1 //===- CallGraphSort.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement 10 /// for Large-Scale Data-Center Applications 11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf 12 /// 13 /// The goal of this algorithm is to improve runtime performance of the final 14 /// executable by arranging code sections such that page table and i-cache 15 /// misses are minimized. 16 /// 17 /// Definitions: 18 /// * Cluster 19 /// * An ordered list of input sections which are layed out as a unit. At the 20 /// beginning of the algorithm each input section has its own cluster and 21 /// the weight of the cluster is the sum of the weight of all incomming 22 /// edges. 23 /// * Call-Chain Clustering (C³) Heuristic 24 /// * Defines when and how clusters are combined. Pick the highest weighted 25 /// input section then add it to its most likely predecessor if it wouldn't 26 /// penalize it too much. 27 /// * Density 28 /// * The weight of the cluster divided by the size of the cluster. This is a 29 /// proxy for the ammount of execution time spent per byte of the cluster. 30 /// 31 /// It does so given a call graph profile by the following: 32 /// * Build a weighted call graph from the call graph profile 33 /// * Sort input sections by weight 34 /// * For each input section starting with the highest weight 35 /// * Find its most likely predecessor cluster 36 /// * Check if the combined cluster would be too large, or would have too low 37 /// a density. 38 /// * If not, then combine the clusters. 39 /// * Sort non-empty clusters by density 40 /// 41 //===----------------------------------------------------------------------===// 42 43 #include "CallGraphSort.h" 44 #include "OutputSections.h" 45 #include "SymbolTable.h" 46 #include "Symbols.h" 47 48 using namespace llvm; 49 using namespace lld; 50 using namespace lld::elf; 51 52 namespace { 53 struct Edge { 54 int from; 55 uint64_t weight; 56 }; 57 58 struct Cluster { 59 Cluster(int sec, size_t s) : sections{sec}, size(s) {} 60 61 double getDensity() const { 62 if (size == 0) 63 return 0; 64 return double(weight) / double(size); 65 } 66 67 std::vector<int> sections; 68 size_t size = 0; 69 uint64_t weight = 0; 70 uint64_t initialWeight = 0; 71 Edge bestPred = {-1, 0}; 72 }; 73 74 class CallGraphSort { 75 public: 76 CallGraphSort(); 77 78 DenseMap<const InputSectionBase *, int> run(); 79 80 private: 81 std::vector<Cluster> clusters; 82 std::vector<const InputSectionBase *> sections; 83 84 void groupClusters(); 85 }; 86 87 // Maximum ammount the combined cluster density can be worse than the original 88 // cluster to consider merging. 89 constexpr int MAX_DENSITY_DEGRADATION = 8; 90 91 // Maximum cluster size in bytes. 92 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; 93 } // end anonymous namespace 94 95 using SectionPair = 96 std::pair<const InputSectionBase *, const InputSectionBase *>; 97 98 // Take the edge list in Config->CallGraphProfile, resolve symbol names to 99 // Symbols, and generate a graph between InputSections with the provided 100 // weights. 101 CallGraphSort::CallGraphSort() { 102 MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile; 103 DenseMap<const InputSectionBase *, int> secToCluster; 104 105 auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { 106 auto res = secToCluster.insert(std::make_pair(isec, clusters.size())); 107 if (res.second) { 108 sections.push_back(isec); 109 clusters.emplace_back(clusters.size(), isec->getSize()); 110 } 111 return res.first->second; 112 }; 113 114 // Create the graph. 115 for (std::pair<SectionPair, uint64_t> &c : profile) { 116 const auto *fromSB = cast<InputSectionBase>(c.first.first->repl); 117 const auto *toSB = cast<InputSectionBase>(c.first.second->repl); 118 uint64_t weight = c.second; 119 120 // Ignore edges between input sections belonging to different output 121 // sections. This is done because otherwise we would end up with clusters 122 // containing input sections that can't actually be placed adjacently in the 123 // output. This messes with the cluster size and density calculations. We 124 // would also end up moving input sections in other output sections without 125 // moving them closer to what calls them. 126 if (fromSB->getOutputSection() != toSB->getOutputSection()) 