1*0b57cec5SDimitry Andric //===- ICF.cpp ------------------------------------------------------------===// 2*0b57cec5SDimitry Andric // 3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric // 7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric // 9*0b57cec5SDimitry Andric // ICF is short for Identical Code Folding. This is a size optimization to 10*0b57cec5SDimitry Andric // identify and merge two or more read-only sections (typically functions) 11*0b57cec5SDimitry Andric // that happened to have the same contents. It usually reduces output size 12*0b57cec5SDimitry Andric // by a few percent. 13*0b57cec5SDimitry Andric // 14*0b57cec5SDimitry Andric // In ICF, two sections are considered identical if they have the same 15*0b57cec5SDimitry Andric // section flags, section data, and relocations. Relocations are tricky, 16*0b57cec5SDimitry Andric // because two relocations are considered the same if they have the same 17*0b57cec5SDimitry Andric // relocation types, values, and if they point to the same sections *in 18*0b57cec5SDimitry Andric // terms of ICF*. 19*0b57cec5SDimitry Andric // 20*0b57cec5SDimitry Andric // Here is an example. If foo and bar defined below are compiled to the 21*0b57cec5SDimitry Andric // same machine instructions, ICF can and should merge the two, although 22*0b57cec5SDimitry Andric // their relocations point to each other. 23*0b57cec5SDimitry Andric // 24*0b57cec5SDimitry Andric // void foo() { bar(); } 25*0b57cec5SDimitry Andric // void bar() { foo(); } 26*0b57cec5SDimitry Andric // 27*0b57cec5SDimitry Andric // If you merge the two, their relocations point to the same section and 28*0b57cec5SDimitry Andric // thus you know they are mergeable, but how do you know they are 29*0b57cec5SDimitry Andric // mergeable in the first place? This is not an easy problem to solve. 30*0b57cec5SDimitry Andric // 31*0b57cec5SDimitry Andric // What we are doing in LLD is to partition sections into equivalence 32*0b57cec5SDimitry Andric // classes. Sections in the same equivalence class when the algorithm 33*0b57cec5SDimitry Andric // terminates are considered identical. Here are details: 34*0b57cec5SDimitry Andric // 35*0b57cec5SDimitry Andric // 1. First, we partition sections using their hash values as keys. Hash 36*0b57cec5SDimitry Andric // values contain section types, section contents and numbers of 37*0b57cec5SDimitry Andric // relocations. During this step, relocation targets are not taken into 38*0b57cec5SDimitry Andric // account. We just put sections that apparently differ into different 39*0b57cec5SDimitry Andric // equivalence classes. 40*0b57cec5SDimitry Andric // 41*0b57cec5SDimitry Andric // 2. Next, for each equivalence class, we visit sections to compare 42*0b57cec5SDimitry Andric // relocation targets. Relocation targets are considered equivalent if 43*0b57cec5SDimitry Andric // their targets are in the same equivalence class. Sections with 44*0b57cec5SDimitry Andric // different relocation targets are put into different equivalence 45*0b57cec5SDimitry Andric // clases. 46*0b57cec5SDimitry Andric // 47*0b57cec5SDimitry Andric // 3. If we split an equivalence class in step 2, two relocations 48*0b57cec5SDimitry Andric // previously target the same equivalence class may now target 49*0b57cec5SDimitry Andric // different equivalence classes. Therefore, we repeat step 2 until a 50*0b57cec5SDimitry Andric // convergence is obtained. 51*0b57cec5SDimitry Andric // 52*0b57cec5SDimitry Andric // 4. For each equivalence class C, pick an arbitrary section in C, and 53*0b57cec5SDimitry Andric // merge all the other sections in C with it. 54*0b57cec5SDimitry Andric // 55*0b57cec5SDimitry Andric // For small programs, this algorithm needs 3-5 iterations. For large 56*0b57cec5SDimitry Andric // programs such as Chromium, it takes more than 20 iterations. 