1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. This is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // In ICF, two sections are considered identical if they have the same 15 // section flags, section data, and relocations. Relocations are tricky, 16 // because two relocations are considered the same if they have the same 17 // relocation types, values, and if they point to the same sections *in 18 // terms of ICF*. 19 // 20 // Here is an example. If foo and bar defined below are compiled to the 21 // same machine instructions, ICF can and should merge the two, although 22 // their relocations point to each other. 23 // 24 // void foo() { bar(); } 25 // void bar() { foo(); } 26 // 27 // If you merge the two, their relocations point to the same section and 28 // thus you know they are mergeable, but how do you know they are 29 // mergeable in the first place? This is not an easy problem to solve. 30 // 31 // What we are doing in LLD is to partition sections into equivalence 32 // classes. Sections in the same equivalence class when the algorithm 33 // terminates are considered identical. Here are details: 34 // 35 // 1. First, we partition sections using their hash values as keys. Hash 36 // values contain section types, section contents and numbers of 37 // relocations. During this step, relocation targets are not taken into 38 // account. We just put sections that apparently differ into different 39 // equivalence classes. 40 // 41 // 2. Next, for each equivalence class, we visit sections to compare 42 // relocation targets. Relocation targets are considered equivalent if 43 // their targets are in the same equivalence class. Sections with 44 // different relocation targets are put into different equivalence 45 // clases. 46 // 47 // 3. If we split an equivalence class in step 2, two relocations 48 // previously target the same equivalence class may now target 49 // different equivalence classes. Therefore, we repeat step 2 until a 50 // convergence is obtained. 51 // 52 // 4. For each equivalence class C, pick an arbitrary section in C, and 53 // merge all the other sections in C with it. 54 // 55 // For small programs, this algorithm needs 3-5 iterations. For large 56 // programs such as Chromium, it takes more than 20 iterations. 57 // 58 // This algorithm was mentioned as an "optimistic algorithm" in [1], 59 // though gold implements a different algorithm than this. 60 // 61 // We parallelize each step so that multiple threads can work on different 62 // equivalence classes concurrently. That gave us a large performance 63 // boost when applying ICF on large programs. For example, MSVC link.exe 64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 67 // faster than MSVC or gold though. 68 // 69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 70 // in the Gold Linker 71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 72 // 73 //===----------------------------------------------------------------------===// 74 75 #include "ICF.h" 76 #include "Config.h" 77 #include "SymbolTable.h" 78 #include "Symbols.h" 79 #include "SyntheticSections.h" 80 #include "Writer.h" 81 #include "lld/Common/Threads.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/BinaryFormat/ELF.h" 84 #include "llvm/Object/ELF.h" 85 #include "llvm/Support/xxhash.h" 86 #include <algorithm> 87 #include <atomic> 88 89 using namespace lld; 90 using namespace lld::elf; 91 using namespace llvm; 92 using namespace llvm::ELF; 93 using namespace llvm::object; 94 95 namespace { 96 template <class ELFT> class ICF { 97 public: 98 void run(); 99 100 private: 101 void segregate(size_t begin, size_t end, bool constant); 102 103 template <class RelTy> 104 bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA, 105 const InputSection *b, ArrayRef<RelTy> relsB); 106 107 template <class RelTy> 108 bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA, 109 const InputSection *b, ArrayRef<RelTy> relsB); 110 111 bool equalsConstant(const InputSection *a, const InputSection *b); 112 bool equalsVariable(const InputSection *a, const InputSection *b); 113 114 size_t findBoundary(size_t begin, size_t end); 115 116 void forEachClassRange(size_t begin, size_t end, 117 llvm::function_ref<void(size_t, size_t)> fn); 118 119 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn); 120 121 std::vector<InputSection *> sections; 122 123 // We repeat the main loop while `Repeat` is true. 124 std::atomic<bool> repeat; 125 126 // The main loop counter. 