1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. This is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // In ICF, two sections are considered identical if they have the same 15 // section flags, section data, and relocations. Relocations are tricky, 16 // because two relocations are considered the same if they have the same 17 // relocation types, values, and if they point to the same sections *in 18 // terms of ICF*. 19 // 20 // Here is an example. If foo and bar defined below are compiled to the 21 // same machine instructions, ICF can and should merge the two, although 22 // their relocations point to each other. 23 // 24 // void foo() { bar(); } 25 // void bar() { foo(); } 26 // 27 // If you merge the two, their relocations point to the same section and 28 // thus you know they are mergeable, but how do you know they are 29 // mergeable in the first place? This is not an easy problem to solve. 30 // 31 // What we are doing in LLD is to partition sections into equivalence 32 // classes. Sections in the same equivalence class when the algorithm 33 // terminates are considered identical. Here are details: 34 // 35 // 1. First, we partition sections using their hash values as keys. Hash 36 // values contain section types, section contents and numbers of 37 // relocations. During this step, relocation targets are not taken into 38 // account. We just put sections that apparently differ into different 39 // equivalence classes. 40 // 41 // 2. Next, for each equivalence class, we visit sections to compare 42 // relocation targets. Relocation targets are considered equivalent if 43 // their targets are in the same equivalence class. Sections with 44 // different relocation targets are put into different equivalence 45 // classes. 46 // 47 // 3. If we split an equivalence class in step 2, two relocations 48 // previously target the same equivalence class may now target 49 // different equivalence classes. Therefore, we repeat step 2 until a 50 // convergence is obtained. 51 // 52 // 4. For each equivalence class C, pick an arbitrary section in C, and 53 // merge all the other sections in C with it. 54 // 55 // For small programs, this algorithm needs 3-5 iterations. For large 56 // programs such as Chromium, it takes more than 20 iterations. 57 // 58 // This algorithm was mentioned as an "optimistic algorithm" in [1], 59 // though gold implements a different algorithm than this. 60 // 61 // We parallelize each step so that multiple threads can work on different 62 // equivalence classes concurrently. That gave us a large performance 63 // boost when applying ICF on large programs. For example, MSVC link.exe 64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 67 // faster than MSVC or gold though. 68 // 69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 70 // in the Gold Linker 71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 72 // 73 //===----------------------------------------------------------------------===// 74 75 #include "ICF.h" 76 #include "Config.h" 77 #include "EhFrame.h" 78 #include "LinkerScript.h" 79 #include "OutputSections.h" 80 #include "SymbolTable.h" 81 #include "Symbols.h" 82 #include "SyntheticSections.h" 83 #include "Writer.h" 84 #include "llvm/ADT/StringExtras.h" 85 #include "llvm/BinaryFormat/ELF.h" 86 #include "llvm/Object/ELF.h" 87 #include "llvm/Support/Parallel.h" 88 #include "llvm/Support/TimeProfiler.h" 89 #include "llvm/Support/xxhash.h" 90 #include <algorithm> 91 #include <atomic> 92 93 using namespace llvm; 94 using namespace llvm::ELF; 95 using namespace llvm::object; 96 using namespace lld; 97 using namespace lld::elf; 98 99 namespace { 100 template <class ELFT> class ICF { 101 public: 102 void run(); 103 104 private: 105 void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant); 106 107 template <class RelTy> 108 bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA, 109 const InputSection *b, ArrayRef<RelTy> relsB); 110 111 template <class RelTy> 112 bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA, 113 const InputSection *b, ArrayRef<RelTy> relsB); 114 115 bool equalsConstant(const InputSection *a, const InputSection *b); 116 bool equalsVariable(const InputSection *a, const InputSection *b); 117 118 size_t findBoundary(size_t begin, size_t end); 119 120 void forEachClassRange(size_t begin, size_t end, 121 llvm::function_ref<void(size_t, size_t)> fn); 122 123 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn); 124 125 std::vector<InputSection *> sections; 126 127 // We repeat the main loop while `Repeat` is true. 128 std::atomic<bool> repeat; 129 130 // The main loop counter. 