1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. This is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // In ICF, two sections are considered identical if they have the same 15 // section flags, section data, and relocations. Relocations are tricky, 16 // because two relocations are considered the same if they have the same 17 // relocation types, values, and if they point to the same sections *in 18 // terms of ICF*. 19 // 20 // Here is an example. If foo and bar defined below are compiled to the 21 // same machine instructions, ICF can and should merge the two, although 22 // their relocations point to each other. 23 // 24 // void foo() { bar(); } 25 // void bar() { foo(); } 26 // 27 // If you merge the two, their relocations point to the same section and 28 // thus you know they are mergeable, but how do you know they are 29 // mergeable in the first place? This is not an easy problem to solve. 30 // 31 // What we are doing in LLD is to partition sections into equivalence 32 // classes. Sections in the same equivalence class when the algorithm 33 // terminates are considered identical. Here are details: 34 // 35 // 1. First, we partition sections using their hash values as keys. Hash 36 // values contain section types, section contents and numbers of 37 // relocations. During this step, relocation targets are not taken into 38 // account. We just put sections that apparently differ into different 39 // equivalence classes. 40 // 41 // 2. Next, for each equivalence class, we visit sections to compare 42 // relocation targets. Relocation targets are considered equivalent if 43 // their targets are in the same equivalence class. Sections with 44 // different relocation targets are put into different equivalence 45 // classes. 46 // 47 // 3. If we split an equivalence class in step 2, two relocations 48 // previously target the same equivalence class may now target 49 // different equivalence classes. Therefore, we repeat step 2 until a 50 // convergence is obtained. 51 // 52 // 4. For each equivalence class C, pick an arbitrary section in C, and 53 // merge all the other sections in C with it. 54 // 55 // For small programs, this algorithm needs 3-5 iterations. For large 56 // programs such as Chromium, it takes more than 20 iterations. 57 // 58 // This algorithm was mentioned as an "optimistic algorithm" in [1], 59 // though gold implements a different algorithm than this. 60 // 61 // We parallelize each step so that multiple threads can work on different 62 // equivalence classes concurrently. That gave us a large performance 63 // boost when applying ICF on large programs. For example, MSVC link.exe 64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 67 // faster than MSVC or gold though. 68 // 69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 70 // in the Gold Linker 71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 72 // 73 //===----------------------------------------------------------------------===// 74 75 #include "ICF.h" 76 #include "Config.h" 77 #include "LinkerScript.h" 78 #include "OutputSections.h" 79 #include "SymbolTable.h" 80 #include "Symbols.h" 81 #include "SyntheticSections.h" 82 #include "Writer.h" 83 #include "llvm/ADT/StringExtras.h" 84 #include "llvm/BinaryFormat/ELF.h" 85 #include "llvm/Object/ELF.h" 86 #include "llvm/Support/Parallel.h" 87 #include "llvm/Support/TimeProfiler.h" 88 #include "llvm/Support/xxhash.h" 89 #include <algorithm> 90 #include <atomic> 91 92 using namespace llvm; 93 using namespace llvm::ELF; 94 using namespace llvm::object; 95 using namespace lld; 96 using namespace lld::elf; 97 98 namespace { 99 template <class ELFT> class ICF { 100 public: 101 void run(); 102 103 private: 104 void segregate(size_t begin, size_t end, bool constant); 105 106 template <class RelTy> 107 bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA, 108 const InputSection *b, ArrayRef<RelTy> relsB); 109 110 template <class RelTy> 111 bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA, 112 const InputSection *b, ArrayRef<RelTy> relsB); 113 114 bool equalsConstant(const InputSection *a, const InputSection *b); 115 bool equalsVariable(const InputSection *a, const InputSection *b); 116 117 size_t findBoundary(size_t begin, size_t end); 118 119 void forEachClassRange(size_t begin, size_t end, 120 llvm::function_ref<void(size_t, size_t)> fn); 121 122 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn); 123 124 std::vector<InputSection *> sections; 125 126 // We repeat the main loop while `Repeat` is true. 127 std::atomic<bool> repeat; 128 129 // The main loop counter. 130 int cnt = 0; 131 132 // We have two locations for equivalence classes. On the first iteration 133 // of the main loop, Class[0] has a valid value, and Class[1] contains 134 // garbage. We read equivalence classes from slot 0 and write to slot 1. 