xref: /freebsd/contrib/llvm-project/lld/ELF/InputFiles.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = std::string(f->getName());
63     else
64       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65   }
66   return f->toStringCache;
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver.save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
119                                        /*RequiresNullTerminator=*/false);
120   if (auto ec = mbOrErr.getError()) {
121     error("cannot open " + path + ": " + ec.message());
122     return None;
123   }
124 
125   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
126   MemoryBufferRef mbref = mb->getMemBufferRef();
127   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
128 
129   if (tar)
130     tar->append(relativeToRoot(path), mbref.getBuffer());
131   return mbref;
132 }
133 
134 // All input object files must be for the same architecture
135 // (e.g. it does not make sense to link x86 object files with
136 // MIPS object files.) This function checks for that error.
137 static bool isCompatible(InputFile *file) {
138   if (!file->isElf() && !isa<BitcodeFile>(file))
139     return true;
140 
141   if (file->ekind == config->ekind && file->emachine == config->emachine) {
142     if (config->emachine != EM_MIPS)
143       return true;
144     if (isMipsN32Abi(file) == config->mipsN32Abi)
145       return true;
146   }
147 
148   StringRef target =
149       !config->bfdname.empty() ? config->bfdname : config->emulation;
150   if (!target.empty()) {
151     error(toString(file) + " is incompatible with " + target);
152     return false;
153   }
154 
155   InputFile *existing;
156   if (!objectFiles.empty())
157     existing = objectFiles[0];
158   else if (!sharedFiles.empty())
159     existing = sharedFiles[0];
160   else if (!bitcodeFiles.empty())
161     existing = bitcodeFiles[0];
162   else
163     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
164                      "determine target emulation");
165 
166   error(toString(file) + " is incompatible with " + toString(existing));
167   return false;
168 }
169 
170 template <class ELFT> static void doParseFile(InputFile *file) {
171   if (!isCompatible(file))
172     return;
173 
174   // Binary file
175   if (auto *f = dyn_cast<BinaryFile>(file)) {
176     binaryFiles.push_back(f);
177     f->parse();
178     return;
179   }
180 
181   // .a file
182   if (auto *f = dyn_cast<ArchiveFile>(file)) {
183     archiveFiles.push_back(f);
184     f->parse();
185     return;
186   }
187 
188   // Lazy object file
189   if (auto *f = dyn_cast<LazyObjFile>(file)) {
190     lazyObjFiles.push_back(f);
191     f->parse<ELFT>();
192     return;
193   }
194 
195   if (config->trace)
196     message(toString(file));
197 
198   // .so file
199   if (auto *f = dyn_cast<SharedFile>(file)) {
200     f->parse<ELFT>();
201     return;
202   }
203 
204   // LLVM bitcode file
205   if (auto *f = dyn_cast<BitcodeFile>(file)) {
206     bitcodeFiles.push_back(f);
207     f->parse<ELFT>();
208     return;
209   }
210 
211   // Regular object file
212   objectFiles.push_back(file);
213   cast<ObjFile<ELFT>>(file)->parse();
214 }
215 
216 // Add symbols in File to the symbol table.
217 void elf::parseFile(InputFile *file) {
218   switch (config->ekind) {
219   case ELF32LEKind:
220     doParseFile<ELF32LE>(file);
221     return;
222   case ELF32BEKind:
223     doParseFile<ELF32BE>(file);
224     return;
225   case ELF64LEKind:
226     doParseFile<ELF64LE>(file);
227     return;
228   case ELF64BEKind:
229     doParseFile<ELF64BE>(file);
230     return;
231   default:
232     llvm_unreachable("unknown ELFT");
233   }
234 }
235 
236 // Concatenates arguments to construct a string representing an error location.
237 static std::string createFileLineMsg(StringRef path, unsigned line) {
238   std::string filename = std::string(path::filename(path));
239   std::string lineno = ":" + std::to_string(line);
240   if (filename == path)
241     return filename + lineno;
242   return filename + lineno + " (" + path.str() + lineno + ")";
243 }
244 
245 template <class ELFT>
246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
247                                 InputSectionBase &sec, uint64_t offset) {
248   // In DWARF, functions and variables are stored to different places.
249   // First, lookup a function for a given offset.
250   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
251     return createFileLineMsg(info->FileName, info->Line);
252 
253   // If it failed, lookup again as a variable.
254   if (Optional<std::pair<std::string, unsigned>> fileLine =
255           file.getVariableLoc(sym.getName()))
256     return createFileLineMsg(fileLine->first, fileLine->second);
257 
258   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
259   return std::string(file.sourceFile);
260 }
261 
262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
263                                  uint64_t offset) {
264   if (kind() != ObjKind)
265     return "";
266   switch (config->ekind) {
267   default:
268     llvm_unreachable("Invalid kind");
269   case ELF32LEKind:
270     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
271   case ELF32BEKind:
272     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
273   case ELF64LEKind:
274     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
275   case ELF64BEKind:
276     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
277   }
278 }
279 
280 StringRef InputFile::getNameForScript() const {
281   if (archiveName.empty())
282     return getName();
283 
284   if (nameForScriptCache.empty())
285     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
286 
287   return nameForScriptCache;
288 }
289 
290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
291   llvm::call_once(initDwarf, [this]() {
292     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
293         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
294         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
295         [&](Error warning) {
296           warn(getName() + ": " + toString(std::move(warning)));
297         }));
298   });
299 
300   return dwarf.get();
301 }
302 
303 // Returns the pair of file name and line number describing location of data
304 // object (variable, array, etc) definition.
305 template <class ELFT>
306 Optional<std::pair<std::string, unsigned>>
307 ObjFile<ELFT>::getVariableLoc(StringRef name) {
308   return getDwarf()->getVariableLoc(name);
309 }
310 
311 // Returns source line information for a given offset
312 // using DWARF debug info.
313 template <class ELFT>
314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
315                                                   uint64_t offset) {
316   // Detect SectionIndex for specified section.
317   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
318   ArrayRef<InputSectionBase *> sections = s->file->getSections();
319   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
320     if (s == sections[curIndex]) {
321       sectionIndex = curIndex;
322       break;
323     }
324   }
325 
326   return getDwarf()->getDILineInfo(offset, sectionIndex);
327 }
328 
329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
330   ekind = getELFKind(mb, "");
331 
332   switch (ekind) {
333   case ELF32LEKind:
334     init<ELF32LE>();
335     break;
336   case ELF32BEKind:
337     init<ELF32BE>();
338     break;
339   case ELF64LEKind:
340     init<ELF64LE>();
341     break;
342   case ELF64BEKind:
343     init<ELF64BE>();
344     break;
345   default:
346     llvm_unreachable("getELFKind");
347   }
348 }
349 
350 template <typename Elf_Shdr>
351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
352   for (const Elf_Shdr &sec : sections)
353     if (sec.sh_type == type)
354       return &sec;
355   return nullptr;
356 }
357 
358 template <class ELFT> void ELFFileBase::init() {
359   using Elf_Shdr = typename ELFT::Shdr;
360   using Elf_Sym = typename ELFT::Sym;
361 
362   // Initialize trivial attributes.
363   const ELFFile<ELFT> &obj = getObj<ELFT>();
364   emachine = obj.getHeader().e_machine;
365   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
366   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
367 
368   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
369 
370   // Find a symbol table.