57*0b57cec5SDimitry Andric // 58*0b57cec5SDimitry Andric // This algorithm was mentioned as an "optimistic algorithm" in [1], 59*0b57cec5SDimitry Andric // though gold implements a different algorithm than this. 60*0b57cec5SDimitry Andric // 61*0b57cec5SDimitry Andric // We parallelize each step so that multiple threads can work on different 62*0b57cec5SDimitry Andric // equivalence classes concurrently. That gave us a large performance 63*0b57cec5SDimitry Andric // boost when applying ICF on large programs. For example, MSVC link.exe 64*0b57cec5SDimitry Andric // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 65*0b57cec5SDimitry Andric // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 66*0b57cec5SDimitry Andric // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 67*0b57cec5SDimitry Andric // faster than MSVC or gold though. 68*0b57cec5SDimitry Andric // 69*0b57cec5SDimitry Andric // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 70*0b57cec5SDimitry Andric // in the Gold Linker 71*0b57cec5SDimitry Andric // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 72*0b57cec5SDimitry Andric // 73*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 74*0b57cec5SDimitry Andric 75*0b57cec5SDimitry Andric #include "ICF.h" 76*0b57cec5SDimitry Andric #include "Config.h" 77*0b57cec5SDimitry Andric #include "SymbolTable.h" 78*0b57cec5SDimitry Andric #include "Symbols.h" 79*0b57cec5SDimitry Andric #include "SyntheticSections.h" 80*0b57cec5SDimitry Andric #include "Writer.h" 81*0b57cec5SDimitry Andric #include "lld/Common/Threads.h" 82*0b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 83*0b57cec5SDimitry Andric #include "llvm/BinaryFormat/ELF.h" 84*0b57cec5SDimitry Andric #include "llvm/Object/ELF.h" 85*0b57cec5SDimitry Andric #include "llvm/Support/xxhash.h" 86*0b57cec5SDimitry Andric #include <algorithm> 87*0b57cec5SDimitry Andric #include <atomic> 88*0b57cec5SDimitry Andric 89*0b57cec5SDimitry Andric using namespace lld; 90*0b57cec5SDimitry Andric using namespace lld::elf; 91*0b57cec5SDimitry Andric using namespace llvm; 92*0b57cec5SDimitry Andric using namespace llvm::ELF; 93*0b57cec5SDimitry Andric using namespace llvm::object; 94*0b57cec5SDimitry Andric 95*0b57cec5SDimitry Andric namespace { 96*0b57cec5SDimitry Andric template <class ELFT> class ICF { 97*0b57cec5SDimitry Andric public: 98*0b57cec5SDimitry Andric void run(); 99*0b57cec5SDimitry Andric 100*0b57cec5SDimitry Andric private: 101*0b57cec5SDimitry Andric void segregate(size_t begin, size_t end, bool constant); 102*0b57cec5SDimitry Andric 103*0b57cec5SDimitry Andric template <class RelTy> 104*0b57cec5SDimitry Andric bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA, 105*0b57cec5SDimitry Andric const InputSection *b, ArrayRef<RelTy> relsB); 106*0b57cec5SDimitry Andric 107*0b57cec5SDimitry Andric template <class RelTy> 108*0b57cec5SDimitry Andric bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA, 109*0b57cec5SDimitry Andric const InputSection *b, ArrayRef<RelTy> relsB); 110*0b57cec5SDimitry Andric 111*0b57cec5SDimitry Andric bool equalsConstant(const InputSection *a, const InputSection *b); 112*0b57cec5SDimitry Andric bool equalsVariable(const InputSection *a, const InputSection *b); 113*0b57cec5SDimitry Andric 114*0b57cec5SDimitry Andric size_t findBoundary(size_t begin, size_t end); 115*0b57cec5SDimitry Andric 116*0b57cec5SDimitry Andric void forEachClassRange(size_t begin, size_t end, 117*0b57cec5SDimitry Andric llvm::function_ref<void(size_t, size_t)> fn); 118*0b57cec5SDimitry Andric 119*0b57cec5SDimitry Andric void forEachClass(llvm::function_ref<void(size_t, size_t)> fn); 120*0b57cec5SDimitry Andric 121*0b57cec5SDimitry Andric std::vector<InputSection *> sections; 122*0b57cec5SDimitry Andric 123*0b57cec5SDimitry Andric // We repeat the main loop while `Repeat` is true. 124*0b57cec5SDimitry Andric std::atomic<bool> repeat; 125*0b57cec5SDimitry Andric 126*0b57cec5SDimitry Andric // The main loop counter. 