131 int cnt = 0; 132 133 // We have two locations for equivalence classes. On the first iteration 134 // of the main loop, Class[0] has a valid value, and Class[1] contains 135 // garbage. We read equivalence classes from slot 0 and write to slot 1. 136 // So, Class[0] represents the current class, and Class[1] represents 137 // the next class. On each iteration, we switch their roles and use them 138 // alternately. 139 // 140 // Why are we doing this? Recall that other threads may be working on 141 // other equivalence classes in parallel. They may read sections that we 142 // are updating. We cannot update equivalence classes in place because 143 // it breaks the invariance that all possibly-identical sections must be 144 // in the same equivalence class at any moment. In other words, the for 145 // loop to update equivalence classes is not atomic, and that is 146 // observable from other threads. By writing new classes to other 147 // places, we can keep the invariance. 148 // 149 // Below, `Current` has the index of the current class, and `Next` has 150 // the index of the next class. If threading is enabled, they are either 151 // (0, 1) or (1, 0). 152 // 153 // Note on single-thread: if that's the case, they are always (0, 0) 154 // because we can safely read the next class without worrying about race 155 // conditions. Using the same location makes this algorithm converge 156 // faster because it uses results of the same iteration earlier. 157 int current = 0; 158 int next = 0; 159 }; 160 } 161 162 // Returns true if section S is subject of ICF. 163 static bool isEligible(InputSection *s) { 164 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) 165 return false; 166 167 // Don't merge writable sections. .data.rel.ro sections are marked as writable 168 // but are semantically read-only. 169 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && 170 !s->name.startswith(".data.rel.ro.")) 171 return false; 172 173 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, 174 // so we don't consider them for ICF individually. 175 if (s->flags & SHF_LINK_ORDER) 176 return false; 177 178 // Don't merge synthetic sections as their Data member is not valid and empty. 179 // The Data member needs to be valid for ICF as it is used by ICF to determine 180 // the equality of section contents. 181 if (isa<SyntheticSection>(s)) 182 return false; 183 184 // .init and .fini contains instructions that must be executed to initialize 185 // and finalize the process. They cannot and should not be merged. 186 if (s->name == ".init" || s->name == ".fini") 187 return false; 188 189 // A user program may enumerate sections named with a C identifier using 190 // __start_* and __stop_* symbols. We cannot ICF any such sections because 191 // that could change program semantics. 192 if (isValidCIdentifier(s->name)) 193 return false; 194 195 return true; 196 } 197 198 // Split an equivalence class into smaller classes. 199 template <class ELFT> 200 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase, 201 bool constant) { 202 // This loop rearranges sections in [Begin, End) so that all sections 203 // that are equal in terms of equals{Constant,Variable} are contiguous 204 // in [Begin, End). 205 // 206 // The algorithm is quadratic in the worst case, but that is not an 207 // issue in practice because the number of the distinct sections in 208 // each range is usually very small. 209 210 while (begin < end) { 211 // Divide [Begin, End) into two. Let Mid be the start index of the 212 // second group. 213 auto bound = 214 std::stable_partition(sections.begin() + begin + 1, 215 sections.begin() + end, [&](InputSection *s) { 216 if (constant) 217 return equalsConstant(sections[begin], s); 218 return equalsVariable(sections[begin], s); 219 }); 220 size_t mid = bound - sections.begin(); 221 222 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 223 // updating the sections in [Begin, Mid). We use Mid as the basis for 224 // the equivalence class ID because every group ends with a unique index. 