol errors. 1053 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1054 // fixed for a while. 1055 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1056 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1057 return &InputSection::discarded; 1058 1059 // If we are creating a new .build-id section, strip existing .build-id 1060 // sections so that the output won't have more than one .build-id. 1061 // This is not usually a problem because input object files normally don't 1062 // have .build-id sections, but you can create such files by 1063 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1064 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1065 return &InputSection::discarded; 1066 1067 // The linker merges EH (exception handling) frames and creates a 1068 // .eh_frame_hdr section for runtime. So we handle them with a special 1069 // class. For relocatable outputs, they are just passed through. 1070 if (name == ".eh_frame" && !config->relocatable) 1071 return make<EhInputSection>(*this, sec, name); 1072 1073 if (shouldMerge(sec, name)) 1074 return make<MergeInputSection>(*this, sec, name); 1075 return make<InputSection>(*this, sec, name); 1076 } 1077 1078 template <class ELFT> 1079 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1080 return CHECK(getObj().getSectionName(sec, sectionStringTable), this); 1081 } 1082 1083 // Initialize this->Symbols. this->Symbols is a parallel array as 1084 // its corresponding ELF symbol table. 1085 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1086 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1087 this->symbols.resize(eSyms.size()); 1088 1089 // Fill in InputFile::symbols. Some entries have been initialized 1090 // because of LazyObjFile. 1091 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1092 if (this->symbols[i]) 1093 continue; 1094 const Elf_Sym &eSym = eSyms[i]; 1095 uint32_t secIdx = getSectionIndex(eSym); 1096 if (secIdx >= this->sections.size()) 1097 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1098 if (eSym.getBinding() != STB_LOCAL) { 1099 if (i < firstGlobal) 1100 error(toString(this) + ": non-local symbol (" + Twine(i) + 1101 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1102 ")"); 1103 this->symbols[i] = 1104 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1105 continue; 1106 } 1107 1108 // Handle local symbols. Local symbols are not added to the symbol 1109 // table because they are not visible from other object files. We 1110 // allocate symbol instances and add their pointers to symbols. 1111 if (i >= firstGlobal) 1112 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1113 ") found at index >= .symtab's sh_info (" + 1114 Twine(firstGlobal) + ")"); 1115 1116 InputSectionBase *sec = this->sections[secIdx]; 1117 uint8_t type = eSym.getType(); 1118 if (type == STT_FILE) 1119 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1120 if (this->stringTable.size() <= eSym.st_name) 1121 fatal(toString(this) + ": invalid symbol name offset"); 1122 StringRefZ name = this->stringTable.data() + eSym.st_name; 1123 1124 if (eSym.st_shndx == SHN_UNDEF) 1125 this->symbols[i] = 1126 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1127 else if (sec == &InputSection::discarded) 1128 this->symbols[i] = 1129 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1130 /*discardedSecIdx=*/secIdx); 1131 else 1132 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1133 type, eSym.st_value, eSym.st_size, sec); 1134 } 1135 1136 // Symbol resolution of non-local symbols. 1137 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1138 const Elf_Sym &eSym = eSyms[i]; 1139 uint8_t binding = eSym.getBinding(); 1140 if (binding == STB_LOCAL) 1141 continue; // Errored above. 1142 1143 uint32_t secIdx = getSectionIndex(eSym); 1144 InputSectionBase *sec = this->sections[secIdx]; 1145 uint8_t stOther = eSym.st_other; 1146 uint8_t type = eSym.getType(); 1147 uint64_t value = eSym.st_value; 1148 uint64_t size = eSym.st_size; 1149 StringRefZ name = this->stringTable.data() + eSym.st_name; 1150 1151 // Handle global undefined symbols. 1152 if (eSym.st_shndx == SHN_UNDEF) { 1153 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1154 this->symbols[i]->referenced = true; 1155 continue; 1156 } 1157 1158 // Handle global common symbols. 