127*0b57cec5SDimitry Andric int cnt = 0; 128*0b57cec5SDimitry Andric 129*0b57cec5SDimitry Andric // We have two locations for equivalence classes. On the first iteration 130*0b57cec5SDimitry Andric // of the main loop, Class[0] has a valid value, and Class[1] contains 131*0b57cec5SDimitry Andric // garbage. We read equivalence classes from slot 0 and write to slot 1. 132*0b57cec5SDimitry Andric // So, Class[0] represents the current class, and Class[1] represents 133*0b57cec5SDimitry Andric // the next class. On each iteration, we switch their roles and use them 134*0b57cec5SDimitry Andric // alternately. 135*0b57cec5SDimitry Andric // 136*0b57cec5SDimitry Andric // Why are we doing this? Recall that other threads may be working on 137*0b57cec5SDimitry Andric // other equivalence classes in parallel. They may read sections that we 138*0b57cec5SDimitry Andric // are updating. We cannot update equivalence classes in place because 139*0b57cec5SDimitry Andric // it breaks the invariance that all possibly-identical sections must be 140*0b57cec5SDimitry Andric // in the same equivalence class at any moment. In other words, the for 141*0b57cec5SDimitry Andric // loop to update equivalence classes is not atomic, and that is 142*0b57cec5SDimitry Andric // observable from other threads. By writing new classes to other 143*0b57cec5SDimitry Andric // places, we can keep the invariance. 144*0b57cec5SDimitry Andric // 145*0b57cec5SDimitry Andric // Below, `Current` has the index of the current class, and `Next` has 146*0b57cec5SDimitry Andric // the index of the next class. If threading is enabled, they are either 147*0b57cec5SDimitry Andric // (0, 1) or (1, 0). 148*0b57cec5SDimitry Andric // 149*0b57cec5SDimitry Andric // Note on single-thread: if that's the case, they are always (0, 0) 150*0b57cec5SDimitry Andric // because we can safely read the next class without worrying about race 151*0b57cec5SDimitry Andric // conditions. Using the same location makes this algorithm converge 152*0b57cec5SDimitry Andric // faster because it uses results of the same iteration earlier. 153*0b57cec5SDimitry Andric int current = 0; 154*0b57cec5SDimitry Andric int next = 0; 155*0b57cec5SDimitry Andric }; 156*0b57cec5SDimitry Andric } 157*0b57cec5SDimitry Andric 158*0b57cec5SDimitry Andric // Returns true if section S is subject of ICF. 159*0b57cec5SDimitry Andric static bool isEligible(InputSection *s) { 160*0b57cec5SDimitry Andric if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) 161*0b57cec5SDimitry Andric return false; 162*0b57cec5SDimitry Andric 163*0b57cec5SDimitry Andric // Don't merge writable sections. .data.rel.ro sections are marked as writable 164*0b57cec5SDimitry Andric // but are semantically read-only. 165*0b57cec5SDimitry Andric if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && 166*0b57cec5SDimitry Andric !s->name.startswith(".data.rel.ro.")) 167*0b57cec5SDimitry Andric return false; 168*0b57cec5SDimitry Andric 169*0b57cec5SDimitry Andric // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, 170*0b57cec5SDimitry Andric // so we don't consider them for ICF individually. 171*0b57cec5SDimitry Andric if (s->flags & SHF_LINK_ORDER) 172*0b57cec5SDimitry Andric return false; 173*0b57cec5SDimitry Andric 174*0b57cec5SDimitry Andric // Don't merge synthetic sections as their Data member is not valid and empty. 175*0b57cec5SDimitry Andric // The Data member needs to be valid for ICF as it is used by ICF to determine 176*0b57cec5SDimitry Andric // the equality of section contents. 177*0b57cec5SDimitry Andric if (isa<SyntheticSection>(s)) 178*0b57cec5SDimitry Andric return false; 179*0b57cec5SDimitry Andric 180*0b57cec5SDimitry Andric // .init and .fini contains instructions that must be executed to initialize 181*0b57cec5SDimitry Andric // and finalize the process. They cannot and should not be merged. 