135 // So, Class[0] represents the current class, and Class[1] represents 136 // the next class. On each iteration, we switch their roles and use them 137 // alternately. 138 // 139 // Why are we doing this? Recall that other threads may be working on 140 // other equivalence classes in parallel. They may read sections that we 141 // are updating. We cannot update equivalence classes in place because 142 // it breaks the invariance that all possibly-identical sections must be 143 // in the same equivalence class at any moment. In other words, the for 144 // loop to update equivalence classes is not atomic, and that is 145 // observable from other threads. By writing new classes to other 146 // places, we can keep the invariance. 147 // 148 // Below, `Current` has the index of the current class, and `Next` has 149 // the index of the next class. If threading is enabled, they are either 150 // (0, 1) or (1, 0). 151 // 152 // Note on single-thread: if that's the case, they are always (0, 0) 153 // because we can safely read the next class without worrying about race 154 // conditions. Using the same location makes this algorithm converge 155 // faster because it uses results of the same iteration earlier. 156 int current = 0; 157 int next = 0; 158 }; 159 } 160 161 // Returns true if section S is subject of ICF. 162 static bool isEligible(InputSection *s) { 163 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) 164 return false; 165 166 // Don't merge writable sections. .data.rel.ro sections are marked as writable 167 // but are semantically read-only. 168 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && 169 !s->name.startswith(".data.rel.ro.")) 170 return false; 171 172 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, 173 // so we don't consider them for ICF individually. 174 if (s->flags & SHF_LINK_ORDER) 175 return false; 176 177 // Don't merge synthetic sections as their Data member is not valid and empty. 178 // The Data member needs to be valid for ICF as it is used by ICF to determine 179 // the equality of section contents. 180 if (isa<SyntheticSection>(s)) 181 return false; 182 183 // .init and .fini contains instructions that must be executed to initialize 184 // and finalize the process. They cannot and should not be merged. 185 if (s->name == ".init" || s->name == ".fini") 186 return false; 187 188 // A user program may enumerate sections named with a C identifier using 189 // __start_* and __stop_* symbols. We cannot ICF any such sections because 190 // that could change program semantics. 191 if (isValidCIdentifier(s->name)) 192 return false; 193 194 return true; 195 } 196 197 // Split an equivalence class into smaller classes. 198 template <class ELFT> 199 void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) { 200 // This loop rearranges sections in [Begin, End) so that all sections 201 // that are equal in terms of equals{Constant,Variable} are contiguous 202 // in [Begin, End). 203 // 204 // The algorithm is quadratic in the worst case, but that is not an 205 // issue in practice because the number of the distinct sections in 206 // each range is usually very small. 207 208 while (begin < end) { 209 // Divide [Begin, End) into two. Let Mid be the start index of the 210 // second group. 211 auto bound = 212 std::stable_partition(sections.begin() + begin + 1, 213 sections.begin() + end, [&](InputSection *s) { 214 if (constant) 215 return equalsConstant(sections[begin], s); 216 return equalsVariable(sections[begin], s); 217 }); 218 size_t mid = bound - sections.begin(); 219 220 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 221 // updating the sections in [Begin, Mid). We use Mid as an equivalence 222 // class ID because every group ends with a unique index. 223 for (size_t i = begin; i < mid; ++i) 224 sections[i]->eqClass[next] = mid; 225 226 // If we created a group, we need to iterate the main loop again. 227 if (mid != end) 228 repeat = true; 229 230 begin = mid; 231 } 232 } 233 234 // Compare two lists of relocations. 235 template <class ELFT> 236 template <class RelTy> 237 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra, 238 const InputSection *secB, ArrayRef<RelTy> rb) { 239 for (size_t i = 0; i < ra.size(); ++i) { 240 if (ra[i].r_offset != rb[i].r_offset || 241 ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL)) 242 return false; 243 244 uint64_t addA = getAddend<ELFT>(ra[i]); 245 uint64_t addB = getAddend<ELFT>(rb[i]); 246 247 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 248 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 249 if (&sa == &sb) { 250 if (addA == addB) 251 continue; 252 return false; 253 } 254 255 auto *da = dyn_cast<Defined>(&sa); 256 auto *db = dyn_cast<Defined>(&sb); 257 258 // Placeholder symbols generated by linker scripts look the same now but 259 // may have different values later. 