127 int cnt = 0; 128 129 // We have two locations for equivalence classes. On the first iteration 130 // of the main loop, Class[0] has a valid value, and Class[1] contains 131 // garbage. We read equivalence classes from slot 0 and write to slot 1. 132 // So, Class[0] represents the current class, and Class[1] represents 133 // the next class. On each iteration, we switch their roles and use them 134 // alternately. 135 // 136 // Why are we doing this? Recall that other threads may be working on 137 // other equivalence classes in parallel. They may read sections that we 138 // are updating. We cannot update equivalence classes in place because 139 // it breaks the invariance that all possibly-identical sections must be 140 // in the same equivalence class at any moment. In other words, the for 141 // loop to update equivalence classes is not atomic, and that is 142 // observable from other threads. By writing new classes to other 143 // places, we can keep the invariance. 144 // 145 // Below, `Current` has the index of the current class, and `Next` has 146 // the index of the next class. If threading is enabled, they are either 147 // (0, 1) or (1, 0). 148 // 149 // Note on single-thread: if that's the case, they are always (0, 0) 150 // because we can safely read the next class without worrying about race 151 // conditions. Using the same location makes this algorithm converge 152 // faster because it uses results of the same iteration earlier. 153 int current = 0; 154 int next = 0; 155 }; 156 } 157 158 // Returns true if section S is subject of ICF. 159 static bool isEligible(InputSection *s) { 160 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) 161 return false; 162 163 // Don't merge writable sections. .data.rel.ro sections are marked as writable 164 // but are semantically read-only. 165 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && 166 !s->name.startswith(".data.rel.ro.")) 167 return false; 168 169 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, 170 // so we don't consider them for ICF individually. 171 if (s->flags & SHF_LINK_ORDER) 172 return false; 173 174 // Don't merge synthetic sections as their Data member is not valid and empty. 175 // The Data member needs to be valid for ICF as it is used by ICF to determine 176 // the equality of section contents. 177 if (isa<SyntheticSection>(s)) 178 return false; 179 180 // .init and .fini contains instructions that must be executed to initialize 181 // and finalize the process. They cannot and should not be merged. 182 if (s->name == ".init" || s->name == ".fini") 183 return false; 184 185 // A user program may enumerate sections named with a C identifier using 186 // __start_* and __stop_* symbols. We cannot ICF any such sections because 187 // that could change program semantics. 188 if (isValidCIdentifier(s->name)) 189 return false; 190 191 return true; 192 } 193 194 // Split an equivalence class into smaller classes. 195 template <class ELFT> 196 void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) { 197 // This loop rearranges sections in [Begin, End) so that all sections 198 // that are equal in terms of equals{Constant,Variable} are contiguous 199 // in [Begin, End). 200 // 201 // The algorithm is quadratic in the worst case, but that is not an 202 // issue in practice because the number of the distinct sections in 203 // each range is usually very small. 204 205 while (begin < end) { 206 // Divide [Begin, End) into two. Let Mid be the start index of the 207 // second group. 208 auto bound = 209 std::stable_partition(sections.begin() + begin + 1, 210 sections.begin() + end, [&](InputSection *s) { 211 if (constant) 212 return equalsConstant(sections[begin], s); 213 return equalsVariable(sections[begin], s); 214 }); 215 size_t mid = bound - sections.begin(); 216 217 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 218 // updating the sections in [Begin, Mid). We use Mid as an equivalence 219 // class ID because every group ends with a unique index. 220 for (size_t i = begin; i < mid; ++i) 221 sections[i]->eqClass[next] = mid; 222 223 // If we created a group, we need to iterate the main loop again. 224 if (mid != end) 225 repeat = true; 226 227 begin = mid; 228 } 229 } 230 231 // Compare two lists of relocations. 232 template <class ELFT> 233 template <class RelTy> 234 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra, 235 const InputSection *secB, ArrayRef<RelTy> rb) { 236 for (size_t i = 0; i < ra.size(); ++i) { 237 if (ra[i].r_offset != rb[i].r_offset || 238 ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL)) 239 return false; 240 241 uint64_t addA = getAddend<ELFT>(ra[i]); 242 uint64_t addB = getAddend<ELFT>(rb[i]); 243 244 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 245 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 246 if (&sa == &sb) { 247 if (addA == addB) 248 continue; 249 return false; 250 } 251 252 auto *da = dyn_cast<Defined>(&sa); 253 auto *db = dyn_cast<Defined>(&sb); 254 255 // Placeholder symbols generated by linker scripts look the same now but 256 // may have different values later. 