182*0b57cec5SDimitry Andric if (s->name == ".init" || s->name == ".fini") 183*0b57cec5SDimitry Andric return false; 184*0b57cec5SDimitry Andric 185*0b57cec5SDimitry Andric // A user program may enumerate sections named with a C identifier using 186*0b57cec5SDimitry Andric // __start_* and __stop_* symbols. We cannot ICF any such sections because 187*0b57cec5SDimitry Andric // that could change program semantics. 188*0b57cec5SDimitry Andric if (isValidCIdentifier(s->name)) 189*0b57cec5SDimitry Andric return false; 190*0b57cec5SDimitry Andric 191*0b57cec5SDimitry Andric return true; 192*0b57cec5SDimitry Andric } 193*0b57cec5SDimitry Andric 194*0b57cec5SDimitry Andric // Split an equivalence class into smaller classes. 195*0b57cec5SDimitry Andric template <class ELFT> 196*0b57cec5SDimitry Andric void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) { 197*0b57cec5SDimitry Andric // This loop rearranges sections in [Begin, End) so that all sections 198*0b57cec5SDimitry Andric // that are equal in terms of equals{Constant,Variable} are contiguous 199*0b57cec5SDimitry Andric // in [Begin, End). 200*0b57cec5SDimitry Andric // 201*0b57cec5SDimitry Andric // The algorithm is quadratic in the worst case, but that is not an 202*0b57cec5SDimitry Andric // issue in practice because the number of the distinct sections in 203*0b57cec5SDimitry Andric // each range is usually very small. 204*0b57cec5SDimitry Andric 205*0b57cec5SDimitry Andric while (begin < end) { 206*0b57cec5SDimitry Andric // Divide [Begin, End) into two. Let Mid be the start index of the 207*0b57cec5SDimitry Andric // second group. 208*0b57cec5SDimitry Andric auto bound = 209*0b57cec5SDimitry Andric std::stable_partition(sections.begin() + begin + 1, 210*0b57cec5SDimitry Andric sections.begin() + end, [&](InputSection *s) { 211*0b57cec5SDimitry Andric if (constant) 212*0b57cec5SDimitry Andric return equalsConstant(sections[begin], s); 213*0b57cec5SDimitry Andric return equalsVariable(sections[begin], s); 214*0b57cec5SDimitry Andric }); 215*0b57cec5SDimitry Andric size_t mid = bound - sections.begin(); 216*0b57cec5SDimitry Andric 217*0b57cec5SDimitry Andric // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 218*0b57cec5SDimitry Andric // updating the sections in [Begin, Mid). We use Mid as an equivalence 219*0b57cec5SDimitry Andric // class ID because every group ends with a unique index. 220*0b57cec5SDimitry Andric for (size_t i = begin; i < mid; ++i) 221*0b57cec5SDimitry Andric sections[i]->eqClass[next] = mid; 222*0b57cec5SDimitry Andric 223*0b57cec5SDimitry Andric // If we created a group, we need to iterate the main loop again. 224*0b57cec5SDimitry Andric if (mid != end) 225*0b57cec5SDimitry Andric repeat = true; 226*0b57cec5SDimitry Andric 227*0b57cec5SDimitry Andric begin = mid; 228*0b57cec5SDimitry Andric } 229*0b57cec5SDimitry Andric } 230*0b57cec5SDimitry Andric 231*0b57cec5SDimitry Andric // Compare two lists of relocations. 232*0b57cec5SDimitry Andric template <class ELFT> 233*0b57cec5SDimitry Andric template <class RelTy> 234*0b57cec5SDimitry Andric bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra, 235*0b57cec5SDimitry Andric const InputSection *secB, ArrayRef<RelTy> rb) { 236*0b57cec5SDimitry Andric for (size_t i = 0; i < ra.size(); ++i) { 237*0b57cec5SDimitry Andric if (ra[i].r_offset != rb[i].r_offset || 238*0b57cec5SDimitry Andric ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL)) 239*0b57cec5SDimitry Andric return false; 240*0b57cec5SDimitry Andric 241*0b57cec5SDimitry Andric uint64_t addA = getAddend<ELFT>(ra[i]); 242*0b57cec5SDimitry Andric uint64_t addB = getAddend<ELFT>(rb[i]); 243*0b57cec5SDimitry Andric 244*0b57cec5SDimitry Andric Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 245*0b57cec5SDimitry Andric Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 246*0b57cec5SDimitry Andric if (&sa == &sb) { 247*0b57cec5SDimitry Andric if (addA == addB) 248*0b57cec5SDimitry Andric continue; 249*0b57cec5SDimitry Andric return false; 250*0b57cec5SDimitry Andric } 251*0b57cec5SDimitry Andric 252*0b57cec5SDimitry Andric auto *da = dyn_cast<Defined>(&sa); 253*0b57cec5SDimitry Andric auto *db = dyn_cast<Defined>(&sb); 254*0b57cec5SDimitry Andric 255*0b57cec5SDimitry Andric // Placeholder symbols generated by linker scripts look the same now but 256*0b57cec5SDimitry Andric // may have different values later. 