1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 std::vector<BinaryFile *> elf::binaryFiles; 46 std::vector<BitcodeFile *> elf::bitcodeFiles; 47 std::vector<LazyObjFile *> elf::lazyObjFiles; 48 std::vector<InputFile *> elf::objectFiles; 49 std::vector<SharedFile *> elf::sharedFiles; 50 51 std::unique_ptr<TarWriter> elf::tar; 52 53 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 54 unsigned char size; 55 unsigned char endian; 56 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 57 58 auto report = [&](StringRef msg) { 59 StringRef filename = mb.getBufferIdentifier(); 60 if (archiveName.empty()) 61 fatal(filename + ": " + msg); 62 else 63 fatal(archiveName + "(" + filename + "): " + msg); 64 }; 65 66 if (!mb.getBuffer().startswith(ElfMagic)) 67 report("not an ELF file"); 68 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 69 report("corrupted ELF file: invalid data encoding"); 70 if (size != ELFCLASS32 && size != ELFCLASS64) 71 report("corrupted ELF file: invalid file class"); 72 73 size_t bufSize = mb.getBuffer().size(); 74 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 75 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 76 report("corrupted ELF file: file is too short"); 77 78 if (size == ELFCLASS32) 79 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 80 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 81 } 82 83 InputFile::InputFile(Kind k, MemoryBufferRef m) 84 : mb(m), groupId(nextGroupId), fileKind(k) { 85 // All files within the same --{start,end}-group get the same group ID. 86 // Otherwise, a new file will get a new group ID. 87 if (!isInGroup) 88 ++nextGroupId; 89 } 90 91 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 92 // The --chroot option changes our virtual root directory. 93 // This is useful when you are dealing with files created by --reproduce. 94 if (!config->chroot.empty() && path.startswith("/")) 95 path = saver.save(config->chroot + path); 96 97 log(path); 98 99 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 100 if (auto ec = mbOrErr.getError()) { 101 error("cannot open " + path + ": " + ec.message()); 102 return None; 103 } 104 105 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 106 MemoryBufferRef mbref = mb->getMemBufferRef(); 107 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 108 109 if (tar) 110 tar->append(relativeToRoot(path), mbref.getBuffer()); 111 return mbref; 112 } 113 114 // All input object files must be for the same architecture 115 // (e.g. it does not make sense to link x86 object files with 116 // MIPS object files.) This function checks for that error. 117 static bool isCompatible(InputFile *file) { 118 if (!file->isElf() && !isa<BitcodeFile>(file)) 119 return true; 120 121 if (file->ekind == config->ekind && file->emachine == config->emachine) { 122 if (config->emachine != EM_MIPS) 123 return true; 124 if (isMipsN32Abi(file) == config->mipsN32Abi) 125 return true; 126 } 127 128 if (!config->emulation.empty()) { 129 error(toString(file) + " is incompatible with " + config->emulation); 130 } else { 131 InputFile *existing; 132 if (!objectFiles.empty()) 133 existing = objectFiles[0]; 134 else if (!sharedFiles.empty()) 135 existing = sharedFiles[0]; 136 else 137 existing = bitcodeFiles[0]; 138 139 error(toString(file) + " is incompatible with " + toString(existing)); 140 } 141 142 return false; 143 } 144 145 template <class ELFT> static void doParseFile(InputFile *file) { 146 if (!isCompatible(file)) 147 return; 148 149 // Binary file 150 if (auto *f = dyn_cast<BinaryFile>(file)) { 151 binaryFiles.push_back(f); 152 f->parse(); 153 return; 154 } 155 156 // .a file 157 if (auto *f = dyn_cast<ArchiveFile>(file)) { 158 f->parse(); 159 return; 160 } 161 162 // Lazy object file 163 if (auto *f = dyn_cast<LazyObjFile>(file)) { 164 lazyObjFiles.push_back(f); 165 f->parse<ELFT>(); 166 return; 167 } 168 169 if (config->trace) 170 message(toString(file)); 171 172 // .so file 173 if (auto *f = dyn_cast<SharedFile>(file)) { 174 f->parse<ELFT>(); 175 return; 176 } 177 178 // LLVM bitcode file 179 if (auto *f = dyn_cast<BitcodeFile>(file)) { 180 bitcodeFiles.push_back(f); 181 f->parse<ELFT>(); 182 return; 183 } 184 185 // Regular object file 186 objectFiles.push_back(file); 187 cast<ObjFile<ELFT>>(file)->parse(); 188 } 189 190 // Add symbols in File to the symbol table. 191 void elf::parseFile(InputFile *file) { 192 switch (config->ekind) { 193 case ELF32LEKind: 194 doParseFile<ELF32LE>(file); 195 return; 196 case ELF32BEKind: 197 doParseFile<ELF32BE>(file); 198 return; 199 case ELF64LEKind: 200 doParseFile<ELF64LE>(file); 201 return; 202 case ELF64BEKind: 203 doParseFile<ELF64BE>(file); 204 return; 205 default: 206 llvm_unreachable("unknown ELFT"); 207 } 208 } 209 210 // Concatenates arguments to construct a string representing an error location. 211 static std::string createFileLineMsg(StringRef path, unsigned line) { 212 std::string filename = path::filename(path); 213 std::string lineno = ":" + std::to_string(line); 214 if (filename == path) 215 return filename + lineno; 216 return filename + lineno + " (" + path.str() + lineno + ")"; 217 } 218 219 template <class ELFT> 220 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 221 InputSectionBase &sec, uint64_t offset) { 222 // In DWARF, functions and variables are stored to different places. 223 // First, lookup a function for a given offset. 224 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 225 return createFileLineMsg(info->FileName, info->Line); 226 227 // If it failed, lookup again as a variable. 228 if (Optional<std::pair<std::string, unsigned>> fileLine = 229 file.getVariableLoc(sym.getName())) 230 return createFileLineMsg(fileLine->first, fileLine->second); 231 232 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 233 return file.sourceFile; 234 } 235 236 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 237 uint64_t offset) { 238 if (kind() != ObjKind) 239 return ""; 240 switch (config->ekind) { 241 default: 242 llvm_unreachable("Invalid kind"); 243 case ELF32LEKind: 244 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 245 case ELF32BEKind: 246 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 247 case ELF64LEKind: 248 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 249 case ELF64BEKind: 250 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 251 } 252 } 253 254 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 255 dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 256 for (std::unique_ptr<DWARFUnit> &cu : dwarf->compile_units()) { 257 auto report = [](Error err) { 258 handleAllErrors(std::move(err), 259 [](ErrorInfoBase &info) { warn(info.message()); }); 260 }; 261 Expected<const DWARFDebugLine::LineTable *> expectedLT = 262 dwarf->getLineTableForUnit(cu.get(), report); 263 const DWARFDebugLine::LineTable *lt = nullptr; 264 if (expectedLT) 265 lt = *expectedLT; 266 else 267 report(expectedLT.takeError()); 268 if (!lt) 269 continue; 270 lineTables.push_back(lt); 271 272 // Loop over variable records and insert them to variableLoc. 273 for (const auto &entry : cu->dies()) { 274 DWARFDie die(cu.get(), &entry); 275 // Skip all tags that are not variables. 