225 // Add this to eqClassBase to avoid equality with unique IDs. 226 for (size_t i = begin; i < mid; ++i) 227 sections[i]->eqClass[next] = eqClassBase + mid; 228 229 // If we created a group, we need to iterate the main loop again. 230 if (mid != end) 231 repeat = true; 232 233 begin = mid; 234 } 235 } 236 237 // Compare two lists of relocations. 238 template <class ELFT> 239 template <class RelTy> 240 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra, 241 const InputSection *secB, ArrayRef<RelTy> rb) { 242 for (size_t i = 0; i < ra.size(); ++i) { 243 if (ra[i].r_offset != rb[i].r_offset || 244 ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL)) 245 return false; 246 247 uint64_t addA = getAddend<ELFT>(ra[i]); 248 uint64_t addB = getAddend<ELFT>(rb[i]); 249 250 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 251 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 252 if (&sa == &sb) { 253 if (addA == addB) 254 continue; 255 return false; 256 } 257 258 auto *da = dyn_cast<Defined>(&sa); 259 auto *db = dyn_cast<Defined>(&sb); 260 261 // Placeholder symbols generated by linker scripts look the same now but 262 // may have different values later. 263 if (!da || !db || da->scriptDefined || db->scriptDefined) 264 return false; 265 266 // When comparing a pair of relocations, if they refer to different symbols, 267 // and either symbol is preemptible, the containing sections should be 268 // considered different. This is because even if the sections are identical 269 // in this DSO, they may not be after preemption. 270 if (da->isPreemptible || db->isPreemptible) 271 return false; 272 273 // Relocations referring to absolute symbols are constant-equal if their 274 // values are equal. 275 if (!da->section && !db->section && da->value + addA == db->value + addB) 276 continue; 277 if (!da->section || !db->section) 278 return false; 279 280 if (da->section->kind() != db->section->kind()) 281 return false; 282 283 // Relocations referring to InputSections are constant-equal if their 284 // section offsets are equal. 285 if (isa<InputSection>(da->section)) { 286 if (da->value + addA == db->value + addB) 287 continue; 288 return false; 289 } 290 291 // Relocations referring to MergeInputSections are constant-equal if their 292 // offsets in the output section are equal. 293 auto *x = dyn_cast<MergeInputSection>(da->section); 294 if (!x) 295 return false; 296 auto *y = cast<MergeInputSection>(db->section); 297 if (x->getParent() != y->getParent()) 298 return false; 299 300 uint64_t offsetA = 301 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA; 302 uint64_t offsetB = 303 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB; 304 if (offsetA != offsetB) 305 return false; 306 } 307 308 return true; 309 } 310 311 // Compare "non-moving" part of two InputSections, namely everything 312 // except relocation targets. 313 template <class ELFT> 314 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) { 315 if (a->numRelocations != b->numRelocations || a->flags != b->flags || 316 a->getSize() != b->getSize() || a->data() != b->data()) 317 return false; 318 319 // If two sections have different output sections, we cannot merge them. 320 assert(a->getParent() && b->getParent()); 321 if (a->getParent() != b->getParent()) 322 return false; 323 324 if (a->areRelocsRela) 325 return constantEq(a, a->template relas<ELFT>(), b, 326 b->template relas<ELFT>()); 327 return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 328 } 329 330 // Compare two lists of relocations. Returns true if all pairs of 331 // relocations point to the same section in terms of ICF. 332 template <class ELFT> 333 template <class RelTy> 334 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra, 335 const InputSection *secB, ArrayRef<RelTy> rb) { 336 assert(ra.size() == rb.size()); 337 338 for (size_t i = 0; i < ra.size(); ++i) { 339 // The two sections must be identical. 