257*0b57cec5SDimitry Andric if (!da || !db || da->scriptDefined || db->scriptDefined) 258*0b57cec5SDimitry Andric return false; 259*0b57cec5SDimitry Andric 260*0b57cec5SDimitry Andric // Relocations referring to absolute symbols are constant-equal if their 261*0b57cec5SDimitry Andric // values are equal. 262*0b57cec5SDimitry Andric if (!da->section && !db->section && da->value + addA == db->value + addB) 263*0b57cec5SDimitry Andric continue; 264*0b57cec5SDimitry Andric if (!da->section || !db->section) 265*0b57cec5SDimitry Andric return false; 266*0b57cec5SDimitry Andric 267*0b57cec5SDimitry Andric if (da->section->kind() != db->section->kind()) 268*0b57cec5SDimitry Andric return false; 269*0b57cec5SDimitry Andric 270*0b57cec5SDimitry Andric // Relocations referring to InputSections are constant-equal if their 271*0b57cec5SDimitry Andric // section offsets are equal. 272*0b57cec5SDimitry Andric if (isa<InputSection>(da->section)) { 273*0b57cec5SDimitry Andric if (da->value + addA == db->value + addB) 274*0b57cec5SDimitry Andric continue; 275*0b57cec5SDimitry Andric return false; 276*0b57cec5SDimitry Andric } 277*0b57cec5SDimitry Andric 278*0b57cec5SDimitry Andric // Relocations referring to MergeInputSections are constant-equal if their 279*0b57cec5SDimitry Andric // offsets in the output section are equal. 280*0b57cec5SDimitry Andric auto *x = dyn_cast<MergeInputSection>(da->section); 281*0b57cec5SDimitry Andric if (!x) 282*0b57cec5SDimitry Andric return false; 283*0b57cec5SDimitry Andric auto *y = cast<MergeInputSection>(db->section); 284*0b57cec5SDimitry Andric if (x->getParent() != y->getParent()) 285*0b57cec5SDimitry Andric return false; 286*0b57cec5SDimitry Andric 287*0b57cec5SDimitry Andric uint64_t offsetA = 288*0b57cec5SDimitry Andric sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA; 289*0b57cec5SDimitry Andric uint64_t offsetB = 290*0b57cec5SDimitry Andric sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB; 291*0b57cec5SDimitry Andric if (offsetA != offsetB) 292*0b57cec5SDimitry Andric return false; 293*0b57cec5SDimitry Andric } 294*0b57cec5SDimitry Andric 295*0b57cec5SDimitry Andric return true; 296*0b57cec5SDimitry Andric } 297*0b57cec5SDimitry Andric 298*0b57cec5SDimitry Andric // Compare "non-moving" part of two InputSections, namely everything 299*0b57cec5SDimitry Andric // except relocation targets. 300*0b57cec5SDimitry Andric template <class ELFT> 301*0b57cec5SDimitry Andric bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) { 302*0b57cec5SDimitry Andric if (a->numRelocations != b->numRelocations || a->flags != b->flags || 303*0b57cec5SDimitry Andric a->getSize() != b->getSize() || a->data() != b->data()) 304*0b57cec5SDimitry Andric return false; 305*0b57cec5SDimitry Andric 306*0b57cec5SDimitry Andric // If two sections have different output sections, we cannot merge them. 307*0b57cec5SDimitry Andric // FIXME: This doesn't do the right thing in the case where there is a linker 308*0b57cec5SDimitry Andric // script. We probably need to move output section assignment before ICF to 309*0b57cec5SDimitry Andric // get the correct behaviour here. 310*0b57cec5SDimitry Andric if (getOutputSectionName(a) != getOutputSectionName(b)) 311*0b57cec5SDimitry Andric return false; 312*0b57cec5SDimitry Andric 313*0b57cec5SDimitry Andric