276 if (die.getTag() != dwarf::DW_TAG_variable) 277 continue; 278 279 // Skip if a local variable because we don't need them for generating 280 // error messages. In general, only non-local symbols can fail to be 281 // linked. 282 if (!dwarf::toUnsigned(die.find(dwarf::DW_AT_external), 0)) 283 continue; 284 285 // Get the source filename index for the variable. 286 unsigned file = dwarf::toUnsigned(die.find(dwarf::DW_AT_decl_file), 0); 287 if (!lt->hasFileAtIndex(file)) 288 continue; 289 290 // Get the line number on which the variable is declared. 291 unsigned line = dwarf::toUnsigned(die.find(dwarf::DW_AT_decl_line), 0); 292 293 // Here we want to take the variable name to add it into variableLoc. 294 // Variable can have regular and linkage name associated. At first, we try 295 // to get linkage name as it can be different, for example when we have 296 // two variables in different namespaces of the same object. Use common 297 // name otherwise, but handle the case when it also absent in case if the 298 // input object file lacks some debug info. 299 StringRef name = 300 dwarf::toString(die.find(dwarf::DW_AT_linkage_name), 301 dwarf::toString(die.find(dwarf::DW_AT_name), "")); 302 if (!name.empty()) 303 variableLoc.insert({name, {lt, file, line}}); 304 } 305 } 306 } 307 308 // Returns the pair of file name and line number describing location of data 309 // object (variable, array, etc) definition. 310 template <class ELFT> 311 Optional<std::pair<std::string, unsigned>> 312 ObjFile<ELFT>::getVariableLoc(StringRef name) { 313 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 314 315 // Return if we have no debug information about data object. 316 auto it = variableLoc.find(name); 317 if (it == variableLoc.end()) 318 return None; 319 320 // Take file name string from line table. 321 std::string fileName; 322 if (!it->second.lt->getFileNameByIndex( 323 it->second.file, {}, 324 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, fileName)) 325 return None; 326 327 return std::make_pair(fileName, it->second.line); 328 } 329 330 // Returns source line information for a given offset 331 // using DWARF debug info. 332 template <class ELFT> 333 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 334 uint64_t offset) { 335 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 336 337 // Detect SectionIndex for specified section. 338 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 339 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 340 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 341 if (s == sections[curIndex]) { 342 sectionIndex = curIndex; 343 break; 344 } 345 } 346 347 // Use fake address calcuated by adding section file offset and offset in 348 // section. See comments for ObjectInfo class. 349 DILineInfo info; 350 for (const llvm::DWARFDebugLine::LineTable *lt : lineTables) { 351 if (lt->getFileLineInfoForAddress( 352 {s->getOffsetInFile() + offset, sectionIndex}, nullptr, 353 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, info)) 354 return info; 355 } 356 return None; 357 } 358 359 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 360 std::string lld::toString(const InputFile *f) { 361 if (!f) 362 return "<internal>"; 363 364 if (f->toStringCache.empty()) { 365 if (f->archiveName.empty()) 366 f->toStringCache = f->getName(); 367 else 368 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 369 } 370 return f->toStringCache; 371 } 372 373 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 374 ekind = getELFKind(mb, ""); 375 376 switch (ekind) { 377 case ELF32LEKind: 378 init<ELF32LE>(); 379 break; 380 case ELF32BEKind: 381 init<ELF32BE>(); 382 break; 383 case ELF64LEKind: 384 init<ELF64LE>(); 385 break; 386 case ELF64BEKind: 387 init<ELF64BE>(); 388 break; 389 default: 390 llvm_unreachable("getELFKind"); 391 } 392 } 393 394 template <typename Elf_Shdr> 395 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 396 for (const Elf_Shdr &sec : sections) 397 if (sec.sh_type == type) 398 return &sec; 399 return nullptr; 400 } 401 402 template <class ELFT> void ELFFileBase::init() { 403 using Elf_Shdr = typename ELFT::Shdr; 404 using Elf_Sym = typename ELFT::Sym; 405 406 // Initialize trivial attributes. 407 const ELFFile<ELFT> &obj = getObj<ELFT>(); 408 emachine = obj.getHeader()->e_machine; 409 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 410 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 411 412 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 413 414 // Find a symbol table. 415 bool isDSO = 416 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 417 const Elf_Shdr *symtabSec = 418 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 419 420 if (!symtabSec) 421 return; 422 423 // Initialize members corresponding to a symbol table. 424 firstGlobal = symtabSec->sh_info; 425 426 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 427 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 428 fatal(toString(this) + ": invalid sh_info in symbol table"); 429 430 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 431 numELFSyms = eSyms.size(); 432 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 433 } 434 435 template <class ELFT> 436 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 437 return CHECK( 438 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 439 this); 440 } 441 442 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 443 if (this->symbols.empty()) 444 return {}; 445 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 446 } 447 448 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 449 return makeArrayRef(this->symbols).slice(this->firstGlobal); 450 } 451 452 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 453 // Read a section table. justSymbols is usually false. 454 if (this->justSymbols) 455 initializeJustSymbols(); 456 else 457 initializeSections(ignoreComdats); 458 459 // Read a symbol table. 460 initializeSymbols(); 461 } 462 463 // Sections with SHT_GROUP and comdat bits define comdat section groups. 464 // They are identified and deduplicated by group name. This function 465 // returns a group name. 466 template <class ELFT> 467 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 468 const Elf_Shdr &sec) { 469 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 470 if (sec.sh_info >= symbols.size()) 471 fatal(toString(this) + ": invalid symbol index"); 472 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 473 StringRef signature = CHECK(sym.getName(this->stringTable), this); 474 475 // As a special case, if a symbol is a section symbol and has no name, 476 // we use a section name as a signature. 477 // 478 // Such SHT_GROUP sections are invalid from the perspective of the ELF 479 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 480 // older produce such sections as outputs for the -r option, so we need 481 // a bug-compatibility. 482 if (signature.empty() && sym.getType() == STT_SECTION) 483 return getSectionName(sec); 484 return signature; 485 } 486 487 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec) { 488 // On a regular link we don't merge sections if -O0 (default is -O1). This 489 // sometimes makes the linker significantly faster, although the output will 490 // be bigger. 