371   bool isDSO =
372       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
373   const Elf_Shdr *symtabSec =
374       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
375 
376   if (!symtabSec)
377     return;
378 
379   // Initialize members corresponding to a symbol table.
380   firstGlobal = symtabSec->sh_info;
381 
382   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
383   if (firstGlobal == 0 || firstGlobal > eSyms.size())
384     fatal(toString(this) + ": invalid sh_info in symbol table");
385 
386   elfSyms = reinterpret_cast<const void *>(eSyms.data());
387   numELFSyms = eSyms.size();
388   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
389 }
390 
391 template <class ELFT>
392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
393   return CHECK(
394       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
395       this);
396 }
397 
398 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
399   if (this->symbols.empty())
400     return {};
401   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
402 }
403 
404 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
405   return makeArrayRef(this->symbols).slice(this->firstGlobal);
406 }
407 
408 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
409   // Read a section table. justSymbols is usually false.
410   if (this->justSymbols)
411     initializeJustSymbols();
412   else
413     initializeSections(ignoreComdats);
414 
415   // Read a symbol table.
416   initializeSymbols();
417 }
418 
419 // Sections with SHT_GROUP and comdat bits define comdat section groups.
420 // They are identified and deduplicated by group name. This function
421 // returns a group name.
422 template <class ELFT>
423 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
424                                               const Elf_Shdr &sec) {
425   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
426   if (sec.sh_info >= symbols.size())
427     fatal(toString(this) + ": invalid symbol index");
428   const typename ELFT::Sym &sym = symbols[sec.sh_info];
429   return CHECK(sym.getName(this->stringTable), this);
430 }
431 
432 template <class ELFT>
433 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
434   if (!(sec.sh_flags & SHF_MERGE))
435     return false;
436 
437   // On a regular link we don't merge sections if -O0 (default is -O1). This
438   // sometimes makes the linker significantly faster, although the output will
439   // be bigger.
440   //
441   // Doing the same for -r would create a problem as it would combine sections
442   // with different sh_entsize. One option would be to just copy every SHF_MERGE
443   // section as is to the output. While this would produce a valid ELF file with
444   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
445   // they see two .debug_str. We could have separate logic for combining
446   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
447   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
448   // logic for -r.
449   if (config->optimize == 0 && !config->relocatable)
450     return false;
451 
452   // A mergeable section with size 0 is useless because they don't have
453   // any data to merge. A mergeable string section with size 0 can be
454   // argued as invalid because it doesn't end with a null character.
455   // We'll avoid a mess by handling them as if they were non-mergeable.
456   if (sec.sh_size == 0)
457     return false;
458 
459   // Check for sh_entsize. The ELF spec is not clear about the zero
460   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
461   // the section does not hold a table of fixed-size entries". We know
462   // that Rust 1.13 produces a string mergeable section with a zero
463   // sh_entsize. Here we just accept it rather than being picky about it.
464   uint64_t entSize = sec.sh_entsize;
465   if (entSize == 0)
466     return false;
467   if (sec.sh_size % entSize)
468     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
469           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
470           Twine(entSize) + ")");
471 
472   if (sec.sh_flags & SHF_WRITE)
473     fatal(toString(this) + ":(" + name +
474           "): writable SHF_MERGE section is not supported");
475 
476   return true;
477 }
478 
479 // This is for --just-symbols.
480 //
481 // --just-symbols is a very minor feature that allows you to link your
482 // output against other existing program, so that if you load both your
483 // program and the other program into memory, your output can refer the
484 // other program's symbols.
485 //
486 // When the option is given, we link "just symbols". The section table is
487 // initialized with null pointers.
488 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
489   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
490   this->sections.resize(sections.size());
491 }
492 
493 // An ELF object file may contain a `.deplibs` section. If it exists, the
494 // section contains a list of library specifiers such as `m` for libm. This
495 // function resolves a given name by finding the first matching library checking
496 // the various ways that a library can be specified to LLD. This ELF extension
497 // is a form of autolinking and is called `dependent libraries`. It is currently
498 // unique to LLVM and lld.
499 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
500   if (!config->dependentLibraries)
501     return;
502   if (fs::exists(specifier))
503     driver->addFile(specifier, /*withLOption=*/false);
504   else if (Optional<std::string> s = findFromSearchPaths(specifier))
505     driver->addFile(*s, /*withLOption=*/true);
506   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
507     driver->addFile(*s, /*withLOption=*/true);
508   else
509     error(toString(f) +
510           ": unable to find library from dependent library specifier: " +
511           specifier);
512 }
513 
514 // Record the membership of a section group so that in the garbage collection
515 // pass, section group members are kept or discarded as a unit.
516 template <class ELFT>
517 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
518                                ArrayRef<typename ELFT::Word> entries) {
519   bool hasAlloc = false;
520   for (uint32_t index : entries.slice(1)) {
521     if (index >= sections.size())
522       return;
523     if (InputSectionBase *s = sections[index])
524       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
525         hasAlloc = true;
526   }
527 
528   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
529   // collection. See the comment in markLive(). This rule retains .debug_types
530   // and .rela.debug_types.
531   if (!hasAlloc)
532     return;
533 
534   // Connect the members in a circular doubly-linked list via
535   // nextInSectionGroup.
536   InputSectionBase *head;
537   InputSectionBase *prev = nullptr;
538   for (uint32_t index : entries.slice(1)) {
539     InputSectionBase *s = sections[index];
540     if (!s || s == &InputSection::discarded)
541       continue;
542     if (prev)
543       prev->nextInSectionGroup = s;
544     else
545       head = s;
546     prev = s;
547   }
548   if (prev)
549     prev->nextInSectionGroup = head;
550 }
551 
552 template <class ELFT>
553 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
554   const ELFFile<ELFT> &obj = this->getObj();
555 
556   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
557   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
558   uint64_t size = objSections.size();
559   this->sections.resize(size);
560 
561   std::vector<ArrayRef<Elf_Word>> selectedGroups;
562 
563   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
564     if (this->sections[i] == &InputSection::discarded)
565       continue;
566     const Elf_Shdr &sec = objSections[i];
567 
568     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
569       cgProfileSectionIndex = i;
570 
571     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
572     // if -r is given, we'll let the final link discard such sections.
573     // This is compatible with GNU.
574     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
575       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
576         // We ignore the address-significance table if we know that the object
577         // file was created by objcopy or ld -r. This is because these tools
578         // will reorder the symbols in the symbol table, invalidating the data
579         // in the address-significance table, which refers to symbols by index.
580         if (sec.sh_link != 0)
581           this->addrsigSec = &sec;
582         else if (config->icf == ICFLevel::Safe)
583           warn(toString(this) +
584                ": --icf=safe conservatively ignores "
585                "SHT_LLVM_ADDRSIG [index " +
586                Twine(i) +
587                "] with sh_link=0 "
588                "(likely created using objcopy or ld -r)");
589       }
590       this->sections[i] = &InputSection::discarded;
591       continue;
592     }
593 
594     switch (sec.sh_type) {
595     case SHT_GROUP: {
596       // De-duplicate section groups by their signatures.
