xref: /freebsd/contrib/llvm-project/lld/ELF/ICF.cpp (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
19 //
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
23 //
24 //   void foo() { bar(); }
25 //   void bar() { foo(); }
26 //
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
30 //
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
34 //
35 // 1. First, we partition sections using their hash values as keys. Hash
36 //    values contain section types, section contents and numbers of
37 //    relocations. During this step, relocation targets are not taken into
38 //    account. We just put sections that apparently differ into different
39 //    equivalence classes.
40 //
41 // 2. Next, for each equivalence class, we visit sections to compare
42 //    relocation targets. Relocation targets are considered equivalent if
43 //    their targets are in the same equivalence class. Sections with
44 //    different relocation targets are put into different equivalence
45 //    classes.
46 //
47 // 3. If we split an equivalence class in step 2, two relocations
48 //    previously target the same equivalence class may now target
49 //    different equivalence classes. Therefore, we repeat step 2 until a
50 //    convergence is obtained.
51 //
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 //    merge all the other sections in C with it.
54 //
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
57 //
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
60 //
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
68 //
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72 //
73 //===----------------------------------------------------------------------===//
74 
75 #include "ICF.h"
76 #include "Config.h"
77 #include "InputFiles.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
81 #include "Symbols.h"
82 #include "SyntheticSections.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/Parallel.h"
86 #include "llvm/Support/TimeProfiler.h"
87 #include "llvm/Support/xxhash.h"
88 #include <algorithm>
89 #include <atomic>
90 
91 using namespace llvm;
92 using namespace llvm::ELF;
93 using namespace llvm::object;
94 using namespace lld;
95 using namespace lld::elf;
96 
97 namespace {
98 template <class ELFT> class ICF {
99 public:
100   void run();
101 
102 private:
103   void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
104 
105   template <class RelTy>
106   bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
107                   const InputSection *b, ArrayRef<RelTy> relsB);
108 
109   template <class RelTy>
110   bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
111                   const InputSection *b, ArrayRef<RelTy> relsB);
112 
113   bool equalsConstant(const InputSection *a, const InputSection *b);
114   bool equalsVariable(const InputSection *a, const InputSection *b);
115 
116   size_t findBoundary(size_t begin, size_t end);
117 
118   void forEachClassRange(size_t begin, size_t end,
119                          llvm::function_ref<void(size_t, size_t)> fn);
120 
121   void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
122 
123   SmallVector<InputSection *, 0> sections;
124 
125   // We repeat the main loop while `Repeat` is true.
126   std::atomic<bool> repeat;
127 
128   // The main loop counter.
129   int cnt = 0;
130 
131   // We have two locations for equivalence classes. On the first iteration
132   // of the main loop, Class[0] has a valid value, and Class[1] contains
133   // garbage. We read equivalence classes from slot 0 and write to slot 1.
134   // So, Class[0] represents the current class, and Class[1] represents
135   // the next class. On each iteration, we switch their roles and use them
136   // alternately.
137   //
138   // Why are we doing this? Recall that other threads may be working on
139   // other equivalence classes in parallel. They may read sections that we
140   // are updating. We cannot update equivalence classes in place because
141   // it breaks the invariance that all possibly-identical sections must be
142   // in the same equivalence class at any moment. In other words, the for
143   // loop to update equivalence classes is not atomic, and that is
144   // observable from other threads. By writing new classes to other
145   // places, we can keep the invariance.
146   //
147   // Below, `Current` has the index of the current class, and `Next` has
148   // the index of the next class. If threading is enabled, they are either
149   // (0, 1) or (1, 0).
150   //
151   // Note on single-thread: if that's the case, they are always (0, 0)
152   // because we can safely read the next class without worrying about race
153   // conditions. Using the same location makes this algorithm converge
154   // faster because it uses results of the same iteration earlier.
155   int current = 0;
156   int next = 0;
157 };
158 }
159 
160 // Returns true if section S is subject of ICF.
161 static bool isEligible(InputSection *s) {
162   if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
163     return false;
164 
165   // Don't merge writable sections. .data.rel.ro sections are marked as writable
166   // but are semantically read-only.
167   if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
168       !s->name.startswith(".data.rel.ro."))
169     return false;
170 
171   // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
172   // so we don't consider them for ICF individually.
173   if (s->flags & SHF_LINK_ORDER)
174     return false;
175 
176   // Don't merge synthetic sections as their Data member is not valid and empty.
177   // The Data member needs to be valid for ICF as it is used by ICF to determine
178   // the equality of section contents.
179   if (isa<SyntheticSection>(s))
180     return false;
181 
182   // .init and .fini contains instructions that must be executed to initialize
183   // and finalize the process. They cannot and should not be merged.
