xref: /freebsd/contrib/llvm-project/lld/ELF/CallGraphSort.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement
10 /// for Large-Scale Data-Center Applications
11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
12 ///
13 /// The goal of this algorithm is to improve runtime performance of the final
14 /// executable by arranging code sections such that page table and i-cache
15 /// misses are minimized.
16 ///
17 /// Definitions:
18 /// * Cluster
19 ///   * An ordered list of input sections which are layed out as a unit. At the
20 ///     beginning of the algorithm each input section has its own cluster and
21 ///     the weight of the cluster is the sum of the weight of all incomming
22 ///     edges.
23 /// * Call-Chain Clustering (C³) Heuristic
24 ///   * Defines when and how clusters are combined. Pick the highest weighted
25 ///     input section then add it to its most likely predecessor if it wouldn't
26 ///     penalize it too much.
27 /// * Density
28 ///   * The weight of the cluster divided by the size of the cluster. This is a
29 ///     proxy for the ammount of execution time spent per byte of the cluster.
30 ///
31 /// It does so given a call graph profile by the following:
32 /// * Build a weighted call graph from the call graph profile
33 /// * Sort input sections by weight
34 /// * For each input section starting with the highest weight
35 ///   * Find its most likely predecessor cluster
36 ///   * Check if the combined cluster would be too large, or would have too low
37 ///     a density.
38 ///   * If not, then combine the clusters.
39 /// * Sort non-empty clusters by density
40 ///
41 //===----------------------------------------------------------------------===//
42 
43 #include "CallGraphSort.h"
44 #include "OutputSections.h"
45 #include "SymbolTable.h"
46 #include "Symbols.h"
47 
48 using namespace llvm;
49 using namespace lld;
50 using namespace lld::elf;
51 
52 namespace {
53 struct Edge {
54   int from;
55   uint64_t weight;
56 };
57 
58 struct Cluster {
59   Cluster(int sec, size_t s) : sections{sec}, size(s) {}
60 
61   double getDensity() const {
62     if (size == 0)
63       return 0;
64     return double(weight) / double(size);
65   }
66 
67   std::vector<int> sections;
68   size_t size = 0;
69   uint64_t weight = 0;
70   uint64_t initialWeight = 0;
71   Edge bestPred = {-1, 0};
72 };
73 
74 class CallGraphSort {
75 public:
76   CallGraphSort();
77 
78   DenseMap<const InputSectionBase *, int> run();
79 
80 private:
81   std::vector<Cluster> clusters;
82   std::vector<const InputSectionBase *> sections;
83 
84   void groupClusters();
85 };
86 
87 // Maximum ammount the combined cluster density can be worse than the original
88 // cluster to consider merging.
89 constexpr int MAX_DENSITY_DEGRADATION = 8;
90 
91 // Maximum cluster size in bytes.
92 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
93 } // end anonymous namespace
94 
95 using SectionPair =
96     std::pair<const InputSectionBase *, const InputSectionBase *>;
97 
98 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
99 // Symbols, and generate a graph between InputSections with the provided
100 // weights.
101 CallGraphSort::CallGraphSort() {
102   MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
103   DenseMap<const InputSectionBase *, int> secToCluster;
104 
105   auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
106     auto res = secToCluster.insert(std::make_pair(isec, clusters.size()));
107     if (res.second) {
108       sections.push_back(isec);
109       clusters.emplace_back(clusters.size(), isec->getSize());
110     }
111     return res.first->second;
112   };
113 
114   // Create the graph.
115   for (std::pair<SectionPair, uint64_t> &c : profile) {
116     const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
117     const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
118     uint64_t weight = c.second;
119 
120     // Ignore edges between input sections belonging to different output
121     // sections.  This is done because otherwise we would end up with clusters
122     // containing input sections that can't actually be placed adjacently in the
123     // output.  This messes with the cluster size and density calculations.  We
124     // would also end up moving input sections in other output sections without
125     // moving them closer to what calls them.
126     if (fromSB->getOutputSection() != toSB->getOutputSection())
127       continue;
128 
129     int from = getOrCreateNode(fromSB);
130     int to = getOrCreateNode(toSB);
131 
132     clusters[to].weight += weight;
133 
134     if (from == to)
135       continue;
136 
137     // Remember the best edge.