if (a->areRelocsRela) 314*0b57cec5SDimitry Andric return constantEq(a, a->template relas<ELFT>(), b, 315*0b57cec5SDimitry Andric b->template relas<ELFT>()); 316*0b57cec5SDimitry Andric return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 317*0b57cec5SDimitry Andric } 318*0b57cec5SDimitry Andric 319*0b57cec5SDimitry Andric // Compare two lists of relocations. Returns true if all pairs of 320*0b57cec5SDimitry Andric // relocations point to the same section in terms of ICF. 321*0b57cec5SDimitry Andric template <class ELFT> 322*0b57cec5SDimitry Andric template <class RelTy> 323*0b57cec5SDimitry Andric bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra, 324*0b57cec5SDimitry Andric const InputSection *secB, ArrayRef<RelTy> rb) { 325*0b57cec5SDimitry Andric assert(ra.size() == rb.size()); 326*0b57cec5SDimitry Andric 327*0b57cec5SDimitry Andric for (size_t i = 0; i < ra.size(); ++i) { 328*0b57cec5SDimitry Andric // The two sections must be identical. 329*0b57cec5SDimitry Andric Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]); 330*0b57cec5SDimitry Andric Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]); 331*0b57cec5SDimitry Andric if (&sa == &sb) 332*0b57cec5SDimitry Andric continue; 333*0b57cec5SDimitry Andric 334*0b57cec5SDimitry Andric auto *da = cast<Defined>(&sa); 335*0b57cec5SDimitry Andric auto *db = cast<Defined>(&sb); 336*0b57cec5SDimitry Andric 337*0b57cec5SDimitry Andric // We already dealt with absolute and non-InputSection symbols in 338*0b57cec5SDimitry Andric // constantEq, and for InputSections we have already checked everything 339*0b57cec5SDimitry Andric // except the equivalence class. 340*0b57cec5SDimitry Andric if (!da->section) 341*0b57cec5SDimitry Andric continue; 342*0b57cec5SDimitry Andric auto *x = dyn_cast<InputSection>(da->section); 343*0b57cec5SDimitry Andric if (!x) 344*0b57cec5SDimitry Andric continue; 345*0b57cec5SDimitry Andric auto *y = cast<InputSection>(db->section); 346*0b57cec5SDimitry Andric 347*0b57cec5SDimitry Andric // Ineligible sections are in the special equivalence class 0. 348*0b57cec5SDimitry Andric // They can never be the same in terms of the equivalence class. 349*0b57cec5SDimitry Andric if (x->eqClass[current] == 0) 350*0b57cec5SDimitry Andric return false; 351*0b57cec5SDimitry Andric if (x->eqClass[current] != y->eqClass[current]) 352*0b57cec5SDimitry Andric return false; 353*0b57cec5SDimitry Andric }; 354*0b57cec5SDimitry Andric 355*0b57cec5SDimitry Andric return true; 356*0b57cec5SDimitry Andric } 357*0b57cec5SDimitry Andric 358*0b57cec5SDimitry Andric // Compare "moving" part of two InputSections, namely relocation targets. 359*0b57cec5SDimitry Andric template <class ELFT> 360*0b57cec5SDimitry Andric bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) { 361*0b57cec5SDimitry Andric if (a->areRelocsRela) 362*0b57cec5SDimitry Andric return variableEq(a, a->template relas<ELFT>(), b, 363*0b57cec5SDimitry Andric b->template relas<ELFT>()); 364*0b57cec5SDimitry Andric return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>()); 365*0b57cec5SDimitry Andric } 366*0b57cec5SDimitry Andric 367*0b57cec5SDimitry Andric template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) { 368*0b57cec5SDimitry Andric uint32_t eqClass = sections[begin]->eqClass[current]; 369*0b57cec5SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 370*0b57cec5SDimitry Andric if (eqClass != sections[i]->eqClass[current]) 371*0b57cec5SDimitry Andric return i; 372*0b57cec5SDimitry Andric return end; 373*0b57cec5SDimitry Andric } 374*0b57cec5SDimitry Andric 375*0b57cec5SDimitry Andric // Sections in the same equivalence class are contiguous in Sections 376*0b57cec5SDimitry Andric // vector. Therefore, Sections vector can be considered as contiguous 377*0b57cec5SDimitry Andric // groups of sections, grouped by the class. 