340 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 341 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 342 if (&sa == &sb) 343 continue; 344 345 auto *da = cast<Defined>(&sa); 346 auto *db = cast<Defined>(&sb); 347 348 // We already dealt with absolute and non-InputSection symbols in 349 // constantEq, and for InputSections we have already checked everything 350 // except the equivalence class. 351 if (!da->section) 352 continue; 353 auto *x = dyn_cast<InputSection>(da->section); 354 if (!x) 355 continue; 356 auto *y = cast<InputSection>(db->section); 357 358 // Sections that are in the special equivalence class 0, can never be the 359 // same in terms of the equivalence class. 360 if (x->eqClass[current] == 0) 361 return false; 362 if (x->eqClass[current] != y->eqClass[current]) 363 return false; 364 }; 365 366 return true; 367 } 368 369 // Compare "moving" part of two InputSections, namely relocation targets. 370 template <class ELFT> 371 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) { 372 if (a->areRelocsRela) 373 return variableEq(a, a->template relas<ELFT>(), b, 374 b->template relas<ELFT>()); 375 return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 376 } 377 378 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) { 379 uint32_t eqClass = sections[begin]->eqClass[current]; 380 for (size_t i = begin + 1; i < end; ++i) 381 if (eqClass != sections[i]->eqClass[current]) 382 return i; 383 return end; 384 } 385 386 // Sections in the same equivalence class are contiguous in Sections 387 // vector. Therefore, Sections vector can be considered as contiguous 388 // groups of sections, grouped by the class. 389 // 390 // This function calls Fn on every group within [Begin, End). 391 template <class ELFT> 392 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end, 393 llvm::function_ref<void(size_t, size_t)> fn) { 394 while (begin < end) { 395 size_t mid = findBoundary(begin, end); 396 fn(begin, mid); 397 begin = mid; 398 } 399 } 400 401 // Call Fn on each equivalence class. 402 template <class ELFT> 403 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) { 404 // If threading is disabled or the number of sections are 405 // too small to use threading, call Fn sequentially. 406 if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) { 407 forEachClassRange(0, sections.size(), fn); 408 ++cnt; 409 return; 410 } 411 412 current = cnt % 2; 413 next = (cnt + 1) % 2; 414 415 // Shard into non-overlapping intervals, and call Fn in parallel. 416 // The sharding must be completed before any calls to Fn are made 417 // so that Fn can modify the Chunks in its shard without causing data 418 // races. 419 const size_t numShards = 256; 420 size_t step = sections.size() / numShards; 421 size_t boundaries[numShards + 1]; 422 boundaries[0] = 0; 423 boundaries[numShards] = sections.size(); 424 425 parallelForEachN(1, numShards, [&](size_t i) { 426 boundaries[i] = findBoundary((i - 1) * step, sections.size()); 427 }); 428 429 parallelForEachN(1, numShards + 1, [&](size_t i) { 430 if (boundaries[i - 1] < boundaries[i]) 431 forEachClassRange(boundaries[i - 1], boundaries[i], fn); 432 }); 433 ++cnt; 434 } 435 436 // Combine the hashes of the sections referenced by the given section into its 437 // hash. 438 template <class ELFT, class RelTy> 439 static void combineRelocHashes(unsigned cnt, InputSection *isec, 440 ArrayRef<RelTy> rels) { 441 uint32_t hash = isec->eqClass[cnt % 2]; 442 for (RelTy rel : rels) { 443 Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel); 444 if (auto *d = dyn_cast<Defined>(&s)) 445 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section)) 446 hash += relSec->eqClass[cnt % 2]; 447 } 448 // Set MSB to 1 to avoid collisions with unique IDs. 449 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 450 } 451 452 static void print(const Twine &s) { 453 if (config->printIcfSections) 454 message(s); 455 } 456 457 // The main function of ICF. 458 template <class ELFT> void ICF<ELFT>::run() { 459 // Compute isPreemptible early. We may add more symbols later, so this loop 460 // cannot be merged with the later computeIsPreemptible() pass which is used 461 // by scanRelocations(). 