597       StringRef signature = getShtGroupSignature(objSections, sec);
598       this->sections[i] = &InputSection::discarded;
599 
600       ArrayRef<Elf_Word> entries =
601           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
602       if (entries.empty())
603         fatal(toString(this) + ": empty SHT_GROUP");
604 
605       Elf_Word flag = entries[0];
606       if (flag && flag != GRP_COMDAT)
607         fatal(toString(this) + ": unsupported SHT_GROUP format");
608 
609       bool keepGroup =
610           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
611           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
612               .second;
613       if (keepGroup) {
614         if (config->relocatable)
615           this->sections[i] = createInputSection(i, sec, shstrtab);
616         selectedGroups.push_back(entries);
617         continue;
618       }
619 
620       // Otherwise, discard group members.
621       for (uint32_t secIndex : entries.slice(1)) {
622         if (secIndex >= size)
623           fatal(toString(this) +
624                 ": invalid section index in group: " + Twine(secIndex));
625         this->sections[secIndex] = &InputSection::discarded;
626       }
627       break;
628     }
629     case SHT_SYMTAB_SHNDX:
630       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
631       break;
632     case SHT_SYMTAB:
633     case SHT_STRTAB:
634     case SHT_REL:
635     case SHT_RELA:
636     case SHT_NULL:
637       break;
638     default:
639       this->sections[i] = createInputSection(i, sec, shstrtab);
640     }
641   }
642 
643   // We have a second loop. It is used to:
644   // 1) handle SHF_LINK_ORDER sections.
645   // 2) create SHT_REL[A] sections. In some cases the section header index of a
646   //    relocation section may be smaller than that of the relocated section. In
647   //    such cases, the relocation section would attempt to reference a target
648   //    section that has not yet been created. For simplicity, delay creation of
649   //    relocation sections until now.
650   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
651     if (this->sections[i] == &InputSection::discarded)
652       continue;
653     const Elf_Shdr &sec = objSections[i];
654 
655     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
656       this->sections[i] = createInputSection(i, sec, shstrtab);
657 
658     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
659     // the flag.
660     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
661       continue;
662 
663     InputSectionBase *linkSec = nullptr;
664     if (sec.sh_link < this->sections.size())
665       linkSec = this->sections[sec.sh_link];
666     if (!linkSec)
667       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
668 
669     // A SHF_LINK_ORDER section is discarded if its linked-to section is
670     // discarded.
671     InputSection *isec = cast<InputSection>(this->sections[i]);
672     linkSec->dependentSections.push_back(isec);
673     if (!isa<InputSection>(linkSec))
674       error("a section " + isec->name +
675             " with SHF_LINK_ORDER should not refer a non-regular section: " +
676             toString(linkSec));
677   }
678 
679   for (ArrayRef<Elf_Word> entries : selectedGroups)
680     handleSectionGroup<ELFT>(this->sections, entries);
681 }
682 
683 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
684 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
685 // the input objects have been compiled.
686 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
687                              const InputFile *f) {
688   Optional<unsigned> attr =
689       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
690   if (!attr.hasValue())
691     // If an ABI tag isn't present then it is implicitly given the value of 0
692     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
693     // including some in glibc that don't use FP args (and should have value 3)
694     // don't have the attribute so we do not consider an implicit value of 0
695     // as a clash.
696     return;
697 
698   unsigned vfpArgs = attr.getValue();
699   ARMVFPArgKind arg;
700   switch (vfpArgs) {
701   case ARMBuildAttrs::BaseAAPCS:
702     arg = ARMVFPArgKind::Base;
703     break;
704   case ARMBuildAttrs::HardFPAAPCS:
705     arg = ARMVFPArgKind::VFP;
706     break;
707   case ARMBuildAttrs::ToolChainFPPCS:
708     // Tool chain specific convention that conforms to neither AAPCS variant.
709     arg = ARMVFPArgKind::ToolChain;
710     break;
711   case ARMBuildAttrs::CompatibleFPAAPCS:
712     // Object compatible with all conventions.
713     return;
714   default:
715     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
716     return;
717   }
718   // Follow ld.bfd and error if there is a mix of calling conventions.
719   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
720     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
721   else
722     config->armVFPArgs = arg;
723 }
724 
725 // The ARM support in lld makes some use of instructions that are not available
726 // on all ARM architectures. Namely:
727 // - Use of BLX instruction for interworking between ARM and Thumb state.
728 // - Use of the extended Thumb branch encoding in relocation.
729 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
730 // The ARM Attributes section contains information about the architecture chosen
731 // at compile time. We follow the convention that if at least one input object
732 // is compiled with an architecture that supports these features then lld is
733 // permitted to use them.
734 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
735   Optional<unsigned> attr =
736       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
737   if (!attr.hasValue())
738     return;
739   auto arch = attr.getValue();
740   switch (arch) {
741   case ARMBuildAttrs::Pre_v4:
742   case ARMBuildAttrs::v4:
743   case ARMBuildAttrs::v4T:
744     // Architectures prior to v5 do not support BLX instruction
745     break;
746   case ARMBuildAttrs::v5T:
747   case ARMBuildAttrs::v5TE:
748   case ARMBuildAttrs::v5TEJ:
749   case ARMBuildAttrs::v6:
750   case ARMBuildAttrs::v6KZ:
751   case ARMBuildAttrs::v6K:
752     config->armHasBlx = true;
753     // Architectures used in pre-Cortex processors do not support
754     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
755     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
756     break;
757   default:
758     // All other Architectures have BLX and extended branch encoding
759     config->armHasBlx = true;
760     config->armJ1J2BranchEncoding = true;
761     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
762       // All Architectures used in Cortex processors with the exception
763       // of v6-M and v6S-M have the MOVT and MOVW instructions.
764       config->armHasMovtMovw = true;
765     break;
766   }
767 }
768 
769 // If a source file is compiled with x86 hardware-assisted call flow control
770 // enabled, the generated object file contains feature flags indicating that
771 // fact. This function reads the feature flags and returns it.
772 //
773 // Essentially we want to read a single 32-bit value in this function, but this
774 // function is rather complicated because the value is buried deep inside a
775 // .note.gnu.property section.
776 //
777 // The section consists of one or more NOTE records. Each NOTE record consists
778 // of zero or more type-length-value fields. We want to find a field of a
779 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
780 // the ABI is unnecessarily complicated.
781 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
782   using Elf_Nhdr = typename ELFT::Nhdr;
783   using Elf_Note = typename ELFT::Note;
784 
785   uint32_t featuresSet = 0;
786   ArrayRef<uint8_t> data = sec.data();
787   auto reportFatal = [&](const uint8_t *place, const char *msg) {
788     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
789           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
790   };
791   while (!data.empty()) {
792     // Read one NOTE record.
793     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
794     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
795       reportFatal(data.data(), "data is too short");
796 
797     Elf_Note note(*nhdr);
798     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
799       data = data.slice(nhdr->getSize());
800       continue;
801     }
802 
803     uint32_t featureAndType = config->emachine == EM_AARCH64
804                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
805                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
806 
807     // Read a body of a NOTE record, which consists of type-length-value fields.
808     ArrayRef<uint8_t> desc = note.getDesc();
809     while (!desc.empty()) {
810       const uint8_t *place = desc.data();
811       if (desc.size() < 8)
812         reportFatal(place, "program property is too short");
813       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
814       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
815       desc = desc.slice(8);
816       if (desc.size() < size)
817         reportFatal(place, "program property is too short");
818 
819       if (type == featureAndType) {
820         // We found a FEATURE_1_AND field. There may be more than one of these
821         // in a .note.gnu.property section, for a relocatable object we
822         // accumulate the bits set.