378*0b57cec5SDimitry Andric // 379*0b57cec5SDimitry Andric // This function calls Fn on every group within [Begin, End). 380*0b57cec5SDimitry Andric template <class ELFT> 381*0b57cec5SDimitry Andric void ICF<ELFT>::forEachClassRange(size_t begin, size_t end, 382*0b57cec5SDimitry Andric llvm::function_ref<void(size_t, size_t)> fn) { 383*0b57cec5SDimitry Andric while (begin < end) { 384*0b57cec5SDimitry Andric size_t mid = findBoundary(begin, end); 385*0b57cec5SDimitry Andric fn(begin, mid); 386*0b57cec5SDimitry Andric begin = mid; 387*0b57cec5SDimitry Andric } 388*0b57cec5SDimitry Andric } 389*0b57cec5SDimitry Andric 390*0b57cec5SDimitry Andric // Call Fn on each equivalence class. 391*0b57cec5SDimitry Andric template <class ELFT> 392*0b57cec5SDimitry Andric void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) { 393*0b57cec5SDimitry Andric // If threading is disabled or the number of sections are 394*0b57cec5SDimitry Andric // too small to use threading, call Fn sequentially. 395*0b57cec5SDimitry Andric if (!threadsEnabled || sections.size() < 1024) { 396*0b57cec5SDimitry Andric forEachClassRange(0, sections.size(), fn); 397*0b57cec5SDimitry Andric ++cnt; 398*0b57cec5SDimitry Andric return; 399*0b57cec5SDimitry Andric } 400*0b57cec5SDimitry Andric 401*0b57cec5SDimitry Andric current = cnt % 2; 402*0b57cec5SDimitry Andric next = (cnt + 1) % 2; 403*0b57cec5SDimitry Andric 404*0b57cec5SDimitry Andric // Shard into non-overlapping intervals, and call Fn in parallel. 405*0b57cec5SDimitry Andric // The sharding must be completed before any calls to Fn are made 406*0b57cec5SDimitry Andric // so that Fn can modify the Chunks in its shard without causing data 407*0b57cec5SDimitry Andric // races. 408*0b57cec5SDimitry Andric const size_t numShards = 256; 409*0b57cec5SDimitry Andric size_t step = sections.size() / numShards; 410*0b57cec5SDimitry Andric size_t boundaries[numShards + 1]; 411*0b57cec5SDimitry Andric boundaries[0] = 0; 412*0b57cec5SDimitry Andric boundaries[numShards] = sections.size(); 413*0b57cec5SDimitry Andric 414*0b57cec5SDimitry Andric parallelForEachN(1, numShards, [&](size_t i) { 415*0b57cec5SDimitry Andric boundaries[i] = findBoundary((i - 1) * step, sections.size()); 416*0b57cec5SDimitry Andric }); 417*0b57cec5SDimitry Andric 418*0b57cec5SDimitry Andric parallelForEachN(1, numShards + 1, [&](size_t i) { 419*0b57cec5SDimitry Andric if (boundaries[i - 1] < boundaries[i]) 420*0b57cec5SDimitry Andric forEachClassRange(boundaries[i - 1], boundaries[i], fn); 421*0b57cec5SDimitry Andric }); 422*0b57cec5SDimitry Andric ++cnt; 423*0b57cec5SDimitry Andric } 424*0b57cec5SDimitry Andric 425*0b57cec5SDimitry Andric // Combine the hashes of the sections referenced by the given section into its 426*0b57cec5SDimitry Andric // hash. 427*0b57cec5SDimitry Andric template <class ELFT, class RelTy> 428*0b57cec5SDimitry Andric static void combineRelocHashes(unsigned cnt, InputSection *isec, 429*0b57cec5SDimitry Andric ArrayRef<RelTy> rels) { 430*0b57cec5SDimitry Andric uint32_t hash = isec->eqClass[cnt % 2]; 431*0b57cec5SDimitry Andric for (RelTy rel : rels) { 432*0b57cec5SDimitry Andric Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel); 433*0b57cec5SDimitry Andric if (auto *d = dyn_cast<Defined>(&s)) 434*0b57cec5SDimitry Andric if (auto *relSec = dyn_cast_or_null<InputSection>(d->section)) 435*0b57cec5SDimitry Andric hash += relSec->eqClass[cnt % 2]; 436*0b57cec5SDimitry Andric } 437*0b57cec5SDimitry Andric // Set MSB to 1 to avoid collisions with non-hash IDs. 438*0b57cec5SDimitry Andric isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); 439*0b57cec5SDimitry Andric } 440*0b57cec5SDimitry Andric 441*0b57cec5SDimitry Andric static void print(const Twine &s) { 442*0b57cec5SDimitry Andric if (config->printIcfSections) 443*0b57cec5SDimitry Andric message(s); 444*0b57cec5SDimitry Andric } 445*0b57cec5SDimitry Andric 446*0b57cec5SDimitry Andric // The main function of ICF. 447*0b57cec5SDimitry Andric template <class ELFT> void ICF<ELFT>::run() { 448*0b57cec5SDimitry Andric // Collect sections to merge. 