462 for (Symbol *sym : symtab->symbols()) 463 sym->isPreemptible = computeIsPreemptible(*sym); 464 465 // Two text sections may have identical content and relocations but different 466 // LSDA, e.g. the two functions may have catch blocks of different types. If a 467 // text section is referenced by a .eh_frame FDE with LSDA, it is not 468 // eligible. This is implemented by iterating over CIE/FDE and setting 469 // eqClass[0] to the referenced text section from a live FDE. 470 // 471 // If two .gcc_except_table have identical semantics (usually identical 472 // content with PC-relative encoding), we will lose folding opportunity. 473 uint32_t uniqueId = 0; 474 for (Partition &part : partitions) 475 part.ehFrame->iterateFDEWithLSDA<ELFT>( 476 [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; }); 477 478 // Collect sections to merge. 479 for (InputSectionBase *sec : inputSections) { 480 auto *s = cast<InputSection>(sec); 481 if (s->eqClass[0] == 0) { 482 if (isEligible(s)) 483 sections.push_back(s); 484 else 485 // Ineligible sections are assigned unique IDs, i.e. each section 486 // belongs to an equivalence class of its own. 487 s->eqClass[0] = s->eqClass[1] = ++uniqueId; 488 } 489 } 490 491 // Initially, we use hash values to partition sections. 492 parallelForEach(sections, [&](InputSection *s) { 493 // Set MSB to 1 to avoid collisions with unique IDs. 494 s->eqClass[0] = xxHash64(s->data()) | (1U << 31); 495 }); 496 497 // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to 498 // reduce the average sizes of equivalence classes, i.e. segregate() which has 499 // a large time complexity will have less work to do. 500 for (unsigned cnt = 0; cnt != 2; ++cnt) { 501 parallelForEach(sections, [&](InputSection *s) { 502 if (s->areRelocsRela) 503 combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>()); 504 else 505 combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>()); 506 }); 507 } 508 509 // From now on, sections in Sections vector are ordered so that sections 510 // in the same equivalence class are consecutive in the vector. 511 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { 512 return a->eqClass[0] < b->eqClass[0]; 513 }); 514 515 // Compare static contents and assign unique equivalence class IDs for each 516 // static content. Use a base offset for these IDs to ensure no overlap with 517 // the unique IDs already assigned. 518 uint32_t eqClassBase = ++uniqueId; 519 forEachClass([&](size_t begin, size_t end) { 520 segregate(begin, end, eqClassBase, true); 521 }); 522 523 // Split groups by comparing relocations until convergence is obtained. 524 do { 525 repeat = false; 526 forEachClass([&](size_t begin, size_t end) { 527 segregate(begin, end, eqClassBase, false); 528 }); 529 } while (repeat); 530 531 log("ICF needed " + Twine(cnt) + " iterations"); 532 533 // Merge sections by the equivalence class. 534 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) { 535 if (end - begin == 1) 536 return; 537 print("selected section " + toString(sections[begin])); 538 for (size_t i = begin + 1; i < end; ++i) { 539 print(" removing identical section " + toString(sections[i])); 540 sections[begin]->replace(sections[i]); 541 542 // At this point we know sections merged are fully identical and hence 543 // we want to remove duplicate implicit dependencies such as link order 544 // and relocation sections. 545 for (InputSection *isec : sections[i]->dependentSections) 546 isec->markDead(); 547 } 548 }); 549 550 // InputSectionDescription::sections is populated by processSectionCommands(). 551 // ICF may fold some input sections assigned to output sections. Remove them. 552 for (BaseCommand *base : script->sectionCommands) 553 if (auto *sec = dyn_cast<OutputSection>(base)) 554 for (BaseCommand *sub_base : sec->sectionCommands) 555 if (auto *isd = dyn_cast<InputSectionDescription>(sub_base)) 556 llvm::erase_if(isd->sections, 557 [](InputSection *isec) { return !isec->isLive(); }); 558 } 559 560 // ICF entry point function. 561 template <class ELFT> void elf::doIcf() { 562 llvm::TimeTraceScope timeScope("ICF"); 563 ICF<ELFT>().run(); 564 } 565 566 template void elf::doIcf<ELF32LE>(); 567 template void elf::doIcf<ELF32BE>(); 568 template void elf::doIcf<ELF64LE>(); 569 template void elf::doIcf<ELF64BE>(); 570