491 // 492 // Doing the same for -r would create a problem as it would combine sections 493 // with different sh_entsize. One option would be to just copy every SHF_MERGE 494 // section as is to the output. While this would produce a valid ELF file with 495 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 496 // they see two .debug_str. We could have separate logic for combining 497 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 498 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 499 // logic for -r. 500 if (config->optimize == 0 && !config->relocatable) 501 return false; 502 503 // A mergeable section with size 0 is useless because they don't have 504 // any data to merge. A mergeable string section with size 0 can be 505 // argued as invalid because it doesn't end with a null character. 506 // We'll avoid a mess by handling them as if they were non-mergeable. 507 if (sec.sh_size == 0) 508 return false; 509 510 // Check for sh_entsize. The ELF spec is not clear about the zero 511 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 512 // the section does not hold a table of fixed-size entries". We know 513 // that Rust 1.13 produces a string mergeable section with a zero 514 // sh_entsize. Here we just accept it rather than being picky about it. 515 uint64_t entSize = sec.sh_entsize; 516 if (entSize == 0) 517 return false; 518 if (sec.sh_size % entSize) 519 fatal(toString(this) + 520 ": SHF_MERGE section size must be a multiple of sh_entsize"); 521 522 uint64_t flags = sec.sh_flags; 523 if (!(flags & SHF_MERGE)) 524 return false; 525 if (flags & SHF_WRITE) 526 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 527 528 return true; 529 } 530 531 // This is for --just-symbols. 532 // 533 // --just-symbols is a very minor feature that allows you to link your 534 // output against other existing program, so that if you load both your 535 // program and the other program into memory, your output can refer the 536 // other program's symbols. 537 // 538 // When the option is given, we link "just symbols". The section table is 539 // initialized with null pointers. 540 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 541 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 542 this->sections.resize(sections.size()); 543 } 544 545 // An ELF object file may contain a `.deplibs` section. If it exists, the 546 // section contains a list of library specifiers such as `m` for libm. This 547 // function resolves a given name by finding the first matching library checking 548 // the various ways that a library can be specified to LLD. This ELF extension 549 // is a form of autolinking and is called `dependent libraries`. It is currently 550 // unique to LLVM and lld. 551 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 552 if (!config->dependentLibraries) 553 return; 554 if (fs::exists(specifier)) 555 driver->addFile(specifier, /*withLOption=*/false); 556 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 557 driver->addFile(*s, /*withLOption=*/true); 558 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 559 driver->addFile(*s, /*withLOption=*/true); 560 else 561 error(toString(f) + 562 ": unable to find library from dependent library specifier: " + 563 specifier); 564 } 565 566 template <class ELFT> 567 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 568 const ELFFile<ELFT> &obj = this->getObj(); 569 570 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 571 uint64_t size = objSections.size(); 572 this->sections.resize(size); 573 this->sectionStringTable = 574 CHECK(obj.getSectionStringTable(objSections), this); 575 576 for (size_t i = 0, e = objSections.size(); i < e; i++) { 577 if (this->sections[i] == &InputSection::discarded) 578 continue; 579 const Elf_Shdr &sec = objSections[i]; 580 581 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 582 cgProfile = 583 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 584 585 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 586 // if -r is given, we'll let the final link discard such sections. 587 // This is compatible with GNU. 588 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 589 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 590 // We ignore the address-significance table if we know that the object 591 // file was created by objcopy or ld -r. This is because these tools 592 // will reorder the symbols in the symbol table, invalidating the data 593 // in the address-significance table, which refers to symbols by index. 594 if (sec.sh_link != 0) 595 this->addrsigSec = &sec; 596 else if (config->icf == ICFLevel::Safe) 597 warn(toString(this) + ": --icf=safe is incompatible with object " 598 "files created using objcopy or ld -r"); 599 } 600 this->sections[i] = &InputSection::discarded; 601 continue; 602 } 603 604 switch (sec.sh_type) { 605 case SHT_GROUP: { 606 // De-duplicate section groups by their signatures. 607 StringRef signature = getShtGroupSignature(objSections, sec); 608 this->sections[i] = &InputSection::discarded; 609 610 611 ArrayRef<Elf_Word> entries = 612 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 613 if (entries.empty()) 614 fatal(toString(this) + ": empty SHT_GROUP"); 615 616 // The first word of a SHT_GROUP section contains flags. Currently, 617 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 618 // An group with the empty flag doesn't define anything; such sections 619 // are just skipped. 620 if (entries[0] == 0) 621 continue; 622 623 if (entries[0] != GRP_COMDAT) 624 fatal(toString(this) + ": unsupported SHT_GROUP format"); 625 626 bool isNew = 627 ignoreComdats || 628 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 629 .second; 630 if (isNew) { 631 if (config->relocatable) 632 this->sections[i] = createInputSection(sec); 633 continue; 634 } 635 636 // Otherwise, discard group members. 637 for (uint32_t secIndex : entries.slice(1)) { 638 if (secIndex >= size) 639 fatal(toString(this) + 640 ": invalid section index in group: " + Twine(secIndex)); 641 this->sections[secIndex] = &InputSection::discarded; 642 } 643 break; 644 } 645 case SHT_SYMTAB_SHNDX: 646 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 647 break; 648 case SHT_SYMTAB: 649 case SHT_STRTAB: 650 case SHT_NULL: 651 break; 652 default: 653 this->sections[i] = createInputSection(sec); 654 } 655 656 // .ARM.exidx sections have a reverse dependency on the InputSection they 657 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 658 if (sec.sh_flags & SHF_LINK_ORDER) { 659 InputSectionBase *linkSec = nullptr; 660 if (sec.sh_link < this->sections.size()) 661 linkSec = this->sections[sec.sh_link]; 662 if (!linkSec) 663 fatal(toString(this) + 664 ": invalid sh_link index: " + Twine(sec.sh_link)); 665 666 InputSection *isec = cast<InputSection>(this->sections[i]); 667 linkSec->dependentSections.push_back(isec); 668 if (!isa<InputSection>(linkSec)) 669 error("a section " + isec->name + 670 " with SHF_LINK_ORDER should not refer a non-regular " 671 "section: " + 672 toString(linkSec)); 673 } 674 } 675 } 676 677 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 678 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 679 // the input objects have been compiled. 