823         if (size < 4)
824           reportFatal(place, "FEATURE_1_AND entry is too short");
825         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
826       }
827 
828       // Padding is present in the note descriptor, if necessary.
829       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
830     }
831 
832     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
833     data = data.slice(nhdr->getSize());
834   }
835 
836   return featuresSet;
837 }
838 
839 template <class ELFT>
840 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name,
841                                                 const Elf_Shdr &sec) {
842   uint32_t info = sec.sh_info;
843   if (info < this->sections.size()) {
844     InputSectionBase *target = this->sections[info];
845 
846     // Strictly speaking, a relocation section must be included in the
847     // group of the section it relocates. However, LLVM 3.3 and earlier
848     // would fail to do so, so we gracefully handle that case.
849     if (target == &InputSection::discarded)
850       return nullptr;
851 
852     if (target != nullptr)
853       return target;
854   }
855 
856   error(toString(this) + Twine(": relocation section ") + name + " (index " +
857         Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")");
858   return nullptr;
859 }
860 
861 // Create a regular InputSection class that has the same contents
862 // as a given section.
863 static InputSection *toRegularSection(MergeInputSection *sec) {
864   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
865                             sec->data(), sec->name);
866 }
867 
868 template <class ELFT>
869 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
870                                                     const Elf_Shdr &sec,
871                                                     StringRef shstrtab) {
872   StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this);
873 
874   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
875     ARMAttributeParser attributes;
876     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
877     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
878                                                  ? support::little
879                                                  : support::big)) {
880       auto *isec = make<InputSection>(*this, sec, name);
881       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
882     } else {
883       updateSupportedARMFeatures(attributes);
884       updateARMVFPArgs(attributes, this);
885 
886       // FIXME: Retain the first attribute section we see. The eglibc ARM
887       // dynamic loaders require the presence of an attribute section for dlopen
888       // to work. In a full implementation we would merge all attribute
889       // sections.
890       if (in.attributes == nullptr) {
891         in.attributes = make<InputSection>(*this, sec, name);
892         return in.attributes;
893       }
894       return &InputSection::discarded;
895     }
896   }
897 
898   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
899     RISCVAttributeParser attributes;
900     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
901     if (Error e = attributes.parse(contents, support::little)) {
902       auto *isec = make<InputSection>(*this, sec, name);
903       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
904     } else {
905       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
906       // present.
907 
908       // FIXME: Retain the first attribute section we see. Tools such as
909       // llvm-objdump make use of the attribute section to determine which
910       // standard extensions to enable. In a full implementation we would merge
911       // all attribute sections.
912       if (in.attributes == nullptr) {
913         in.attributes = make<InputSection>(*this, sec, name);
914         return in.attributes;
915       }
916       return &InputSection::discarded;
917     }
918   }
919 
920   switch (sec.sh_type) {
921   case SHT_LLVM_DEPENDENT_LIBRARIES: {
922     if (config->relocatable)
923       break;
924     ArrayRef<char> data =
925         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
926     if (!data.empty() && data.back() != '\0') {
927       error(toString(this) +
928             ": corrupted dependent libraries section (unterminated string): " +
929             name);
930       return &InputSection::discarded;
931     }
932     for (const char *d = data.begin(), *e = data.end(); d < e;) {
933       StringRef s(d);
934       addDependentLibrary(s, this);
935       d += s.size() + 1;
936     }
937     return &InputSection::discarded;
938   }
939   case SHT_RELA:
940   case SHT_REL: {
941     // Find a relocation target section and associate this section with that.
942     // Target may have been discarded if it is in a different section group
943     // and the group is discarded, even though it's a violation of the
944     // spec. We handle that situation gracefully by discarding dangling
945     // relocation sections.
946     InputSectionBase *target = getRelocTarget(idx, name, sec);
947     if (!target)
948       return nullptr;
949 
950     // ELF spec allows mergeable sections with relocations, but they are
951     // rare, and it is in practice hard to merge such sections by contents,
952     // because applying relocations at end of linking changes section
953     // contents. So, we simply handle such sections as non-mergeable ones.
954     // Degrading like this is acceptable because section merging is optional.
955     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
956       target = toRegularSection(ms);
957       this->sections[sec.sh_info] = target;
958     }
959 
960     if (target->relSecIdx != 0)
961       fatal(toString(this) +
962             ": multiple relocation sections to one section are not supported");
963     target->relSecIdx = idx;
964 
965     // Relocation sections are usually removed from the output, so return
966     // `nullptr` for the normal case. However, if -r or --emit-relocs is
967     // specified, we need to copy them to the output. (Some post link analysis
968     // tools specify --emit-relocs to obtain the information.)
969     if (!config->relocatable && !config->emitRelocs)
970       return nullptr;
971     InputSection *relocSec = make<InputSection>(*this, sec, name);
972     // If the relocated section is discarded (due to /DISCARD/ or
973     // --gc-sections), the relocation section should be discarded as well.
974     target->dependentSections.push_back(relocSec);
975     return relocSec;
976   }
977   }
978 
979   // The GNU linker uses .note.GNU-stack section as a marker indicating
980   // that the code in the object file does not expect that the stack is
981   // executable (in terms of NX bit). If all input files have the marker,
982   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
983   // make the stack non-executable. Most object files have this section as
984   // of 2017.
985   //
986   // But making the stack non-executable is a norm today for security
987   // reasons. Failure to do so may result in a serious security issue.
988   // Therefore, we make LLD always add PT_GNU_STACK unless it is
989   // explicitly told to do otherwise (by -z execstack). Because the stack
990   // executable-ness is controlled solely by command line options,
991   // .note.GNU-stack sections are simply ignored.
992   if (name == ".note.GNU-stack")
993     return &InputSection::discarded;
994 
995   // Object files that use processor features such as Intel Control-Flow
996   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
997   // .note.gnu.property section containing a bitfield of feature bits like the
998   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
999   //
1000   // Since we merge bitmaps from multiple object files to create a new
1001   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1002   // file's .note.gnu.property section.
1003   if (name == ".note.gnu.property") {
1004     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1005     return &InputSection::discarded;
1006   }
1007 
1008   // Split stacks is a feature to support a discontiguous stack,
1009   // commonly used in the programming language Go. For the details,
1010   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1011   // for split stack will include a .note.GNU-split-stack section.
1012   if (name == ".note.GNU-split-stack") {
1013     if (config->relocatable) {
1014       error("cannot mix split-stack and non-split-stack in a relocatable link");
1015       return &InputSection::discarded;
1016     }
1017     this->splitStack = true;
1018     return &InputSection::discarded;
1019   }
1020 
1021   // An object file cmpiled for split stack, but where some of the
1022   // functions were compiled with the no_split_stack_attribute will
1023   // include a .note.GNU-no-split-stack section.
1024   if (name == ".note.GNU-no-split-stack") {
1025     this->someNoSplitStack = true;
1026     return &InputSection::discarded;
1027   }
1028 
1029   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1030   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1031   // sections. Drop those sections to avoid duplicate symbol errors.
1032   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1033   // fixed for a while.