1159 if (eSym.st_shndx == SHN_COMMON) { 1160 if (value == 0 || value >= UINT32_MAX) 1161 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1162 "' has invalid alignment: " + Twine(value)); 1163 this->symbols[i]->resolve( 1164 CommonSymbol{this, name, binding, stOther, type, value, size}); 1165 continue; 1166 } 1167 1168 // If a defined symbol is in a discarded section, handle it as if it 1169 // were an undefined symbol. Such symbol doesn't comply with the 1170 // standard, but in practice, a .eh_frame often directly refer 1171 // COMDAT member sections, and if a comdat group is discarded, some 1172 // defined symbol in a .eh_frame becomes dangling symbols. 1173 if (sec == &InputSection::discarded) { 1174 Undefined und{this, name, binding, stOther, type, secIdx}; 1175 Symbol *sym = this->symbols[i]; 1176 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file 1177 // containing this object has not finished processing, i.e. this symbol is 1178 // a result of a lazy symbol fetch. We should demote the lazy symbol to an 1179 // Undefined so that any relocations outside of the group to it will 1180 // trigger a discarded section error. 1181 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1182 !cast<ArchiveFile>(sym->file)->parsed) || 1183 (sym->symbolKind == Symbol::LazyObjectKind && 1184 cast<LazyObjFile>(sym->file)->fetched)) 1185 sym->replace(und); 1186 else 1187 sym->resolve(und); 1188 continue; 1189 } 1190 1191 // Handle global defined symbols. 1192 if (binding == STB_GLOBAL || binding == STB_WEAK || 1193 binding == STB_GNU_UNIQUE) { 1194 this->symbols[i]->resolve( 1195 Defined{this, name, binding, stOther, type, value, size, sec}); 1196 continue; 1197 } 1198 1199 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1200 } 1201 } 1202 1203 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1204 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1205 file(std::move(file)) {} 1206 1207 void ArchiveFile::parse() { 1208 for (const Archive::Symbol &sym : file->symbols()) 1209 symtab->addSymbol(LazyArchive{*this, sym}); 1210 1211 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1212 // archive has been processed. 1213 parsed = true; 1214 } 1215 1216 // Returns a buffer pointing to a member file containing a given symbol. 1217 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1218 Archive::Child c = 1219 CHECK(sym.getMember(), toString(this) + 1220 ": could not get the member for symbol " + 1221 toELFString(sym)); 1222 1223 if (!seen.insert(c.getChildOffset()).second) 1224 return; 1225 1226 MemoryBufferRef mb = 1227 CHECK(c.getMemoryBufferRef(), 1228 toString(this) + 1229 ": could not get the buffer for the member defining symbol " + 1230 toELFString(sym)); 1231 1232 if (tar && c.getParent()->isThin()) 1233 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1234 1235 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1236 file->groupId = groupId; 1237 parseFile(file); 1238 } 1239 1240 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1241 // A tentative defintion will be promoted to a global definition if there are no 1242 // non-tentative definitions to dominate it. When we hold a tentative definition 1243 // to a symbol and are inspecting archive memebers for inclusion there are 2 1244 // ways we can proceed: 1245 // 1246 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1247 // tentative to real definition has already happened) and not inspect 1248 // archive members for Global/Weak definitions to replace the tentative 1249 // definition. An archive member would only be included if it satisfies some 1250 // other undefined symbol. This is the behavior Gold uses. 1251 // 1252 // 2) Consider the tentative definition as still undefined (ie the promotion to 1253 // a real definiton happens only after all symbol resolution is done). 1254 // The linker searches archive memebers for global or weak definitions to 1255 // replace the tentative definition with. This is the behavior used by 1256 // GNU ld. 1257 // 1258 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1259 // COMMON BLOCK model. This behavior is needed for proper initalizations in old 1260 // (pre F90) FORTRAN code that is packaged into an archive. 1261 // 1262 // The following functions search archive members for defintions to replace 1263 // tentative defintions (implementing behavior 2). 