257 if (!da || !db || da->scriptDefined || db->scriptDefined) 258 return false; 259 260 // Relocations referring to absolute symbols are constant-equal if their 261 // values are equal. 262 if (!da->section && !db->section && da->value + addA == db->value + addB) 263 continue; 264 if (!da->section || !db->section) 265 return false; 266 267 if (da->section->kind() != db->section->kind()) 268 return false; 269 270 // Relocations referring to InputSections are constant-equal if their 271 // section offsets are equal. 272 if (isa<InputSection>(da->section)) { 273 if (da->value + addA == db->value + addB) 274 continue; 275 return false; 276 } 277 278 // Relocations referring to MergeInputSections are constant-equal if their 279 // offsets in the output section are equal. 280 auto *x = dyn_cast<MergeInputSection>(da->section); 281 if (!x) 282 return false; 283 auto *y = cast<MergeInputSection>(db->section); 284 if (x->getParent() != y->getParent()) 285 return false; 286 287 uint64_t offsetA = 288 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA; 289 uint64_t offsetB = 290 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB; 291 if (offsetA != offsetB) 292 return false; 293 } 294 295 return true; 296 } 297 298 // Compare "non-moving" part of two InputSections, namely everything 299 // except relocation targets. 300 template <class ELFT> 301 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) { 302 if (a->numRelocations != b->numRelocations || a->flags != b->flags || 303 a->getSize() != b->getSize() || a->data() != b->data()) 304 return false; 305 306 // If two sections have different output sections, we cannot merge them. 307 // FIXME: This doesn't do the right thing in the case where there is a linker 308 // script. We probably need to move output section assignment before ICF to 309 // get the correct behaviour here. 310 if (getOutputSectionName(a) != getOutputSectionName(b)) 311 return false; 312 313 if (a->areRelocsRela) 314 return constantEq(a, a->template relas<ELFT>(), b, 315 b->template relas<ELFT>()); 316 return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 317 } 318 319 // Compare two lists of relocations. Returns true if all pairs of 320 // relocations point to the same section in terms of ICF. 321 template <class ELFT> 322 template <class RelTy> 323 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra, 324 const InputSection *secB, ArrayRef<RelTy> rb) { 325 assert(ra.size() == rb.size()); 326 327 for (size_t i = 0; i < ra.size(); ++i) { 328 // The two sections must be identical. 329 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 330 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 331 if (&sa == &sb) 332 continue; 333 334 auto *da = cast<Defined>(&sa); 335 auto *db = cast<Defined>(&sb); 336 337 // We already dealt with absolute and non-InputSection symbols in 338 // constantEq, and for InputSections we have already checked everything 339 // except the equivalence class. 340 if (!da->section) 341 continue; 342 auto *x = dyn_cast<InputSection>(da->section); 343 if (!x) 344 continue; 345 auto *y = cast<InputSection>(db->section); 346 347 // Ineligible sections are in the special equivalence class 0. 348 // They can never be the same in terms of the equivalence class. 349 if (x->eqClass[current] == 0) 350 return false; 351 if (x->eqClass[current] != y->eqClass[current]) 352 return false; 353 }; 354 355 return true; 356 } 357 358 // Compare "moving" part of two InputSections, namely relocation targets. 359 template <class ELFT> 360 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) { 361 if (a->areRelocsRela) 362 return variableEq(a, a->template relas<ELFT>(), b, 363 b->template relas<ELFT>()); 364 return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 365 } 366 367 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) { 368 uint32_t eqClass = sections[begin]->eqClass[current]; 369 for (size_t i = begin + 1; i < end; ++i) 370 if (eqClass != sections[i]->eqClass[current]) 371 return i; 372 return end; 373 } 374 375 // Sections in the same equivalence class are contiguous in Sections 376 // vector. Therefore, Sections vector can be considered as contiguous 377 // groups of sections, grouped by the class. 