184   if (s->name == ".init" || s->name == ".fini")
185     return false;
186 
187   // A user program may enumerate sections named with a C identifier using
188   // __start_* and __stop_* symbols. We cannot ICF any such sections because
189   // that could change program semantics.
190   if (isValidCIdentifier(s->name))
191     return false;
192 
193   return true;
194 }
195 
196 // Split an equivalence class into smaller classes.
197 template <class ELFT>
198 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
199                           bool constant) {
200   // This loop rearranges sections in [Begin, End) so that all sections
201   // that are equal in terms of equals{Constant,Variable} are contiguous
202   // in [Begin, End).
203   //
204   // The algorithm is quadratic in the worst case, but that is not an
205   // issue in practice because the number of the distinct sections in
206   // each range is usually very small.
207 
208   while (begin < end) {
209     // Divide [Begin, End) into two. Let Mid be the start index of the
210     // second group.
211     auto bound =
212         std::stable_partition(sections.begin() + begin + 1,
213                               sections.begin() + end, [&](InputSection *s) {
214                                 if (constant)
215                                   return equalsConstant(sections[begin], s);
216                                 return equalsVariable(sections[begin], s);
217                               });
218     size_t mid = bound - sections.begin();
219 
220     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
221     // updating the sections in [Begin, Mid). We use Mid as the basis for
222     // the equivalence class ID because every group ends with a unique index.
223     // Add this to eqClassBase to avoid equality with unique IDs.
224     for (size_t i = begin; i < mid; ++i)
225       sections[i]->eqClass[next] = eqClassBase + mid;
226 
227     // If we created a group, we need to iterate the main loop again.
228     if (mid != end)
229       repeat = true;
230 
231     begin = mid;
232   }
233 }
234 
235 // Compare two lists of relocations.
236 template <class ELFT>
237 template <class RelTy>
238 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
239                            const InputSection *secB, ArrayRef<RelTy> rb) {
240   if (ra.size() != rb.size())
241     return false;
242   for (size_t i = 0; i < ra.size(); ++i) {
243     if (ra[i].r_offset != rb[i].r_offset ||
244         ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
245       return false;
246 
247     uint64_t addA = getAddend<ELFT>(ra[i]);
248     uint64_t addB = getAddend<ELFT>(rb[i]);
249 
250     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
251     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
252     if (&sa == &sb) {
253       if (addA == addB)
254         continue;
255       return false;
256     }
257 
258     auto *da = dyn_cast<Defined>(&sa);
259     auto *db = dyn_cast<Defined>(&sb);
260 
261     // Placeholder symbols generated by linker scripts look the same now but
262     // may have different values later.
263     if (!da || !db || da->scriptDefined || db->scriptDefined)
264       return false;
265 
266     // When comparing a pair of relocations, if they refer to different symbols,
267     // and either symbol is preemptible, the containing sections should be
268     // considered different. This is because even if the sections are identical
269     // in this DSO, they may not be after preemption.
270     if (da->isPreemptible || db->isPreemptible)
271       return false;
272 
273     // Relocations referring to absolute symbols are constant-equal if their
274     // values are equal.
275     if (!da->section && !db->section && da->value + addA == db->value + addB)
276       continue;
277     if (!da->section || !db->section)
278       return false;
279 
280     if (da->section->kind() != db->section->kind())
281       return false;
282 
283     // Relocations referring to InputSections are constant-equal if their
284     // section offsets are equal.
285     if (isa<InputSection>(da->section)) {
286       if (da->value + addA == db->value + addB)
287         continue;
288       return false;
289     }
290 
291     // Relocations referring to MergeInputSections are constant-equal if their
292     // offsets in the output section are equal.
293     auto *x = dyn_cast<MergeInputSection>(da->section);
294     if (!x)
295       return false;
296     auto *y = cast<MergeInputSection>(db->section);
297     if (x->getParent() != y->getParent())
298       return false;
299 
300     uint64_t offsetA =
301         sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
302     uint64_t offsetB =
303         sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
304     if (offsetA != offsetB)
305       return false;
306   }
307 
308   return true;
309 }
310 
311 // Compare "non-moving" part of two InputSections, namely everything
312 // except relocation targets.
313 template <class ELFT>
314 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
315   if (a->flags != b->flags || a->getSize() != b->getSize() ||
316       a->content() != b->content())
317     return false;
318 
319   // If two sections have different output sections, we cannot merge them.
320   assert(a->getParent() && b->getParent());
321   if (a->getParent() != b->getParent())
322     return false;
323 
324   const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
325   const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
326   return ra.areRelocsRel() ? constantEq(a, ra.rels, b, rb.rels)
327                            : constantEq(a, ra.relas, b, rb.relas);
328 }
329 
330 // Compare two lists of relocations. Returns true if all pairs of
331 // relocations point to the same section in terms of ICF.