1034   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1035       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1036     return &InputSection::discarded;
1037 
1038   // If we are creating a new .build-id section, strip existing .build-id
1039   // sections so that the output won't have more than one .build-id.
1040   // This is not usually a problem because input object files normally don't
1041   // have .build-id sections, but you can create such files by
1042   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1043   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1044     return &InputSection::discarded;
1045 
1046   // The linker merges EH (exception handling) frames and creates a
1047   // .eh_frame_hdr section for runtime. So we handle them with a special
1048   // class. For relocatable outputs, they are just passed through.
1049   if (name == ".eh_frame" && !config->relocatable)
1050     return make<EhInputSection>(*this, sec, name);
1051 
1052   if (shouldMerge(sec, name))
1053     return make<MergeInputSection>(*this, sec, name);
1054   return make<InputSection>(*this, sec, name);
1055 }
1056 
1057 // Initialize this->Symbols. this->Symbols is a parallel array as
1058 // its corresponding ELF symbol table.
1059 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1060   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1061   this->symbols.resize(eSyms.size());
1062 
1063   // Fill in InputFile::symbols. Some entries have been initialized
1064   // because of LazyObjFile.
1065   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1066     if (this->symbols[i])
1067       continue;
1068     const Elf_Sym &eSym = eSyms[i];
1069     uint32_t secIdx = getSectionIndex(eSym);
1070     if (secIdx >= this->sections.size())
1071       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1072     if (eSym.getBinding() != STB_LOCAL) {
1073       if (i < firstGlobal)
1074         error(toString(this) + ": non-local symbol (" + Twine(i) +
1075               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1076               ")");
1077       this->symbols[i] =
1078           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1079       continue;
1080     }
1081 
1082     // Handle local symbols. Local symbols are not added to the symbol
1083     // table because they are not visible from other object files. We
1084     // allocate symbol instances and add their pointers to symbols.
1085     if (i >= firstGlobal)
1086       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1087                   ") found at index >= .symtab's sh_info (" +
1088                   Twine(firstGlobal) + ")");
1089 
1090     InputSectionBase *sec = this->sections[secIdx];
1091     uint8_t type = eSym.getType();
1092     if (type == STT_FILE)
1093       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1094     if (this->stringTable.size() <= eSym.st_name)
1095       fatal(toString(this) + ": invalid symbol name offset");
1096     StringRefZ name = this->stringTable.data() + eSym.st_name;
1097 
1098     if (eSym.st_shndx == SHN_UNDEF)
1099       this->symbols[i] =
1100           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1101     else if (sec == &InputSection::discarded)
1102       this->symbols[i] =
1103           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1104                           /*discardedSecIdx=*/secIdx);
1105     else
1106       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1107                                        type, eSym.st_value, eSym.st_size, sec);
1108   }
1109 
1110   // Symbol resolution of non-local symbols.
1111   SmallVector<unsigned, 32> undefineds;
1112   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1113     const Elf_Sym &eSym = eSyms[i];
1114     uint8_t binding = eSym.getBinding();
1115     if (binding == STB_LOCAL)
1116       continue; // Errored above.
1117 
1118     uint32_t secIdx = getSectionIndex(eSym);
1119     InputSectionBase *sec = this->sections[secIdx];
1120     uint8_t stOther = eSym.st_other;
1121     uint8_t type = eSym.getType();
1122     uint64_t value = eSym.st_value;
1123     uint64_t size = eSym.st_size;
1124     StringRefZ name = this->stringTable.data() + eSym.st_name;
1125 
1126     // Handle global undefined symbols.
1127     if (eSym.st_shndx == SHN_UNDEF) {
1128       undefineds.push_back(i);
1129       continue;
1130     }
1131 
1132     // Handle global common symbols.
1133     if (eSym.st_shndx == SHN_COMMON) {
1134       if (value == 0 || value >= UINT32_MAX)
1135         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1136               "' has invalid alignment: " + Twine(value));
1137       this->symbols[i]->resolve(
1138           CommonSymbol{this, name, binding, stOther, type, value, size});
1139       continue;
1140     }
1141 
1142     // If a defined symbol is in a discarded section, handle it as if it
1143     // were an undefined symbol. Such symbol doesn't comply with the
1144     // standard, but in practice, a .eh_frame often directly refer
1145     // COMDAT member sections, and if a comdat group is discarded, some
1146     // defined symbol in a .eh_frame becomes dangling symbols.
1147     if (sec == &InputSection::discarded) {
1148       Undefined und{this, name, binding, stOther, type, secIdx};
1149       Symbol *sym = this->symbols[i];
1150       // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1151       // containing this object has not finished processing, i.e. this symbol is
1152       // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1153       // Undefined so that any relocations outside of the group to it will
1154       // trigger a discarded section error.
1155       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1156            !cast<ArchiveFile>(sym->file)->parsed) ||
1157           (sym->symbolKind == Symbol::LazyObjectKind &&
1158            cast<LazyObjFile>(sym->file)->fetched))
1159         sym->replace(und);
1160       else
1161         sym->resolve(und);
1162       continue;
1163     }
1164 
1165     // Handle global defined symbols.
1166     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1167         binding == STB_GNU_UNIQUE) {
1168       this->symbols[i]->resolve(
1169           Defined{this, name, binding, stOther, type, value, size, sec});
1170       continue;
1171     }
1172 
1173     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1174   }
1175 
1176   // Undefined symbols (excluding those defined relative to non-prevailing
1177   // sections) can trigger recursive fetch. Process defined symbols first so
1178   // that the relative order between a defined symbol and an undefined symbol
1179   // does not change the symbol resolution behavior. In addition, a set of
1180   // interconnected symbols will all be resolved to the same file, instead of
1181   // being resolved to different files.
1182   for (unsigned i : undefineds) {
1183     const Elf_Sym &eSym = eSyms[i];
1184     StringRefZ name = this->stringTable.data() + eSym.st_name;
1185     this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(),
1186                                         eSym.st_other, eSym.getType()});
1187     this->symbols[i]->referenced = true;
1188   }
1189 }
1190 
1191 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1192     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1193       file(std::move(file)) {}
1194 
1195 void ArchiveFile::parse() {
1196   for (const Archive::Symbol &sym : file->symbols())
1197     symtab->addSymbol(LazyArchive{*this, sym});
1198 
1199   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1200   // archive has been processed.
1201   parsed = true;
1202 }
1203 
1204 // Returns a buffer pointing to a member file containing a given symbol.
1205 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1206   Archive::Child c =
1207       CHECK(sym.getMember(), toString(this) +
1208                                  ": could not get the member for symbol " +
1209                                  toELFString(sym));
1210 
1211   if (!seen.insert(c.getChildOffset()).second)
1212     return;
1213 
1214   MemoryBufferRef mb =
1215       CHECK(c.getMemoryBufferRef(),
1216             toString(this) +
1217                 ": could not get the buffer for the member defining symbol " +
1218                 toELFString(sym));
1219 
1220   if (tar && c.getParent()->isThin())
1221     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1222 
1223   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1224   file->groupId = groupId;
1225   parseFile(file);
1226 }
1227 
1228 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1229 // A tentative definition will be promoted to a global definition if there are
1230 // no non-tentative definitions to dominate it. When we hold a tentative
1231 // definition to a symbol and are inspecting archive members for inclusion
1232 // there are 2 ways we can proceed:
1233 //
1234 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1235 //    tentative to real definition has already happened) and not inspect
1236 //    archive members for Global/Weak definitions to replace the tentative
1237 //    definition. An archive member would only be included if it satisfies some
1238 //    other undefined symbol. This is the behavior Gold uses.