680 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 681 const InputFile *f) { 682 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 683 // If an ABI tag isn't present then it is implicitly given the value of 0 684 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 685 // including some in glibc that don't use FP args (and should have value 3) 686 // don't have the attribute so we do not consider an implicit value of 0 687 // as a clash. 688 return; 689 690 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 691 ARMVFPArgKind arg; 692 switch (vfpArgs) { 693 case ARMBuildAttrs::BaseAAPCS: 694 arg = ARMVFPArgKind::Base; 695 break; 696 case ARMBuildAttrs::HardFPAAPCS: 697 arg = ARMVFPArgKind::VFP; 698 break; 699 case ARMBuildAttrs::ToolChainFPPCS: 700 // Tool chain specific convention that conforms to neither AAPCS variant. 701 arg = ARMVFPArgKind::ToolChain; 702 break; 703 case ARMBuildAttrs::CompatibleFPAAPCS: 704 // Object compatible with all conventions. 705 return; 706 default: 707 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 708 return; 709 } 710 // Follow ld.bfd and error if there is a mix of calling conventions. 711 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 712 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 713 else 714 config->armVFPArgs = arg; 715 } 716 717 // The ARM support in lld makes some use of instructions that are not available 718 // on all ARM architectures. Namely: 719 // - Use of BLX instruction for interworking between ARM and Thumb state. 720 // - Use of the extended Thumb branch encoding in relocation. 721 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 722 // The ARM Attributes section contains information about the architecture chosen 723 // at compile time. We follow the convention that if at least one input object 724 // is compiled with an architecture that supports these features then lld is 725 // permitted to use them. 726 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 727 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 728 return; 729 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 730 switch (arch) { 731 case ARMBuildAttrs::Pre_v4: 732 case ARMBuildAttrs::v4: 733 case ARMBuildAttrs::v4T: 734 // Architectures prior to v5 do not support BLX instruction 735 break; 736 case ARMBuildAttrs::v5T: 737 case ARMBuildAttrs::v5TE: 738 case ARMBuildAttrs::v5TEJ: 739 case ARMBuildAttrs::v6: 740 case ARMBuildAttrs::v6KZ: 741 case ARMBuildAttrs::v6K: 742 config->armHasBlx = true; 743 // Architectures used in pre-Cortex processors do not support 744 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 745 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 746 break; 747 default: 748 // All other Architectures have BLX and extended branch encoding 749 config->armHasBlx = true; 750 config->armJ1J2BranchEncoding = true; 751 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 752 // All Architectures used in Cortex processors with the exception 753 // of v6-M and v6S-M have the MOVT and MOVW instructions. 754 config->armHasMovtMovw = true; 755 break; 756 } 757 } 758 759 // If a source file is compiled with x86 hardware-assisted call flow control 760 // enabled, the generated object file contains feature flags indicating that 761 // fact. This function reads the feature flags and returns it. 762 // 763 // Essentially we want to read a single 32-bit value in this function, but this 764 // function is rather complicated because the value is buried deep inside a 765 // .note.gnu.property section. 766 // 767 // The section consists of one or more NOTE records. Each NOTE record consists 768 // of zero or more type-length-value fields. We want to find a field of a 769 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 770 // the ABI is unnecessarily complicated. 771 template <class ELFT> 772 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 773 using Elf_Nhdr = typename ELFT::Nhdr; 774 using Elf_Note = typename ELFT::Note; 775 776 uint32_t featuresSet = 0; 777 while (!data.empty()) { 778 // Read one NOTE record. 779 if (data.size() < sizeof(Elf_Nhdr)) 780 fatal(toString(obj) + ": .note.gnu.property: section too short"); 781 782 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 783 if (data.size() < nhdr->getSize()) 784 fatal(toString(obj) + ": .note.gnu.property: section too short"); 785 786 Elf_Note note(*nhdr); 787 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 788 data = data.slice(nhdr->getSize()); 789 continue; 790 } 791 792 uint32_t featureAndType = config->emachine == EM_AARCH64 793 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 794 : GNU_PROPERTY_X86_FEATURE_1_AND; 795 796 // Read a body of a NOTE record, which consists of type-length-value fields. 797 ArrayRef<uint8_t> desc = note.getDesc(); 798 while (!desc.empty()) { 799 if (desc.size() < 8) 800 fatal(toString(obj) + ": .note.gnu.property: section too short"); 801 802 uint32_t type = read32le(desc.data()); 803 uint32_t size = read32le(desc.data() + 4); 804 805 if (type == featureAndType) { 806 // We found a FEATURE_1_AND field. There may be more than one of these 807 // in a .note.gnu.propery section, for a relocatable object we 808 // accumulate the bits set. 809 featuresSet |= read32le(desc.data() + 8); 810 } 811 812 // On 64-bit, a payload may be followed by a 4-byte padding to make its 813 // size a multiple of 8. 814 if (ELFT::Is64Bits) 815 size = alignTo(size, 8); 816 817 desc = desc.slice(size + 8); // +8 for Type and Size 818 } 819 820 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 821 data = data.slice(nhdr->getSize()); 822 } 823 824 return featuresSet; 825 } 826 827 template <class ELFT> 828 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 829 uint32_t idx = sec.sh_info; 830 if (idx >= this->sections.size()) 831 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 832 InputSectionBase *target = this->sections[idx]; 833 834 // Strictly speaking, a relocation section must be included in the 835 // group of the section it relocates. However, LLVM 3.3 and earlier 836 // would fail to do so, so we gracefully handle that case. 837 if (target == &InputSection::discarded) 838 return nullptr; 839 840 if (!target) 841 fatal(toString(this) + ": unsupported relocation reference"); 842 return target; 843 } 844 845 // Create a regular InputSection class that has the same contents 846 // as a given section. 847 static InputSection *toRegularSection(MergeInputSection *sec) { 848 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 849 sec->data(), sec->name); 850 } 851 852 template <class ELFT> 853 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 854 StringRef name = getSectionName(sec); 855 856 switch (sec.sh_type) { 857 case SHT_ARM_ATTRIBUTES: { 858 if (config->emachine != EM_ARM) 859 break; 860 ARMAttributeParser attributes; 861 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 862 attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind); 863 updateSupportedARMFeatures(attributes); 864 updateARMVFPArgs(attributes, this); 865 866 // FIXME: Retain the first attribute section we see. The eglibc ARM 867 // dynamic loaders require the presence of an attribute section for dlopen 868 // to work. In a full implementation we would merge all attribute sections. 