xref: /freebsd/contrib/llvm-project/lld/ELF/ICF.cpp (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
19 //
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
23 //
24 //   void foo() { bar(); }
25 //   void bar() { foo(); }
26 //
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
30 //
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
34 //
35 // 1. First, we partition sections using their hash values as keys. Hash
36 //    values contain section types, section contents and numbers of
37 //    relocations. During this step, relocation targets are not taken into
38 //    account. We just put sections that apparently differ into different
39 //    equivalence classes.
40 //
41 // 2. Next, for each equivalence class, we visit sections to compare
42 //    relocation targets. Relocation targets are considered equivalent if
43 //    their targets are in the same equivalence class. Sections with
44 //    different relocation targets are put into different equivalence
45 //    classes.
46 //
47 // 3. If we split an equivalence class in step 2, two relocations
48 //    previously target the same equivalence class may now target
49 //    different equivalence classes. Therefore, we repeat step 2 until a
50 //    convergence is obtained.
51 //
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 //    merge all the other sections in C with it.
54 //
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
57 //
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
60 //
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
68 //
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72 //
73 //===----------------------------------------------------------------------===//
74 
75 #include "ICF.h"
76 #include "Config.h"
77 #include "EhFrame.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
81 #include "Symbols.h"
82 #include "SyntheticSections.h"
83 #include "Writer.h"
84 #include "llvm/ADT/StringExtras.h"
85 #include "llvm/BinaryFormat/ELF.h"
86 #include "llvm/Object/ELF.h"
87 #include "llvm/Support/Parallel.h"
88 #include "llvm/Support/TimeProfiler.h"
89 #include "llvm/Support/xxhash.h"
90 #include <algorithm>
91 #include <atomic>
92 
93 using namespace llvm;
94 using namespace llvm::ELF;
95 using namespace llvm::object;
96 using namespace lld;
97 using namespace lld::elf;
98 
99 namespace {
100 template <class ELFT> class ICF {
101 public:
102   void run();
103 
104 private:
105   void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
106 
107   template <class RelTy>
108   bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
109                   const InputSection *b, ArrayRef<RelTy> relsB);
110 
111   template <class RelTy>
112   bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
113                   const InputSection *b, ArrayRef<RelTy> relsB);
114 
115   bool equalsConstant(const InputSection *a, const InputSection *b);
116   bool equalsVariable(const InputSection *a, const InputSection *b);
117 
118   size_t findBoundary(size_t begin, size_t end);
119 
120   void forEachClassRange(size_t begin, size_t end,
121                          llvm::function_ref<void(size_t, size_t)> fn);
122 
123   void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
124 
125   SmallVector<InputSection *, 0> sections;
126 
127   // We repeat the main loop while `Repeat` is true.
128   std::atomic<bool> repeat;
129 
130   // The main loop counter.
131   int cnt = 0;
132 
133   // We have two locations for equivalence classes. On the first iteration
134   // of the main loop, Class[0] has a valid value, and Class[1] contains
135   // garbage. We read equivalence classes from slot 0 and write to slot 1.
136   // So, Class[0] represents the current class, and Class[1] represents
137   // the next class. On each iteration, we switch their roles and use them
138   // alternately.
139   //
140   // Why are we doing this? Recall that other threads may be working on
141   // other equivalence classes in parallel. They may read sections that we
142   // are updating. We cannot update equivalence classes in place because
143   // it breaks the invariance that all possibly-identical sections must be
144   // in the same equivalence class at any moment. In other words, the for
145   // loop to update equivalence classes is not atomic, and that is
146   // observable from other threads. By writing new classes to other
147   // places, we can keep the invariance.
148   //
149   // Below, `Current` has the index of the current class, and `Next` has
150   // the index of the next class. If threading is enabled, they are either
151   // (0, 1) or (1, 0).
152   //
153   // Note on single-thread: if that's the case, they are always (0, 0)
154   // because we can safely read the next class without worrying about race
155   // conditions. Using the same location makes this algorithm converge
156   // faster because it uses results of the same iteration earlier.
157   int current = 0;
158   int next = 0;
159 };
160 }
161 
162 // Returns true if section S is subject of ICF.
163 static bool isEligible(InputSection *s) {
164   if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
165     return false;
166 
167   // Don't merge writable sections. .data.rel.ro sections are marked as writable
168   // but are semantically read-only.
169   if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
170       !s->name.startswith(".data.rel.ro."))
171     return false;
172 
173   // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
174   // so we don't consider them for ICF individually.
175   if (s->flags & SHF_LINK_ORDER)
176     return false;
177 
178   // Don't merge synthetic sections as their Data member is not valid and empty.
179   // The Data member needs to be valid for ICF as it is used by ICF to determine
180   // the equality of section contents.