1239 //
1240 // 2) Consider the tentative definition as still undefined (ie the promotion to
1241 //    a real definition happens only after all symbol resolution is done).
1242 //    The linker searches archive members for STB_GLOBAL definitions to
1243 //    replace the tentative definition with. This is the behavior used by
1244 //    GNU ld.
1245 //
1246 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1247 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1248 //  (pre F90) FORTRAN code that is packaged into an archive.
1249 //
1250 //  The following functions search archive members for definitions to replace
1251 //  tentative definitions (implementing behavior 2).
1252 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1253                                   StringRef archiveName) {
1254   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1255   for (const irsymtab::Reader::SymbolRef &sym :
1256        symtabFile.TheReader.symbols()) {
1257     if (sym.isGlobal() && sym.getName() == symName)
1258       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1259   }
1260   return false;
1261 }
1262 
1263 template <class ELFT>
1264 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1265                            StringRef archiveName) {
1266   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1267   StringRef stringtable = obj->getStringTable();
1268 
1269   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1270     Expected<StringRef> name = sym.getName(stringtable);
1271     if (name && name.get() == symName)
1272       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1273              !sym.isCommon();
1274   }
1275   return false;
1276 }
1277 
1278 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1279                            StringRef archiveName) {
1280   switch (getELFKind(mb, archiveName)) {
1281   case ELF32LEKind:
1282     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1283   case ELF32BEKind:
1284     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1285   case ELF64LEKind:
1286     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1287   case ELF64BEKind:
1288     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1289   default:
1290     llvm_unreachable("getELFKind");
1291   }
1292 }
1293 
1294 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) {
1295   Archive::Child c =
1296       CHECK(sym.getMember(), toString(this) +
1297                                  ": could not get the member for symbol " +
1298                                  toELFString(sym));
1299   MemoryBufferRef mb =
1300       CHECK(c.getMemoryBufferRef(),
1301             toString(this) +
1302                 ": could not get the buffer for the member defining symbol " +
1303                 toELFString(sym));
1304 
1305   if (isBitcode(mb))
1306     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1307 
1308   return isNonCommonDef(mb, sym.getName(), getName());
1309 }
1310 
1311 size_t ArchiveFile::getMemberCount() const {
1312   size_t count = 0;
1313   Error err = Error::success();
1314   for (const Archive::Child &c : file->children(err)) {
1315     (void)c;
1316     ++count;
1317   }
1318   // This function is used by --print-archive-stats=, where an error does not
1319   // really matter.
1320   consumeError(std::move(err));
1321   return count;
1322 }
1323 
1324 unsigned SharedFile::vernauxNum;
1325 
1326 // Parse the version definitions in the object file if present, and return a
1327 // vector whose nth element contains a pointer to the Elf_Verdef for version
1328 // identifier n. Version identifiers that are not definitions map to nullptr.
1329 template <typename ELFT>
1330 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1331                                               const typename ELFT::Shdr *sec) {
1332   if (!sec)
1333     return {};
1334 
1335   // We cannot determine the largest verdef identifier without inspecting
1336   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1337   // sequentially starting from 1, so we predict that the largest identifier
1338   // will be verdefCount.
1339   unsigned verdefCount = sec->sh_info;
1340   std::vector<const void *> verdefs(verdefCount + 1);
1341 
1342   // Build the Verdefs array by following the chain of Elf_Verdef objects
1343   // from the start of the .gnu.version_d section.
1344   const uint8_t *verdef = base + sec->sh_offset;
1345   for (unsigned i = 0; i != verdefCount; ++i) {
1346     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1347     verdef += curVerdef->vd_next;
1348     unsigned verdefIndex = curVerdef->vd_ndx;
1349     verdefs.resize(verdefIndex + 1);
1350     verdefs[verdefIndex] = curVerdef;
1351   }
1352   return verdefs;
1353 }
1354 
1355 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1356 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1357 // implement sophisticated error checking like in llvm-readobj because the value
1358 // of such diagnostics is low.
1359 template <typename ELFT>
1360 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1361                                                const typename ELFT::Shdr *sec) {
1362   if (!sec)
1363     return {};
1364   std::vector<uint32_t> verneeds;
1365   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1366   const uint8_t *verneedBuf = data.begin();
1367   for (unsigned i = 0; i != sec->sh_info; ++i) {
1368     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1369       fatal(toString(this) + " has an invalid Verneed");
1370     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1371     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1372     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1373       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1374         fatal(toString(this) + " has an invalid Vernaux");
1375       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1376       if (aux->vna_name >= this->stringTable.size())
1377         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1378       uint16_t version = aux->vna_other & VERSYM_VERSION;
1379       if (version >= verneeds.size())
1380         verneeds.resize(version + 1);
1381       verneeds[version] = aux->vna_name;
1382       vernauxBuf += aux->vna_next;
1383     }
1384     verneedBuf += vn->vn_next;
1385   }
1386   return verneeds;
1387 }
1388 
1389 // We do not usually care about alignments of data in shared object
1390 // files because the loader takes care of it. However, if we promote a
1391 // DSO symbol to point to .bss due to copy relocation, we need to keep
1392 // the original alignment requirements. We infer it in this function.
1393 template <typename ELFT>
1394 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1395                              const typename ELFT::Sym &sym) {
1396   uint64_t ret = UINT64_MAX;
1397   if (sym.st_value)
1398     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1399   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1400     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1401   return (ret > UINT32_MAX) ? 0 : ret;
1402 }
1403 
1404 // Fully parse the shared object file.
1405 //
1406 // This function parses symbol versions. If a DSO has version information,
1407 // the file has a ".gnu.version_d" section which contains symbol version
1408 // definitions. Each symbol is associated to one version through a table in
1409 // ".gnu.version" section. That table is a parallel array for the symbol
1410 // table, and each table entry contains an index in ".gnu.version_d".
1411 //
1412 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1413 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1414 // ".gnu.version_d".
1415 //
1416 // The file format for symbol versioning is perhaps a bit more complicated
1417 // than necessary, but you can easily understand the code if you wrap your
1418 // head around the data structure described above.
1419 template <class ELFT> void SharedFile::parse() {
1420   using Elf_Dyn = typename ELFT::Dyn;
1421   using Elf_Shdr = typename ELFT::Shdr;
1422   using Elf_Sym = typename ELFT::Sym;
1423   using Elf_Verdef = typename ELFT::Verdef;
1424   using Elf_Versym = typename ELFT::Versym;
1425 
1426   ArrayRef<Elf_Dyn> dynamicTags;
1427   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1428   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1429 
1430   const Elf_Shdr *versymSec = nullptr;
1431   const Elf_Shdr *verdefSec = nullptr;
1432   const Elf_Shdr *verneedSec = nullptr;
1433 
1434   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1435   for (const Elf_Shdr &sec : sections) {
1436     switch (sec.sh_type) {
1437     default:
1438       continue;
1439     case SHT_DYNAMIC:
1440       dynamicTags =
1441           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1442       break;
1443     case SHT_GNU_versym:
1444       versymSec = &sec;
1445       break;
1446     case SHT_GNU_verdef:
1447       verdefSec = &sec;
1448       break;
1449     case SHT_GNU_verneed:
1450       verneedSec = &sec;
1451       break;
1452     }
1453   }
1454 
1455   if (versymSec && numELFSyms == 0) {
1456     error("SHT_GNU_versym should be associated with symbol table");
1457     return;
1458   }
1459 
1460   // Search for a DT_SONAME tag to initialize this->soName.