869 if (in.armAttributes == nullptr) { 870 in.armAttributes = make<InputSection>(*this, sec, name); 871 return in.armAttributes; 872 } 873 return &InputSection::discarded; 874 } 875 case SHT_LLVM_DEPENDENT_LIBRARIES: { 876 if (config->relocatable) 877 break; 878 ArrayRef<char> data = 879 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 880 if (!data.empty() && data.back() != '\0') { 881 error(toString(this) + 882 ": corrupted dependent libraries section (unterminated string): " + 883 name); 884 return &InputSection::discarded; 885 } 886 for (const char *d = data.begin(), *e = data.end(); d < e;) { 887 StringRef s(d); 888 addDependentLibrary(s, this); 889 d += s.size() + 1; 890 } 891 return &InputSection::discarded; 892 } 893 case SHT_RELA: 894 case SHT_REL: { 895 // Find a relocation target section and associate this section with that. 896 // Target may have been discarded if it is in a different section group 897 // and the group is discarded, even though it's a violation of the 898 // spec. We handle that situation gracefully by discarding dangling 899 // relocation sections. 900 InputSectionBase *target = getRelocTarget(sec); 901 if (!target) 902 return nullptr; 903 904 // This section contains relocation information. 905 // If -r is given, we do not interpret or apply relocation 906 // but just copy relocation sections to output. 907 if (config->relocatable) { 908 InputSection *relocSec = make<InputSection>(*this, sec, name); 909 // We want to add a dependency to target, similar like we do for 910 // -emit-relocs below. This is useful for the case when linker script 911 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 912 // -r, but we faced it in the Linux kernel and have to handle such case 913 // and not to crash. 914 target->dependentSections.push_back(relocSec); 915 return relocSec; 916 } 917 918 if (target->firstRelocation) 919 fatal(toString(this) + 920 ": multiple relocation sections to one section are not supported"); 921 922 // ELF spec allows mergeable sections with relocations, but they are 923 // rare, and it is in practice hard to merge such sections by contents, 924 // because applying relocations at end of linking changes section 925 // contents. So, we simply handle such sections as non-mergeable ones. 926 // Degrading like this is acceptable because section merging is optional. 927 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 928 target = toRegularSection(ms); 929 this->sections[sec.sh_info] = target; 930 } 931 932 if (sec.sh_type == SHT_RELA) { 933 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 934 target->firstRelocation = rels.begin(); 935 target->numRelocations = rels.size(); 936 target->areRelocsRela = true; 937 } else { 938 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 939 target->firstRelocation = rels.begin(); 940 target->numRelocations = rels.size(); 941 target->areRelocsRela = false; 942 } 943 assert(isUInt<31>(target->numRelocations)); 944 945 // Relocation sections processed by the linker are usually removed 946 // from the output, so returning `nullptr` for the normal case. 947 // However, if -emit-relocs is given, we need to leave them in the output. 948 // (Some post link analysis tools need this information.) 949 if (config->emitRelocs) { 950 InputSection *relocSec = make<InputSection>(*this, sec, name); 951 // We will not emit relocation section if target was discarded. 952 target->dependentSections.push_back(relocSec); 953 return relocSec; 954 } 955 return nullptr; 956 } 957 } 958 959 // The GNU linker uses .note.GNU-stack section as a marker indicating 960 // that the code in the object file does not expect that the stack is 961 // executable (in terms of NX bit). If all input files have the marker, 962 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 963 // make the stack non-executable. Most object files have this section as 964 // of 2017. 965 // 966 // But making the stack non-executable is a norm today for security 967 // reasons. Failure to do so may result in a serious security issue. 968 // Therefore, we make LLD always add PT_GNU_STACK unless it is 969 // explicitly told to do otherwise (by -z execstack). Because the stack 970 // executable-ness is controlled solely by command line options, 971 // .note.GNU-stack sections are simply ignored. 972 if (name == ".note.GNU-stack") 973 return &InputSection::discarded; 974 975 // Object files that use processor features such as Intel Control-Flow 976 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 977 // .note.gnu.property section containing a bitfield of feature bits like the 978 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 979 // 980 // Since we merge bitmaps from multiple object files to create a new 981 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 982 // file's .note.gnu.property section. 983 if (name == ".note.gnu.property") { 984 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 985 this->andFeatures = readAndFeatures(this, contents); 986 return &InputSection::discarded; 987 } 988 989 // Split stacks is a feature to support a discontiguous stack, 990 // commonly used in the programming language Go. For the details, 991 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 992 // for split stack will include a .note.GNU-split-stack section. 993 if (name == ".note.GNU-split-stack") { 994 if (config->relocatable) { 995 error("cannot mix split-stack and non-split-stack in a relocatable link"); 996 return &InputSection::discarded; 997 } 998 this->splitStack = true; 999 return &InputSection::discarded; 1000 } 1001 1002 // An object file cmpiled for split stack, but where some of the 1003 // functions were compiled with the no_split_stack_attribute will 1004 // include a .note.GNU-no-split-stack section. 1005 if (name == ".note.GNU-no-split-stack") { 1006 this->someNoSplitStack = true; 1007 return &InputSection::discarded; 1008 } 1009 1010 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1011 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1012 // sections. Drop those sections to avoid duplicate symbol errors. 1013 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1014 // fixed for a while. 1015 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1016 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1017 return &InputSection::discarded; 1018 1019 // If we are creating a new .build-id section, strip existing .build-id 1020 // sections so that the output won't have more than one .build-id. 1021 // This is not usually a problem because input object files normally don't 1022 // have .build-id sections, but you can create such files by 1023 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1024 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1025 return &InputSection::discarded; 1026 1027 // The linker merges EH (exception handling) frames and creates a 1028 // .eh_frame_hdr section for runtime. So we handle them with a special 1029 // class. For relocatable outputs, they are just passed through. 1030 if (name == ".eh_frame" && !config->relocatable) 1031 return make<EhInputSection>(*this, sec, name); 1032 1033 if (shouldMerge(sec)) 1034 return make<MergeInputSection>(*this, sec, name); 1035 return make<InputSection>(*this, sec, name); 1036 } 1037 1038 template <class ELFT> 1039 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1040 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1041 } 1042 1043 // Initialize this->Symbols. this->Symbols is a parallel array as 1044 // its corresponding ELF symbol table. 