1264 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1265 StringRef archiveName) { 1266 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1267 for (const irsymtab::Reader::SymbolRef &sym : 1268 symtabFile.TheReader.symbols()) { 1269 if (sym.isGlobal() && sym.getName() == symName) 1270 return !sym.isUndefined() && !sym.isCommon(); 1271 } 1272 return false; 1273 } 1274 1275 template <class ELFT> 1276 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1277 StringRef archiveName) { 1278 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1279 StringRef stringtable = obj->getStringTable(); 1280 1281 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1282 Expected<StringRef> name = sym.getName(stringtable); 1283 if (name && name.get() == symName) 1284 return sym.isDefined() && !sym.isCommon(); 1285 } 1286 return false; 1287 } 1288 1289 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1290 StringRef archiveName) { 1291 switch (getELFKind(mb, archiveName)) { 1292 case ELF32LEKind: 1293 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1294 case ELF32BEKind: 1295 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1296 case ELF64LEKind: 1297 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1298 case ELF64BEKind: 1299 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1300 default: 1301 llvm_unreachable("getELFKind"); 1302 } 1303 } 1304 1305 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) { 1306 Archive::Child c = 1307 CHECK(sym.getMember(), toString(this) + 1308 ": could not get the member for symbol " + 1309 toELFString(sym)); 1310 MemoryBufferRef mb = 1311 CHECK(c.getMemoryBufferRef(), 1312 toString(this) + 1313 ": could not get the buffer for the member defining symbol " + 1314 toELFString(sym)); 1315 1316 if (isBitcode(mb)) 1317 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1318 1319 return isNonCommonDef(mb, sym.getName(), getName()); 1320 } 1321 1322 size_t ArchiveFile::getMemberCount() const { 1323 size_t count = 0; 1324 Error err = Error::success(); 1325 for (const Archive::Child &c : file->children(err)) { 1326 (void)c; 1327 ++count; 1328 } 1329 // This function is used by --print-archive-stats=, where an error does not 1330 // really matter. 1331 consumeError(std::move(err)); 1332 return count; 1333 } 1334 1335 unsigned SharedFile::vernauxNum; 1336 1337 // Parse the version definitions in the object file if present, and return a 1338 // vector whose nth element contains a pointer to the Elf_Verdef for version 1339 // identifier n. Version identifiers that are not definitions map to nullptr. 1340 template <typename ELFT> 1341 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1342 const typename ELFT::Shdr *sec) { 1343 if (!sec) 1344 return {}; 1345 1346 // We cannot determine the largest verdef identifier without inspecting 1347 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1348 // sequentially starting from 1, so we predict that the largest identifier 1349 // will be verdefCount. 1350 unsigned verdefCount = sec->sh_info; 1351 std::vector<const void *> verdefs(verdefCount + 1); 1352 1353 // Build the Verdefs array by following the chain of Elf_Verdef objects 1354 // from the start of the .gnu.version_d section. 1355 const uint8_t *verdef = base + sec->sh_offset; 1356 for (unsigned i = 0; i != verdefCount; ++i) { 1357 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1358 verdef += curVerdef->vd_next; 1359 unsigned verdefIndex = curVerdef->vd_ndx; 1360 verdefs.resize(verdefIndex + 1); 1361 verdefs[verdefIndex] = curVerdef; 1362 } 1363 return verdefs; 1364 } 1365 1366 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1367 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1368 // implement sophisticated error checking like in llvm-readobj because the value 1369 // of such diagnostics is low. 1370 template <typename ELFT> 1371 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1372 const typename ELFT::Shdr *sec) { 1373 if (!sec) 1374 return {}; 1375 std::vector<uint32_t> verneeds; 1376 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1377 const uint8_t *verneedBuf = data.begin(); 1378 for (unsigned i = 0; i != sec->sh_info; ++i) { 1379 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1380 fatal(toString(this) + " has an invalid Verneed"); 1381 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1382 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1383 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1384 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1385 fatal(toString(this) + " has an invalid Vernaux"); 1386 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1387 if (aux->vna_name >= this->stringTable.size()) 1388 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1389 uint16_t version = aux->vna_other & VERSYM_VERSION; 1390 if (version >= verneeds.size()) 1391 verneeds.resize(version + 1); 1392 verneeds[version] = aux->vna_name; 1393 vernauxBuf += aux->vna_next; 1394 } 1395 verneedBuf += vn->vn_next; 1396 } 1397 return verneeds; 1398 } 1399 1400 // We do not usually care about alignments of data in shared object 1401 // files because the loader takes care of it. However, if we promote a 1402 // DSO symbol to point to .bss due to copy relocation, we need to keep 1403 // the original alignment requirements. We infer it in this function. 1404 template <typename ELFT> 1405 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1406 const typename ELFT::Sym &sym) { 1407 uint64_t ret = UINT64_MAX; 1408 if (sym.st_value) 1409 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1410 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1411 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1412 return (ret > UINT32_MAX) ? 0 : ret; 1413 } 1414 1415 // Fully parse the shared object file. 1416 // 1417 // This function parses symbol versions. If a DSO has version information, 1418 // the file has a ".gnu.version_d" section which contains symbol version 1419 // definitions. Each symbol is associated to one version through a table in 1420 // ".gnu.version" section. That table is a parallel array for the symbol 1421 // table, and each table entry contains an index in ".gnu.version_d". 1422 // 1423 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1424 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1425 // ".gnu.version_d". 1426 // 1427 // The file format for symbol versioning is perhaps a bit more complicated 1428 // than necessary, but you can easily understand the code if you wrap your 1429 // head around the data structure described above. 1430 template <class ELFT> void SharedFile::parse() { 1431 using Elf_Dyn = typename ELFT::Dyn; 1432 using Elf_Shdr = typename ELFT::Shdr; 1433 using Elf_Sym = typename ELFT::Sym; 1434 using Elf_Verdef = typename ELFT::Verdef; 1435 using Elf_Versym = typename ELFT::Versym; 1436 1437 ArrayRef<Elf_Dyn> dynamicTags; 1438 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1439 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1440 1441 const Elf_Shdr *versymSec = nullptr; 1442 const Elf_Shdr *verdefSec = nullptr; 1443 const Elf_Shdr *verneedSec = nullptr; 1444 1445 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1446 for (const Elf_Shdr &sec : sections) { 1447 switch (sec.sh_type) { 1448 default: 1449 continue; 1450 case SHT_DYNAMIC: 1451 dynamicTags = 1452 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1453 break; 1454 case SHT_GNU_versym: 1455 versymSec = &sec; 1456 break; 1457 case SHT_GNU_verdef: 1458 verdefSec = &sec; 1459 break; 1460 case SHT_GNU_verneed: 1461 verneedSec = &sec; 1462 break; 1463 } 1464 } 1465 1466 if (versymSec && numELFSyms == 0) { 1467 error("SHT_GNU_versym should be associated with symbol table"); 1468 return; 1469 } 1470 1471 // Search for a DT_SONAME tag to initialize this->soName. 1472 for (const Elf_Dyn &dyn : dynamicTags) { 1473 if (dyn.d_tag == DT_NEEDED) { 1474 uint64_t val = dyn.getVal(); 1475 if (val >= this->stringTable.size()) 1476 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1477 dtNeeded.push_back(this->stringTable.data() + val); 1478 } else if (dyn.d_tag == DT_SONAME) { 1479 uint64_t val = dyn.getVal(); 1480 if (val >= this->stringTable.size()) 1481 fatal(toString(this) + ": invalid DT_SONAME entry"); 1482 soName = this->stringTable.data() + val; 1483 } 1484 } 1485 1486 // DSOs are uniquified not by filename but by soname. 1487 DenseMap<StringRef, SharedFile *>::iterator it; 1488 bool wasInserted; 1489 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1490 1491 // If a DSO appears more than once on the command line with and without 1492 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1493 // user can add an extra DSO with --no-as-needed to force it to be added to 1494 // the dependency list. 1495 it->second->isNeeded |= isNeeded; 1496 if (!wasInserted) 1497 return; 1498 1499 sharedFiles.push_back(this); 1500 1501 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1502 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1503 1504 // Parse ".gnu.version" section which is a parallel array for the symbol 1505 // table. If a given file doesn't have a ".gnu.version" section, we use 1506 // VER_NDX_GLOBAL. 