1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. This is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // In ICF, two sections are considered identical if they have the same 15 // section flags, section data, and relocations. Relocations are tricky, 16 // because two relocations are considered the same if they have the same 17 // relocation types, values, and if they point to the same sections *in 18 // terms of ICF*. 19 // 20 // Here is an example. If foo and bar defined below are compiled to the 21 // same machine instructions, ICF can and should merge the two, although 22 // their relocations point to each other. 23 // 24 // void foo() { bar(); } 25 // void bar() { foo(); } 26 // 27 // If you merge the two, their relocations point to the same section and 28 // thus you know they are mergeable, but how do you know they are 29 // mergeable in the first place? This is not an easy problem to solve. 30 // 31 // What we are doing in LLD is to partition sections into equivalence 32 // classes. Sections in the same equivalence class when the algorithm 33 // terminates are considered identical. Here are details: 34 // 35 // 1. First, we partition sections using their hash values as keys. Hash 36 // values contain section types, section contents and numbers of 37 // relocations. During this step, relocation targets are not taken into 38 // account. We just put sections that apparently differ into different 39 // equivalence classes. 40 // 41 // 2. Next, for each equivalence class, we visit sections to compare 42 // relocation targets. Relocation targets are considered equivalent if 43 // their targets are in the same equivalence class. Sections with 44 // different relocation targets are put into different equivalence 45 // classes. 46 // 47 // 3. If we split an equivalence class in step 2, two relocations 48 // previously target the same equivalence class may now target 49 // different equivalence classes. Therefore, we repeat step 2 until a 50 // convergence is obtained. 51 // 52 // 4. For each equivalence class C, pick an arbitrary section in C, and 53 // merge all the other sections in C with it. 54 // 55 // For small programs, this algorithm needs 3-5 iterations. For large 56 // programs such as Chromium, it takes more than 20 iterations. 57 // 58 // This algorithm was mentioned as an "optimistic algorithm" in [1], 59 // though gold implements a different algorithm than this. 60 // 61 // We parallelize each step so that multiple threads can work on different 62 // equivalence classes concurrently. That gave us a large performance 63 // boost when applying ICF on large programs. For example, MSVC link.exe 64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 67 // faster than MSVC or gold though. 68 // 69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 70 // in the Gold Linker 71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 72 // 73 //===----------------------------------------------------------------------===// 74 75 #include "ICF.h" 76 #include "Config.h" 77 #include "LinkerScript.h" 78 #include "OutputSections.h" 79 #include "SymbolTable.h" 80 #include "Symbols.h" 81 #include "SyntheticSections.h" 82 #include "Writer.h" 83 #include "lld/Common/Threads.h" 84 #include "llvm/ADT/StringExtras.h" 85 #include "llvm/BinaryFormat/ELF.h" 86 #include "llvm/Object/ELF.h" 87 #include "llvm/Support/xxhash.h" 88 #include <algorithm> 89 #include <atomic> 90 91 using namespace llvm; 92 using namespace llvm::ELF; 93 using namespace llvm::object; 94 95 namespace lld { 96 namespace elf { 97 namespace { 98 template <class ELFT> class ICF { 99 public: 100 void run(); 101 102 private: 103 void segregate(size_t begin, size_t end, bool constant); 104 105 template <class RelTy> 106 bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA, 107 const InputSection *b, ArrayRef<RelTy> relsB); 108 109 template <class RelTy> 110 bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA, 111 const InputSection *b, ArrayRef<RelTy> relsB); 112 113 bool equalsConstant(const InputSection *a, const InputSection *b); 114 bool equalsVariable(const InputSection *a, const InputSection *b); 115 116 size_t findBoundary(size_t begin, size_t end); 117 118 void forEachClassRange(size_t begin, size_t end, 119 llvm::function_ref<void(size_t, size_t)> fn); 120 121 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn); 122 123 std::vector<InputSection *> sections; 124 125 // We repeat the main loop while `Repeat` is true. 126 std::atomic<bool> repeat; 127 128 // The main loop counter. 129 int cnt = 0; 130 131 // We have two locations for equivalence classes. On the first iteration 132 // of the main loop, Class[0] has a valid value, and Class[1] contains 133 // garbage. We read equivalence classes from slot 0 and write to slot 1. 