1045 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1046 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1047 this->symbols.resize(eSyms.size()); 1048 1049 // Our symbol table may have already been partially initialized 1050 // because of LazyObjFile. 1051 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1052 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1053 this->symbols[i] = 1054 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1055 1056 // Fill this->Symbols. A symbol is either local or global. 1057 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1058 const Elf_Sym &eSym = eSyms[i]; 1059 1060 // Read symbol attributes. 1061 uint32_t secIdx = getSectionIndex(eSym); 1062 if (secIdx >= this->sections.size()) 1063 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1064 1065 InputSectionBase *sec = this->sections[secIdx]; 1066 uint8_t binding = eSym.getBinding(); 1067 uint8_t stOther = eSym.st_other; 1068 uint8_t type = eSym.getType(); 1069 uint64_t value = eSym.st_value; 1070 uint64_t size = eSym.st_size; 1071 StringRefZ name = this->stringTable.data() + eSym.st_name; 1072 1073 // Handle local symbols. Local symbols are not added to the symbol 1074 // table because they are not visible from other object files. We 1075 // allocate symbol instances and add their pointers to Symbols. 1076 if (binding == STB_LOCAL) { 1077 if (eSym.getType() == STT_FILE) 1078 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1079 1080 if (this->stringTable.size() <= eSym.st_name) 1081 fatal(toString(this) + ": invalid symbol name offset"); 1082 1083 if (eSym.st_shndx == SHN_UNDEF) 1084 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1085 else if (sec == &InputSection::discarded) 1086 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1087 /*DiscardedSecIdx=*/secIdx); 1088 else 1089 this->symbols[i] = 1090 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1091 continue; 1092 } 1093 1094 // Handle global undefined symbols. 1095 if (eSym.st_shndx == SHN_UNDEF) { 1096 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1097 continue; 1098 } 1099 1100 // Handle global common symbols. 1101 if (eSym.st_shndx == SHN_COMMON) { 1102 if (value == 0 || value >= UINT32_MAX) 1103 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1104 "' has invalid alignment: " + Twine(value)); 1105 this->symbols[i]->resolve( 1106 CommonSymbol{this, name, binding, stOther, type, value, size}); 1107 continue; 1108 } 1109 1110 // If a defined symbol is in a discarded section, handle it as if it 1111 // were an undefined symbol. Such symbol doesn't comply with the 1112 // standard, but in practice, a .eh_frame often directly refer 1113 // COMDAT member sections, and if a comdat group is discarded, some 1114 // defined symbol in a .eh_frame becomes dangling symbols. 1115 if (sec == &InputSection::discarded) { 1116 this->symbols[i]->resolve( 1117 Undefined{this, name, binding, stOther, type, secIdx}); 1118 continue; 1119 } 1120 1121 // Handle global defined symbols. 1122 if (binding == STB_GLOBAL || binding == STB_WEAK || 1123 binding == STB_GNU_UNIQUE) { 1124 this->symbols[i]->resolve( 1125 Defined{this, name, binding, stOther, type, value, size, sec}); 1126 continue; 1127 } 1128 1129 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1130 } 1131 } 1132 1133 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1134 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1135 file(std::move(file)) {} 1136 1137 void ArchiveFile::parse() { 1138 for (const Archive::Symbol &sym : file->symbols()) 1139 symtab->addSymbol(LazyArchive{*this, sym}); 1140 } 1141 1142 // Returns a buffer pointing to a member file containing a given symbol. 1143 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1144 Archive::Child c = 1145 CHECK(sym.getMember(), toString(this) + 1146 ": could not get the member for symbol " + 1147 toELFString(sym)); 1148 1149 if (!seen.insert(c.getChildOffset()).second) 1150 return; 1151 1152 MemoryBufferRef mb = 1153 CHECK(c.getMemoryBufferRef(), 1154 toString(this) + 1155 ": could not get the buffer for the member defining symbol " + 1156 toELFString(sym)); 1157 1158 if (tar && c.getParent()->isThin()) 1159 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1160 1161 InputFile *file = createObjectFile( 1162 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1163 file->groupId = groupId; 1164 parseFile(file); 1165 } 1166 1167 unsigned SharedFile::vernauxNum; 1168 1169 // Parse the version definitions in the object file if present, and return a 1170 // vector whose nth element contains a pointer to the Elf_Verdef for version 1171 // identifier n. Version identifiers that are not definitions map to nullptr. 1172 template <typename ELFT> 1173 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1174 const typename ELFT::Shdr *sec) { 1175 if (!sec) 1176 return {}; 1177 1178 // We cannot determine the largest verdef identifier without inspecting 1179 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1180 // sequentially starting from 1, so we predict that the largest identifier 1181 // will be verdefCount. 1182 unsigned verdefCount = sec->sh_info; 1183 std::vector<const void *> verdefs(verdefCount + 1); 1184 1185 // Build the Verdefs array by following the chain of Elf_Verdef objects 1186 // from the start of the .gnu.version_d section. 1187 const uint8_t *verdef = base + sec->sh_offset; 1188 for (unsigned i = 0; i != verdefCount; ++i) { 1189 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1190 verdef += curVerdef->vd_next; 1191 unsigned verdefIndex = curVerdef->vd_ndx; 1192 verdefs.resize(verdefIndex + 1); 1193 verdefs[verdefIndex] = curVerdef; 1194 } 1195 return verdefs; 1196 } 1197 1198 // We do not usually care about alignments of data in shared object 1199 // files because the loader takes care of it. However, if we promote a 1200 // DSO symbol to point to .bss due to copy relocation, we need to keep 1201 // the original alignment requirements. We infer it in this function. 1202 template <typename ELFT> 1203 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1204 const typename ELFT::Sym &sym) { 1205 uint64_t ret = UINT64_MAX; 1206 if (sym.st_value) 1207 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1208 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1209 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1210 return (ret > UINT32_MAX) ? 0 : ret; 1211 } 1212 1213 // Fully parse the shared object file. 1214 // 1215 // This function parses symbol versions. If a DSO has version information, 1216 // the file has a ".gnu.version_d" section which contains symbol version 1217 // definitions. Each symbol is associated to one version through a table in 1218 // ".gnu.version" section. That table is a parallel array for the symbol 1219 // table, and each table entry contains an index in ".gnu.version_d". 1220 // 1221 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1222 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1223 // ".gnu.version_d". 