1507 size_t size = numELFSyms - firstGlobal; 1508 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1509 if (versymSec) { 1510 ArrayRef<Elf_Versym> versym = 1511 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1512 this) 1513 .slice(firstGlobal); 1514 for (size_t i = 0; i < size; ++i) 1515 versyms[i] = versym[i].vs_index; 1516 } 1517 1518 // System libraries can have a lot of symbols with versions. Using a 1519 // fixed buffer for computing the versions name (foo@ver) can save a 1520 // lot of allocations. 1521 SmallString<0> versionedNameBuffer; 1522 1523 // Add symbols to the symbol table. 1524 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1525 for (size_t i = 0; i < syms.size(); ++i) { 1526 const Elf_Sym &sym = syms[i]; 1527 1528 // ELF spec requires that all local symbols precede weak or global 1529 // symbols in each symbol table, and the index of first non-local symbol 1530 // is stored to sh_info. If a local symbol appears after some non-local 1531 // symbol, that's a violation of the spec. 1532 StringRef name = CHECK(sym.getName(this->stringTable), this); 1533 if (sym.getBinding() == STB_LOCAL) { 1534 warn("found local symbol '" + name + 1535 "' in global part of symbol table in file " + toString(this)); 1536 continue; 1537 } 1538 1539 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1540 if (sym.isUndefined()) { 1541 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1542 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1543 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1544 if (idx >= verneeds.size()) { 1545 error("corrupt input file: version need index " + Twine(idx) + 1546 " for symbol " + name + " is out of bounds\n>>> defined in " + 1547 toString(this)); 1548 continue; 1549 } 1550 StringRef verName = this->stringTable.data() + verneeds[idx]; 1551 versionedNameBuffer.clear(); 1552 name = 1553 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1554 } 1555 Symbol *s = symtab->addSymbol( 1556 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1557 s->exportDynamic = true; 1558 continue; 1559 } 1560 1561 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1562 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1563 // workaround for this bug. 1564 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1565 name == "_gp_disp") 1566 continue; 1567 1568 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1569 if (!(versyms[i] & VERSYM_HIDDEN)) { 1570 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1571 sym.st_other, sym.getType(), sym.st_value, 1572 sym.st_size, alignment, idx}); 1573 } 1574 1575 // Also add the symbol with the versioned name to handle undefined symbols 1576 // with explicit versions. 1577 if (idx == VER_NDX_GLOBAL) 1578 continue; 1579 1580 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1581 error("corrupt input file: version definition index " + Twine(idx) + 1582 " for symbol " + name + " is out of bounds\n>>> defined in " + 1583 toString(this)); 1584 continue; 1585 } 1586 1587 StringRef verName = 1588 this->stringTable.data() + 1589 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1590 versionedNameBuffer.clear(); 1591 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1592 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1593 sym.st_other, sym.getType(), sym.st_value, 1594 sym.st_size, alignment, idx}); 1595 } 1596 } 1597 1598 static ELFKind getBitcodeELFKind(const Triple &t) { 1599 if (t.isLittleEndian()) 1600 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1601 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1602 } 1603 1604 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1605 switch (t.getArch()) { 1606 case Triple::aarch64: 1607 return EM_AARCH64; 1608 case Triple::amdgcn: 1609 case Triple::r600: 1610 return EM_AMDGPU; 1611 case Triple::arm: 1612 case Triple::thumb: 1613 return EM_ARM; 1614 case Triple::avr: 1615 return EM_AVR; 1616 case Triple::mips: 1617 case Triple::mipsel: 1618 case Triple::mips64: 1619 case Triple::mips64el: 1620 return EM_MIPS; 1621 case Triple::msp430: 1622 return EM_MSP430; 1623 case Triple::ppc: 1624 case Triple::ppcle: 1625 return EM_PPC; 1626 case Triple::ppc64: 1627 case Triple::ppc64le: 1628 return EM_PPC64; 1629 case Triple::riscv32: 1630 case Triple::riscv64: 1631 return EM_RISCV; 1632 case Triple::x86: 1633 