260 if (!da || !db || da->scriptDefined || db->scriptDefined) 261 return false; 262 263 // When comparing a pair of relocations, if they refer to different symbols, 264 // and either symbol is preemptible, the containing sections should be 265 // considered different. This is because even if the sections are identical 266 // in this DSO, they may not be after preemption. 267 if (da->isPreemptible || db->isPreemptible) 268 return false; 269 270 // Relocations referring to absolute symbols are constant-equal if their 271 // values are equal. 272 if (!da->section && !db->section && da->value + addA == db->value + addB) 273 continue; 274 if (!da->section || !db->section) 275 return false; 276 277 if (da->section->kind() != db->section->kind()) 278 return false; 279 280 // Relocations referring to InputSections are constant-equal if their 281 // section offsets are equal. 282 if (isa<InputSection>(da->section)) { 283 if (da->value + addA == db->value + addB) 284 continue; 285 return false; 286 } 287 288 // Relocations referring to MergeInputSections are constant-equal if their 289 // offsets in the output section are equal. 290 auto *x = dyn_cast<MergeInputSection>(da->section); 291 if (!x) 292 return false; 293 auto *y = cast<MergeInputSection>(db->section); 294 if (x->getParent() != y->getParent()) 295 return false; 296 297 uint64_t offsetA = 298 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA; 299 uint64_t offsetB = 300 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB; 301 if (offsetA != offsetB) 302 return false; 303 } 304 305 return true; 306 } 307 308 // Compare "non-moving" part of two InputSections, namely everything 309 // except relocation targets. 310 template <class ELFT> 311 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) { 312 if (a->numRelocations != b->numRelocations || a->flags != b->flags || 313 a->getSize() != b->getSize() || a->data() != b->data()) 314 return false; 315 316 // If two sections have different output sections, we cannot merge them. 317 assert(a->getParent() && b->getParent()); 318 if (a->getParent() != b->getParent()) 319 return false; 320 321 if (a->areRelocsRela) 322 return constantEq(a, a->template relas<ELFT>(), b, 323 b->template relas<ELFT>()); 324 return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 325 } 326 327 // Compare two lists of relocations. Returns true if all pairs of 328 // relocations point to the same section in terms of ICF. 329 template <class ELFT> 330 template <class RelTy> 331 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra, 332 const InputSection *secB, ArrayRef<RelTy> rb) { 333 assert(ra.size() == rb.size()); 334 335 for (size_t i = 0; i < ra.size(); ++i) { 336 // The two sections must be identical. 337 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 338 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 339 if (&sa == &sb) 340 continue; 341 342 auto *da = cast<Defined>(&sa); 343 auto *db = cast<Defined>(&sb); 344 345 // We already dealt with absolute and non-InputSection symbols in 346 // constantEq, and for InputSections we have already checked everything 347 // except the equivalence class. 348 if (!da->section) 349 continue; 350 auto *x = dyn_cast<InputSection>(da->section); 351 if (!x) 352 continue; 353 auto *y = cast<InputSection>(db->section); 354 355 // Ineligible sections are in the special equivalence class 0. 356 // They can never be the same in terms of the equivalence class. 357 if (x->eqClass[current] == 0) 358 return false; 359 if (x->eqClass[current] != y->eqClass[current]) 360 return false; 361 }; 362 363 return true; 364 } 365 366 // Compare "moving" part of two InputSections, namely relocation targets. 367 template <class ELFT> 368 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) { 369 if (a->areRelocsRela) 370 return variableEq(a, a->template relas<ELFT>(), b, 371 b->template relas<ELFT>()); 372 return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 373 } 374 375 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) { 376 uint32_t eqClass = sections[begin]->eqClass[current]; 377 for (size_t i = begin + 1; i < end; ++i) 378 if (eqClass != sections[i]->eqClass[current]) 379 return i; 380 return end; 381 } 382 383 // Sections in the same equivalence class are contiguous in Sections 384 // vector. Therefore, Sections vector can be considered as contiguous 385 // groups of sections, grouped by the class. 386 // 387 // This function calls Fn on every group within [Begin, End). 388 template <class ELFT> 389 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end, 390 llvm::function_ref<void(size_t, size_t)> fn) { 391 while (begin < end) { 392 size_t mid = findBoundary(begin, end); 393 fn(begin, mid); 394 begin = mid; 395 } 396 } 397 398 // Call Fn on each equivalence class. 399 template <class ELFT> 400 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) { 401 // If threading is disabled or the number of sections are 402 // too small to use threading, call Fn sequentially. 