1224 // 1225 // The file format for symbol versioning is perhaps a bit more complicated 1226 // than necessary, but you can easily understand the code if you wrap your 1227 // head around the data structure described above. 1228 template <class ELFT> void SharedFile::parse() { 1229 using Elf_Dyn = typename ELFT::Dyn; 1230 using Elf_Shdr = typename ELFT::Shdr; 1231 using Elf_Sym = typename ELFT::Sym; 1232 using Elf_Verdef = typename ELFT::Verdef; 1233 using Elf_Versym = typename ELFT::Versym; 1234 1235 ArrayRef<Elf_Dyn> dynamicTags; 1236 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1237 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1238 1239 const Elf_Shdr *versymSec = nullptr; 1240 const Elf_Shdr *verdefSec = nullptr; 1241 1242 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1243 for (const Elf_Shdr &sec : sections) { 1244 switch (sec.sh_type) { 1245 default: 1246 continue; 1247 case SHT_DYNAMIC: 1248 dynamicTags = 1249 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1250 break; 1251 case SHT_GNU_versym: 1252 versymSec = &sec; 1253 break; 1254 case SHT_GNU_verdef: 1255 verdefSec = &sec; 1256 break; 1257 } 1258 } 1259 1260 if (versymSec && numELFSyms == 0) { 1261 error("SHT_GNU_versym should be associated with symbol table"); 1262 return; 1263 } 1264 1265 // Search for a DT_SONAME tag to initialize this->soName. 1266 for (const Elf_Dyn &dyn : dynamicTags) { 1267 if (dyn.d_tag == DT_NEEDED) { 1268 uint64_t val = dyn.getVal(); 1269 if (val >= this->stringTable.size()) 1270 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1271 dtNeeded.push_back(this->stringTable.data() + val); 1272 } else if (dyn.d_tag == DT_SONAME) { 1273 uint64_t val = dyn.getVal(); 1274 if (val >= this->stringTable.size()) 1275 fatal(toString(this) + ": invalid DT_SONAME entry"); 1276 soName = this->stringTable.data() + val; 1277 } 1278 } 1279 1280 // DSOs are uniquified not by filename but by soname. 1281 DenseMap<StringRef, SharedFile *>::iterator it; 1282 bool wasInserted; 1283 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1284 1285 // If a DSO appears more than once on the command line with and without 1286 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1287 // user can add an extra DSO with --no-as-needed to force it to be added to 1288 // the dependency list. 1289 it->second->isNeeded |= isNeeded; 1290 if (!wasInserted) 1291 return; 1292 1293 sharedFiles.push_back(this); 1294 1295 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1296 1297 // Parse ".gnu.version" section which is a parallel array for the symbol 1298 // table. If a given file doesn't have a ".gnu.version" section, we use 1299 // VER_NDX_GLOBAL. 1300 size_t size = numELFSyms - firstGlobal; 1301 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1302 if (versymSec) { 1303 ArrayRef<Elf_Versym> versym = 1304 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1305 this) 1306 .slice(firstGlobal); 1307 for (size_t i = 0; i < size; ++i) 1308 versyms[i] = versym[i].vs_index; 1309 } 1310 1311 // System libraries can have a lot of symbols with versions. Using a 1312 // fixed buffer for computing the versions name (foo@ver) can save a 1313 // lot of allocations. 1314 SmallString<0> versionedNameBuffer; 1315 1316 // Add symbols to the symbol table. 1317 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1318 for (size_t i = 0; i < syms.size(); ++i) { 1319 const Elf_Sym &sym = syms[i]; 1320 1321 // ELF spec requires that all local symbols precede weak or global 1322 // symbols in each symbol table, and the index of first non-local symbol 1323 // is stored to sh_info. If a local symbol appears after some non-local 1324 // symbol, that's a violation of the spec. 1325 StringRef name = CHECK(sym.getName(this->stringTable), this); 1326 if (sym.getBinding() == STB_LOCAL) { 1327 warn("found local symbol '" + name + 1328 "' in global part of symbol table in file " + toString(this)); 1329 continue; 1330 } 1331 1332 if (sym.isUndefined()) { 1333 Symbol *s = symtab->addSymbol( 1334 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1335 s->exportDynamic = true; 1336 continue; 1337 } 1338 1339 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1340 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1341 // workaround for this bug. 1342 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1343 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1344 name == "_gp_disp") 1345 continue; 1346 1347 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1348 if (!(versyms[i] & VERSYM_HIDDEN)) { 1349 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1350 sym.st_other, sym.getType(), sym.st_value, 1351 sym.st_size, alignment, idx}); 1352 } 1353 1354 // Also add the symbol with the versioned name to handle undefined symbols 1355 // with explicit versions. 1356 if (idx == VER_NDX_GLOBAL) 1357 continue; 1358 1359 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1360 error("corrupt input file: version definition index " + Twine(idx) + 1361 " for symbol " + name + " is out of bounds\n>>> defined in " + 1362 toString(this)); 1363 continue; 1364 } 1365 1366 StringRef verName = 1367 this->stringTable.data() + 1368 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1369 versionedNameBuffer.clear(); 1370 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1371 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1372 sym.st_other, sym.getType(), sym.st_value, 1373 sym.st_size, alignment, idx}); 1374 } 1375 } 1376 1377 static ELFKind getBitcodeELFKind(const Triple &t) { 1378 if (t.isLittleEndian()) 1379 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1380 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1381 } 1382 1383 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1384 switch (t.getArch()) { 1385 case Triple::aarch64: 1386 return EM_AARCH64; 1387 case Triple::amdgcn: 1388 case Triple::r600: 1389 return EM_AMDGPU; 1390 case Triple::arm: 1391 case Triple::thumb: 1392 return EM_ARM; 1393 case Triple::avr: 1394 return EM_AVR; 1395 case Triple::mips: 1396 case Triple::mipsel: 1397 case Triple::mips64: 1398 case Triple::mips64el: 1399 return EM_MIPS; 1400 case Triple::msp430: 1401 return EM_MSP430; 1402 case Triple::ppc: 1403 return EM_PPC; 1404 case Triple::ppc64: 1405 case Triple::ppc64le: 1406 return EM_PPC64; 1407 case Triple::riscv32: 1408 case Triple::riscv64: 1409 return EM_RISCV; 1410 case Triple::x86: 1411 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1412 case Triple::x86_64: 1413 return EM_X86_64; 1414 default: 1415 error(path + ": could not infer e_machine from bitcode target triple " + 1416 t.str()); 1417 return EM_NONE; 1418 } 1419 } 1420 1421 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1422 uint64_t offsetInArchive) 1423 : InputFile(BitcodeKind, mb) { 1424 this->archiveName = archiveName; 1425 1426 std::string path = mb.getBufferIdentifier().str(); 1427 if (config->thinLTOIndexOnly) 1428 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1429 1430 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1431 // name. If two archives define two members with the same name, this 1432 // causes a collision which result in only one of the objects being taken 1433 // into consideration at LTO time (which very likely causes undefined 1434 // symbols later in the link stage). So we append file offset to make 1435 // filename unique. 