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1634 case Triple::x86_64: 1635 return EM_X86_64; 1636 default: 1637 error(path + ": could not infer e_machine from bitcode target triple " + 1638 t.str()); 1639 return EM_NONE; 1640 } 1641 } 1642 1643 static uint8_t getOsAbi(const Triple &t) { 1644 switch (t.getOS()) { 1645 case Triple::AMDHSA: 1646 return ELF::ELFOSABI_AMDGPU_HSA; 1647 case Triple::AMDPAL: 1648 return ELF::ELFOSABI_AMDGPU_PAL; 1649 case Triple::Mesa3D: 1650 return ELF::ELFOSABI_AMDGPU_MESA3D; 1651 default: 1652 return ELF::ELFOSABI_NONE; 1653 } 1654 } 1655 1656 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1657 uint64_t offsetInArchive) 1658 : InputFile(BitcodeKind, mb) { 1659 this->archiveName = std::string(archiveName); 1660 1661 std::string path = mb.getBufferIdentifier().str(); 1662 if (config->thinLTOIndexOnly) 1663 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1664 1665 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1666 // name. If two archives define two members with the same name, this 1667 // causes a collision which result in only one of the objects being taken 1668 // into consideration at LTO time (which very likely causes undefined 1669 // symbols later in the link stage). So we append file offset to make 1670 // filename unique. 1671 StringRef name = 1672 archiveName.empty() 1673 ? saver.save(path) 1674 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1675 utostr(offsetInArchive) + ")"); 1676 MemoryBufferRef mbref(mb.getBuffer(), name); 1677 1678 obj = CHECK(lto::InputFile::create(mbref), this); 1679 1680 Triple t(obj->getTargetTriple()); 1681 ekind = getBitcodeELFKind(t); 1682 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1683 osabi = getOsAbi(t); 1684 } 1685 1686 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1687 switch (gvVisibility) { 1688 case GlobalValue::DefaultVisibility: 1689 return STV_DEFAULT; 1690 case GlobalValue::HiddenVisibility: 1691 return STV_HIDDEN; 1692 case GlobalValue::ProtectedVisibility: 1693 return STV_PROTECTED; 1694 } 1695 llvm_unreachable("unknown visibility"); 1696 } 1697 1698 template <class ELFT> 1699 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1700 const lto::InputFile::Symbol &objSym, 1701 BitcodeFile &f) { 1702 StringRef name = saver.save(objSym.getName()); 1703 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1704 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1705 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1706 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1707 1708 int c = objSym.getComdatIndex(); 1709 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1710 Undefined newSym(&f, name, binding, visibility, type); 1711 if (canOmitFromDynSym) 1712 newSym.exportDynamic = false; 1713 Symbol *ret = symtab->addSymbol(newSym); 1714 ret->referenced = true; 1715 return ret; 1716 } 1717 1718 if (objSym.isCommon()) 1719 return symtab->addSymbol( 1720 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1721 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1722 1723 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1724 if (canOmitFromDynSym) 1725 newSym.exportDynamic = false; 1726 return symtab->addSymbol(newSym); 1727 } 1728 1729 template <class ELFT> void BitcodeFile::parse() { 1730 std::vector<bool> keptComdats; 1731 for (StringRef s : obj->getComdatTable()) 1732 keptComdats.push_back( 1733 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1734 1735 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1736 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1737 1738 for (auto l : obj->getDependentLibraries()) 1739 addDependentLibrary(l, this); 1740 } 1741 1742 void BinaryFile::parse() { 1743 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1744 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1745 8, data, ".data"); 1746 sections.push_back(section); 1747 1748 // For each input file foo that is embedded to a result as a binary 1749 // blob, we define _binary_foo_{start,end,size} symbols, so that 1750 // user programs can access blobs by name. Non-alphanumeric 1751 // characters in a filename are replaced with underscore. 