449*0b57cec5SDimitry Andric for (InputSectionBase *sec : inputSections) 450*0b57cec5SDimitry Andric if (auto *s = dyn_cast<InputSection>(sec)) 451*0b57cec5SDimitry Andric if (isEligible(s)) 452*0b57cec5SDimitry Andric sections.push_back(s); 453*0b57cec5SDimitry Andric 454*0b57cec5SDimitry Andric // Initially, we use hash values to partition sections. 455*0b57cec5SDimitry Andric parallelForEach(sections, [&](InputSection *s) { 456*0b57cec5SDimitry Andric s->eqClass[0] = xxHash64(s->data()); 457*0b57cec5SDimitry Andric }); 458*0b57cec5SDimitry Andric 459*0b57cec5SDimitry Andric for (unsigned cnt = 0; cnt != 2; ++cnt) { 460*0b57cec5SDimitry Andric parallelForEach(sections, [&](InputSection *s) { 461*0b57cec5SDimitry Andric if (s->areRelocsRela) 462*0b57cec5SDimitry Andric combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>()); 463*0b57cec5SDimitry Andric else 464*0b57cec5SDimitry Andric combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>()); 465*0b57cec5SDimitry Andric }); 466*0b57cec5SDimitry Andric } 467*0b57cec5SDimitry Andric 468*0b57cec5SDimitry Andric // From now on, sections in Sections vector are ordered so that sections 469*0b57cec5SDimitry Andric // in the same equivalence class are consecutive in the vector. 470*0b57cec5SDimitry Andric llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { 471*0b57cec5SDimitry Andric return a->eqClass[0] < b->eqClass[0]; 472*0b57cec5SDimitry Andric }); 473*0b57cec5SDimitry Andric 474*0b57cec5SDimitry Andric // Compare static contents and assign unique IDs for each static content. 475*0b57cec5SDimitry Andric forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); }); 476*0b57cec5SDimitry Andric 477*0b57cec5SDimitry Andric // Split groups by comparing relocations until convergence is obtained. 478*0b57cec5SDimitry Andric do { 479*0b57cec5SDimitry Andric repeat = false; 480*0b57cec5SDimitry Andric forEachClass( 481*0b57cec5SDimitry Andric [&](size_t begin, size_t end) { segregate(begin, end, false); }); 482*0b57cec5SDimitry Andric } while (repeat); 483*0b57cec5SDimitry Andric 484*0b57cec5SDimitry Andric log("ICF needed " + Twine(cnt) + " iterations"); 485*0b57cec5SDimitry Andric 486*0b57cec5SDimitry Andric // Merge sections by the equivalence class. 487*0b57cec5SDimitry Andric forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) { 488*0b57cec5SDimitry Andric if (end - begin == 1) 489*0b57cec5SDimitry Andric return; 490*0b57cec5SDimitry Andric print("selected section " + toString(sections[begin])); 491*0b57cec5SDimitry Andric for (size_t i = begin + 1; i < end; ++i) { 492*0b57cec5SDimitry Andric print(" removing identical section " + toString(sections[i])); 493*0b57cec5SDimitry Andric sections[begin]->replace(sections[i]); 494*0b57cec5SDimitry Andric 495*0b57cec5SDimitry Andric // At this point we know sections merged are fully identical and hence 496*0b57cec5SDimitry Andric // we want to remove duplicate implicit dependencies such as link order 497*0b57cec5SDimitry Andric // and relocation sections. 498*0b57cec5SDimitry Andric for (InputSection *isec : sections[i]->dependentSections) 499*0b57cec5SDimitry Andric isec->markDead(); 500*0b57cec5SDimitry Andric } 501*0b57cec5SDimitry Andric }); 502*0b57cec5SDimitry Andric } 503*0b57cec5SDimitry Andric 504*0b57cec5SDimitry Andric // ICF entry point function. 505*0b57cec5SDimitry Andric template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); } 506*0b57cec5SDimitry Andric 507*0b57cec5SDimitry Andric template void elf::doIcf<ELF32LE>(); 508*0b57cec5SDimitry Andric template void elf::doIcf<ELF32BE>(); 509*0b57cec5SDimitry Andric template void elf::doIcf<ELF64LE>(); 510*0b57cec5SDimitry Andric template void elf::doIcf<ELF64BE>(); 511