403 if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) { 404 forEachClassRange(0, sections.size(), fn); 405 ++cnt; 406 return; 407 } 408 409 current = cnt % 2; 410 next = (cnt + 1) % 2; 411 412 // Shard into non-overlapping intervals, and call Fn in parallel. 413 // The sharding must be completed before any calls to Fn are made 414 // so that Fn can modify the Chunks in its shard without causing data 415 // races. 416 const size_t numShards = 256; 417 size_t step = sections.size() / numShards; 418 size_t boundaries[numShards + 1]; 419 boundaries[0] = 0; 420 boundaries[numShards] = sections.size(); 421 422 parallelForEachN(1, numShards, [&](size_t i) { 423 boundaries[i] = findBoundary((i - 1) * step, sections.size()); 424 }); 425 426 parallelForEachN(1, numShards + 1, [&](size_t i) { 427 if (boundaries[i - 1] < boundaries[i]) 428 forEachClassRange(boundaries[i - 1], boundaries[i], fn); 429 }); 430 ++cnt; 431 } 432 433 // Combine the hashes of the sections referenced by the given section into its 434 // hash. 435 template <class ELFT, class RelTy> 436 static void combineRelocHashes(unsigned cnt, InputSection *isec, 437 ArrayRef<RelTy> rels) { 438 uint32_t hash = isec->eqClass[cnt % 2]; 439 for (RelTy rel : rels) { 440 Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel); 441 if (auto *d = dyn_cast<Defined>(&s)) 442 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section)) 443 hash += relSec->eqClass[cnt % 2]; 444 } 445 // Set MSB to 1 to avoid collisions with non-hash IDs. 446 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 447 } 448 449 static void print(const Twine &s) { 450 if (config->printIcfSections) 451 message(s); 452 } 453 454 // The main function of ICF. 455 template <class ELFT> void ICF<ELFT>::run() { 456 // Compute isPreemptible early. We may add more symbols later, so this loop 457 // cannot be merged with the later computeIsPreemptible() pass which is used 458 // by scanRelocations(). 459 for (Symbol *sym : symtab->symbols()) 460 sym->isPreemptible = computeIsPreemptible(*sym); 461 462 // Collect sections to merge. 463 for (InputSectionBase *sec : inputSections) { 464 auto *s = cast<InputSection>(sec); 465 if (isEligible(s)) 466 sections.push_back(s); 467 } 468 469 // Initially, we use hash values to partition sections. 470 parallelForEach( 471 sections, [&](InputSection *s) { s->eqClass[0] = xxHash64(s->data()); }); 472 473 for (unsigned cnt = 0; cnt != 2; ++cnt) { 474 parallelForEach(sections, [&](InputSection *s) { 475 if (s->areRelocsRela) 476 combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>()); 477 else 478 combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>()); 479 }); 480 } 481 482 // From now on, sections in Sections vector are ordered so that sections 483 // in the same equivalence class are consecutive in the vector. 484 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { 485 return a->eqClass[0] < b->eqClass[0]; 486 }); 487 488 // Compare static contents and assign unique IDs for each static content. 489 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); }); 490 491 // Split groups by comparing relocations until convergence is obtained. 492 do { 493 repeat = false; 494 forEachClass( 495 [&](size_t begin, size_t end) { segregate(begin, end, false); }); 496 } while (repeat); 497 498 log("ICF needed " + Twine(cnt) + " iterations"); 499 500 // Merge sections by the equivalence class. 501 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) { 502 if (end - begin == 1) 503 return; 504 print("selected section " + toString(sections[begin])); 505 for (size_t i = begin + 1; i < end; ++i) { 506 print(" removing identical section " + toString(sections[i])); 507 sections[begin]->replace(sections[i]); 508 509 // At this point we know sections merged are fully identical and hence 510 // we want to remove duplicate implicit dependencies such as link order 511 // and relocation sections. 512 for (InputSection *isec : sections[i]->dependentSections) 513 isec->markDead(); 514 } 515 }); 516 517 // InputSectionDescription::sections is populated by processSectionCommands(). 518 // ICF may fold some input sections assigned to output sections. Remove them. 519 for (BaseCommand *base : script->sectionCommands) 520 if (auto *sec = dyn_cast<OutputSection>(base)) 521 for (BaseCommand *sub_base : sec->sectionCommands) 522 if (auto *isd = dyn_cast<InputSectionDescription>(sub_base)) 523 llvm::erase_if(isd->sections, 524 [](InputSection *isec) { return !isec->isLive(); }); 525 } 526 527 // ICF entry point function. 528 template <class ELFT> void elf::doIcf() { 529 llvm::TimeTraceScope timeScope("ICF"); 530 ICF<ELFT>().run(); 531 } 532 533 template void elf::doIcf<ELF32LE>(); 534 template void elf::doIcf<ELF32BE>(); 535 template void elf::doIcf<ELF64LE>(); 536 template void elf::doIcf<ELF64BE>(); 537