378 // 379 // This function calls Fn on every group within [Begin, End). 380 template <class ELFT> 381 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end, 382 llvm::function_ref<void(size_t, size_t)> fn) { 383 while (begin < end) { 384 size_t mid = findBoundary(begin, end); 385 fn(begin, mid); 386 begin = mid; 387 } 388 } 389 390 // Call Fn on each equivalence class. 391 template <class ELFT> 392 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) { 393 // If threading is disabled or the number of sections are 394 // too small to use threading, call Fn sequentially. 395 if (!threadsEnabled || sections.size() < 1024) { 396 forEachClassRange(0, sections.size(), fn); 397 ++cnt; 398 return; 399 } 400 401 current = cnt % 2; 402 next = (cnt + 1) % 2; 403 404 // Shard into non-overlapping intervals, and call Fn in parallel. 405 // The sharding must be completed before any calls to Fn are made 406 // so that Fn can modify the Chunks in its shard without causing data 407 // races. 408 const size_t numShards = 256; 409 size_t step = sections.size() / numShards; 410 size_t boundaries[numShards + 1]; 411 boundaries[0] = 0; 412 boundaries[numShards] = sections.size(); 413 414 parallelForEachN(1, numShards, [&](size_t i) { 415 boundaries[i] = findBoundary((i - 1) * step, sections.size()); 416 }); 417 418 parallelForEachN(1, numShards + 1, [&](size_t i) { 419 if (boundaries[i - 1] < boundaries[i]) 420 forEachClassRange(boundaries[i - 1], boundaries[i], fn); 421 }); 422 ++cnt; 423 } 424 425 // Combine the hashes of the sections referenced by the given section into its 426 // hash. 427 template <class ELFT, class RelTy> 428 static void combineRelocHashes(unsigned cnt, InputSection *isec, 429 ArrayRef<RelTy> rels) { 430 uint32_t hash = isec->eqClass[cnt % 2]; 431 for (RelTy rel : rels) { 432 Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel); 433 if (auto *d = dyn_cast<Defined>(&s)) 434 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section)) 435 hash += relSec->eqClass[cnt % 2]; 436 } 437 // Set MSB to 1 to avoid collisions with non-hash IDs. 438 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 439 } 440 441 static void print(const Twine &s) { 442 if (config->printIcfSections) 443 message(s); 444 } 445 446 // The main function of ICF. 447 template <class ELFT> void ICF<ELFT>::run() { 448 // Collect sections to merge. 449 for (InputSectionBase *sec : inputSections) 450 if (auto *s = dyn_cast<InputSection>(sec)) 451 if (isEligible(s)) 452 sections.push_back(s); 453 454 // Initially, we use hash values to partition sections. 455 parallelForEach(sections, [&](InputSection *s) { 456 s->eqClass[0] = xxHash64(s->data()); 457 }); 458 459 for (unsigned cnt = 0; cnt != 2; ++cnt) { 460 parallelForEach(sections, [&](InputSection *s) { 461 if (s->areRelocsRela) 462 combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>()); 463 else 464 combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>()); 465 }); 466 } 467 468 // From now on, sections in Sections vector are ordered so that sections 469 // in the same equivalence class are consecutive in the vector. 470 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { 471 return a->eqClass[0] < b->eqClass[0]; 472 }); 473 474 // Compare static contents and assign unique IDs for each static content. 475 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); }); 476 477 // Split groups by comparing relocations until convergence is obtained. 478 do { 479 repeat = false; 480 forEachClass( 481 [&](size_t begin, size_t end) { segregate(begin, end, false); }); 482 } while (repeat); 483 484 log("ICF needed " + Twine(cnt) + " iterations"); 485 486 // Merge sections by the equivalence class. 487 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) { 488 if (end - begin == 1) 489 return; 490 print("selected section " + toString(sections[begin])); 491 for (size_t i = begin + 1; i < end; ++i) { 492 print(" removing identical section " + toString(sections[i])); 493 sections[begin]->replace(sections[i]); 494 495 // At this point we know sections merged are fully identical and hence 496 // we want to remove duplicate implicit dependencies such as link order 497 // and relocation sections. 498 for (InputSection *isec : sections[i]->dependentSections) 499 isec->markDead(); 500 } 501 }); 502 } 503 504 // ICF entry point function. 505 template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); } 506 507 template void elf::doIcf<ELF32LE>(); 508 template void elf::doIcf<ELF32BE>(); 509 template void elf::doIcf<ELF64LE>(); 510 template void elf::doIcf<ELF64BE>(); 511