181   if (isa<SyntheticSection>(s))
182     return false;
183 
184   // .init and .fini contains instructions that must be executed to initialize
185   // and finalize the process. They cannot and should not be merged.
186   if (s->name == ".init" || s->name == ".fini")
187     return false;
188 
189   // A user program may enumerate sections named with a C identifier using
190   // __start_* and __stop_* symbols. We cannot ICF any such sections because
191   // that could change program semantics.
192   if (isValidCIdentifier(s->name))
193     return false;
194 
195   return true;
196 }
197 
198 // Split an equivalence class into smaller classes.
199 template <class ELFT>
200 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
201                           bool constant) {
202   // This loop rearranges sections in [Begin, End) so that all sections
203   // that are equal in terms of equals{Constant,Variable} are contiguous
204   // in [Begin, End).
205   //
206   // The algorithm is quadratic in the worst case, but that is not an
207   // issue in practice because the number of the distinct sections in
208   // each range is usually very small.
209 
210   while (begin < end) {
211     // Divide [Begin, End) into two. Let Mid be the start index of the
212     // second group.
213     auto bound =
214         std::stable_partition(sections.begin() + begin + 1,
215                               sections.begin() + end, [&](InputSection *s) {
216                                 if (constant)
217                                   return equalsConstant(sections[begin], s);
218                                 return equalsVariable(sections[begin], s);
219                               });
220     size_t mid = bound - sections.begin();
221 
222     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
223     // updating the sections in [Begin, Mid). We use Mid as the basis for
224     // the equivalence class ID because every group ends with a unique index.
225     // Add this to eqClassBase to avoid equality with unique IDs.
226     for (size_t i = begin; i < mid; ++i)
227       sections[i]->eqClass[next] = eqClassBase + mid;
228 
229     // If we created a group, we need to iterate the main loop again.
230     if (mid != end)
231       repeat = true;
232 
233     begin = mid;
234   }
235 }
236 
237 // Compare two lists of relocations.
238 template <class ELFT>
239 template <class RelTy>
240 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
241                            const InputSection *secB, ArrayRef<RelTy> rb) {
242   if (ra.size() != rb.size())
243     return false;
244   for (size_t i = 0; i < ra.size(); ++i) {
245     if (ra[i].r_offset != rb[i].r_offset ||
246         ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
247       return false;
248 
249     uint64_t addA = getAddend<ELFT>(ra[i]);
250     uint64_t addB = getAddend<ELFT>(rb[i]);
251 
252     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
253     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
254     if (&sa == &sb) {
255       if (addA == addB)
256         continue;
257       return false;
258     }
259 
260     auto *da = dyn_cast<Defined>(&sa);
261     auto *db = dyn_cast<Defined>(&sb);
262 
263     // Placeholder symbols generated by linker scripts look the same now but
264     // may have different values later.
265     if (!da || !db || da->scriptDefined || db->scriptDefined)
266       return false;
267 
268     // When comparing a pair of relocations, if they refer to different symbols,
269     // and either symbol is preemptible, the containing sections should be
270     // considered different. This is because even if the sections are identical
271     // in this DSO, they may not be after preemption.
272     if (da->isPreemptible || db->isPreemptible)
273       return false;
274 
275     // Relocations referring to absolute symbols are constant-equal if their
276     // values are equal.
277     if (!da->section && !db->section && da->value + addA == db->value + addB)
278       continue;
279     if (!da->section || !db->section)
280       return false;
281 
282     if (da->section->kind() != db->section->kind())
283       return false;
284 
285     // Relocations referring to InputSections are constant-equal if their
286     // section offsets are equal.
287     if (isa<InputSection>(da->section)) {
288       if (da->value + addA == db->value + addB)
289         continue;
290       return false;
291     }
292 
293     // Relocations referring to MergeInputSections are constant-equal if their
294     // offsets in the output section are equal.
295     auto *x = dyn_cast<MergeInputSection>(da->section);
296     if (!x)
297       return false;
298     auto *y = cast<MergeInputSection>(db->section);
299     if (x->getParent() != y->getParent())
300       return false;
301 
302     uint64_t offsetA =
303         sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
304     uint64_t offsetB =
305         sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
306     if (offsetA != offsetB)
307       return false;
308   }
309 
310   return true;
311 }
312 
313 // Compare "non-moving" part of two InputSections, namely everything
314 // except relocation targets.
315 template <class ELFT>
316 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
317   if (a->flags != b->flags || a->getSize() != b->getSize() ||
318       a->data() != b->data())
319     return false;
320 
321   // If two sections have different output sections, we cannot merge them.