332 template <class ELFT>
333 template <class RelTy>
334 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
335                            const InputSection *secB, ArrayRef<RelTy> rb) {
336   assert(ra.size() == rb.size());
337 
338   for (size_t i = 0; i < ra.size(); ++i) {
339     // The two sections must be identical.
340     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
341     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
342     if (&sa == &sb)
343       continue;
344 
345     auto *da = cast<Defined>(&sa);
346     auto *db = cast<Defined>(&sb);
347 
348     // We already dealt with absolute and non-InputSection symbols in
349     // constantEq, and for InputSections we have already checked everything
350     // except the equivalence class.
351     if (!da->section)
352       continue;
353     auto *x = dyn_cast<InputSection>(da->section);
354     if (!x)
355       continue;
356     auto *y = cast<InputSection>(db->section);
357 
358     // Sections that are in the special equivalence class 0, can never be the
359     // same in terms of the equivalence class.
360     if (x->eqClass[current] == 0)
361       return false;
362     if (x->eqClass[current] != y->eqClass[current])
363       return false;
364   };
365 
366   return true;
367 }
368 
369 // Compare "moving" part of two InputSections, namely relocation targets.
370 template <class ELFT>
371 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
372   const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
373   const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
374   return ra.areRelocsRel() ? variableEq(a, ra.rels, b, rb.rels)
375                            : variableEq(a, ra.relas, b, rb.relas);
376 }
377 
378 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
379   uint32_t eqClass = sections[begin]->eqClass[current];
380   for (size_t i = begin + 1; i < end; ++i)
381     if (eqClass != sections[i]->eqClass[current])
382       return i;
383   return end;
384 }
385 
386 // Sections in the same equivalence class are contiguous in Sections
387 // vector. Therefore, Sections vector can be considered as contiguous
388 // groups of sections, grouped by the class.
389 //
390 // This function calls Fn on every group within [Begin, End).
391 template <class ELFT>
392 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
393                                   llvm::function_ref<void(size_t, size_t)> fn) {
394   while (begin < end) {
395     size_t mid = findBoundary(begin, end);
396     fn(begin, mid);
397     begin = mid;
398   }
399 }
400 
401 // Call Fn on each equivalence class.
402 template <class ELFT>
403 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
404   // If threading is disabled or the number of sections are
405   // too small to use threading, call Fn sequentially.
406   if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
407     forEachClassRange(0, sections.size(), fn);
408     ++cnt;
409     return;
410   }
411 
412   current = cnt % 2;
413   next = (cnt + 1) % 2;
414 
415   // Shard into non-overlapping intervals, and call Fn in parallel.
416   // The sharding must be completed before any calls to Fn are made
417   // so that Fn can modify the Chunks in its shard without causing data
418   // races.
419   const size_t numShards = 256;
420   size_t step = sections.size() / numShards;
421   size_t boundaries[numShards + 1];
422   boundaries[0] = 0;
423   boundaries[numShards] = sections.size();
424 
425   parallelFor(1, numShards, [&](size_t i) {
426     boundaries[i] = findBoundary((i - 1) * step, sections.size());
427   });
428 
429   parallelFor(1, numShards + 1, [&](size_t i) {
430     if (boundaries[i - 1] < boundaries[i])
431       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
432   });
433   ++cnt;
434 }
435 
436 // Combine the hashes of the sections referenced by the given section into its
437 // hash.
438 template <class ELFT, class RelTy>
439 static void combineRelocHashes(unsigned cnt, InputSection *isec,
440                                ArrayRef<RelTy> rels) {
441   uint32_t hash = isec->eqClass[cnt % 2];
442   for (RelTy rel : rels) {
443     Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
444     if (auto *d = dyn_cast<Defined>(&s))
445       if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
446         hash += relSec->eqClass[cnt % 2];
447   }
448   // Set MSB to 1 to avoid collisions with unique IDs.
449   isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
450 }
451 
452 static void print(const Twine &s) {
453   if (config->printIcfSections)
454     message(s);
455 }
456 
457 // The main function of ICF.
458 template <class ELFT> void ICF<ELFT>::run() {
459   // Compute isPreemptible early. We may add more symbols later, so this loop
460   // cannot be merged with the later computeIsPreemptible() pass which is used
461   // by scanRelocations().
462   if (config->hasDynSymTab)
463     for (Symbol *sym : symtab.getSymbols())
464       sym->isPreemptible = computeIsPreemptible(*sym);
465 
466   // Two text sections may have identical content and relocations but different
467   // LSDA, e.g. the two functions may have catch blocks of different types. If a
468   // text section is referenced by a .eh_frame FDE with LSDA, it is not
469   // eligible. This is implemented by iterating over CIE/FDE and setting
470   // eqClass[0] to the referenced text section from a live FDE.