1752 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1753 for (size_t i = 0; i < s.size(); ++i) 1754 if (!isAlnum(s[i])) 1755 s[i] = '_'; 1756 1757 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1758 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1759 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1760 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1761 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1762 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1763 } 1764 1765 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1766 uint64_t offsetInArchive) { 1767 if (isBitcode(mb)) 1768 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1769 1770 switch (getELFKind(mb, archiveName)) { 1771 case ELF32LEKind: 1772 return make<ObjFile<ELF32LE>>(mb, archiveName); 1773 case ELF32BEKind: 1774 return make<ObjFile<ELF32BE>>(mb, archiveName); 1775 case ELF64LEKind: 1776 return make<ObjFile<ELF64LE>>(mb, archiveName); 1777 case ELF64BEKind: 1778 return make<ObjFile<ELF64BE>>(mb, archiveName); 1779 default: 1780 llvm_unreachable("getELFKind"); 1781 } 1782 } 1783 1784 void LazyObjFile::fetch() { 1785 if (fetched) 1786 return; 1787 fetched = true; 1788 1789 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1790 file->groupId = groupId; 1791 1792 // Copy symbol vector so that the new InputFile doesn't have to 1793 // insert the same defined symbols to the symbol table again. 1794 file->symbols = std::move(symbols); 1795 1796 parseFile(file); 1797 } 1798 1799 template <class ELFT> void LazyObjFile::parse() { 1800 using Elf_Sym = typename ELFT::Sym; 1801 1802 // A lazy object file wraps either a bitcode file or an ELF file. 1803 if (isBitcode(this->mb)) { 1804 std::unique_ptr<lto::InputFile> obj = 1805 CHECK(lto::InputFile::create(this->mb), this); 1806 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1807 if (sym.isUndefined()) 1808 continue; 1809 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1810 } 1811 return; 1812 } 1813 1814 if (getELFKind(this->mb, archiveName) != config->ekind) { 1815 error("incompatible file: " + this->mb.getBufferIdentifier()); 1816 return; 1817 } 1818 1819 // Find a symbol table. 1820 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1821 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1822 1823 for (const typename ELFT::Shdr &sec : sections) { 1824 if (sec.sh_type != SHT_SYMTAB) 1825 continue; 1826 1827 // A symbol table is found. 1828 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1829 uint32_t firstGlobal = sec.sh_info; 1830 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1831 this->symbols.resize(eSyms.size()); 1832 1833 // Get existing symbols or insert placeholder symbols. 1834 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1835 if (eSyms[i].st_shndx != SHN_UNDEF) 1836 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1837 1838 // Replace existing symbols with LazyObject symbols. 1839 // 1840 // resolve() may trigger this->fetch() if an existing symbol is an 1841 // undefined symbol. If that happens, this LazyObjFile has served 1842 // its purpose, and we can exit from the loop early. 1843 for (Symbol *sym : this->symbols) { 1844 if (!sym) 1845 continue; 1846 sym->resolve(LazyObject{*this, sym->getName()}); 1847 1848 // If fetched, stop iterating because this->symbols has been transferred 1849 // to the instantiated ObjFile. 1850 if (fetched) 1851 return; 1852 } 1853 return; 1854 } 1855 } 1856 1857 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) { 1858 if (isBitcode(mb)) 1859 return isBitcodeNonCommonDef(mb, name, archiveName); 1860 1861 return isNonCommonDef(mb, name, archiveName); 1862 } 1863 1864 std::string elf::replaceThinLTOSuffix(StringRef path) { 1865 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1866 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1867 1868 if (path.consume_back(suffix)) 1869 return (path + repl).str(); 1870 return std::string(path); 1871 } 1872 1873 template void BitcodeFile::parse<ELF32LE>(); 1874 template void BitcodeFile::parse<ELF32BE>(); 1875 template void BitcodeFile::parse<ELF64LE>(); 1876 template void BitcodeFile::parse<ELF64BE>(); 1877 1878 template void LazyObjFile::parse<ELF32LE>(); 1879 template void LazyObjFile::parse<ELF32BE>(); 1880 template void LazyObjFile::parse<ELF64LE>(); 1881 template void LazyObjFile::parse<ELF64BE>(); 1882 1883 template class elf::ObjFile<ELF32LE>; 1884 template class elf::ObjFile<ELF32BE>; 1885 template class elf::ObjFile<ELF64LE>; 1886 template class elf::ObjFile<ELF64BE>; 1887 1888 template void SharedFile::parse<ELF32LE>(); 1889 template void SharedFile::parse<ELF32BE>(); 1890 template void SharedFile::parse<ELF64LE>(); 1891 template void SharedFile::parse<ELF64BE>(); 1892