134 // So, Class[0] represents the current class, and Class[1] represents 135 // the next class. On each iteration, we switch their roles and use them 136 // alternately. 137 // 138 // Why are we doing this? Recall that other threads may be working on 139 // other equivalence classes in parallel. They may read sections that we 140 // are updating. We cannot update equivalence classes in place because 141 // it breaks the invariance that all possibly-identical sections must be 142 // in the same equivalence class at any moment. In other words, the for 143 // loop to update equivalence classes is not atomic, and that is 144 // observable from other threads. By writing new classes to other 145 // places, we can keep the invariance. 146 // 147 // Below, `Current` has the index of the current class, and `Next` has 148 // the index of the next class. If threading is enabled, they are either 149 // (0, 1) or (1, 0). 150 // 151 // Note on single-thread: if that's the case, they are always (0, 0) 152 // because we can safely read the next class without worrying about race 153 // conditions. Using the same location makes this algorithm converge 154 // faster because it uses results of the same iteration earlier. 155 int current = 0; 156 int next = 0; 157 }; 158 } 159 160 // Returns true if section S is subject of ICF. 161 static bool isEligible(InputSection *s) { 162 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) 163 return false; 164 165 // Don't merge writable sections. .data.rel.ro sections are marked as writable 166 // but are semantically read-only. 167 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && 168 !s->name.startswith(".data.rel.ro.")) 169 return false; 170 171 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, 172 // so we don't consider them for ICF individually. 173 if (s->flags & SHF_LINK_ORDER) 174 return false; 175 176 // Don't merge synthetic sections as their Data member is not valid and empty. 177 // The Data member needs to be valid for ICF as it is used by ICF to determine 178 // the equality of section contents. 179 if (isa<SyntheticSection>(s)) 180 return false; 181 182 // .init and .fini contains instructions that must be executed to initialize 183 // and finalize the process. They cannot and should not be merged. 184 if (s->name == ".init" || s->name == ".fini") 185 return false; 186 187 // A user program may enumerate sections named with a C identifier using 188 // __start_* and __stop_* symbols. We cannot ICF any such sections because 189 // that could change program semantics. 190 if (isValidCIdentifier(s->name)) 191 return false; 192 193 return true; 194 } 195 196 // Split an equivalence class into smaller classes. 197 template <class ELFT> 198 void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) { 199 // This loop rearranges sections in [Begin, End) so that all sections 200 // that are equal in terms of equals{Constant,Variable} are contiguous 201 // in [Begin, End). 202 // 203 // The algorithm is quadratic in the worst case, but that is not an 204 // issue in practice because the number of the distinct sections in 205 // each range is usually very small. 206 207 while (begin < end) { 208 // Divide [Begin, End) into two. Let Mid be the start index of the 209 // second group. 210 auto bound = 211 std::stable_partition(sections.begin() + begin + 1, 212 sections.begin() + end, [&](InputSection *s) { 213 if (constant) 214 return equalsConstant(sections[begin], s); 215 return equalsVariable(sections[begin], s); 216 }); 217 size_t mid = bound - sections.begin(); 218 219 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 220 // updating the sections in [Begin, Mid). We use Mid as an equivalence 221 // class ID because every group ends with a unique index. 222 for (size_t i = begin; i < mid; ++i) 223 sections[i]->eqClass[next] = mid; 224 225 // If we created a group, we need to iterate the main loop again. 226 if (mid != end) 227 repeat = true; 228 229 begin = mid; 230 } 231 } 232 233 // Compare two lists of relocations. 234 template <class ELFT> 235 template <class RelTy> 236 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra, 237 const InputSection *secB, ArrayRef<RelTy> rb) { 238 for (size_t i = 0; i < ra.size(); ++i) { 239 if (ra[i].r_offset != rb[i].r_offset || 240 ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL)) 241 return false; 242 243 uint64_t addA = getAddend<ELFT>(ra[i]); 244 uint64_t addB = getAddend<ELFT>(rb[i]); 245 246 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 247 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 248 if (&sa == &sb) { 249 if (addA == addB) 250 continue; 251 return false; 252 } 253 254 auto *da = dyn_cast<Defined>(&sa); 255 auto *db = dyn_cast<Defined>(&sb); 256 257 // Placeholder symbols generated by linker scripts look the same now but 258 // may have different values later. 