322   assert(a->getParent() && b->getParent());
323   if (a->getParent() != b->getParent())
324     return false;
325 
326   const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
327   const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
328   return ra.areRelocsRel() ? constantEq(a, ra.rels, b, rb.rels)
329                            : constantEq(a, ra.relas, b, rb.relas);
330 }
331 
332 // Compare two lists of relocations. Returns true if all pairs of
333 // relocations point to the same section in terms of ICF.
334 template <class ELFT>
335 template <class RelTy>
336 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
337                            const InputSection *secB, ArrayRef<RelTy> rb) {
338   assert(ra.size() == rb.size());
339 
340   for (size_t i = 0; i < ra.size(); ++i) {
341     // The two sections must be identical.
342     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
343     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
344     if (&sa == &sb)
345       continue;
346 
347     auto *da = cast<Defined>(&sa);
348     auto *db = cast<Defined>(&sb);
349 
350     // We already dealt with absolute and non-InputSection symbols in
351     // constantEq, and for InputSections we have already checked everything
352     // except the equivalence class.
353     if (!da->section)
354       continue;
355     auto *x = dyn_cast<InputSection>(da->section);
356     if (!x)
357       continue;
358     auto *y = cast<InputSection>(db->section);
359 
360     // Sections that are in the special equivalence class 0, can never be the
361     // same in terms of the equivalence class.
362     if (x->eqClass[current] == 0)
363       return false;
364     if (x->eqClass[current] != y->eqClass[current])
365       return false;
366   };
367 
368   return true;
369 }
370 
371 // Compare "moving" part of two InputSections, namely relocation targets.
372 template <class ELFT>
373 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
374   const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
375   const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
376   return ra.areRelocsRel() ? variableEq(a, ra.rels, b, rb.rels)
377                            : variableEq(a, ra.relas, b, rb.relas);
378 }
379 
380 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
381   uint32_t eqClass = sections[begin]->eqClass[current];
382   for (size_t i = begin + 1; i < end; ++i)
383     if (eqClass != sections[i]->eqClass[current])
384       return i;
385   return end;
386 }
387 
388 // Sections in the same equivalence class are contiguous in Sections
389 // vector. Therefore, Sections vector can be considered as contiguous
390 // groups of sections, grouped by the class.
391 //
392 // This function calls Fn on every group within [Begin, End).
393 template <class ELFT>
394 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
395                                   llvm::function_ref<void(size_t, size_t)> fn) {
396   while (begin < end) {
397     size_t mid = findBoundary(begin, end);
398     fn(begin, mid);
399     begin = mid;
400   }
401 }
402 
403 // Call Fn on each equivalence class.
404 template <class ELFT>
405 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
406   // If threading is disabled or the number of sections are
407   // too small to use threading, call Fn sequentially.
408   if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
409     forEachClassRange(0, sections.size(), fn);
410     ++cnt;
411     return;
412   }
413 
414   current = cnt % 2;
415   next = (cnt + 1) % 2;
416 
417   // Shard into non-overlapping intervals, and call Fn in parallel.
418   // The sharding must be completed before any calls to Fn are made
419   // so that Fn can modify the Chunks in its shard without causing data
420   // races.
421   const size_t numShards = 256;
422   size_t step = sections.size() / numShards;
423   size_t boundaries[numShards + 1];
424   boundaries[0] = 0;
425   boundaries[numShards] = sections.size();
426 
427   parallelForEachN(1, numShards, [&](size_t i) {
428     boundaries[i] = findBoundary((i - 1) * step, sections.size());
429   });
430 
431   parallelForEachN(1, numShards + 1, [&](size_t i) {
432     if (boundaries[i - 1] < boundaries[i])
433       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
434   });
435   ++cnt;
436 }
437 
438 // Combine the hashes of the sections referenced by the given section into its
439 // hash.
440 template <class ELFT, class RelTy>
441 static void combineRelocHashes(unsigned cnt, InputSection *isec,
442                                ArrayRef<RelTy> rels) {
443   uint32_t hash = isec->eqClass[cnt % 2];
444   for (RelTy rel : rels) {
445     Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
446     if (auto *d = dyn_cast<Defined>(&s))
447       if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
448         hash += relSec->eqClass[cnt % 2];
449   }
450   // Set MSB to 1 to avoid collisions with unique IDs.
451   isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
452 }
453 
454 static void print(const Twine &s) {
455   if (config->printIcfSections)
456     message(s);
457 }
458 
459 // The main function of ICF.
460 template <class ELFT> void ICF<ELFT>::run() {
461   // Compute isPreemptible early. We may add more symbols later, so this loop
462   // cannot be merged with the later computeIsPreemptible() pass which is used
463   // by scanRelocations().