1461   for (const Elf_Dyn &dyn : dynamicTags) {
1462     if (dyn.d_tag == DT_NEEDED) {
1463       uint64_t val = dyn.getVal();
1464       if (val >= this->stringTable.size())
1465         fatal(toString(this) + ": invalid DT_NEEDED entry");
1466       dtNeeded.push_back(this->stringTable.data() + val);
1467     } else if (dyn.d_tag == DT_SONAME) {
1468       uint64_t val = dyn.getVal();
1469       if (val >= this->stringTable.size())
1470         fatal(toString(this) + ": invalid DT_SONAME entry");
1471       soName = this->stringTable.data() + val;
1472     }
1473   }
1474 
1475   // DSOs are uniquified not by filename but by soname.
1476   DenseMap<StringRef, SharedFile *>::iterator it;
1477   bool wasInserted;
1478   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1479 
1480   // If a DSO appears more than once on the command line with and without
1481   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1482   // user can add an extra DSO with --no-as-needed to force it to be added to
1483   // the dependency list.
1484   it->second->isNeeded |= isNeeded;
1485   if (!wasInserted)
1486     return;
1487 
1488   sharedFiles.push_back(this);
1489 
1490   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1491   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1492 
1493   // Parse ".gnu.version" section which is a parallel array for the symbol
1494   // table. If a given file doesn't have a ".gnu.version" section, we use
1495   // VER_NDX_GLOBAL.
1496   size_t size = numELFSyms - firstGlobal;
1497   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1498   if (versymSec) {
1499     ArrayRef<Elf_Versym> versym =
1500         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1501               this)
1502             .slice(firstGlobal);
1503     for (size_t i = 0; i < size; ++i)
1504       versyms[i] = versym[i].vs_index;
1505   }
1506 
1507   // System libraries can have a lot of symbols with versions. Using a
1508   // fixed buffer for computing the versions name (foo@ver) can save a
1509   // lot of allocations.
1510   SmallString<0> versionedNameBuffer;
1511 
1512   // Add symbols to the symbol table.
1513   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1514   for (size_t i = 0; i < syms.size(); ++i) {
1515     const Elf_Sym &sym = syms[i];
1516 
1517     // ELF spec requires that all local symbols precede weak or global
1518     // symbols in each symbol table, and the index of first non-local symbol
1519     // is stored to sh_info. If a local symbol appears after some non-local
1520     // symbol, that's a violation of the spec.
1521     StringRef name = CHECK(sym.getName(this->stringTable), this);
1522     if (sym.getBinding() == STB_LOCAL) {
1523       warn("found local symbol '" + name +
1524            "' in global part of symbol table in file " + toString(this));
1525       continue;
1526     }
1527 
1528     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1529     if (sym.isUndefined()) {
1530       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1531       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1532       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1533         if (idx >= verneeds.size()) {
1534           error("corrupt input file: version need index " + Twine(idx) +
1535                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1536                 toString(this));
1537           continue;
1538         }
1539         StringRef verName = this->stringTable.data() + verneeds[idx];
1540         versionedNameBuffer.clear();
1541         name =
1542             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1543       }
1544       Symbol *s = symtab->addSymbol(
1545           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1546       s->exportDynamic = true;
1547       if (s->isUndefined() && !s->isWeak() &&
1548           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1549         requiredSymbols.push_back(s);
1550       continue;
1551     }
1552 
1553     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1554     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1555     // workaround for this bug.
1556     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1557         name == "_gp_disp")
1558       continue;
1559 
1560     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1561     if (!(versyms[i] & VERSYM_HIDDEN)) {
1562       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1563                                      sym.st_other, sym.getType(), sym.st_value,
1564                                      sym.st_size, alignment, idx});
1565     }
1566 
1567     // Also add the symbol with the versioned name to handle undefined symbols
1568     // with explicit versions.
1569     if (idx == VER_NDX_GLOBAL)
1570       continue;
1571 
1572     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1573       error("corrupt input file: version definition index " + Twine(idx) +
1574             " for symbol " + name + " is out of bounds\n>>> defined in " +
1575             toString(this));
1576       continue;
1577     }
1578 
1579     StringRef verName =
1580         this->stringTable.data() +
1581         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1582     versionedNameBuffer.clear();
1583     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1584     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1585                                    sym.st_other, sym.getType(), sym.st_value,
1586                                    sym.st_size, alignment, idx});
1587   }
1588 }
1589 
1590 static ELFKind getBitcodeELFKind(const Triple &t) {
1591   if (t.isLittleEndian())
1592     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1593   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1594 }
1595 
1596 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1597   switch (t.getArch()) {
1598   case Triple::aarch64:
1599   case Triple::aarch64_be:
1600     return EM_AARCH64;
1601   case Triple::amdgcn:
1602   case Triple::r600:
1603     return EM_AMDGPU;
1604   case Triple::arm:
1605   case Triple::thumb:
1606     return EM_ARM;
1607   case Triple::avr:
1608     return EM_AVR;
1609   case Triple::hexagon:
1610     return EM_HEXAGON;
1611   case Triple::mips:
1612   case Triple::mipsel:
1613   case Triple::mips64:
1614   case Triple::mips64el:
1615     return EM_MIPS;
1616   case Triple::msp430:
1617     return EM_MSP430;
1618   case Triple::ppc:
1619   case Triple::ppcle:
1620     return EM_PPC;
1621   case Triple::ppc64:
1622   case Triple::ppc64le:
1623     return EM_PPC64;
1624   case Triple::riscv32:
1625   case Triple::riscv64:
1626     return EM_RISCV;
1627   case Triple::x86:
1628     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1629   case Triple::x86_64:
1630     return EM_X86_64;
1631   default:
1632     error(path + ": could not infer e_machine from bitcode target triple " +
1633           t.str());
1634     return EM_NONE;
1635   }
1636 }
1637 
1638 static uint8_t getOsAbi(const Triple &t) {
1639   switch (t.getOS()) {
1640   case Triple::AMDHSA:
1641     return ELF::ELFOSABI_AMDGPU_HSA;
1642   case Triple::AMDPAL:
1643     return ELF::ELFOSABI_AMDGPU_PAL;
1644   case Triple::Mesa3D:
1645     return ELF::ELFOSABI_AMDGPU_MESA3D;
1646   default:
1647     return ELF::ELFOSABI_NONE;
1648   }
1649 }
1650 
1651 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1652                          uint64_t offsetInArchive)
1653     : InputFile(BitcodeKind, mb) {
1654   this->archiveName = std::string(archiveName);
1655 
1656   std::string path = mb.getBufferIdentifier().str();
1657   if (config->thinLTOIndexOnly)
1658     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1659 
1660   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1661   // name. If two archives define two members with the same name, this
1662   // causes a collision which result in only one of the objects being taken
1663   // into consideration at LTO time (which very likely causes undefined
1664   // symbols later in the link stage). So we append file offset to make
1665   // filename unique.