259 if (!da || !db || da->scriptDefined || db->scriptDefined) 260 return false; 261 262 // When comparing a pair of relocations, if they refer to different symbols, 263 // and either symbol is preemptible, the containing sections should be 264 // considered different. This is because even if the sections are identical 265 // in this DSO, they may not be after preemption. 266 if (da->isPreemptible || db->isPreemptible) 267 return false; 268 269 // Relocations referring to absolute symbols are constant-equal if their 270 // values are equal. 271 if (!da->section && !db->section && da->value + addA == db->value + addB) 272 continue; 273 if (!da->section || !db->section) 274 return false; 275 276 if (da->section->kind() != db->section->kind()) 277 return false; 278 279 // Relocations referring to InputSections are constant-equal if their 280 // section offsets are equal. 281 if (isa<InputSection>(da->section)) { 282 if (da->value + addA == db->value + addB) 283 continue; 284 return false; 285 } 286 287 // Relocations referring to MergeInputSections are constant-equal if their 288 // offsets in the output section are equal. 289 auto *x = dyn_cast<MergeInputSection>(da->section); 290 if (!x) 291 return false; 292 auto *y = cast<MergeInputSection>(db->section); 293 if (x->getParent() != y->getParent()) 294 return false; 295 296 uint64_t offsetA = 297 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA; 298 uint64_t offsetB = 299 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB; 300 if (offsetA != offsetB) 301 return false; 302 } 303 304 return true; 305 } 306 307 // Compare "non-moving" part of two InputSections, namely everything 308 // except relocation targets. 309 template <class ELFT> 310 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) { 311 if (a->numRelocations != b->numRelocations || a->flags != b->flags || 312 a->getSize() != b->getSize() || a->data() != b->data()) 313 return false; 314 315 // If two sections have different output sections, we cannot merge them. 316 assert(a->getParent() && b->getParent()); 317 if (a->getParent() != b->getParent()) 318 return false; 319 320 if (a->areRelocsRela) 321 return constantEq(a, a->template relas<ELFT>(), b, 322 b->template relas<ELFT>()); 323 return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 324 } 325 326 // Compare two lists of relocations. Returns true if all pairs of 327 // relocations point to the same section in terms of ICF. 328 template <class ELFT> 329 template <class RelTy> 330 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra, 331 const InputSection *secB, ArrayRef<RelTy> rb) { 332 assert(ra.size() == rb.size()); 333 334 for (size_t i = 0; i < ra.size(); ++i) { 335 // The two sections must be identical. 336 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 337 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 338 if (&sa == &sb) 339 continue; 340 341 auto *da = cast<Defined>(&sa); 342 auto *db = cast<Defined>(&sb); 343 344 // We already dealt with absolute and non-InputSection symbols in 345 // constantEq, and for InputSections we have already checked everything 346 // except the equivalence class. 347 if (!da->section) 348 continue; 349 auto *x = dyn_cast<InputSection>(da->section); 350 if (!x) 351 continue; 352 auto *y = cast<InputSection>(db->section); 353 354 // Ineligible sections are in the special equivalence class 0. 355 // They can never be the same in terms of the equivalence class. 356 if (x->eqClass[current] == 0) 357 return false; 358 if (x->eqClass[current] != y->eqClass[current]) 359 return false; 360 }; 361 362 return true; 363 } 364 365 // Compare "moving" part of two InputSections, namely relocation targets. 366 template <class ELFT> 367 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) { 368 if (a->areRelocsRela) 369 return variableEq(a, a->template relas<ELFT>(), b, 370 b->template relas<ELFT>()); 371 return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 372 } 373 374 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) { 375 uint32_t eqClass = sections[begin]->eqClass[current]; 376 for (size_t i = begin + 1; i < end; ++i) 377 if (eqClass != sections[i]->eqClass[current]) 378 return i; 379 return end; 380 } 381 382 // Sections in the same equivalence class are contiguous in Sections 383 // vector. Therefore, Sections vector can be considered as contiguous 384 // groups of sections, grouped by the class. 385 // 386 // This function calls Fn on every group within [Begin, End). 387 template <class ELFT> 388 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end, 389 llvm::function_ref<void(size_t, size_t)> fn) { 390 while (begin < end) { 391 size_t mid = findBoundary(begin, end); 392 fn(begin, mid); 393 begin = mid; 394 } 395 } 396 397 // Call Fn on each equivalence class. 398 template <class ELFT> 399 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) { 400 // If threading is disabled or the number of sections are 401 // too small to use threading, call Fn sequentially. 