127 continue; 128 129 int from = getOrCreateNode(fromSB); 130 int to = getOrCreateNode(toSB); 131 132 clusters[to].weight += weight; 133 134 if (from == to) 135 continue; 136 137 // Remember the best edge. 138 Cluster &toC = clusters[to]; 139 if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { 140 toC.bestPred.from = from; 141 toC.bestPred.weight = weight; 142 } 143 } 144 for (Cluster &c : clusters) 145 c.initialWeight = c.weight; 146 } 147 148 // It's bad to merge clusters which would degrade the density too much. 149 static bool isNewDensityBad(Cluster &a, Cluster &b) { 150 double newDensity = double(a.weight + b.weight) / double(a.size + b.size); 151 return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; 152 } 153 154 static void mergeClusters(Cluster &into, Cluster &from) { 155 into.sections.insert(into.sections.end(), from.sections.begin(), 156 from.sections.end()); 157 into.size += from.size; 158 into.weight += from.weight; 159 from.sections.clear(); 160 from.size = 0; 161 from.weight = 0; 162 } 163 164 // Group InputSections into clusters using the Call-Chain Clustering heuristic 165 // then sort the clusters by density. 166 void CallGraphSort::groupClusters() { 167 std::vector<int> sortedSecs(clusters.size()); 168 std::vector<Cluster *> secToCluster(clusters.size()); 169 170 for (size_t i = 0; i < clusters.size(); ++i) { 171 sortedSecs[i] = i; 172 secToCluster[i] = &clusters[i]; 173 } 174 175 llvm::stable_sort(sortedSecs, [&](int a, int b) { 176 return clusters[a].getDensity() > clusters[b].getDensity(); 177 }); 178 179 for (int si : sortedSecs) { 180 // clusters[si] is the same as secToClusters[si] here because it has not 181 // been merged into another cluster yet. 182 Cluster &c = clusters[si]; 183 184 // Don't consider merging if the edge is unlikely. 185 if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) 186 continue; 187 188 Cluster *predC = secToCluster[c.bestPred.from]; 189 if (predC == &c) 190 continue; 191 192 if (c.size + predC->size > MAX_CLUSTER_SIZE) 193 continue; 194 195 if (isNewDensityBad(*predC, c)) 196 continue; 197 198 // NOTE: Consider using a disjoint-set to track section -> cluster mapping 199 // if this is ever slow. 200 for (int si : c.sections) 201 secToCluster[si] = predC; 202 203 mergeClusters(*predC, c); 204 } 205 206 // Remove empty or dead nodes. Invalidates all cluster indices. 207 llvm::erase_if(clusters, [](const Cluster &c) { 208 return c.size == 0 || c.sections.empty(); 209 }); 210 211 // Sort by density. 212 llvm::stable_sort(clusters, [](const Cluster &a, const Cluster &b) { 213 return a.getDensity() > b.getDensity(); 214 }); 215 } 216 217 DenseMap<const InputSectionBase *, int> CallGraphSort::run() { 218 groupClusters(); 219 220 // Generate order. 221 DenseMap<const InputSectionBase *, int> orderMap; 222 ssize_t curOrder = 1; 223 224 for (const Cluster &c : clusters) 225 for (int secIndex : c.sections) 226 orderMap[sections[secIndex]] = curOrder++; 227 228 if (!config->printSymbolOrder.empty()) { 229 std::error_code ec; 230 raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::F_None); 231 if (ec) { 232 error("cannot open " + config->printSymbolOrder + ": " + ec.message()); 233 return orderMap; 234 } 235 236 // Print the symbols ordered by C3, in the order of increasing curOrder 237 // Instead of sorting all the orderMap, just repeat the loops above. 238 for (const Cluster &c : clusters) 239 for (int secIndex : c.sections) 240 // Search all the symbols in the file of the section 241 // and find out a Defined symbol with name that is within the section. 242 for (Symbol *sym: sections[secIndex]->file->getSymbols()) 243 if (!sym->isSection()) // Filter out section-type symbols here. 244 if (auto *d = dyn_cast<Defined>(sym)) 245 if (sections[secIndex] == d->section) 246 os << sym->getName() << "\n"; 247 } 248 249 return orderMap; 250 } 251 252 // Sort sections by the profile data provided by -callgraph-profile-file 253 // 254 // This first builds a call graph based on the profile data then merges sections 255 // according to the C³ huristic. All clusters are then sorted by a density 256 // metric to further improve locality. 257 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { 258 return CallGraphSort().run(); 259 } 260