1666   StringRef name =
1667       archiveName.empty()
1668           ? saver.save(path)
1669           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1670                        utostr(offsetInArchive) + ")");
1671   MemoryBufferRef mbref(mb.getBuffer(), name);
1672 
1673   obj = CHECK(lto::InputFile::create(mbref), this);
1674 
1675   Triple t(obj->getTargetTriple());
1676   ekind = getBitcodeELFKind(t);
1677   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1678   osabi = getOsAbi(t);
1679 }
1680 
1681 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1682   switch (gvVisibility) {
1683   case GlobalValue::DefaultVisibility:
1684     return STV_DEFAULT;
1685   case GlobalValue::HiddenVisibility:
1686     return STV_HIDDEN;
1687   case GlobalValue::ProtectedVisibility:
1688     return STV_PROTECTED;
1689   }
1690   llvm_unreachable("unknown visibility");
1691 }
1692 
1693 template <class ELFT>
1694 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1695                                    const lto::InputFile::Symbol &objSym,
1696                                    BitcodeFile &f) {
1697   StringRef name = saver.save(objSym.getName());
1698   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1699   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1700   uint8_t visibility = mapVisibility(objSym.getVisibility());
1701   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1702 
1703   int c = objSym.getComdatIndex();
1704   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1705     Undefined newSym(&f, name, binding, visibility, type);
1706     if (canOmitFromDynSym)
1707       newSym.exportDynamic = false;
1708     Symbol *ret = symtab->addSymbol(newSym);
1709     ret->referenced = true;
1710     return ret;
1711   }
1712 
1713   if (objSym.isCommon())
1714     return symtab->addSymbol(
1715         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1716                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1717 
1718   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1719   if (canOmitFromDynSym)
1720     newSym.exportDynamic = false;
1721   return symtab->addSymbol(newSym);
1722 }
1723 
1724 template <class ELFT> void BitcodeFile::parse() {
1725   std::vector<bool> keptComdats;
1726   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1727     keptComdats.push_back(
1728         s.second == Comdat::NoDeduplicate ||
1729         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1730             .second);
1731   }
1732 
1733   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1734     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1735 
1736   for (auto l : obj->getDependentLibraries())
1737     addDependentLibrary(l, this);
1738 }
1739 
1740 void BinaryFile::parse() {
1741   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1742   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1743                                      8, data, ".data");
1744   sections.push_back(section);
1745 
1746   // For each input file foo that is embedded to a result as a binary
1747   // blob, we define _binary_foo_{start,end,size} symbols, so that
1748   // user programs can access blobs by name. Non-alphanumeric
1749   // characters in a filename are replaced with underscore.
1750   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1751   for (size_t i = 0; i < s.size(); ++i)
1752     if (!isAlnum(s[i]))
1753       s[i] = '_';
1754 
1755   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1756                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1757   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1758                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1759   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1760                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1761 }
1762 
1763 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1764                                  uint64_t offsetInArchive) {
1765   if (isBitcode(mb))
1766     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1767 
1768   switch (getELFKind(mb, archiveName)) {
1769   case ELF32LEKind:
1770     return make<ObjFile<ELF32LE>>(mb, archiveName);
1771   case ELF32BEKind:
1772     return make<ObjFile<ELF32BE>>(mb, archiveName);
1773   case ELF64LEKind:
1774     return make<ObjFile<ELF64LE>>(mb, archiveName);
1775   case ELF64BEKind:
1776     return make<ObjFile<ELF64BE>>(mb, archiveName);
1777   default:
1778     llvm_unreachable("getELFKind");
1779   }
1780 }
1781 
1782 void LazyObjFile::fetch() {
1783   if (fetched)
1784     return;
1785   fetched = true;
1786 
1787   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1788   file->groupId = groupId;
1789 
1790   // Copy symbol vector so that the new InputFile doesn't have to
1791   // insert the same defined symbols to the symbol table again.
1792   file->symbols = std::move(symbols);
1793 
1794   parseFile(file);
1795 }
1796 
1797 template <class ELFT> void LazyObjFile::parse() {
1798   using Elf_Sym = typename ELFT::Sym;
1799 
1800   // A lazy object file wraps either a bitcode file or an ELF file.
1801   if (isBitcode(this->mb)) {
1802     std::unique_ptr<lto::InputFile> obj =
1803         CHECK(lto::InputFile::create(this->mb), this);
1804     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1805       if (sym.isUndefined())
1806         continue;
1807       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1808     }
1809     return;
1810   }
1811 
1812   if (getELFKind(this->mb, archiveName) != config->ekind) {
1813     error("incompatible file: " + this->mb.getBufferIdentifier());
1814     return;
1815   }
1816 
1817   // Find a symbol table.
1818   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1819   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1820 
1821   for (const typename ELFT::Shdr &sec : sections) {
1822     if (sec.sh_type != SHT_SYMTAB)
1823       continue;
1824 
1825     // A symbol table is found.
1826     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1827     uint32_t firstGlobal = sec.sh_info;
1828     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1829     this->symbols.resize(eSyms.size());
1830 
1831     // Get existing symbols or insert placeholder symbols.
1832     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1833       if (eSyms[i].st_shndx != SHN_UNDEF)
1834         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1835 
1836     // Replace existing symbols with LazyObject symbols.
1837     //
1838     // resolve() may trigger this->fetch() if an existing symbol is an
1839     // undefined symbol. If that happens, this LazyObjFile has served
1840     // its purpose, and we can exit from the loop early.
1841     for (Symbol *sym : this->symbols) {
1842       if (!sym)
1843         continue;
1844       sym->resolve(LazyObject{*this, sym->getName()});
1845 
1846       // If fetched, stop iterating because this->symbols has been transferred
1847       // to the instantiated ObjFile.
1848       if (fetched)
1849         return;
1850     }
1851     return;
1852   }
1853 }
1854 
1855 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) {
1856   if (isBitcode(mb))
1857     return isBitcodeNonCommonDef(mb, name, archiveName);
1858 
1859   return isNonCommonDef(mb, name, archiveName);
1860 }
1861 
1862 std::string elf::replaceThinLTOSuffix(StringRef path) {
1863   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1864   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1865 
1866   if (path.consume_back(suffix))
1867     return (path + repl).str();
1868   return std::string(path);
1869 }
1870 
1871 template void BitcodeFile::parse<ELF32LE>();
1872 template void BitcodeFile::parse<ELF32BE>();
1873 template void BitcodeFile::parse<ELF64LE>();
1874 template void BitcodeFile::parse<ELF64BE>();
1875 
1876 template void LazyObjFile::parse<ELF32LE>();
1877 template void LazyObjFile::parse<ELF32BE>();
1878 template void LazyObjFile::parse<ELF64LE>();
1879 template void LazyObjFile::parse<ELF64BE>();
1880 
1881 template class elf::ObjFile<ELF32LE>;
1882 template class elf::ObjFile<ELF32BE>;
1883 template class elf::ObjFile<ELF64LE>;
1884 template class elf::ObjFile<ELF64BE>;
1885 
1886 template void SharedFile::parse<ELF32LE>();
1887 template void SharedFile::parse<ELF32BE>();
1888 template void SharedFile::parse<ELF64LE>();
1889 template void SharedFile::parse<ELF64BE>();
1890