138     Cluster &toC = clusters[to];
139     if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
140       toC.bestPred.from = from;
141       toC.bestPred.weight = weight;
142     }
143   }
144   for (Cluster &c : clusters)
145     c.initialWeight = c.weight;
146 }
147 
148 // It's bad to merge clusters which would degrade the density too much.
149 static bool isNewDensityBad(Cluster &a, Cluster &b) {
150   double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
151   return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
152 }
153 
154 static void mergeClusters(Cluster &into, Cluster &from) {
155   into.sections.insert(into.sections.end(), from.sections.begin(),
156                        from.sections.end());
157   into.size += from.size;
158   into.weight += from.weight;
159   from.sections.clear();
160   from.size = 0;
161   from.weight = 0;
162 }
163 
164 // Group InputSections into clusters using the Call-Chain Clustering heuristic
165 // then sort the clusters by density.
166 void CallGraphSort::groupClusters() {
167   std::vector<int> sortedSecs(clusters.size());
168   std::vector<Cluster *> secToCluster(clusters.size());
169 
170   for (size_t i = 0; i < clusters.size(); ++i) {
171     sortedSecs[i] = i;
172     secToCluster[i] = &clusters[i];
173   }
174 
175   llvm::stable_sort(sortedSecs, [&](int a, int b) {
176     return clusters[a].getDensity() > clusters[b].getDensity();
177   });
178 
179   for (int si : sortedSecs) {
180     // clusters[si] is the same as secToClusters[si] here because it has not
181     // been merged into another cluster yet.
182     Cluster &c = clusters[si];
183 
184     // Don't consider merging if the edge is unlikely.
185     if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
186       continue;
187 
188     Cluster *predC = secToCluster[c.bestPred.from];
189     if (predC == &c)
190       continue;
191 
192     if (c.size + predC->size > MAX_CLUSTER_SIZE)
193       continue;
194 
195     if (isNewDensityBad(*predC, c))
196       continue;
197 
198     // NOTE: Consider using a disjoint-set to track section -> cluster mapping
199     // if this is ever slow.
200     for (int si : c.sections)
201       secToCluster[si] = predC;
202 
203     mergeClusters(*predC, c);
204   }
205 
206   // Remove empty or dead nodes. Invalidates all cluster indices.
207   llvm::erase_if(clusters, [](const Cluster &c) {
208     return c.size == 0 || c.sections.empty();
209   });
210 
211   // Sort by density.
212   llvm::stable_sort(clusters, [](const Cluster &a, const Cluster &b) {
213     return a.getDensity() > b.getDensity();
214   });
215 }
216 
217 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
218   groupClusters();
219 
220   // Generate order.
221   DenseMap<const InputSectionBase *, int> orderMap;
222   ssize_t curOrder = 1;
223 
224   for (const Cluster &c : clusters)
225     for (int secIndex : c.sections)
226       orderMap[sections[secIndex]] = curOrder++;
227 
228   if (!config->printSymbolOrder.empty()) {
229     std::error_code ec;
230     raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::F_None);
231     if (ec) {
232       error("cannot open " + config->printSymbolOrder + ": " + ec.message());
233       return orderMap;
234     }
235 
236     // Print the symbols ordered by C3, in the order of increasing curOrder
237     // Instead of sorting all the orderMap, just repeat the loops above.
238     for (const Cluster &c : clusters)
239       for (int secIndex : c.sections)
240         // Search all the symbols in the file of the section
241         // and find out a Defined symbol with name that is within the section.
242         for (Symbol *sym: sections[secIndex]->file->getSymbols())
243           if (!sym->isSection()) // Filter out section-type symbols here.
244             if (auto *d = dyn_cast<Defined>(sym))
245               if (sections[secIndex] == d->section)
246                 os << sym->getName() << "\n";
247   }
248 
249   return orderMap;
250 }
251 
252 // Sort sections by the profile data provided by -callgraph-profile-file
253 //
254 // This first builds a call graph based on the profile data then merges sections
255 // according to the C³ huristic. All clusters are then sorted by a density
256 // metric to further improve locality.
257 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
258   return CallGraphSort().run();
259 }
260