471   //
472   // If two .gcc_except_table have identical semantics (usually identical
473   // content with PC-relative encoding), we will lose folding opportunity.
474   uint32_t uniqueId = 0;
475   for (Partition &part : partitions)
476     part.ehFrame->iterateFDEWithLSDA<ELFT>(
477         [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
478 
479   // Collect sections to merge.
480   for (InputSectionBase *sec : ctx.inputSections) {
481     auto *s = dyn_cast<InputSection>(sec);
482     if (s && s->eqClass[0] == 0) {
483       if (isEligible(s))
484         sections.push_back(s);
485       else
486         // Ineligible sections are assigned unique IDs, i.e. each section
487         // belongs to an equivalence class of its own.
488         s->eqClass[0] = s->eqClass[1] = ++uniqueId;
489     }
490   }
491 
492   // Initially, we use hash values to partition sections.
493   parallelForEach(sections, [&](InputSection *s) {
494     // Set MSB to 1 to avoid collisions with unique IDs.
495     s->eqClass[0] = xxHash64(s->content()) | (1U << 31);
496   });
497 
498   // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
499   // reduce the average sizes of equivalence classes, i.e. segregate() which has
500   // a large time complexity will have less work to do.
501   for (unsigned cnt = 0; cnt != 2; ++cnt) {
502     parallelForEach(sections, [&](InputSection *s) {
503       const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
504       if (rels.areRelocsRel())
505         combineRelocHashes<ELFT>(cnt, s, rels.rels);
506       else
507         combineRelocHashes<ELFT>(cnt, s, rels.relas);
508     });
509   }
510 
511   // From now on, sections in Sections vector are ordered so that sections
512   // in the same equivalence class are consecutive in the vector.
513   llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
514     return a->eqClass[0] < b->eqClass[0];
515   });
516 
517   // Compare static contents and assign unique equivalence class IDs for each
518   // static content. Use a base offset for these IDs to ensure no overlap with
519   // the unique IDs already assigned.
520   uint32_t eqClassBase = ++uniqueId;
521   forEachClass([&](size_t begin, size_t end) {
522     segregate(begin, end, eqClassBase, true);
523   });
524 
525   // Split groups by comparing relocations until convergence is obtained.
526   do {
527     repeat = false;
528     forEachClass([&](size_t begin, size_t end) {
529       segregate(begin, end, eqClassBase, false);
530     });
531   } while (repeat);
532 
533   log("ICF needed " + Twine(cnt) + " iterations");
534 
535   // Merge sections by the equivalence class.
536   forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
537     if (end - begin == 1)
538       return;
539     print("selected section " + toString(sections[begin]));
540     for (size_t i = begin + 1; i < end; ++i) {
541       print("  removing identical section " + toString(sections[i]));
542       sections[begin]->replace(sections[i]);
543 
544       // At this point we know sections merged are fully identical and hence
545       // we want to remove duplicate implicit dependencies such as link order
546       // and relocation sections.
547       for (InputSection *isec : sections[i]->dependentSections)
548         isec->markDead();
549     }
550   });
551 
552   // Change Defined symbol's section field to the canonical one.
553   auto fold = [](Symbol *sym) {
554     if (auto *d = dyn_cast<Defined>(sym))
555       if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
556         if (sec->repl != d->section) {
557           d->section = sec->repl;
558           d->folded = true;
559         }
560   };
561   for (Symbol *sym : symtab.getSymbols())
562     fold(sym);
563   parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
564     for (Symbol *sym : file->getLocalSymbols())
565       fold(sym);
566   });
567 
568   // InputSectionDescription::sections is populated by processSectionCommands().
569   // ICF may fold some input sections assigned to output sections. Remove them.
570   for (SectionCommand *cmd : script->sectionCommands)
571     if (auto *osd = dyn_cast<OutputDesc>(cmd))
572       for (SectionCommand *subCmd : osd->osec.commands)
573         if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
574           llvm::erase_if(isd->sections,
575                          [](InputSection *isec) { return !isec->isLive(); });
576 }
577 
578 // ICF entry point function.
579 template <class ELFT> void elf::doIcf() {
580   llvm::TimeTraceScope timeScope("ICF");
581   ICF<ELFT>().run();
582 }
583 
584 template void elf::doIcf<ELF32LE>();
585 template void elf::doIcf<ELF32BE>();
586 template void elf::doIcf<ELF64LE>();
587 template void elf::doIcf<ELF64BE>();
588