464   if (config->hasDynSymTab)
465     for (Symbol *sym : symtab->symbols())
466       sym->isPreemptible = computeIsPreemptible(*sym);
467 
468   // Two text sections may have identical content and relocations but different
469   // LSDA, e.g. the two functions may have catch blocks of different types. If a
470   // text section is referenced by a .eh_frame FDE with LSDA, it is not
471   // eligible. This is implemented by iterating over CIE/FDE and setting
472   // eqClass[0] to the referenced text section from a live FDE.
473   //
474   // If two .gcc_except_table have identical semantics (usually identical
475   // content with PC-relative encoding), we will lose folding opportunity.
476   uint32_t uniqueId = 0;
477   for (Partition &part : partitions)
478     part.ehFrame->iterateFDEWithLSDA<ELFT>(
479         [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
480 
481   // Collect sections to merge.
482   for (InputSectionBase *sec : inputSections) {
483     auto *s = cast<InputSection>(sec);
484     if (s->eqClass[0] == 0) {
485       if (isEligible(s))
486         sections.push_back(s);
487       else
488         // Ineligible sections are assigned unique IDs, i.e. each section
489         // belongs to an equivalence class of its own.
490         s->eqClass[0] = s->eqClass[1] = ++uniqueId;
491     }
492   }
493 
494   // Initially, we use hash values to partition sections.
495   parallelForEach(sections, [&](InputSection *s) {
496     // Set MSB to 1 to avoid collisions with unique IDs.
497     s->eqClass[0] = xxHash64(s->data()) | (1U << 31);
498   });
499 
500   // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
501   // reduce the average sizes of equivalence classes, i.e. segregate() which has
502   // a large time complexity will have less work to do.
503   for (unsigned cnt = 0; cnt != 2; ++cnt) {
504     parallelForEach(sections, [&](InputSection *s) {
505       const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
506       if (rels.areRelocsRel())
507         combineRelocHashes<ELFT>(cnt, s, rels.rels);
508       else
509         combineRelocHashes<ELFT>(cnt, s, rels.relas);
510     });
511   }
512 
513   // From now on, sections in Sections vector are ordered so that sections
514   // in the same equivalence class are consecutive in the vector.
515   llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
516     return a->eqClass[0] < b->eqClass[0];
517   });
518 
519   // Compare static contents and assign unique equivalence class IDs for each
520   // static content. Use a base offset for these IDs to ensure no overlap with
521   // the unique IDs already assigned.
522   uint32_t eqClassBase = ++uniqueId;
523   forEachClass([&](size_t begin, size_t end) {
524     segregate(begin, end, eqClassBase, true);
525   });
526 
527   // Split groups by comparing relocations until convergence is obtained.
528   do {
529     repeat = false;
530     forEachClass([&](size_t begin, size_t end) {
531       segregate(begin, end, eqClassBase, false);
532     });
533   } while (repeat);
534 
535   log("ICF needed " + Twine(cnt) + " iterations");
536 
537   // Merge sections by the equivalence class.
538   forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
539     if (end - begin == 1)
540       return;
541     print("selected section " + toString(sections[begin]));
542     for (size_t i = begin + 1; i < end; ++i) {
543       print("  removing identical section " + toString(sections[i]));
544       sections[begin]->replace(sections[i]);
545 
546       // At this point we know sections merged are fully identical and hence
547       // we want to remove duplicate implicit dependencies such as link order
548       // and relocation sections.
549       for (InputSection *isec : sections[i]->dependentSections)
550         isec->markDead();
551     }
552   });
553 
554   // Change Defined symbol's section field to the canonical one.
555   auto fold = [](Symbol *sym) {
556     if (auto *d = dyn_cast<Defined>(sym))
557       if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
558         if (sec->repl != d->section) {
559           d->section = sec->repl;
560           d->folded = true;
561         }
562   };
563   for (Symbol *sym : symtab->symbols())
564     fold(sym);
565   parallelForEach(objectFiles, [&](ELFFileBase *file) {
566     for (Symbol *sym : file->getLocalSymbols())
567       fold(sym);
568   });
569 
570   // InputSectionDescription::sections is populated by processSectionCommands().
571   // ICF may fold some input sections assigned to output sections. Remove them.
572   for (SectionCommand *cmd : script->sectionCommands)
573     if (auto *sec = dyn_cast<OutputSection>(cmd))
574       for (SectionCommand *subCmd : sec->commands)
575         if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
576           llvm::erase_if(isd->sections,
577                          [](InputSection *isec) { return !isec->isLive(); });
578 }
579 
580 // ICF entry point function.
581 template <class ELFT> void elf::doIcf() {
582   llvm::TimeTraceScope timeScope("ICF");
583   ICF<ELFT>().run();
584 }
585 
586 template void elf::doIcf<ELF32LE>();
587 template void elf::doIcf<ELF32BE>();
588 template void elf::doIcf<ELF64LE>();
589 template void elf::doIcf<ELF64BE>();
590