402 if (!threadsEnabled || sections.size() < 1024) { 403 forEachClassRange(0, sections.size(), fn); 404 ++cnt; 405 return; 406 } 407 408 current = cnt % 2; 409 next = (cnt + 1) % 2; 410 411 // Shard into non-overlapping intervals, and call Fn in parallel. 412 // The sharding must be completed before any calls to Fn are made 413 // so that Fn can modify the Chunks in its shard without causing data 414 // races. 415 const size_t numShards = 256; 416 size_t step = sections.size() / numShards; 417 size_t boundaries[numShards + 1]; 418 boundaries[0] = 0; 419 boundaries[numShards] = sections.size(); 420 421 parallelForEachN(1, numShards, [&](size_t i) { 422 boundaries[i] = findBoundary((i - 1) * step, sections.size()); 423 }); 424 425 parallelForEachN(1, numShards + 1, [&](size_t i) { 426 if (boundaries[i - 1] < boundaries[i]) 427 forEachClassRange(boundaries[i - 1], boundaries[i], fn); 428 }); 429 ++cnt; 430 } 431 432 // Combine the hashes of the sections referenced by the given section into its 433 // hash. 434 template <class ELFT, class RelTy> 435 static void combineRelocHashes(unsigned cnt, InputSection *isec, 436 ArrayRef<RelTy> rels) { 437 uint32_t hash = isec->eqClass[cnt % 2]; 438 for (RelTy rel : rels) { 439 Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel); 440 if (auto *d = dyn_cast<Defined>(&s)) 441 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section)) 442 hash += relSec->eqClass[cnt % 2]; 443 } 444 // Set MSB to 1 to avoid collisions with non-hash IDs. 445 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 446 } 447 448 static void print(const Twine &s) { 449 if (config->printIcfSections) 450 message(s); 451 } 452 453 // The main function of ICF. 454 template <class ELFT> void ICF<ELFT>::run() { 455 // Compute isPreemptible early. We may add more symbols later, so this loop 456 // cannot be merged with the later computeIsPreemptible() pass which is used 457 // by scanRelocations(). 458 for (Symbol *sym : symtab->symbols()) 459 sym->isPreemptible = computeIsPreemptible(*sym); 460 461 // Collect sections to merge. 462 for (InputSectionBase *sec : inputSections) { 463 auto *s = cast<InputSection>(sec); 464 if (isEligible(s)) 465 sections.push_back(s); 466 } 467 468 // Initially, we use hash values to partition sections. 469 parallelForEach(sections, [&](InputSection *s) { 470 s->eqClass[0] = xxHash64(s->data()); 471 }); 472 473 for (unsigned cnt = 0; cnt != 2; ++cnt) { 474 parallelForEach(sections, [&](InputSection *s) { 475 if (s->areRelocsRela) 476 combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>()); 477 else 478 combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>()); 479 }); 480 } 481 482 // From now on, sections in Sections vector are ordered so that sections 483 // in the same equivalence class are consecutive in the vector. 484 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { 485 return a->eqClass[0] < b->eqClass[0]; 486 }); 487 488 // Compare static contents and assign unique IDs for each static content. 489 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); }); 490 491 // Split groups by comparing relocations until convergence is obtained. 492 do { 493 repeat = false; 494 forEachClass( 495 [&](size_t begin, size_t end) { segregate(begin, end, false); }); 496 } while (repeat); 497 498 log("ICF needed " + Twine(cnt) + " iterations"); 499 500 // Merge sections by the equivalence class. 501 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) { 502 if (end - begin == 1) 503 return; 504 print("selected section " + toString(sections[begin])); 505 for (size_t i = begin + 1; i < end; ++i) { 506 print(" removing identical section " + toString(sections[i])); 507 sections[begin]->replace(sections[i]); 508 509 // At this point we know sections merged are fully identical and hence 510 // we want to remove duplicate implicit dependencies such as link order 511 // and relocation sections. 512 for (InputSection *isec : sections[i]->dependentSections) 513 isec->markDead(); 514 } 515 }); 516 517 // InputSectionDescription::sections is populated by processSectionCommands(). 518 // ICF may fold some input sections assigned to output sections. Remove them. 519 for (BaseCommand *base : script->sectionCommands) 520 if (auto *sec = dyn_cast<OutputSection>(base)) 521 for (BaseCommand *sub_base : sec->sectionCommands) 522 if (auto *isd = dyn_cast<InputSectionDescription>(sub_base)) 523 llvm::erase_if(isd->sections, 524 [](InputSection *isec) { return !isec->isLive(); }); 525 } 526 527 // ICF entry point function. 528 template <class ELFT> void doIcf() { ICF<ELFT>().run(); } 529 530 template void doIcf<ELF32LE>(); 531 template void doIcf<ELF32BE>(); 532 template void doIcf<ELF64LE>(); 533 template void doIcf<ELF64BE>(); 534 535 } // namespace elf 536 } // namespace lld 537