1436 StringRef name = archiveName.empty() 1437 ? saver.save(path) 1438 : saver.save(archiveName + "(" + path + " at " + 1439 utostr(offsetInArchive) + ")"); 1440 MemoryBufferRef mbref(mb.getBuffer(), name); 1441 1442 obj = CHECK(lto::InputFile::create(mbref), this); 1443 1444 Triple t(obj->getTargetTriple()); 1445 ekind = getBitcodeELFKind(t); 1446 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1447 } 1448 1449 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1450 switch (gvVisibility) { 1451 case GlobalValue::DefaultVisibility: 1452 return STV_DEFAULT; 1453 case GlobalValue::HiddenVisibility: 1454 return STV_HIDDEN; 1455 case GlobalValue::ProtectedVisibility: 1456 return STV_PROTECTED; 1457 } 1458 llvm_unreachable("unknown visibility"); 1459 } 1460 1461 template <class ELFT> 1462 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1463 const lto::InputFile::Symbol &objSym, 1464 BitcodeFile &f) { 1465 StringRef name = saver.save(objSym.getName()); 1466 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1467 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1468 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1469 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1470 1471 int c = objSym.getComdatIndex(); 1472 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1473 Undefined New(&f, name, binding, visibility, type); 1474 if (canOmitFromDynSym) 1475 New.exportDynamic = false; 1476 return symtab->addSymbol(New); 1477 } 1478 1479 if (objSym.isCommon()) 1480 return symtab->addSymbol( 1481 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1482 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1483 1484 Defined New(&f, name, binding, visibility, type, 0, 0, nullptr); 1485 if (canOmitFromDynSym) 1486 New.exportDynamic = false; 1487 return symtab->addSymbol(New); 1488 } 1489 1490 template <class ELFT> void BitcodeFile::parse() { 1491 std::vector<bool> keptComdats; 1492 for (StringRef s : obj->getComdatTable()) 1493 keptComdats.push_back( 1494 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1495 1496 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1497 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1498 1499 for (auto l : obj->getDependentLibraries()) 1500 addDependentLibrary(l, this); 1501 } 1502 1503 void BinaryFile::parse() { 1504 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1505 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1506 8, data, ".data"); 1507 sections.push_back(section); 1508 1509 // For each input file foo that is embedded to a result as a binary 1510 // blob, we define _binary_foo_{start,end,size} symbols, so that 1511 // user programs can access blobs by name. Non-alphanumeric 1512 // characters in a filename are replaced with underscore. 1513 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1514 for (size_t i = 0; i < s.size(); ++i) 1515 if (!isAlnum(s[i])) 1516 s[i] = '_'; 1517 1518 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1519 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1520 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1521 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1522 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1523 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1524 } 1525 1526 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1527 uint64_t offsetInArchive) { 1528 if (isBitcode(mb)) 1529 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1530 1531 switch (getELFKind(mb, archiveName)) { 1532 case ELF32LEKind: 1533 return make<ObjFile<ELF32LE>>(mb, archiveName); 1534 case ELF32BEKind: 1535 return make<ObjFile<ELF32BE>>(mb, archiveName); 1536 case ELF64LEKind: 1537 return make<ObjFile<ELF64LE>>(mb, archiveName); 1538 case ELF64BEKind: 1539 return make<ObjFile<ELF64BE>>(mb, archiveName); 1540 default: 1541 llvm_unreachable("getELFKind"); 1542 } 1543 } 1544 1545 void LazyObjFile::fetch() { 1546 if (mb.getBuffer().empty()) 1547 return; 1548 1549 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1550 file->groupId = groupId; 1551 1552 mb = {}; 1553 1554 // Copy symbol vector so that the new InputFile doesn't have to 1555 // insert the same defined symbols to the symbol table again. 1556 file->symbols = std::move(symbols); 1557 1558 parseFile(file); 1559 } 1560 1561 template <class ELFT> void LazyObjFile::parse() { 1562 using Elf_Sym = typename ELFT::Sym; 1563 1564 // A lazy object file wraps either a bitcode file or an ELF file. 1565 if (isBitcode(this->mb)) { 1566 std::unique_ptr<lto::InputFile> obj = 1567 CHECK(lto::InputFile::create(this->mb), this); 1568 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1569 if (sym.isUndefined()) 1570 continue; 1571 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1572 } 1573 return; 1574 } 1575 1576 if (getELFKind(this->mb, archiveName) != config->ekind) { 1577 error("incompatible file: " + this->mb.getBufferIdentifier()); 1578 return; 1579 } 1580 1581 // Find a symbol table. 1582 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1583 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1584 1585 for (const typename ELFT::Shdr &sec : sections) { 1586 if (sec.sh_type != SHT_SYMTAB) 1587 continue; 1588 1589 // A symbol table is found. 1590 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1591 uint32_t firstGlobal = sec.sh_info; 1592 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1593 this->symbols.resize(eSyms.size()); 1594 1595 // Get existing symbols or insert placeholder symbols. 1596 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1597 if (eSyms[i].st_shndx != SHN_UNDEF) 1598 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1599 1600 // Replace existing symbols with LazyObject symbols. 1601 // 1602 // resolve() may trigger this->fetch() if an existing symbol is an 1603 // undefined symbol. If that happens, this LazyObjFile has served 1604 // its purpose, and we can exit from the loop early. 1605 for (Symbol *sym : this->symbols) { 1606 if (!sym) 1607 continue; 1608 sym->resolve(LazyObject{*this, sym->getName()}); 1609 1610 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1611 if (mb.getBuffer().empty()) 1612 return; 1613 } 1614 return; 1615 } 1616 } 1617 1618 std::string elf::replaceThinLTOSuffix(StringRef path) { 1619 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1620 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1621 1622 if (path.consume_back(suffix)) 1623 return (path + repl).str(); 1624 return path; 1625 } 1626 1627 template void BitcodeFile::parse<ELF32LE>(); 1628 template void BitcodeFile::parse<ELF32BE>(); 1629 template void BitcodeFile::parse<ELF64LE>(); 1630 template void BitcodeFile::parse<ELF64BE>(); 1631 1632 template void LazyObjFile::parse<ELF32LE>(); 1633 template void LazyObjFile::parse<ELF32BE>(); 1634 template void LazyObjFile::parse<ELF64LE>(); 1635 template void LazyObjFile::parse<ELF64BE>(); 1636 1637 template class elf::ObjFile<ELF32LE>; 1638 template class elf::ObjFile<ELF32BE>; 1639 template class elf::ObjFile<ELF64LE>; 1640 template class elf::ObjFile<ELF64BE>; 1641 1642 template void SharedFile::parse<ELF32LE>(); 1643 template void SharedFile::parse<ELF32BE>(); 1644 template void SharedFile::parse<ELF64LE>(); 1645 template void SharedFile::parse<ELF64BE>(); 1646